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The merger of neutron stars drives a relativistic jet, which must be driven by a strong large-

scale magnetic field. However, the magnetohydrodynamical mechanism required to build

up this magnetic field remains uncertain. By performing an ab-initio super-high resolution

neutrino-radiation magnetohydrodynamics merger simulation in full general relativity, we

show that the αΩ dynamo mechanism, driven by the magnetorotational instability, builds

up the large-scale magnetic field inside the long-lived binary neutron star merger remnant.

As a result, the magnetic field induces the Poynting-flux dominated relativistic outflow with

an isotropic equivalent luminosity ∼ 1052 erg/s and magnetically-driven post-merger mass

ejection with the mass ∼ 0.1M⊙. Therefore, the magnetar hypothesis that an ultra-strongly

magnetized neutron star drives a relativistic jet in binary neutron star mergers is possible.

Magnetars can be the engines of short-hard gamma-ray bursts, and they should be associ-

ated with very bright kilonovae, which the current telescopes could observe. Therefore, this

scenario is testable in future observation.

The observation of GW170817/GRB 170817A/AT 2017gfo made binary neutron star merg-
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ers a leading player of multi-messenger astrophysics 1–5. It revealed that at least a part of the origin

of short-hard gamma-ray bursts and the heavy elements via the rapid-neutron capture process (r-

process) is binary neutron star mergers 1–4, 6–9.

All the fundamental interactions play an essential role in binary neutron star mergers. Thus,

to theoretically explore them, a numerical-relativity simulation implementing all the effects of the

fundamental interactions is the chosen way. Numerical relativity simulations manage to qualita-

tively explain AT 2017gfo, i.e., the kilonova emissions associated with the radioactive decay of

the r-process elements 10–18. However, a quantitative understanding of it is on its way. Moreover,

there is no theoretical consensus about how the binary neutron star merger drove the short-hard

gamma-ray burst 19–21.

A relativistic jet was launched from the binary neutron star merger and was observed as

a short-hard gamma-ray burst 1–4. Such relativistic jets are most likely driven by a magnetohy-

drodynamics process. This indicates that a binary neutron star merger remnant must build up a

large-scale magnetic field via the dynamo to launch the jet 22, 23. However, the mechanism of the

large-scale dynamo in the merger remnant still needs to be clarified 24, 25.

Also, the site for generating the large-scale magnetic field after the merger is a riddle. Is it

inside a massive torus around a black hole formed after a merger remnant collapses into it? Or

a long-lived remnant massive neutron star 26? Recent numerical simulations for a black hole and

torus system, as a remnant of binary neutron star mergers or black hole-neutron star mergers, sug-

gest that a large-scale magnetic field is established after a long-term evolution ofO(1–10) s 20, 27–29.
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Consequently, a relativistic jet is launched via the Blandford-Znajek mechanism 30. However, the

long-lived remnant massive neutron star case is more computationally challenging than the black

hole-torus system because the requirement to resolve relevant magnetohydrodynamical instabili-

ties numerically is severe 31. The physical mechanism for generating the large-scale magnetic field

and jet launching could differ in the two scenarios mentioned above. It could be observationally

testable if we managed to build a long-lived BNS model that generates a large-scale B-field and jet

launching.

We tackle this problem with a super-high resolution neutrino-radiation magnetohydrodynam-

ics simulation of a binary neutron star merger in full general relativity.

We employ our latest version of numerical-relativity neutrino-radiation magnetohydrody-

namics code 32. We employ a static mesh refinement with 2:1 refinements to cover a wide dynamic

range. For the simulations in this article, the grid structure consists of sixteen Cartesian domains,

and each domain has a 2N × 2N × N grid in the x, y, and z-directions where we assume the

orbital plane symmetry. We set N = 361 and ∆xfinest = 12.5 m. The employed grid resolution is

the highest among the binary neutron star merger simulations 31. The initial orbital separation is

≈ 44 km (see Methods).

We employ DD2 33 as an equation of state for the neutron star matter and symmetric binary

with a total mass of 2.7M⊙. With this setup, a hypermassive neutron star transiently formed after

the merger will survive for > O(1) s 34.
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The purely poloidal magnetic-field loop is embedded inside the neutron stars with a max-

imum field strength of B0,max = 1015.5 G 35. It is much stronger than those observed in binary

pulsars of 107–1011 G 36. Available computational resources limit us to the choice of the strong

field strength and idealized topology. Nonetheless, it is natural to anticipate that the magnetic-field

amplification leads to a high field strength (> 1016 G) in a short timescale after the merge in reality

(see below).

Figure 1 plots the evolution of electromagnetic energy as a function of the post-merger time.

As reported in Refs. 31, 35, the electromagnetic energy is exponentially amplified shortly after the

merger due to the Kelvin-Helmholtz instability, which emerges at the contact interface when the

binary merges. A part of the turbulent kinetic energy due to the instability is transferred to the

electromagnetic energy 35. In the inset, we generate the same plot for −1 ≤ t− tmerger ≤ 5 ms but

different initial magnetic-field strengths of B0,max = 1015 G with red and B0,max = 1014 G with

orange while keeping the grid resolution. Also, we plot the results for the other grid resolutions

of ∆xfinest = 100 m and 200 m for the brown and purple curves, respectively, while keeping

B0,max = 1015.5 G. It clearly shows that the growth rate of the electromagnetic energy for 0 ≲

t− tmerger ≲ 1 ms does not depend on the employed initial field strength but on the employed grid

resolution as expected from the properties of the Kelvin-Helmholtz instability 37, 38 (see Extended

Data Figure 1). The post-merger magnetic-field amplification due to this instability is terminated

when the shear layer is dissipated by the shock waves at t− tmerger ≈ 2 ms.

At t − tmerger ≈ 5 ms, the electromagnetic energy temporarily settles to ≈ 3 × 1050 erg.
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However, the toroidal magnetic field (dotted curve) is subsequently amplified. In particular, its

contribution to the total electromagnetic energy becomes prominent for t − tmerger ≳ 20 ms and

the growth rate is proportional to t2, which indicates that an efficient magnetic winding occurs with

a coherent poloidal magnetic field. The differential rotational energy of ≈ 1–2 × 1053 erg of the

remnant massive neutron star is the energy budget for the magnetic winding. Once the magnetic

breaking starts to work, the electromagnetic energy saturates around ≈ 5 × 1051 erg. We also

plot the result of the simulation with ∆xfinest = 200 m in Fig. 1. With this resolution, it is hard

to resolve the Kelvin-Helmholtz and magnetorotational instability, particularly in the high-density

region (see Extended Data Figures 1–3, and Convergence study in Methods). Consequently, the

electromagnetic energy amplification is less efficient in the low-resolution case. Particularly, there

is a striking difference in the poloidal magnetic field between the simulations with ∆xfinest =

12.5 m and ∆xfinest = 200 m. Because the magnetic field amplified via the Kelvin-Helmholtz

instability is randomly oriented 31, there should be a mechanism to generate the coherent poloidal

magnetic field.

To make it clear which part of the merger remnant is responsible for the generation of the

coherent magnetic field, we evaluate the electromagnetic energy contained in the magnetorota-

tional instability active region defined by ρ ≤ 1014.5 g/cm3 in Fig. 2 (see Extended Data Figure

2). We also decompose the contributions from the mean-poloidal and toroidal magnetic fields by

taking an axisymmetric average. It shows that the electromagnetic energy in this region is sub-

dominant compared to that contained deep inside the core region with ρ ≥ 1014.5 g/cm3 (see also

Fig. 1). However, it shows that the mean-poloidal field in the simulation with ∆xfinest = 12.5 m
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exponentially grows from 20 ≲ t − tmerger ≲ 50 ms. At t − tmerger ≈ 20 ms, its contribution

to the total-poloidal field energy with the cyan-solid curve is ∼ 1%, and it becomes ∼ 10% af-

ter the exponential growth. Such a clear exponential growth is invisible in the simulation with

∆xfinest = 200 m for t − tmerger ≲ 100 ms. Also, the mean-poloidal field energy differs by one

or two order magnitudes in the simulations with ∆xfinest = 12.5 m and 200 m. For the toroidal

component, the mean- and total-field energy are in the same order for t − tmerger ≳ 30 ms. We

also confirm the magnetoritaional instability is responsible for the mean poloidal-magnetic flux

generation (see Extended Data Figures 4–5). It indicates a coherent magnetic-field generation is

triggered via the magnetorotational instability.

The αΩ dynamo driven by the magnetorotational instability 39 in the current context is a

potential mechanism to generate the large-scale magnetic field 22, 23. In the mean-field dynamo

theory, we assume that the physical quantityQ is composed of the mean field Q̄ and the fluctuation

q, i.e., Q = Q̄+ q. With it, we cast the induction equation into

∂tB̄ = ∇×
(
Ū× B̄+ Ē

)
, (1)

where Ē = u× b is the electromotive force due to the fluctuations, B = B̄ + b is the magnetic

field, and U = Ū + u is the velocity field. Note that the magnetorotational instability-driven

turbulence produces the fluctuation u and b. In the αΩ dynamo, we express the electromotive

force as a function of the mean magnetic field,

Ēi = αijB̄j + βij

(
∇× B̄

)
j
, (2)

where αij and βij are tensors that do not depend on B̄j . We calculate the mean field by taking the
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average in the azimuthal direction.

In the presence of a cylindrical differential rotation, the simplest mean field dynamo is an

αΩ dynamo, where the toroidal magnetic field is generated by the shear of the poloidal magnetic

field by the differential rotation Ūϕ, also called Ω effect. The decreasing rotation with radius and

Eq. (1) implies that the B̄ϕ should be anti-correlated with B̄R. To complete the dynamo cycle,

the poloidal magnetic field has to be generated by the toroidal electromotive force Ēϕ with a main

contribution from a diagonal component, αϕϕ; the so-called α effect. Ēϕ is therefore correlated/anti-

correlated to B̄ϕ, depending on the sign of αϕϕ (Eq. (2)). This complete cycle forms a dynamo

wave that oscillates with a period of Ptheory = 2π|1
2
αϕϕ

dΩ
d lnR

kz|−1/2 22, 23 and propagates in the

direction of αϕϕ∇Ω×eϕ, according to the Parker-Yoshimura rule 40, 41. Here kz is the wave number

of the dynamo wave in the vertical direction. In this theoretical description, we have supposed

that contributions from the other αij components and the turbulent resistivity tensor βij are sub-

dominant. We will show that it is the case in the following.

First, we confirm that the employed simulation setup can capture the fastest-growing mode of

the magnetorotational instability in the outer region of the hypermassive neutron star (see Extended

Data Figure 2). Therefore, the turbulent state is developed. Figure 3 plots the butterfly diagram for

B̄ϕ, B̄R, and Ēϕ at R = 30 km. The top-left and right panels show the anti-correlation between B̄ϕ

and B̄R, which indicates the Ω effect. To quantify the correlation between B̄ϕ and Ēϕ, we compute

the Pearson correlation CP (X, Y ) between the two quantities, X and Y , in the bottom-right panel

of Fig. 3. This figure shows that B̄ϕ and Ēϕ anti-correlate for z ≲ 15 km, where the pressure scale
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height at R = 30 km is ≈ 14.6 km. The correlation between the electromotive force and mean

current J̄i =
(
∇× B̄

)
i

is small, and thus, the βij tensor can be neglected (see Extended Data

Figure 6). Therefore, the generation of the mean poloidal magnetic field is determined primarily by

the αij tensor. While αϕR has a non-negligible contribution, the contribution of αϕϕBϕ dominates

in the turbulent region for z ≲ 10 km (see Extended Data Figure 6). This shows that αϕϕ is the

main component, which is plotted in the bottom-right panel of Fig. 3. We also confirm the α2Ω

dynamo is irrelevant compared to the αΩ dynamo (see Extended Data Figure 7).

With these quantities, we can predict the period of the αΩ dynamo listed in Table 1, where

we measure the shear rate q = −d lnΩ/d lnR at the selected radius and choose the wave number

kz corresponding to the pressure scale height, the most extended vertical length in the turbulent

region. The sixth and seventh columns report the predicted period of the αΩ dynamo and the

period measured in the butterfly diagram. The agreement at R = 30 km is remarkable. We also

show the comparison at different radii from R = 20 km to R = 50 km in the table, and the deal is

also reasonable. In addition, since αϕϕ is negative and q is positive, the dynamo wave propagates

along the direction of the Parker-Yoshimura rule, i.e., the z-direction (http://www2.yukawa.

kyoto-u.ac.jp/˜kenta.kiuchi/anime/SAKURA/Br_core_cut_9km.m4v). With

these findings, we conclude that the dynamo in our simulation can be interpreted as an αΩ dynamo,

and it builds up the large-scale magnetic field in the remnant hypermassive neutron star (see Fig. 1).

After the development of the coherent poloidal magnetic field due to the αΩ dynamo and re-

sultant efficient magnetic winding, a magnetic-tower outflow is launched toward the polar direction
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(http://www2.yukawa.kyoto-u.ac.jp/˜kenta.kiuchi/anime/SAKURA/DD2_135_

135_Dynamo.mp4, see Methods). The mean-poloidal magnetic flux is generated in the magne-

torotational instability active region. The mean-magnetic field deep inside core (ρ ≥ 1014.5 g/cm3),

which could be a relic of the initial field, stay buried below r ≲ 10 km in the polar region through

out the simulation (http://www2.yukawa.kyoto-u.ac.jp/˜kenta.kiuchi/anime/

SAKURA/movie_Mean_Poloidal_Flux.mp4, see Methods). It indicates that the large-

scale field generated by the αΩ dynamo is responsible for the jet launch. We confirm that the

low-resolution simulation cannot capture the strong Poynting flux-dominated outflow launching

and the enormous post-merger ejecta 21 (see also Extended Data Figure 8).

The luminosity of the Poynting flux defined by LPoy = −
∮
r≈500 km

√
−g (T r

t)(EM) dΩ,

where T µν
(EM) is the stress energy tensor for the electromagnetic field, is ≈ 1051 erg/s at the end of the

simulation of t− tmerger ≈ 150 ms. The high Poynting flux is confined in the region with θ ≲ 12◦

where θ is a polar angle as plotted in the top-left panel of Fig. 4 (see also Extended Data Figure

8). The luminosity and jet opening angle are broadly compatible with some of observed short-hard

gamma-ray bursts 42. We estimate the terminal Lorentz factor Γ∞ by the magnetization parameter

σLC = b2/4πρc2 at the light cylinder radius of rLC = c/Ω ≈ 40 km (Ω/7000 rad/s)−1 contained in

a region with θ < 12◦ 43, 44. We found the baryon loading is still severe, e.g., Ṁoutflow ∼ 10−2M⊙/s

in the polar region. Nonetheless, Γ∞ keeps increasing with time, but is fluctuating. It reaches

≈ 10–20 at the end of the simulation. Therefore, if the magnetic reconnection efficiently dissi-

pated the Poynting flux, the Lorentz factor of ∼ 10 could be possible 44. Also, the evacuation due

to the strong Poynting flux in the polar region continues at the end of the simulation. Therefore, a
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higher Γ∞ could be possible after the long-term evolution.

The dynamical ejecta driven by the tidal force and the shock wave during the merger phase is

≈ 0.002M⊙
34. After the development of the coherent magnetic field, we observe a new component

in the ejecta driven by the Lorentz force, i.e., the magnetically-driven wind 45. The mass of this

component is ≈ 0.1M⊙ at the end of the simulation t − tmerger ≈ 150 ms. The electron fraction

of the post-merger ejecta shows a peak around ≈ 0.2 with an extension to ∼ 0.5. The terminal

velocity of the post-merger ejecta peaks around ≈ 0.08c where c is the speed of light. Therefore, it

could contribute to a bright kilonova emission via the synthesis of r-process heavy elements 26, 46.

We speculate that the high luminosity state and the post-merger mass ejection would continue

for O(1) s which corresponds to the neutrino cooling timescale 34, 47. As reported in Refs. 27, 34,

the torus expands due to the angular momentum transport facilitated by the magnetorotational

instability-driven turbulent viscosity after the neutrino cooling becomes inefficient. As a result, the

funnel region above the remnant neutron star expands and the jet could no longer be collimated. A

long-term simulation for O(1) s of a remnant massive neutron star is future work to be pursued.

Also, a simulation with initially weakly magnetized binary neutron stars is necessary to con-

firm the picture reported in this article because the saturated magneto-turbulent state and the gen-

eration timescale of the coherent poloidal magnetic field due to the magnetorotational instability

could depend on the initial magnetic field strength and flux 48. The recent large-eddy simulations

of magnetized binary neutron star merger may give a hint for this issue 49, 50. Even if the initial

magnetic field has a much weaker strength and/or different topology from the one we assume,
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the saturation strength and field profile due to the Kelvin-Helmholtz instability in the merger rem-

nant are similar to what we found in this article. Also, how the mean-poloidal magnetic field is

set in reality after the merger is an open problem. If the mean-poloidal magnetic field just after

the merger is a relic of the pre-merger poloidal field, i.e., 1010–1011 G at maximum, it may take

ln(104) × 0.02 s ∼ 0.2 s to reach the saturation strength of 1014–1015 G for the mean-poloidal

field where we assume the mean-poloidal field is exponentially amplified with the period of the

αΩ dynamo 22 (see Fig. 2 and Table 1). Consequently, the jet may be launched at O(0.1) s after the

merger in reality. However, the interior structure of the magnetic field in the pre-merger neutron

stars is not well understood, and the magnetic reconnection of the fluctuated poloidal field gen-

erated by the Kelvin-Helmholtz instability may enhance the mean-poloidal field after the merger.

They should be explored as a future task.

To summarize, we tackled the large-scale magnetic-field generation in the long-lived bi-

nary neutron star merger remnant by the super-high resolution neutrino-radiation magnetohydro-

dynamics simulation in general relativity. The magnetorotational instability-driven αΩ dynamo

generates the large-scale magnetic field. As a result, the launch of the Poynting-flux-dominated

relativistic outflow in the polar direction and an enormous amount of magnetically-driven wind

are induced. Our simulation suggests that the magnetar engine generates short-hard gamma-ray

bursts and bright kilonovae emission, which could be observed in the near-future multi-messenger

observations.
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Methods

Numerical method

Our code implements the Baumgarte-Shapiro-Shibata-Nakamura-puncture formulation to solve

Einstein’s equation 51–54. The code also employs the Z4c prescription to suppress the constraint vio-

lation 55. The fourth-order accurate finite difference is used as a discretization scheme in space and

time. The sixth-order Kreiss-Oliger dissipation is also employed. The HLLD Riemann solver 56

and the constrained transport scheme 57 are employed to solve the equations of motion of the rela-

tivistic magnetohydrodynamic fluid. The neutrino-radiation transfer is solved by the gray M1+GR-

Leakage scheme 58 to take into account neutrino cooling and heating.

Initial data

We employ quasi-equilibrium initial data of irrotational binary neutron stars in the neutrino-free

beta equilibrium derived in a previous paper 34 using the public spectral library LORENE 59. The

initial orbital angular velocity is Gm0Ω0/c
3 ≈ 0.028 with m0 = 2.7M⊙, and the residual orbital

eccentricity is ≈ 10−3. For our high-resolution study, the data is remapped onto the computational

domain described in the section of Grid setup.
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Grid setup

We employ the static mesh refinement with 2:1 refinement, i.e., a grid resolution of a coarser

domain is twice that of a finer domain. All the domains are composed of concentric Cartesian

domains with a fixed grid number N . The grid number is 2N × 2N × N in the x, y, and z-

directions where we assume the orbital plane symmetry. We employ the sixteen domains with

N = 361 and the finest grid resolution of ∆xfinest = 12.5 m. The first three finest domains whose

size are [−4.5 : 4.5 km]2×[0 : 4.5 km], [−9 : 9 km]2×[0 : 9 km], and [−18 : 18 km]2×[0 : 18 km],

respectively, are employed to resolve the Kelvin-Helmholtz instability, which emerges on a contact

interface (shear layer) when the two neutron stars merge. The initial binary separation is ≈ 44 km,

and the coordinate radius of the neutron star is 10.9 km. Thus, the fourth finest domain with

[−36 : 36 km]2 × [0 : 36 km] covers the entire binary neutron star.

We start a simulation with ∆xfinest = 12.5 m and sixteen static mesh refinement domains.

At ≈ 30 ms after the merger, we remove the two finest domains with ∆xfinest = 12.5 m and

∆x = 25 m and continue the simulation with ∆xfinest = 50 m until ≈ 50 ms after the merger. Then,

we remove the domain with ∆xfinest = 50 m and continue the simulation with ∆xfinest = 100 m.

The timing for removing the finer domains is determined by monitoring the magnetorotational in-

stability quality factor so as not to go below the critical value of 10 after the removal (see below).

This strategy allows capturing the efficient magnetic-field amplification via the Kelvin-Helmholtz

instability and resolving the magnetorotational instability inside the remnant while saving compu-

tational costs.
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To check the validity of the removing finer domain procedure, we continue the simulation

with ∆xfinest = 12.5 m up to t− tmerger ≈ 33 ms (see the blue dashed curve in Fig. 1). We observe

a ≈ 10% decrease in the poloidal electromagnetic energy in the simulation with ∆xfinest = 50 m

compared to that with ∆xfinest = 12.5 m around this time. Nonetheless, the poloidal electro-

magnetic energy increases around t − tmerger ≈ 40 ms in the simulation with ∆xfinest = 50 m

(the green dashed curve in Fig. 1) due to the α effect we discuss in the main text. Also, there is

no significant decrease in the toroidal electromagnetic energy after removing the finer domains at

t − tmerger ≈ 30 ms. Similarly, there is no visible deterioration at the second removal of the finer

domain at t− tmerger ≈ 50 ms.

For the convergence test, we also perform the simulations with ∆xfinest = 100(200) m and

N = 361(185). The number of domains is thirteen.

Equation of state

We extend an original DD2 equation of state to the low-density and temperature region with

the Helmholtz equation of state 60. Because any high-resolution shock-capturing scheme does

not allow the vacuum state, we employ the atmospheric prescription outside the neutron stars.

Specifically, we set the constant atmospheric density of 103 g/cm3 inside r ≤ Latm, and assume

the power-law profile with ρatm = max[103(Latm/r)
3 g/cm3, ρfl] for r > Latm where we set

Latm = 36 km. The employed Helmholtz equation of state determines the floor value of the rest-

mass density, which is ρfl = 0.167 g/cm3. We also assume the constant atmospheric temperature
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of 10−3 MeV.

Kelvin-Helmholtz instability

The top panel of Extended Data Figure 1 is the same as the inset in Fig. 1 in the main article but with

additional data. The blue, brown, and purple-solid curves plot the results with ∆xfinest = 12.5 m,

100 m, and 200 m, respectively, with B0,max = 1015.5 G. The red- and orange-solid curves show

the results with ∆xfinest = 12.5 m with B0,max = 1015 G and 1014 G, respectively. The cyan curve

shows the result with ∆xfinest = 18.75 m and B0,max = 1014 G. The blue- and red-dotted curves

plot the result with ∆xfinest = 12.5 m and B0,max = 1014 G magnified by the square of the ratio of

the initial magnetic-field strength, i.e., (1015.5/1014)2 = 103 and (1015/1014)2 = 102, respectively.

This figure suggests the following two points: The blue(red)-solid and -dotted curves overlap

until the back reaction starts to activate, which happens when the electromagnetic energy reaches

≈ 3×1049 erg. This implies that the magnetic field is passive for t− tmerger ≲ 1 ms, i.e., the linear

phase. The saturation of the electromagnetic energy via the Kelvin-Helmholtz instability is likely

to be ≈ 1–3× 1050 erg corresponding to O(0.1)% of the internal energy 31, 50, 61, 62.

The second point is that the growth rate of the electromagnetic energy in the linear phase is

determined by the employed grid resolution, not by the employed initial magnetic field strength. To

quantify the growth rate dependence on the grid resolution and initial magnetic-field strength, we

estimate the growth rate by fitting the electromagnetic energy asEmag(t) = A exp (σKH(t− tmerger))
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for 0 ≲ t − tmerge ≲ 1 ms, which corresponds to the linear phase. The bottom panel of Extended

Data Figure 1 plots the estimated growth rate as a function of the initial magnetic-field strength.

The symbols denote the employed grid resolutions. With ∆xfinest = 12.5 m, the growth rate is

≈ 7 ms−1, irrespective of the initial magnetic-field strength. The growth rate increases with the

grid resolution. With ∆xfinest = 100 and 200 m, the efficient amplification cannot be captured. All

the properties are consisten

We estimate how small ∆xfinest should be to simulate the amplification due to the Kelvin-

Helmholtz instability starting from the ”realistic” initial magnetic-field strength of 1011 G 36. The

saturation strength found in the simulation with ∆xfinest = 12.5 m is likely to be |B̄| ≈ 1016.5 G.

We fit the growth rate as a function of the grid resolution from Extended Data Figure 1, and it is

σKH(ms−1) = 90/∆xfinest(m) where we assume the inverse proportionality originating from the

property of the Kelvin-Helmholtz instability 37, 38. Suppose that the initial magnetic-field strength

of 1011 G and the lifetime of the shear layer of 2 ms, we estimate the required growth rate is

σKH =
1

2 ms
ln

(
1016.5 G

1011 G

)2

= 12.7 ms−1. (3)

Therefore, the required grid resolution is

∆xfinest =
90

σKH

≈ 7.1 m. (4)
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Magnetorotational instability, neutrino viscosity, and neutrino drag

To quantify how well the magnetorotational instability is resolved in our simulation, we estimate

the rest-mass-density-conditioned magnetorotational instability quality factor defined by

⟨QMRI⟩ρ ≡
⟨λMRI⟩ρ
∆x

=
1

∆x

∫
ρ
λMRId

3x∫
ρ
d3x

, (5)

where λMRI = 2πBz/
(√

4πρΩ
)

is the fastest growing mode of ideal magnetorotational instabil-

ity 65. As the condition in terms of the rest-mass density, we define a remnant core and a remnant

torus by fluid elements with ρ ≥ 1013 g/cm3 and < 1013 g/cm3, respectively. Furthermore, we

exclude the core region above 1014.5 g/cm3 in the estimate of the quality factor because in such a

region, the radial gradient of the angular velocity is positive, and it is not subject to magnetorota-

tional instability 65 as plotted in the top panel of Extended Data Figure 2. Also, we introduce the

cutoff density of 107 g/cm3 for the torus to suppress the overestimation of the quality factor in the

polar low-density region. The middle and bottom panels of the figure show that the fastest growing

mode of magnetorotational instability is well resolved both in the core and torus throughout the

simulation. Consequently, magneto-turbulence is developed and sustained. However, the magne-

torotational instability, particularly in the core throughout the entire simulation and in the torus for

t − tmerger ≲ 80–90 ms, can not be resolved with ∆xfinest = 200 m. Thus, the turbulence is not

fully produced in such a low-resolution run.

One caveat is that the neutrino viscosity and drag could affect the magnetorotational instabil-

ity as a diffusive and damping process 66. The former (later) becomes relevant when the neutrino

mean free path is shorter (longer) than the wavelength of the magnetorotational instability. Given
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a profile of the merger remnant, such as the density ρ, angular velocity Ω, temperature T , and

hypothetical magnetic-field strength Bz
hyp, we solve the two branches of the dispersion relations to

quantify the neutrino viscosity and drag effects 66: For the neutrino viscosity,

[(
σ̃ + k̃2ν̃ν

)
σ̃ + k̃2

]2
+ κ̃2

[
σ̃2 + k̃2

]
− 4k̃2 = 0, (6)

and for the neutrino drag,

[(
σ̃ + Γ̃ν

)
σ̃ + k̃2

]2
+ κ̃2

[
σ̃2 + k̃2

]
− 4k̃2 = 0, (7)

where σ̃ = σ/Ω, k̃ = kvA/Ω, κ̃2 = κ2/Ω2, ν̃ν = ννΩ/v
2
A, and Γ̃ν = Γν/Ω. σ and k are the growth

rate and wave number of the unstable mode of the magneorotational instability. vA = Bz
hyp/

√
4πρ

is the Alfvén wave speed. κ2 is the epicyclic frequency. νν and Γν are the neutrino viscosity and

drag damping rate, respectively. The reference 66 provides their fitting formulae as a function of

the rest-mass density and temperature:

νν = 1.2× 1010
(

ρ

1013 g/cm3

)−2(
T

10 MeV

)2

cm2/s, (8)

Γν = 6× 103
(

T

10MeV

)6

1/s. (9)

The neutrino mean free path lν is also fitted by

lν = 2× 103
(

ρ

1013 g/cm3

)−1(
T

10 MeV

)−2

cm. (10)

Extended Data Figure 3 plots the growth rate of the magnetorotational instability for a given

remnant massive neutron star profile and the hypothetical value of Bz
hyp. We take the profiles

on the orbital plane at t − tmerger ≈ 10 ms. The purple curve denotes the boundary where the
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condition ν̃ν or Γ̃ν ≈ 1 is met 66. Inside the boundary, the neutrino viscosity or the neutrino drag

significantly suppresses the growth rate. Outside it, the growth rate is essentially the same as the

ideal magnetorotational instability. On top of it, we plot the azimuthally-averaged magnetic field

strength B̄z
sim obtained in the simulation. Because of the efficient amplification via the Kelvin-

Helmholtz instability just after the merger, the neutrino viscosity and drag effects are irrelevant in

the entire region of the merger remnant.

Generation of mean poloidal-magnetic flux via magnetorotational instability

To validate our interpretation that the αΩ dynamo is responsible for the large-scale magnetic field

generation, we evaluate the mean poloidal-magnetic flux on a certain sphere of radius r by

ΦB̄r
(r) = 2

∫ π/2

0

B̄rr
2 sin θdθ, (11)

where B̄r denotes the radial mean field in the spherical-polar coordinate.

Extended Data Figure 4 plots the evolution of the mean-poloidal magnetic flux. We select

8 km and 20 km as representative radii for the magneto-rotational instability inactive and active

region (see the top panel of Extended Data Figure 2). On the one hand, in the simulation with

∆xfinest = 12.5 m, the mean poloidal-magnetic flux on the sphere with r = 8 km exhibits inten-

sive time variability for t − tmerger ≲ 20 ms reflecting the oscillations of the remnant core, i.e.,

compression and decompression. The poloidal flux gradually decreases, presumably due to the

magnetic reconnection, which is imprinted as the decrease of the total poloidal-field energy for
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10 ≲ t − tmerger ≲ 20 ms in Fig. 1. Nonetheless, it relaxes to a roughly constant value and stays

there until t − tmerger ≲ 120 ms. It reflects that magnetorotational instability is inactive in this

region, i.e., no generation of the mean poloidal-magnetic flux. On the other hand, it is evident that

the mean poloidal flux on the sphere with r = 20 km is generated around t − tmerger ≈ 25 ms in

the high-resolution simulation. Such an efficient mean poloidal flux generation is not observed

in the simulation with ∆xfinest = 200 m for t − tmerger ≲ 80 ms as plotted with the green-

dashed curve in the figure (but see below for slight generation of the mean poloidal-flux between

40 ≲ t− tmerger ≲ 60 ms). For t− tmerger ≳ 100 ms, the mean poloidal-magnetic flux is generated

even in the low-resolution simulation because the magnetorotational instability starts to be par-

tially, not fully, resolved in the low-density region (see the middle and bottom panels of Extended

Data Figure 2). Therefore, we conclude that the magnetorotational instability is responsible for the

generation of the mean poloidal-magnetic flux.

Extended Data Figure 5 plots a meridional profile of the mean radial magnetic field, B̄r, at

selected time slices for the simulation with ∆xfinest = 12.5 (200) m in the left (right) column

(see also the link for the visualisation:http://www2.yukawa.kyoto-u.ac.jp/˜kenta.

kiuchi/anime/SAKURA/movie_Mean_Poloidal_Flux.mp4). It is evident that the mean

poloidal field is generated in the magnetorotational instability active region (ρ ≤ 1014.5 g/cm3),

particularly, in the low-latitude region with 0.24 ≲ θ ≲ 0.5π. Then, it propagates towards the

high-latitude region and generates the jet. We also point out that the polar region at a radius of

9-10 km has a weak magnetic field. This indicates that the poloidal field below this region does

not contribute towards the launch of a jet and stays buried throughout the simulation.
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The low-resolution simulation also shows some amplification of the mean poloidal field in

the low-density region with ρ ≤ 1012 g/cm3, where the magnetorotational instability is resolved.

(see the visualisations for the mean poloidal flux and magnetorotational instability quality factor

in the simulation with ∆xfinest = 200 m, respectively:http://www2.yukawa.kyoto-u.ac.

jp/˜kenta.kiuchi/anime/SAKURA/movie_Mean_Poloidal_Flux_Low.mp4 and http:

//www2.yukawa.kyoto-u.ac.jp/˜kenta.kiuchi/anime/SAKURA/movie_Mean_

MRI_Qfac_Low.mp4). It shows a qualitatively similar behavior to the simulation with ∆xfinest =

12.5 m, but the efficiency for generating the mean poloidal magnetic field is much lower, which

leads to a weaker Poynting-flux luminosity (see the Detailed property of the Poynting-flux domi-

nated outflow and magnetically-driven post-merger ejecta section).

αΩ dynamo

To understand the dynamo process in the simulation, we use the framework of the mean field theory

with an axisymmetric average. We consider an axisymmetric average because it corresponds to the

symmetry of the differential rotation in the system. In the mean-field dynamo theory, we assume

that the velocity field U and the magnetic field B are respectively composed of the mean velocity

field Ū and velocity fluctuations u, i.e., U = Ū + u and of the mean magnetic field B̄ and the

magnetic fluctuations b. With it, we average the induction equation, which gives Eq. (1), where

Ē = u× b is the electromotive force due to the fluctuations. To close the system, the electromotive

force is often expressed as a function of the mean magnetic field and its spatial derivatives as
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decribed by Eq. (2). αij and βij are respectively the tensors expressing the contributions of the

mean magnetic field B̄ and its derivatives J̄ = ∇ × B̄ to the electromotive force. These tensors

should not depend on B̄. Firstly, we focus on how the mean poloidal field is generated and then on

the toroidal field.

To show how the mean poloidal field is generated by the alpha or beta effect, we assume that

the mean velocity field is composed by the rotation speed Ū = RΩe⃗ϕ and project the averaged

induction equation Eq. (1) in the radial direction in cylinder coordinates, which gives:

∂tB̄R = −∂z
[(
Ū× B̄

)
ϕ
+ Ēϕ

]
= −∂zĒϕ = −∂z

(
αϕjBj + βϕj

(
∇× B̄

)
j

)
, (12)

Similarly, by projecting the averaged induction equation in the vertical direction, the generation

of the mean vertical field B̄z is due to the azimuthal component of the electromotive force Ēϕ.

For the generation of the mean toroidal field, the Ω effect (i.e. the winding of the magnetic field

by differential rotation) is also important and must be compare to the contributions of both the

radial and vertical components of the electromotive force ĒR and Ēz. To estimate which of the

mean magnetic field B̄i or the derivatives of the mean magnetic field J̄i contributes the most to the

electromotive force Ēi, we compute the correlations between these quantities. The correlations are

computed according to the Pearson correlation coefficient between the quantities Ēi and Yj = B̄j

or J̄j with the following formula:

CP (Ēi, Yj) =
∫
t
(Ēi − ⟨Ēi⟩t)(Yj − ⟨Yj⟩t)dt√

(
∫
t
(Ēi − ⟨Ēi⟩t)2dt)

√
(
∫
t
(Yj − ⟨Yj⟩t)2dt)

, (13)

where ⟨·⟩t represents a time average.
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In the following sections we present the complementary analysis of the other contributions to

the generation of the mean magnetic field than the αϕϕ-effect and Ω-effect. We therefore show the

other correlations between the electromotive force and the magnetic field and the estimated values

of the tensor component. For the values of the alpha tensor components, several methods can be

used. The simplest one is to estimate from the correlations 23 but this method assumes that one

component is dominant. In order to take into account the off-diagonal contributions, we compute

the values of the alpha tensor coefficients in this study by using the singular value decomposition

method to perform the least-square fit of mean-current data and mean field 67.

Generation of the mean poloidal field B̄R

As shown in Eq. (12), the generation of the axisymmetric poloidal field is due to the curl of the

toroidal component of the electromotive force in the averaged induction equation. In this section,

we show the correlations between the toroidal electromotive force Ēϕ and the magnetic field com-

ponents B̄j and the mean current J̄j (Top and middle panels of Extended Data Figure 6). The low

correlations with the mean current J̄j shows that its contributions to Ēϕ (i.e. the βij tensor) can be

neglected. In the same way, the vertical magnetic field contribution B̄z can be neglected. Extended

Data Figure 6 also shows the anti-correlation of B̄ϕ and Ēϕ and that the radial magnetic field B̄R

is correlated to Ēϕ as well. This can be explained as the radial field B̄R is anti-correlated to the

toroidal magnetic field B̄ϕ due to the Ω-effect (see Fig. 3). Since the mean toroidal field B̄ϕ is anti-

correlated to the toroidal electromotive force Ēϕ, the mean radial field B̄R is also correlated to it.
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To confirm that the contribution of B̄ϕ dominates, we first compute the non-diagonal components

of the alpha tensor (Bottom panel of Extended Data Figure 6). We then compare the contribution

of B̄ϕ and B̄R, that is respectively the time-averaged values of αϕϕB̄ϕ and αϕRB̄R in the first 10

km. We obtain

⟨αϕϕB̄ϕ⟩t
⟨αϕRB̄R⟩t

= 1.87. (14)

Generation of the mean toroidal field

In the main text, we show that the Ω-effect is important to the generation of the mean toroidal field.

In this subsection, we check whether the contribution of the α-effect via the poloidal components

of the electromotive force ĒR and Ēz is significant, in which case the dynamo is called an α2Ω

dynamo instead of a αΩ dynamo. First, we confirm that the correlations between the electromotive

force and the mean current J̄j (Right panels of Extended Data Figure 7) are lower than with the

mean magnetic field B̄j (Left panels of Extended Data Figure 7). The contributions from the mean

current can therefore be neglected. For the mean magnetic field, some components, for example the

mean toroidal field B̄ϕ, are strongly correlated with the radial component of the electromotive force

ĒR. This indicates that the α-effect might be important to the generation of the mean toroidal field.

To compare the strength of these two effects, α-effect and Ω-effect, we computed the corresponding

α tensor components αR i and αz i and estimated the ratio of the two dynamo numbers Cα =

max(|αRi|, |αzi|)R/η for i ∈ [R, ϕ, z] and CΩ = ΩR2/η, where η is the resistivity, in the turbulent
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region averaged for one scale height, which gives at R = 30 km

CΩ

Cα

=
ΩR

max(|αRi|, |αzi|)
≈ 30.8. (15)

The α-effect contribution towards the generation of the mean toroidal field can therefore reasonably

be neglected as the Ω-effect dominates the generation of the mean toroidal field. The dynamo in

our simulation can therefore be interpreted as an αΩ dynamo.

Detailed property of the Poynting-flux dominated outflow and magnetically-driven post-

merger ejecta

The link (http://www2.yukawa.kyoto-u.ac.jp/˜kenta.kiuchi/anime/SAKURA/

DD2_135_135_Dynamo.mp4) is a visualization for the rest-mass density (top-left), the mag-

netic field strength (top-second from left), the magnetization parameter (top-second from right), the

unboundedness defined by the Bernoulli criterion (top-right), the electron fraction (bottom-left),

the temperature (bottom-second from left), the entropy per baryon (bottom-second from right), and

the geodesic criterion (bottom-right) on a plane perpendicular to the orbital plane.

The top panel of Extended Data Figure 8 plots the angular distribution of the luminosity of

the Poynting flux. The angular distribution of the luminosity for the Poynting flux is calculated by

LPoynting(θ) = −
∫
r≈500 km

αψ6r2(T r
t)(EM)dϕ, (16)

where α and ψ are the lapse function and the conformal factor, respectively. The high luminosity

of ≈ 2–8× 1052 erg/s/angle is confined in a region with θ < 12◦.
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The middle panel plots the jet-opening-angle-corrected luminosity and luminosity of the

Poynting flux with green and blue as functions of the post-merger time. According to Refs. 68–70,

the luminosity of the Poynting flux-dominated outflow driven by the efficient magnetic winding

from the binary neutron star merger remnant is estimated by

LPoy ∼ 1051 erg/s

(
B̄P

1015 G

)2(
R

106 cm

)3(
Ω

8000 rad/s

)
, (17)

where B̄P is the azimuthally-averaged poloidal magnetic field. In the current simulation, it is

∼ 1015 G. Thus, the Poynting flux luminosity found in the simulation is consistent with this es-

timation. The jet-opening-angle corrected luminosity is ∼ 1052 erg/s. Thus, if we assume the

conversion efficiency to gamma-ray photons is ∼ 10%, it is compatible with the observed lumi-

nosity of short-hard gamma-ray bursts 42.

The bottom panel plots the eject as a function of the post-merger time. The solid curve

denotes the result by the Bernoulli criteria. The colored region in the inset shows the error of the

baryon mass conservation, and it is below 10−7M⊙ throughout the simulation.

Convergence study and effect of initial large-scale magnetic field

Because our choice of the initial large-scale magnetic-field strength is much stronger than those ob-

served in binary pulsars 36, we should clarify whether such a strong large-scale field is responsible

for the jet launching.

We begin by estimating the magnetic winding timescale originating from an initial magnetic
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field. Suppose we consider a binary neutron star merger with the highly magnetized end of 1011 G

in the observed pulsars. In that case, the magnetic winding timescale to reach the saturation is

B̄ϕ ∼ 1016.5 G

(
B̄R

5× 1011 G

)(
Ω

8000 rad/s

)(
t

8 s

)
, (18)

where we assume the compression at the merger amplifies the initial poloidal field by a factor of

five, which should be proportional to ρ2/3 because of the magnetic-flux conservation. We also

assume the saturation field strength of 1016.5 G as suggested in the super-high resolution simula-

tion (see Extended Data Figure 1). Therefore, the magnetic winding originating from the initial

magnetic field should be minor or irrelevant in reality.

However, the magnetic winding timescale is much shorter than those in reality in both sim-

ulations with ∆xfinest = 12.5 m and 200 m because of the assumed initial strong field. The low-

resolution is fine enough to resolve the compression and winding but can only partially capture the

Kelvin-Helmholtz and the magnetorotational instability. Therefore, there would be no striking dif-

ference between the simulations for the jet launching mechanism if such a strong initial poloidal

field and subsequent magnetic winding were responsible for it. The middle panel of Extended

Data Figure 8 shows that the Poyinting-flux dominated outflow is launched at t − tmerger ≈ 60 ms

and reaches up to ∼ 1049−50erg/s in the low-resolution simulation with ∆xfinest = 200 m. How-

ever, in the same plot, the super-high resolution simulation with ∆xfinest = 12.5 m shows that the

Poynting-flux dominated outflow is launched at t− tmerger ≈ 35 ms. The luminosity reaches up to

∼ 1051erg/s. The difference is striking. As discussed in Extended Data Figure 5, the efficiency

of the generation of the mean poloidal-flux in the super-high resolution simulation is much higher

that in the low-resolution simulation. It indicates the efficient αΩ dynamo is responsible for the
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strong jet launching.

The bottom panel of Extended Data Figure 8 also suggests that the Lorentz force-driven post-

merger ejecta found in the run with ∆xfinest = 200 m is launched. However, the amount of the

ejecta mass is about one order of magnitude smaller than those in the run with ∆xfinest = 12.5 m,

showing that the enhanced activity of magnetohydrodynamics effects by the efficient dynamo ac-

tion plays an important role in ejecting matter 21.
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Table 1: The αΩ dynamo period prediction and simulation data at several radii

R (km) αϕϕ (cm/s) Ω (rad/s) Shear rate kz (/cm) Ptheory (s) Psim (s)

20 −8.1× 106 4025 q = 1.00 6.3× 10−6 0.020 0.018

30 −1.0× 107 2515 q = 1.34 4.2× 10−6 0.021 0.018–0.024

40 −1.0× 107 1688 q = 1.44 3.3× 10−6 0.037 0.018–0.030

50 −4.4× 106 1200 q = 1.50 2.6× 10−6 0.062 0.030–0.040

Ptheory: The αΩ dynamo period, Psim: Butterfly diagram period in the simulation
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Figure 1: Overview of the magnetic field evolution in the binary neutron star merger rem-

nant. (Top) Electromagnetic energy as a function of the post-merger time for the total (solid), the

poloidal (dashed), and the toroidal (dotted) components. The purple curves are for the simulation

with ∆xfinest = 200 m. The inset shows how the magnetic field amplification due to the Kelvin-

Helmholtz instability depends on the initial magnetic-field strength and employed grid resolution.

(Bottom) Magnetic field lines for the density of ρ < 1013 g cm−3 at t− tmerger ≈ 130 ms. The core

of the hypermassive neutron star is shown for the density of ρ > 1013 g cm−3.
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Figure 2: Generation of mean electromagnetic field. Mean and total electromagnetic energy in

magnetorotational instability active region with ρ ≤ 1014.5 g/cm3 as a function of the post merger

time. The blue, green, cyan, and purple curves denote the mean-poloidal, mean-toroidal, total-

poloidal and total-toroidal component, respectively, in the high resolution simulation. The dashed

curves are for the simulation with ∆xfinest = 200 m.
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Figure 3: αΩ dynamo inside the binary neutron star merger remnant. Butterfly diagram at

R = 30 km: (Top-left) Mean toroidal magnetic field B̄ϕ. (Top-right) Mean radial magnetic field

B̄R. (Bottom-left) Toroidal electromotive force Ēϕ. (Bottom-right) αϕϕ parameters (orange) and

correlation between Ēϕ and B̄ϕ (blue).
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Figure 4: The electromagnetic signals from the binary neutron star merger remnants. (Top-

left) Angular distribution of the Poynting flux on a sphere with r ≈ 500 km at t − tmerger ≈

150 ms. (Top-right) The electron fraction distribution for the magnetically-driven post-merger

ejecta (dashed) and the dynamical ejecta (dotted). (Bottom) Same as the top-right panel, but for

the terminal velocity (left) and entropy per baryon (right).
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Figure 5: Kelvin-Helmholtz instability growth rate at the merger. (Top) Same as the inset in

Fig. 1 in the main article, but with ∆xfinest = 18.75 m for B0,max = 1014 G (cyan). The blue- and

red-dotted curves show the evolution for ∆xfinest = 12.5 m and B0,max = 1014 G magnified by a

factor of 103 and 102, respectively. (Bottom) Dependence of the growth rate of the electromagnetic

energy at the merger due to the Kelvin-Helmholtz instability on the initial magnetic field strength

B0,max and grid resolution. The error is due to the fitting.Data are presented as mean median values

+/- SD.
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Figure 6: Magnetorotational instability inside the merger remnant. (Top) The radial profile of

the angular velocity (blue) and the rest-mass density (green) on the equatorial plane at t− tmerger ≈

50 ms. Magnetorotational instability is inactive in a region with x ≲ 9 km and ρ ≳ 1014.5 g/cm3.

The inset shows the same profiles with the logarithmic scale in the radial direction. (Middle)

Magnetorotational instability quality factor in a core region as a function of time. The remnant

core is defined by a region with ρ ≥ 1013 g/cm3. The blue curve denotes the employed finest grid

resolution of 12.5 m. At t − tmerger ≈ 30 ms, the two finest domains with ∆xfinest = 12.5 m and

∆x = 25 m are removed. Thus, the employed grid resolution is ∆xfinest = 50 m plotted with

the green curve. At t − tmerger ≈ 50 ms, the finest domain with ∆xfinest = 50 m is removed and

the subsequent evolution with ∆xfinest = 100 m is plotted with the cyan curve. The result with

∆xfinest = 200 m is plotted with the purple curve. (Bottom) The same as the middle panel, but for

a torus defined by a region with 107 g/cm3 ≤ ρ ≤ 1013 g/cm3.
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Figure 7: Neutrino viscosity and drag on the magnetorotational instability. Growth rate of the

fastest growing mode of the neutrino viscous/drag magnetorotational instability as a function of

the radius of the remnant massive neutron star and the hypothetical value of the z-component of

the magnetic field Bz
hyp. We take the simulation data on the orbital plane at t − tmerger ≈ 10 ms.

The purple curve denotes the boundary where ν̃ν or Γ̃ν ≈ 1. Outside the boundary, the growth

rate is essentially the same as the ideal magnetorotational instability. The red curve denotes the

z-component of the azimuthally averaged magnetic field strength in the simulation. The orange-

solid (dashed) curve denotes the three-dimensional data for the z-component on the x = 0 axis in

the simulation with ∆xfinest = 12.5 (200) m.
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Figure 8: Generation of the mean poloidal-magnetic flux inside the merger remnant. Mean

poloidal-magnetic flux as a function of the time after the merger. Blue and green-solid curves

denote the flux on the sphere of r = 8 and 20 km, respectively, which are representative for the

magnetorotational instability inactive and active region, in the simulation with ∆xfinest = 12.5 m.

The dashed counterparts denote the simulation with ∆xfinest = 200 m.
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Figure 9: Generation of the mean radial magnetic field. Meridional profile of

the mean radial magnetic field, B̄r, at ≈ 10 ms (top), 30 ms (center), and 50 ms

(bottom) for the simulation with ∆xfinest = 12.5 m (left column) and 200 m

(right column). The rest-mass density contour curves are also plotted. The vi-

sualization is the following link (http://www2.yukawa.kyoto-u.ac.jp/˜kenta.

kiuchi/anime/SAKURA/movie_Mean_Poloidal_Flux.mp4) for the super-high res-

olution simulatoin, and http://www2.yukawa.kyoto-u.ac.jp/˜kenta.kiuchi/

anime/SAKURA/movie_Mean_Poloidal_Flux_Low.mp4 for the low-resolution simula-

tion.
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Figure 10: α effect vs turbulent resistivity in the αΩ dynamo. (Top) Time-averaged correlations

between the toroidal electromotive force Ēϕ and the mean magnetic field components B̄j for R =

30 km. (Middle) Time-averaged correlations between the toroidal electromotive force Ēϕ and the

mean current J̄j components for R = 30 km. (Bottom) Alpha tensor components αϕi with i ∈

[R, z] for R = 30 km.
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Figure 11: αΩ vs α2Ω dynamo. (Left) Time-averaged correlations between the poloidal electro-

motive force ĒR (top) and Ēz (bottom) and mean magnetic field components B̄i for R = 30 km.

(Right) Time-averaged correlations between the poloidal electromotive force ĒR (top) and Ēz (bot-

tom) and mean current components J̄i for R = 30 km.
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Figure 12: Properties of the Poynting flux-dominated outflow and post-merger ejecta. (Top)

Angular distribution of the luminosity of the Poyinting flux at the end of the simulation of t −

tmerger ≈ 150 ms. Angular distribution of the terminal Lorenz factor for the incipient magnetic-

tower jet (blue) and the luminosity of the Poyinting flux (green) at the end of the simulation of

t − tmerger ≈ 130 ms. (Middle) Luminosity for the Poynting flux as a function of the post-merger

time. The green curve is the jet-opening-angle corrected luminosity. The blue-dashed curve plots

the luminosity for the simulation with ∆xfinest = 200 m. (Bottom) Ejecta as a function of the post-

merger time. The solid curve denotes the ejecta satisfying the Bernoulli criterion. The colored

region in the inset shows the violation of the baryon mass conservation.The blue-dashed curve

plots the ejecta for the simulation with ∆xfinest = 200 m.
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