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ABSTRACT 18 

The hippocampus has a unique microarchitecture, is situated at the nexus of multiple macroscale 19 
functional networks, contributes to numerous cognitive as well as affective processes, and is highly 20 
susceptible to brain pathology across common disorders. These features make the hippocampus a model 21 
to understand how brain structure covaries with function, in both health and disease. Here, we introduce 22 
HippoMaps, an open access toolbox and online data warehouse for the mapping and contextualization of 23 
hippocampal data in the human brain (http://hippomaps.readthedocs.io). HippoMaps capitalizes on a 24 
novel hippocampal unfolding approach as well as shape intrinsic registration capabilities to allow for 25 
cross-subject and cross-modal data aggregation. We initialize this repository with data spanning 3D post-26 
mortem histology, ex-vivo 9.4 Tesla MRI, as well as in-vivo structural MRI and resting-state functional 27 
MRI (rsfMRI) obtained at 3 and 7 Tesla, together with intracranial encephalography (iEEG) recordings in 28 
epilepsy patients. HippoMaps also contains validated tools for spatial map association analysis in the 29 
hippocampus that correct for autocorrelation. All code and data are compliant with community standards, 30 
and comprehensive online tutorials facilitate broad adoption. Applications of this work span 31 
methodologies and modalities, spatial scales, as well as clinical and basic research contexts, and we 32 
encourage community feedback and contributions in the spirit of open and iterative scientific resource 33 
development. 34 

INTRODUCTION 35 

The hippocampus has long been regarded as a model to understand how brain structure spatially covaries 36 
with function (Bahr, 1995; Eichenbaum, 2000). On the one hand, hippocampal anatomy has been 37 
recognized to be organized in both anterior-posterior and proximal-distal dimensions (Duvernoy et al., 38 
2013; Olsen et al., 2019). Anterior-posterior organization is emphasized in foundational descriptions of its 39 
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anatomical segments (i.e., head, body, and tail) as well as functional gradients along the hippocampal 40 
long axis (Bouffard et al., 2023; Poppenk et al., 2013; Przeździk et al., 2019; Strange et al., 2014; Vogel 41 
et al., 2020; Vos de Wael et al., 2018). Perpendicular to this, there is a preserved arrangement of 42 
hippocampal subfields along the proximal-distal (also referred to as medio-lateral) axis (Genon et al., 43 
2021; Insausti & Amaral, 2004; Olsen et al., 2019; Paquola, Benkarim, et al., 2020; Ramón y Cajal, 1904; 44 
Yushkevich et al., 2015). These macroanatomical and microstructural features have been suggested to 45 
directly relate to hippocampal circuit organization and its embedding within macroscale functional 46 
networks (Knierim & Neunuebel, 2016; S. Leutgeb & Leutgeb, 2007; Rolls, 2016), contributing to 47 
specific hippocampal computations and its role as a nexus connecting paralimbic, sensory, and 48 
heteromodal association systems, notably the default mode network (Andrews-Hanna, Reidler, Sepulcre, 49 
et al., 2010; Buckner et al., 2008; Smallwood et al., 2021; Vos de Wael et al., 2018). It broad involvement 50 
in multiple macroscale networks is clearly compatible with the key role the hippocampus plays in 51 
numerous cognitive and affective processes, including memory and language function, together with 52 
affective reactivity, stress as well as spatial navigation (Barnett et al., 2024; O’Keefe & Nadel, 1978; 53 
Stachenfeld et al., 2014, 2017; Whittington et al., 2022). Notably, the hippocampus is also recognized as 54 
one of the proximate evolutionary origins of the neocortex (Puelles et al., 2019; Sanides, 1969), making it 55 
a candidate structure to investigate principles of evolutionary conservation and innovation in the primate 56 
lineage (Eichert et al., 2023). Collectively, these insights contribute to the notion that the hippocampus is 57 
a microcosm of the brain, and that an assessment of its sub-regional organization provides key insights 58 
into human neural architectures.  59 
 60 
The fine-grained subregional organization of the hippocampus contrasts the somewhat coarse assessment 61 
of this structure by most contemporary neuroimaging investigations, which often still treat this complex 62 
archicortical structure as a single entity (Jordan DeKraker et al., 2021), or even erroneously label it as 63 
‘subcortical’. This is, in part, due to technical limitations: since the hippocampus is thinner and more 64 
tightly convoluted than the neocortex, it is difficult to appreciate its cortical architecture in magnetic 65 
resonance imaging (MRI) or the extent of its 3D convolutions in sparse histology slices. More recently, 66 
relatively few studies have compared its microstructural to mesoscale structural and functional features 67 
directly, with most studies opting instead to apply subfield parcellation as a proxy (Caldairou et al., 2016; 68 
Iglesias et al., 2015; Kulaga-Yoskovitz et al., 2015; Olsen et al., 2019; Romero et al., 2017; Yushkevich 69 
et al., 2010). Here, we introduce HippoMaps, an open access toolbox and online data warehouse for (i) 70 
the surface based mapping and analytical unfolding of hippocampal subregional features, (ii) the 71 
contextualization of a given hippocampal map (derived from e.g., a typical task-based functional MRI 72 
experiment or structural abnormality map in disease) with respect to normative hippocampal data 73 
obtained from histology and imaging, and for offering (iii) a non-parametric statistical framework to 74 
establish the correlation across standardized surface maps, while controlling for spatial autocorrelation. 75 
HippoMaps adopts best practices and methods developed throughout the neocortical mapping community 76 
(Alexander-Bloch et al., 2018; Glasser et al., 2013; Lepage et al., 2017; Markello et al., 2022), and we 77 
provide a set of tools, tutorials, and guidelines for broad adoption and continued development.  78 
 79 
HippoMaps benefits from multiple recent technical innovations in hippocampal image processing and 80 
analysis. First, it leverages a unified hippocampal segmentation and surface mapping approach using deep 81 
learning-based image processing (Jordan DeKraker et al., 2022), imposing a known prior topology 82 
(Jordan DeKraker et al., 2018) and shape-inherent inter-subject alignment (DeKraker et al., 2023). Similar 83 
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to neocortical surface extraction and registration procedures (Boucher et al., 2009; Dale et al., 1999; 84 
Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, et al., 1999; Kim et al., 2005; Lyttelton et al., 2007; 85 
MacDonald et al., 2000), this allows for topology-informed inter-subject registration to a standardized 86 
unfolded space (Jordan DeKraker et al., 2023). This has begun a new wave of high-sensitivity 87 
hippocampally-focused studies in topics including the mapping of histology features (J. DeKraker et al., 88 
2020; Paquola, Benkarim, et al., 2020), blood perfusion (Haast et al., 2023; Ngo et al., 2023), 89 
biophysically-constrained diffusion (Karat et al., 2023), hippocampal sclerosis (Ripart et al., 2023), 90 
neurodevelopmental trajectories (Hanson et al., 2023), functional connectivity (Cabalo et al., 2023; 91 
Lariviere et al., 2023; Xie et al., 2023), visual receptive field mapping (Leferink et al., 2023), and cross-92 
species comparison (Eichert et al., 2023). With the increasing aggregation of hippocampal features in a 93 
common reference space, it is now possible to devise repositories that allow for a broad contextualization 94 
of hippocampal findings. Such work may aid in the interpretation of findings from new studies and 95 
experiments, for example by allowing for the cross-referencing of these results against established 96 
features of hippocampal functional and structural organization.  97 
 98 
At the level of the neocortex, there has been an increasing repertoire of comprehensive open tools for 99 
contextualization of findings, including BALSA (David C. Van Essen et al., 2017), NeuroVault 100 
(Gorgolewski et al., 2015), and NeuroMaps (Markello et al., 2022), as well as other contextualization 101 
methods incorporated in statistical software such as BrainStat (Lariviere et al 2022) and the ENIGMA 102 
toolbox (Lariviere et al. 2022). With HippoMaps, we expand anatomy-driven neuroinformatics to the 103 
hippocampus, and provide a high-quality and broad multimodal online repository of normative maps, 104 
using a common folded and unfolded surface representational space. We initialize the HippoMaps 105 
repository with a spectrum of data spanning 3D histology, structural MRI and resting-state functional 106 
MRI (rsfMRI) obtained at field strengths of 3 and 7 Tesla from healthy individuals, as well as intracranial 107 
encephalography (iEEG) collected from epilepsy patients. We provide tools for high-definition 108 
hippocampal visualization and contextualization. Moreover, we incorporate adapted methods to control 109 
for autocorrelation when assessing spatial maps to one another, a key for accurate enrichment analysis in 110 
the hippocampus (Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wael et al., 2020). Finally, 111 
provide an example of how future hippocampal mapping studies can use spatial correlation with 112 
HippoMaps to contextualize results, linking structure and function. This is supported by online tutorials to 113 
reproduce all results shown here (https://github.com/HippAI/hippomaps or https://github.com/MICA-114 
MNI/hippomaps), with extensibility so future studies may contribute their methods and mapped data 115 
(https://osf.io/92p34/). 116 

METHODS 117 

Datasets 118 

To provide broad coverage of many areas of hippocampal research, we initialize HippoMaps with 30 119 
novel minimally processed but spatially aligned data spanning 3D post-mortem histology, high field in-120 
vivo structural as well as resting-state functional MRI (rsfMRI), and intracranial electroencephalography 121 
(iEEG). These data originate from open source resources including BigBrain (Amunts et al., 2013), 122 
AHEAD (Alkemade et al., 2022), MICs (Royer et al., 2022), the MNI open iEEG atlas (Frauscher et al., 123 
2018), and are further supplemented with locally collected data including further healthy structural and 124 
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functional MRI obtained at 3 Tesla and 7 Tesla, as well as iEEG data obtained in epilepsy patients that 125 
also underwent pre-implantation multimodal MRI. See the Supplementary Materials for details of each 126 
dataset and preprocessing. 127 

Surface mapping 128 

Data processing details are available in the Supplementary Methods. Briefly, minimal preprocessing 129 
was applied to each dataset using micapipe v0.2.2 (https://github.com/MICA-MNI/micapipe) for 130 
structural and functional MRI (Cruces et al., 2022) and custom code for other data. Though the 131 
processing of each data modality differs, they were each mapped to a standardized folded and unfolded 132 
surface space using HippUnfold v1.3.0 (Jordan DeKraker et al., 2022). Briefly, this entails tissue type 133 
segmentation using a deep UNet neural network, fitting of inner, outer, and midthickness surfaces to 134 
hippocampal gray matter, mapping to a standardized unfolded rectangular space, and then registration in 135 
unfolded space to a standard, histology-derived generated atlas (Jordan DeKraker et al., 2023). This 136 
standardized space is, thus, made equivalent across all subjects. Notably, despite surface meshes having 137 
differing tessellations (Figure 1A), they can be interpolated in unfolded space to match microscale 138 
features (e.g., 3D reconstructed histological stains) to MRI or vice versa, spanning a scale of micrometers 139 
to millimeters.  140 
 141 
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142 
Figure 1. Mapping multiscale data to standardized hippocampal surfaces. A) Surface folding and density are matched to the143 
sample shape and resolution. Mapping to a standardized unfolded space enables registration and interpolation across scales,144 
which can then be followed by parcellation, averaging, or comparison by spatial correlation. B) Depth-wise microstructural145 
profiles are calculated by fitting surfaces at multiple depths (yellow-orange-red), including extrapolated surfaces over146 
surrounding tissues (green and pink). Profiles at a given vertex are then translated vertically to maximize alignment to the147 
average before being cut off at the gray matter boundary. C) Sparse data like depth electrodes or tissue punches are mapped to a148 
hippocampal surface, and their data are extrapolated across the hippocampal surface proportionally to geodesic distance. 149 
 150 
In addition to inner, midthickness, and outer surfaces, any number of intermediate surfaces can be151 
generated at different depths or linearly extrapolated around the outer bounds of the hippocampus (Figure152 
1B) (Marcus et al., 2011). This is especially useful for sub-millimetric data, where laminar or153 
microstructural profile information can be extracted. In this case, we illustrate a function for refining154 
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alignment of such profiles using vertical (that is, in the laminar direction) translations. This data-driven 155 
refinement leverages image intensity to mitigate slight differences in boundary criteria or segmentation 156 
errors between different parts of the hippocampus, without making strong assumptions about how 157 
different laminae are stained (provided they are consistent within the sample).  158 
 159 
Using a similar approach, even sparsely sampled data can be spatially mapped across the hippocampus 160 
(Figure 1C). In this case, we map the centroids of iEEG channels to their nearest corresponding 161 
hippocampal vertices. However, in principle, this could also apply to other sparse (or scattered) data such 162 
as tissue punches, other invasive recording devices, small resections, or other irregularly spaced sampling 163 
methods. We then map iEEG channel data to all vertices within <5mm of the channel centroid, and 164 
average data across all channels from all patients with a weighting proportional to geodesic distance from 165 
those vertices. This extrapolation method is more robust than a linear or nearest-neighbour extrapolation, 166 
which would be strongly driven by only one or a few nearby vertices with data mapped to them, while 167 
also still preserving some spatial preference for data from nearby channels.  168 

Significance testing 169 

Spatial autocorrelation can compromise statistical significance testing when testing correlations between 170 
continuous maps (Alexander-Bloch et al., 2018). HippoMaps provides two types of permutation test to 171 
ensure robustness against this issue: Moran spectral randomization (Wagner & Dray, 2015) and “spin” 172 
test randomization (Alexander-Bloch et al., 2018; Karat et al., 2023; Vos de Wael et al., 2020). To make 173 
it suitable for the hippocampus, spin permutation tests include wrapping of the anterior-posterior and 174 
proximal-distal edges of the hippocampus, making the topology of a torus (see (Karat et al., 2023) for 175 
details). 176 

RESULTS 177 

We present novel hippocampal maps in a standardized folded and unfolded space for each of the datasets 178 
outlined above. This includes 30 distinct group-averaged maps which have been attentively preprocessed 179 
and curated. Within each methodology, some interpretation and summarization via dimensionality 180 
reduction is offered, and finally we compare all maps across methodologies in the “Feature combinations” 181 
section.  182 

Histology 183 

Histology is considered a neuroanatomical gold standard, and is the basis for most parcellations and 184 
descriptions of brain regions (Amunts et al., 2020; Brodmann, 1909; Eickhoff et al., 2018; Paquola et al., 185 
2019). Here we examined data collected from BigBrain Merker staining for cell bodies (Amunts et al., 186 
2013), 3D polarized light imaging (PLI) of neural processes (M. Axer et al., 2011), and the AHEAD 187 
dataset with different stains serving as markers of neurons, myelin, and subtypes of interneurons 188 
(Alkemade et al., 2022) (Figure 2A). Most features showed banding in the proximal-distal direction, in 189 
alignment with the subfield atlas shown in Figure 1.  190 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.23.581734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581734
http://creativecommons.org/licenses/by-nc/4.0/


DeKraker et al.  7

191 
Figure 2. Histology mapping, depth-wise microstructural profiles, and dimensionality reduction. A) Sample slices and averaged192 
3D maps of histological features. Maps are averaged across depths and, where possible, samples. B) Example of microstructural193 
profile shapes from five evenly spaced bins across the proximal-distal axis of the Merker stain map. Grey indicates points outside194 
of the gray matter mask. C) Correlation between microstructural profiles, concatenated across modalities, at each vertex (left).195 
Dimensionality reduction into primary diffusion embedding gradients 1-3 (right).  196 
 197 
Microstructural (or laminar) profiles are shown for five ROIs across the proximal-distal axis of the198 
BigBrain Merker stain (Figure 2B). They show a tight unimodal distribution in the distal CA fields, and a199 
more bimodal distribution in the subiculum as expected based on their known laminar architectures200 
(Duvernoy et al., 2013). Profiles for all vertices were concatenated across all stains to make multimodal201 
profiles, a common method for characterizing laminar structure (Schleicher et al., 1999). Next,202 
multimodal covariance matrices between vertices were calculated (mMPC matrix) (Figure 2C). Diffusion203 
map embedding, a non-linear dimensionality reduction technique (Coifman et al., 2005; Margulies et al.,204 
2016; Vos de Wael et al., 2020), decomposed the mMPC matrix into primary components, or gradients,205 
that highlighted the differences between vertices with respect to all modalities and depths. In the first206 
gradient, a sharp boundary was seen between the subicular complex and proximal CA1 and the rest of the207 
hippocampus. The second and third gradients in turn highlighted the CA2-3 regions and CA1 with parts208 
of the subiculum, respectively. This is data-driven evidence that subfields across the proximal-distal209 
extent of the hippocampus, rather than anterior-posterior or other patterns, account for structural variance210 
in the hippocampus with respect to these stains. These data-driven decompositions, thereby, echo classical211 
and recent neuroanatomy descriptions of hippocampal microstructure (Ding & Van Hoesen, 2015;212 
Duvernoy et al., 2013; Olsen et al., 2019).  213 
 214 

Structural MRI 215 

MRI is a key tool for studying human neuroanatomy and structure-function relations due to its non-216 
invasive nature and potential for biomarker discovery. 7 Tesla (7T) and ex-vivo 9.4T scanning are217 
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especially powerful, achieving greater resolution and contrast than typical 3T or 1.5T clinical scans218 
(Duyn, 2012; Opheim et al., 2021). Here, we provide healthy normative maps for such scans (Figure 3A)219 
including popular acquisitions: quantitative T1 relaxometry (qT1) and its non-quantitative ex-vivo220 
inverse: R1, T2* and its inverse R2*, proton density, diffusion weighted imaging (DWI) estimates of221 
fractional anisotropy (FA) and apparent diffusivity coefficient (ADC), and magnetic transfer ratio (MTR). 222 

223 
Figure 3. Structural MRI mapping, inter-sample consistency, and dimensionality reduction. A) Sample slices and averaged 3D224 
maps of histological features. Maps are averaged across depths and, where possible, samples. B) Consistency, as measured by the225 
correlation between all pairs of individual sample maps, C) Correlation between microstructural profiles, concatenated across226 
modalities, at each vertex (left). Dimensionality reduction into primary diffusion embedding gradients 1-3 (right).  227 
 228 
Multiple scans were available for averaging (n=4 left+right hippocampi at 9.4T and n=20 left+right229 
hippocampi at 7T), enabling a calculation of consistency across samples via Pearson’s R (Figure 3B).230 
DWI and qT1 maps were also calculated in a second validation dataset, consisting of 82 locally scanned231 
healthy participants (including the subset from the MICA-MICs dataset) with a 3T scanner, which232 
showed similar patterns (Figure S1). mMPCs were generated as above and were reduced using diffusion233 
map embedding into primary gradients, which again highlighted differences across subfields. Only the234 
third gradient showed anterior-posterior differences, largely within the CA1 subfield.  235 

Functional MRI 236 

Functional MRI during the resting state (rsfMRI) allows interrogation of intrinsic brain function via the237 
analysis of spontaneous activity and its statistical dependencies, and has become a key technique in the238 
mapping of functional-anatomical systems (Biswal et al., 1997; Buckner et al., 2008; Smith et al., 2009).239 
Here, we examined several features of rsfMRI in 88 healthy participants scanned at 3T. Intrinsic240 
timescale is a measure of the time it takes for the temporal autocorrelation to drop below a threshold241 
(Golesorkhi et al., 2021; Wolff et al., 2022) (Figure 4A). On a functional level, this is thought to be242 
driven in part by recurrent connections that maintain activity patterns on the order of seconds (Fallon et243 
al., 2020). Regional homogeneity considers the similarity between adjacent vertices’ time series, which is244 
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thought to indicate the extent of horizontal (i.e., between cortical columns) excitatory connectivity (Zang245 
et al., 2004) (Figure 4B). Finally, macroscale functional connectivity is by far the most popular rsfMRI246 
feature, with many rich properties that have been explored with respect to white matter connections247 
(Damoiseaux & Greicius, 2009; Greicius et al., 2009; Honey et al., 2009), network properties248 
(Schmittmann et al., 2015; van den Heuvel & Sporns, 2013), organizational gradients (Bernhardt et al.,249 
2022; Margulies et al., 2016; Paquola et al., 2019; Park et al., 2021), and many other summary metrics.250 
For simplicity, we examined connectivity between all hippocampal vertices and neocortical parcels from251 
the Schaeffer400 parcellation (Schaefer et al., 2018) (Figure 4C). The consistency of maps was examined252 
as above, and all measures were significantly greater than zero. Repetition of these analyses in a smaller253 
sample of 7T rsfMRI data showed consistent results (Figure S2). 254 

255 
Figure 4. Functional MRI properties. Resting state (rsfMRI) data were used to calculate A) intrinsic timescale (recurrence), B)256 
regional homogeneity (short range connectivity), and C) functional connectivity (long range; to the neocortex). D)257 
Decomposition of functional connectivity patterns across hippocampal vertices into primary diffusion map embedding gradients. 258 
 259 
As mentioned above, functional connectivity is a rich measure that can be summarized in many ways.260 
Here, we identified gradients of intrinsic hippocampal connectivity variations (Figure 4D) using the261 
aforementioned non-linear decomposition techniques. Consistent with previous work (Genon et al., 2021;262 
Poppenk et al., 2013; Przeździk et al., 2019; Strange et al., 2014; Vogel et al., 2020; Vos de Wael et al.,263 
2018), we found anterior-posterior differentiation in the first hippocampal gradient, together with264 
proximal-distal banding with CA1 in particular differing from the other subfields. Neocortical265 
counterparts of this gradient show that anterior and CA1 regions shared more connectivity with temporal266 
pole, insula, and frontal regions whereas more posterior and non-CA1 subfields shared connectivity with267 
more posterior parietal and visual areas, again consistent with previous findings (Vos de Wael et al.,268 
2018). The second gradient also showed differentiation of CA1 from subiculum and CA2-3 in the more269 
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middle and posterior regions, with neocortical correspondences to medial prefrontal and posterior270 
cingulate regions for CA1 and more visual areas for CA2-3 and posterior subiculum.  271 

Intracranial EEG  272 

Invasive recording methods such as iEEG provide a direct measure of neural activity at high temporal273 
resolution, but typically have lower spatial coverage and are limited to neurological patient populations.274 
In that sense, they can be considered as scattered spatial data, which can be interpolated or extrapolated275 
for hippocampal mapping as described in Figure 1C, or following previous approaches (Frauscher et al.,276 
2018). We employ common measures of the periodic component of iEEG data, as shown by power277 
spectrum density and additionally further simplified to Delta, Theta, Alpha, Beta, and Gamma band278 
powers from low to high frequencies, respectively. Power spectrum densities and band powers derived279 
from hippocampal channels resembled those derived from all channels (Figure 5A). Extrapolating280 
channel information across neighbouring vertices from a given hippocampus, a spatial pattern emerged in281 
which both proximal-distal and anterior-posterior differences were seen (Figure 5B). Band power is a282 
limited measure of the full power spectrum density though, and so in Figure 5C we performed gradient283 
mapping of the full power spectrum density. This showed a primary anterior-posterior gradient driven by284 
higher Theta and Alpha power in the posterior and higher Delta power in the anterior hippocampus. The285 
second gradient showed increased Delta power in the anterior and posterior hippocampus, while the third286 
gradient showed a slight increase in Delta and decrease in Theta in the subiculum. Results were consistent287 
when using an open iEEG atlas (Frauscher et al., 2018) or locally collected data in patients (Paquola,288 
Seidlitz, et al., 2020), showing largely conserved patterns in Figure S3.  289 

290 
Figure 5. Intracranial EEG (iEEG) properties from time periods deemed “normal” in implanted patients assessed during resting291 
state. A) (left) power spectrum density plots of all channels (n=4279) and hippocampal channels (<5mm from any hippocampal292 
midthickness vertex) (n=81), standard deviation shaded. (right) lognormal power within each band for each hippocampal channel,293 
with vertical lines indicating the median and with corresponding bands from all channels in gray. B) Spatial extrapolation294 
weighted by geodesic distance shows largely anterior-posterior differences in band powers. C) Power spectrum densities reduced295 
into primary diffusion map embedding gradients.  296 
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Feature combinations 297 

The biggest advantage of a common hippocampal mapping space is that it allows for direct spatial 298 
correlation between features from different scales and methods. In Figure 6A, we examined relationships 299 
between all maps shown above using Pearson’s R with an adapted spin test significance testing to control 300 
for spatial autocorrelation in the data. This revealed many greater-than-chance correlations, both within 301 
methodologies and between. Finally, we additionally compared morphological measures of thickness, 302 
gyrification, and curvature which are generated within the HippUnfold workflow (Figure S4). Previous 303 
work (J. DeKraker et al., 2020) showed that these features differed between MRI and histology, with the 304 
latter showing greater detail including more gyrification and lower thickness. After group-averaging, each 305 
of these features was significantly spatially correlated between histology and MRI.  306 
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307 
Figure 6. Relationship between all hippocampal maps. A) correlation matrix of all features, after resampling to a common308 
0.5mm vertex-spacing surface. B) Diffusion map embeddings 1-3 across all features. C) Alignment of gradients 1 and 2 to309 
hippocampal subfields, proximal-distal, and anterior-posterior axes. D) Absolute correlation between each feature map and the310 
anterior-posterior axis (Pearson’s R) and the maximum permuted subfield labels (Spearman’s R). 311 
 312 
We performed a dimensionality reduction across all features from all figures using diffusion map gradient313 
embeddings. For visualization, we plotted components 1 and 2 with colour coding according to subfield314 
and continuous anterior-posterior and proximal-distal gradients (Figure 6C). The proximal-distal and315 
anterior-posterior axes of the hippocampus are closely aligned to gradients 1 and 2, respectively, with316 
gradient 1 explaining approximately twice the variance (Figure 6B). This suggests that while these two317 
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axes emerge as natural summaries of many hippocampal feature maps, the proximal-distal direction is 318 
stronger.  319 
 320 
Figure 6D provides a summary of which measures are most correlated with the anterior-posterior and 321 
subfield axes of the hippocampus. As expected, the strongest subfield relationships were observed in 322 
histological features such as Calbindin and Calretinin staining, or thickness measures at a histological 323 
level of precision. Many structural 9.4T and 7T features also showed strong subfield correlations, 324 
especially qT1 and qR1. This is encouraging given the increasing availability and adoption of quantitative 325 
T1 sequences (Bidhult et al., 2016; Haast et al., 2016; van der Weijden et al., 2021). The employed 326 
rsfMRI and iEEG features were still moderately correlated with subfield division, but iEEG and rsfMRI 327 
gradients in particular showed strong correlations with the anterior-posterior hippocampal axis. Some 328 
caution should be exercised here: iEEG data were sparsely sampled and so after extrapolation each band 329 
power map was very smooth, which could amplify correlation values (but not significance, since spin test 330 
permutations were used to control for spatial autocorrelation). Note also that laminar profiles were not 331 
used in this analysis, and histological measures in particular can benefit from the information added by 332 
such methods due to their high precision.  333 

Usability experiment and documentation 334 

HippoMaps as an open toolbox and online data warehouse paves the way for multiple new research 335 
avenues, examples of which are shown in Figure 7. We anticipate that as hippocampal mapping studies 336 
are performed in other research areas, authors can use the initial maps provided here as comparisons and 337 
will upload their own maps in the spirit of open and reproducible science, and also to boost the visibility 338 
of their work. To this end, we provide a set of Python tools, well documented example code to reproduce 339 
the maps shown here (labeled as tutorials), and guidelines for how other experimenters should upload 340 
their maps to this repository. We have and will continue to answer questions and create community 341 
resources via GitHub (https://github.com/HippAI/hippomaps or https://github.com/MICA-342 
MNI/hippomaps), and all current maps are available on the Open Science Framework 343 
(https://osf.io/92p34/).  344 
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345 
Figure 7. Examples of HippoMaps usage. A) New experiments can utilize HippoMaps tools and resources while also346 
contributing new maps to the repository. Only example repository maps are shown, with descriptive naming and additional347 
details to be provided in README files. B) task-fMRI during the Mnemonic Similarity Task (MST) to probe the haemodynamic348 
response function (HRF) magnitudes during successful pattern separation and novel trials. These maps are then compared to all349 
others (right), listing the top three strongest correlations (black lines). C) Morphological differences between ipsilateral temporal350 
lobe epilepsy (TLE) patients and healthy controls 351 
 352 
Figure 7A shows a generic use case of HippoMaps wherein a new finding is contextualized by353 
comparison to other maps in HippoMaps, and data is in turn contributed to HippoMaps to extend its354 
utility in future work. Figure 7B illustrates an example experiment with task-fMRI using the Mnemonic355 
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Similarity Task (MST) designed to probe pattern separation, a task thought to preferentially involve 356 
hippocampal subregions (Pishdadian et al., 2020; Stark et al., 2019). This can be seen most strongly in 357 
subiculum for the successful pattern separation trials, whereas trials with novel stimuli showed anterior-358 
posterior differentiation. Comparing these maps directly to microcircuit features provides context for the 359 
demands of these two task conditions: pattern separation was strongly correlated to detailed maps of 360 
curvature, thickness, and neocortical connectivity, whereas novelty was moderately correlated to intrinsic 361 
timescale, beta band power, and gamma band power (Figure 7B, right). Further task-fMRI results from 362 
an object-pairing memory task, as well as replication data of the MST at 7T, are shown in Figure S5. 363 
 364 
Figure 7C illustrates an example experiment comparing 35 temporal lobe epilepsy (TLE) patients to 81 365 
healthy, age- and sex-matched controls scanned at 3T MRI. Reductions in hippocampal thickness and 366 
gyrification are seen, with the greatest changes in CA1 and CA4 subfields, which have previously been 367 
identified as vulnerable areas (Blümcke et al., 2012, 2013; Duvernoy et al., 2013; Steve et al., 2020). 368 
Comparing thickness reduction patterns to other maps shows moderate correlations with rsfMRI 369 
properties of intrinsic timescale, neocortical connectivity, and histological Bieloschowsky staining. 370 
Gyrification loss was strongly correlated with healthy gyrification in histology and 7T MRI, and iEEG 371 
delta band power.  372 

DISCUSSION 373 

Despite its critical role in human brain organization in both health and disease, the field lacks a 374 
standardized framework to aggregate, represent, and compare structural and functional features of the 375 
hippocampus. The current work presented HippoMaps as a centralized toolbox and online data warehouse 376 
for hippocampal subregional analysis and contextualization. HippoMaps is based on a standardized 377 
hippocampal reference space for data aggregation, sharing, and analysis, which leverages recent advances 378 
in automated hippocampal segmentation and computational unfolding (Jordan DeKraker et al., 2022), as 379 
well as improvements for cross-modal and cross-subject alignment (DeKraker et al., 2023). This 380 
repository is initialized with 30 novel maps of hippocampal subregional organization, aggregating a broad 381 
array of features from 3D post-mortem histology, ex-vivo 9.4 Tesla MRI, alongside with in-vivo structural 382 
and resting-state functional MRI (rsfMRI) obtained at 3 and 7 Tesla, as well as intracranial 383 
encephalography (iEEG) collected from a large cohort of epilepsy patients. This is further extended by a 384 
host of tools for visualization and contextualization, as well as online tutorials that recreate the maps 385 
shown here and demonstrate how new data can be incorporated and analyzed. HippoMaps will provide 386 
key guidance to: (i) compare hippocampal features derived from different methods, in particular to cross-387 
reference in-vivo imaging measures with ex-vivo and post-mortem data, (ii) interrogate structure-function 388 
relationships, for example by contextualizing task-based fMRI findings or intracranial neural recording 389 
against spatial patterns obtained from anatomical and microstructural measures, (iii) contextualizing case-390 
control deviations in clinical populations against established principles of subregional hippocampal 391 
organization, and (iv) refining our understanding of hippocampal circuity, by mapping its functional 392 
connectivity and microstructure for a better understanding of its computational operations and transfer 393 
functions at the subregional level. HippoMaps is fully open access and designed according to community 394 
standards (http://hippomaps.readthedocs.io), to facilitate its dissemination and usability. As such, we 395 
anticipate that HippoMaps will represent a powerful analytical ally for fundamental and clinical 396 
neuroscientists alike. Considering the unique role the hippocampus plays in human neuroanatomy and 397 
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cognition (Duvernoy et al., 2013; O’Keefe & Nadel, 1978) and its likely important computational 398 
properties (Knierim & Neunuebel, 2016; S. Leutgeb & Leutgeb, 2007), it may furthermore provide key 399 
insights and guidance into the design and validation of emerging bio-inspired AI architectures.  400 
 401 
We anticipate that surface-based registration will become the standard for hippocampal mapping, as it has 402 
in the neocortex (Fischl, Sereno, Tootell, et al., 1999; Glasser et al., 2013; Ma et al., 2023; Robinson et 403 
al., 2014; D. C. Van Essen et al., 1998). HippoMaps is a major step in advancing the usability of this 404 
methodology, generating utilities, scientific context, and an open community for examining the 405 
hippocampus in detail. Moreover, our repository is designed to employ the same data standards that have 406 
already been extensively developed for neocortical brain imaging data including Brain Imaging Data 407 
Standards (BIDS) (Gorgolewski et al., 2016); NIfTI/GIfTI file formatting (Glasser et al., 2013); and 408 
Findability, Accessibility, Interoperability, and Reusability (FAIR) principles (Gorgolewski & Poldrack, 409 
2016; Wilkinson et al., 2016). Despite its demonstrated benefits, surface-based alignment is not yet 410 
universal for the neocortex and certainly still in its infancy for the hippocampus. Thus, while we 411 
encourage the use of surface-based methods, we also provide code and examples of how to map 412 
volumetrically aligned hippocampal data (e.g., in a standard volumetric space such as MNI152 or others) 413 
to hippocampal surfaces for comparison and contribution to HippoMaps. In the field, work progresses at 414 
the level of hippocampal subfield parcellation at the level of histology, for example to derive additional 415 
subregional divisions (González-Arnay et al., 2024; Henriksen et al., 2010; Igarashi et al., 2014). 416 
Moreover, there have been ongoing efforts by the neuroimaging community to harmonize boundary 417 
heuristics (Olsen et al., 2019; Yushkevich et al., 2015). Under the HippoMaps framework, descriptions go 418 
beyond typical unitary descriptions of the hippocampus and beyond its parcellation into subfields to the 419 
level of mapping vertex-wise or columnar structure of hippocampal archicortex. The columnar level 420 
represents an important structural and functional modularization of the brain (Mountcastle, 1997), and has 421 
the potential to unlock new facets of hippocampal computation. As such, different subfield parcellations 422 
can also be converted to surface format and integrated seamlessly within the HippoMaps warehouse. 423 
Thus, we apply considerable futureproofing, and we encourage the broader hippocampal research 424 
community to upload their own maps to this repository under our support, curation, and online guidelines 425 
and tutorials.  426 
 427 
Multi-feature aggregation as in the HippoMaps repository provides extensive opportunities to assess 428 
relationships between hippocampal structure and function, to cross-validate in-vivo measures with ex-vivo 429 
and post-mortem imaging as well as histological data. Structural and microstructural data derived from 430 
3D histology and MRI currently aggregated support a close alignment of many feature maps with the 431 
classic subfields account of the hippocampal circuitry. Moreover, several measures, particularly those 432 
derived from functional modalities such as rsfMRI or iEEG, lend additional evidence for anterior-433 
posterior differentiation of the hippocampal formation. Specifically, gradient decomposition of 434 
hippocampal rsfMRI connectivity and iEEG power spectrum densities showed that anterior-posterior 435 
differentiation captured most inter-regional variance, whereas histological and structural MRI measures 436 
showed primarily proximal-distal or subfield-related differentiation. It is notable that some features 437 
showed extreme intensity values at the anterior and posterior edges - these are relatively small in native 438 
space and so have limited constituent data and are prone to misalignment artifacts. Thus, the anterior and 439 
posterior edges of each map should be interpreted with some caution. Nevertheless, the consistently 440 
repeated structural motifs across the anterior-posterior axis of the hippocampus are suggestive of parallel 441 
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repeated computations being performed on different input and output information across the anterior-442 
posterior hippocampal axis, in line with prior accounts (Poppenk et al., 2013; Strange et al., 2014). These 443 
two dimensions have also been suggested to topographically represent the functional embedding of the 444 
broader mesiotemporal region in large-scale functional networks, in particular default mode and multiple 445 
demand networks (Andrews-Hanna, Reidler, Sepulcre, et al., 2010; Buckner et al., 2008; Duncan, 2010), 446 
which provides a potential substrate for the parametric mixing of both functional systems in macroscale 447 
brain function (Paquola, Benkarim, et al., 2020). It is, therefore, not surprising that two axes explain the 448 
greatest proportion of the variance across all maps in the current repository as well, consolidating the 449 
notion that a two dimensional organization may serve as a powerful summary descriptor for a broad array 450 
of hippocampal structural and functional features (Genon et al., 2021).  451 
 452 
We provide adapted methods to control for autocorrelation when comparing spatial maps to one another 453 
in the hippocampus. We specifically adapted Moran’s spectral randomization and “spin test” permutation 454 
testing that have previously been introduced to study neocortical data (Alexander-Bloch et al., 2018; 455 
Karat et al., 2023; Vos de Wael et al., 2020; Wagner & Dray, 2015). These methods reveal robust 456 
correlations between many of the maps included here. Many of these relationships support the validity of 457 
the methods being applied, for example between in-vivo qT1 and ex-vivo R1 which are inverses of one 458 
another. Another example is that functional connectivity of the hippocampus was strong to default mode 459 
neocortical areas, as shown in previous work (Andrews-Hanna, Reidler, Huang, et al., 2010; Norman et 460 
al., 2021; Vos de Wael et al., 2018; Ward et al., 2014), with connectivity being strongest in the 461 
subiculum. This recapitulates the role of the subiculum as the primary output structure of the 462 
hippocampus, and contributions of the hippocampus to functions typically ascribed to the default mode 463 
network such as mind-wandering, episodic recall, or future-thinking that are frequent during rest (Bellana 464 
et al., 2017; Buckner, 2010; Christoff et al., 2016; Fox et al., 2015; Ross & Easton, 2022; Schacter et al., 465 
2017; Yang et al., 2020). Some relationships reveal novel information about the methods themselves: PLI 466 
transmittance is thought to reflect many microscopic structures under the broad heading of “neural 467 
processes” or “nerve fibers” (H. Axer et al., 2001; Dammers et al., 2012). Across the extent of the 468 
hippocampus, this feature correlated with Beilsochowsky and Thionin staining, R2*, average neocortical 469 
functional connectivity, and, most significantly, rsfMRI intrinsic timescale. Intrinsic timescale is 470 
hypothesized to relate to recurrent connections (Chaudhuri et al., 2014), which could indeed be supported 471 
by dense neural processes. Finally, we illustrate contextualization via nonlinear gradient decomposition 472 
across maps. When applied to all maps, we show data-driven separation of subfields, in line with previous 473 
work. We also note that in this latent space, CA4 closely resembles CA1, even though they are not 474 
adjacent topologically. This fits descriptions of CA4 as having a wide pyramidal layer with large and 475 
dispersed neurons, similar to CA1 (Duvernoy et al., 2013), and indeed in some cases these two areas have 476 
similar disease vulnerabilities (Blümcke et al., 2012). Future work may determine more selectively what 477 
features make these two regions similarly vulnerable or examine why in some disease subtypes one is 478 
affected without the other.  479 
 480 
At the level of the neocortex, several packages already exist to facilitate the contextualization of results 481 
(Larivière et al., 2023, 2021; Markello et al., 2022). With HippoMaps, such an approach is now also 482 
possible for the hippocampal region, and we demonstrate the contextualization of task fMRI maps during 483 
an episodic memory paradigm as well morphological alterations in patients with temporal lobe epilepsy 484 
relative to healthy individuals. Such approaches can help to clarify the hypothetical role of 485 
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microstructural features in specific hippocampal computations, such as pattern separation (Bakker et al., 486 
2008; J. K. Leutgeb et al., 2007; Schmidt et al., 2012), pattern completion (Guzman et al., 2016; S. 487 
Leutgeb & Leutgeb, 2007), and novelty detection (Chen et al., 2011; Larkin et al., 2014). These 488 
previously assumed relations of function to microstructure have generally relied on parcellations of the 489 
hippocampus into stereotyped subfields; with HippoMaps, it is instead possible to compare functional and 490 
microstructural maps directly without any predefined subfield labelling. In addition to offering potential 491 
increases in anatomical specificity, this representation may also lend itself more naturally to sensitive 492 
spatial correlation with autocorrelation control through permutation testing. One area for future work will 493 
lie in consolidating mesoscale connectivity with detailed descriptions of the internal hippocampal 494 
circuity, which will not only help to further understand the computations of specific hippocampal 495 
subregions but which may also clarify the different substrates of computation (Beaujoin et al., 2018; 496 
Bennett & Stark, 2016; Berron et al., 2016; Karat et al., 2023; Lacy et al., 2011; Ly et al., 2020). Indeed, 497 
hippocampal circuitry has inspired the basic ways in which we think about biological computation, 498 
spurring principles such as long-term potentiation (Hebb, 2005), and carrying important inventions like 499 
the Boltzmann machine (Ackley et al., 1985) and Tolman Eichenbaum machine  (Whittington et al., 500 
2020). Even recent theories and computational models still center around hippocampal structure as told 501 
through a stereotyped subfield architecture (Gandolfi et al., 2023; Whittington et al., 2020). Formal 502 
mapping, rather than stereotyped descriptions, can extend this work, building up biological plausibility of 503 
such models and scaffolding our understanding of these systems. For this reason, HippoMaps may also 504 
provide precise macro-, meso- and micro-scale hippocampal features in a common same space to further 505 
identify and harness computational properties of its circuitry.  506 
 507 
 508 
 509 
  510 
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