
ar
X

iv
:2

30
5.

10
93

9v
1 

 [
gr

-q
c]

  1
8 

M
ay

 2
02

3

Cosmological Einstein-λ-perfect-fluid solutions

with asymptotic dust or radiation equations of

state.

Helmut Friedrich

Max-Planck-Institut für Gravitationsphysik

Am Mühlenberg 1

14476 Golm, Germany

May 19, 2023

Abstract

This article introduces the notions of asymptotic dust and asymp-
totic radiation equations of state. With these non-linear generaliza-
tions of the well known dust or (incoherent) radiation equations of
state the perfect-fluid equations loose any conformal covariance or
privilege. We analyse the conformal field equations induced with these
equations of state. It is shown that the Einstein-λ-perfect-fluid equa-
tions with an asymptotic radiation equation of state allow for large
sets of data that develop into solutions which admit smooth conformal
boundaries in the future and smooth extensions beyond.
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1 Introduction

This article extends our investigation of the long term behaviour of solutions to Einstein’s
equation

Rµν [ĝ]−
1

2
R[ĝ] ĝµν + λ ĝµν = T̂µν , (1.1)

with positive cosmological constant λ and energy-momentum tensor T̂µν for various matter
models. The models considered in the present paper are given by perfect fluids with certain
non-linear equations of state. Several authors studied the future asymptotic behaviour of
solutions to the Einstein-λ-perfect fluid equations with a linear equation of state p̂ =
w(ρ̂) = w∗ ρ̂, w∗ = const. [8], [12], [14], [15], often assuming that 0 < w∗ < 1/3. More
general equations of state have been considered in the articles [10], [13]. In the present
article the asymptotic behaviour is analysed from a particular point of view which is
motivated by the following observation.

De Sitter space is a geodesically complete, spatially compact, conformally flat solution
of FLRW type to the Einstein-λ-vacuum equations with cosmological constant λ > 0. It
admits smooth conformal boundaries at future and past time-like infinity. It generalizes
as follows. Smooth Cauchy data for the same equations on a Cauchy hypersurface S of
de Sitter space that are sufficiently close (with respect to suitable Sobolev norms) to the
de Sitter data develop into solutions that are also time-like and null geodesically complete
and admit smooth conformal boundaries. The conformal Einstein equations, which have
been used for this purpose, determine in fact smooth solutions that extend beyond these
boundaries and define on ‘the other sides’ again vacuum solutions. Perturbations of the
conformal curvature, only restricted by the smallness condition on S, travel unimpeded
across the boundaries [1], [2].

The question of interested in this article is: For which matter models can be established
similar results on the future asymptotic behaviour of solutions to the Einstein-λ-matter
equations ? For a discussion of the answers obtained so far the reader is referred to the
article [5], which can also be read as an extended non-technical introduction to the present
article. It further explains our interest in the question above and also may be helpful for
readers not acquainted with the conformal methods used in the following.

The two simplest cases with a positive answer are the FLRW-type solutions to the
Einstein-λ-perfect-fluid equations with the pure (incoherent) radiation equation of state
p̂ = w(ρ̂) = 1

3 ρ̂ and the pure dust equation of state p̂ = w(ρ̂) = 0 (the unusual word pure
has been added here to avoid confusions with notions introduce below).

These cases have been generalized by showing that these FLRW solutions are future
stable in the class general solutions to the Einstein-λ-perfect-fluid equations with the
respective equations of state. The perturbed solutions are not only time-like geodesically
future complete but also admit smooth future conformal boundaries and extensions beyond
[4], [11]. These cases are, however, still somewhat special. The perfect fluid equations
with a pure radiation equation of state considered in [11] are conformally invariant with
vanishing trace of the energy momentum tensor. The perfect fluid equations with a pure
dust equation of state are not conformally invariant and have an energy momentum tensor
with non-vanishing trace. They are, however, conformally privileged by being related in
some sense to a conformally invariant structure which helps establish the result of [4].
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It may be reasonable to base models of the universe on solutions to the Einstein-λ-
perfect-fluid equations where the future development is determined by one of the equations
of state above. It appears unlikely, however, that it makes sense to cover the whole stretch
from the Big Bang to future time-like infinity by one and the same linear equation of state.
One can expect to need a transition where

p̂ = w∗∗(ρ̂) ρ̂,

with some function w∗∗(ρ̂) of which we will assume that 0 ≤ w∗∗(ρ̂) ≤ 1/3. At late time
w∗∗(ρ̂) should then acquire the value w∗∗(ρ̂) = 0 if we want to model the end by a pure
dust equation of state and w∗∗(ρ̂) = 0 in the case of pure radiation.

There is nothing, however, which fixes a natural notion of ‘late time’. The only
meaningful requirement would be that these values are assumed in the limit when the
space-time approaches future time-like infinity. But then the equation of state would still
need to recognize where and when this limit will be achieved.

In the conformal analysis of the two FLRW models mentioned above the physical
density ρ̂ and the conformal density ρ satisfy a relation of the form

ρ̂ = Ωeρ, (1.2)

with e = 3 in the case of pure dust and e = 4 in the case of pure radiation. These values
are chosen because they imply that ρ = ρ∗ = const. > 0 (assuming that ρ̂ > 0 on some
initial slice). Since then ρ̂ → 0 at future time-like infinity where Ω → 0, the behaviour
of ρ̂ can be understood as an indicator for the approach to future time-like infinity. In
generalizing the situation we shall keep (1.2), hoping it to serve as an indicator function
of the far future where Ω → 0. The relation ρ = ρ∗ = const. may not be preserved under
the generalization considered below and we will have to control that ρ remains positive
and bounded in the limit Ω → 0. The pure dust and pure radiation equations of state are
now generalized as follows.

An asymptotic dust equation of state is given by a function of the form

p̂ = w(ρ̂) =
(

ρ̂k w∗(ρ̂)
)

ρ̂ with some k ∈ N, (1.3)

combined with (1.2) where e = 3. It implies w′(ρ̂) = (1 + k) ρ̂k w∗(ρ̂) + ρ̂1+k (w∗)′(ρ̂),
where here and in the following the notation ′ = ∂/∂ρ̂ is used.

An asymptotic radiation equation of state is given by a function of the form

p̂ = w(ρ̂) =

(

1

3
− ρ̂k w∗(ρ̂)

)

ρ̂ with some k ∈ N, (1.4)

combined with (1.2) where e = 4. It implies w′(ρ̂) = 1
3 − (1+ k) ρ̂k w∗(ρ̂)− ρ̂1+k (w∗)′(ρ̂).

In both case w∗(ρ̂) is a smooth functionof ρ̂ that satisfies

0 < w∗(ρ̂) < c = const.

To ensure that 0 ≤ w∗∗(ρ̂) ≤ 1/3 as required above, we would need to impose more
detailed conditions on w∗(ρ̂) but for the analysis of the effect of the new equations of state
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in the far future where Ω becomes small the conditions above are sufficient. The limits
w∗(ρ̂) → 0 give back the pure dust and the pure radiation equations of state.

The factor ρ̂k has been inserted in the definitions as a simple means to control in terms
of k the speed at which the pure dust or the pure radiation situations is approximated
as ρ̂ → 0. Eventually the conformal field equations may force us to impose less crude
conditions on w∗(ρ̂) or to introduce more subtle definitions of asymptotic equations of
state.

Definition (1.3) implies

T̂ = ĝµν Tµν = 3w(ρ̂)− ρ̂ = −Ω3 ρ+ 3Ω3+3k ρ1+k w∗(Ω3 ρ),

while definition (1.4) gives

T̂ = −3Ω 4+4 k ρ1+k w∗(Ω4 ρ).

In both case T̂ 6= 0 if ρ > 0 and T̂ → 0 as Ω → 0 if ρ remains bounded in this limit.
Because the principal parts of the matter equations are affected by the equations of

state above any conformal covariance or privilege is lost.

The Cauchy problem local in time for Einstein-λ-perfect fluids with an asymptotic
dust or radiation equations of state as above poses no problems. This follows from the
results of [3], [7] where only weak conditions on the equation of state are assumed.

First conditions on the admissible values of k are found if the equations of state
above are considered in the conformal analogues of the FLRW Friedmann and the energy
conservation equation. In the case of asymptotic dust the systems reads

(Ω̇)2 =
λ

3
−

R[ĥ]

6
Ω2 +Ω3 ρ

3
, ρ̇ = Ω3 k−1 ρ1+k w∗(Ω3 ρ)) Ω̇,

where R[ĥ] = const. ≥ 0. It can be integrated across Ω = 0 with ρ bounded and positive
if 3 k − 1 ∈ N0. In the case of asymptotic radiation the systems reads

(Ω̇)2 =
λ

3
−

R[ĥ]

6
Ω2 +Ω4 ρ

3
, ρ̇ = −Ω4 k−1 ρ1+k w∗(Ω4 ρ)) Ω̇.

It can be integrated across Ω = 0 with ρ bounded and positive if 4 k − 1 ∈ N0.

In the following sections we derive the conformal Einstein-λ-perfect fluid equations,
introduce a gauge that involves in particular an orthonormal frame ej, j = 0, 1, 2, 3, with
e0 = U , and discuss the regularity as Ω → 0 of the equations in this gauge with any of the
two asymptotic equations of state assumed.

In the case of an asymptotic dust equations of state there arise problems. The use of
the asymptotic equation of state affects the principal part of the fluid equations in a way
which does not allow us to apply the methods which were successful in the case of the
pure dust equation of state [4]. This case, which I consider as particularly interesting (see
[5]), is left open.

In the case of an asymptotic radiation equation of state regularity of the equations
can be ensured by a suitable assumption and there can be derived a symmetric hyperbolic
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reduced system that is well defined irrespective of the sign of Ω. This allows us to give
the following answer to the question posed in the beginning.

Consider the reduced system of the conformal Einstein-λ-perfect-fluid equations in the
gauge discussed below with an asymptotic radiation equation of state where k ≥ 1. On
a compact 3-dimensional manifold J + let be given smooth Cauchy data for the reduced
equations with Ω = 0, Uk = δk 0 time-like future directed, and Uk ∇kΩ < 0 that satisfy
the constraints induced by the conformal field equations and the special properties implied
on a space-like hypersurface on which Ω = 0. These data determine a smooth solution
to the reduced equations with Ω < 0 in the future of J + and Ω > 0 in the past of J +.
Where Ω > 0 the solution defines a unique solution to the system of the Einstein-λ-perfect-
fluid equations with an asymptotic radiation equation of state that is time-like geodesically
future complete and for which J + represents the conformal boundary at the infinite time-
like future.

Let S be a Cauchy hypersurface for this solution in the past of J + and denote by ∆
the Cauchy data induced by the solution on S. Any Cauchy data ∆′ on S for the same
system which are sufficiently close to ∆ develop into a solution which is also time-like
geodesically future complete, admits a smooth conformal boundary in its future, and a
smooth conformal extension beyond.

At the end of this article are discussed observations about solutions for which U is
orthogonal to the hypersurface J + and consequently hypersurface orthogonal on physical
solution in the past of J+.

2 The conformal Einstein-λ-Euler system.

We consider the Einstein-λ-perfect fluid system with cosmological constant λ that consists
of the Einstein equations (1.1) with cosmological constant λ > 0 and an energy momentum
tensor of a simple ideal fluid given by

T̂µν = (ρ̂+ p̂) Ûµ Ûν + p̂ ĝµν .

The unknowns are a Lorentz metric ĝµν on a four-dimensional manifold M̂ , a future

directed time-like fluid flow vector field Ûµ satisfying Ûµ Û
µ = −1, the total energy density

ρ̂ and the pressure p̂ as measured by co-moving observers. The system is be completed by
an equation of state

p̂ = w(ρ̂) ≥ 0. (2.1)

The matter equations, equivalent to ∇̂µ T̂µν = 0, are given by

Ûµ ∇̂µ ρ̂+ (ρ̂+ p̂) ∇̂µ Û
µ = 0, (2.2)

(ρ̂+ p̂) Ûµ ∇̂µ Ûν + {Ûµ Ûν + ĝµ ν} ∇̂µp̂ = 0. (2.3)

We assume that ρ̂ > 0 on an initial Cauchy slice. The first of the matter equations
then ensures that this relation is preserved where the solution to the equations is regular.
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Let êa, a = 1, 2, 3, be vector fields that satisfy ĝ(Û , êa) = 0, ĝ(êa, êb) = 0 and F = F (ρ̂) a
function that satisfies

F ′ = −(ρ̂+ w)−1 w′, (2.4)

where we use, as in the following chapters, the notation ′ = ∂
∂ρ̂

. With (2.3) follows

f̂a ≡ Ûµ êν a ∇̂µ Ûν = êa(F ). (2.5)

Equations (2.2), (2.3) imply

w′ ∇̂ν ρ̂ = (ρ̂+ w)
(

w′ Ûν ∇̂ρ Û
ρ − Ûρ ∇̂ρ Ûν

)

. (2.6)

Taking a derivative and observing that ρ̂+ w > 0 we get the equation

w′′ ∇̂µρ̂ ∇̂ν ρ̂+ w′ ∇̂µ ∇̂ν ρ̂ = w′ 1 + w′

ρ̂+ w
∇̂µρ̂ ∇̂ν ρ̂

+(ρ̂+ w)
(

w′′ ∇̂µρ̂ Ûν ∇̂ρ Û
ρ + w′ ∇̂µ Ûν ∇̂ρ Û

ρ + w′ Ûν ∇̂µ ∇̂ρ Û
ρ
)

−(ρ̂+ w)
(

∇̂µÛ
ρ ∇̂ρ Ûν + Ûρ ∇̂µ∇̂ρ Ûν

)

.

Where w′ 6= 0 anti-symmetrization of this relation implies the integrability condition

Ûρ ∇̂ρ∇̂[µ Ûν] − ∇̂ρ Û[µ ∇̂ν]Û
ρ = (2.7)

w′ ∇̂[µ Ûν] ∇̂ρ Û
ρ − w′ Û[µ ∇̂ν] ∇̂ρ Û

ρ − w′′ ρ̂+ w

w′
∇̂λ Û

λ Ûρ ∇̂ρ Û[µ Ûν].

Conformal transformations of the curvature fields.

The conformal Weyl tensor Cµ
νλη and the Schouten tensor Lµν = 1/2 (Rµν − 1/6Rgµν)

of a given metric satisfy the contracted Bianchi identity

∇µ C
µ
νλη = 2∇[λ Lη]ν.

Under the rescaling
ĝµν → gµν = Ω2 ĝµν , Ω > 0,

the conformal Weyl tensor is invariant, Cµ
νλη = Ĉµ

νλη, the Ricci tensor transform as

R̂µν → Rµν = R̂µν − 2Ω−1∇µ∇νΩ− gλδ
(

Ω−1 ∇λ∇δΩ− 3Ω−2∇λΩ∇δΩ
)

gµν ,

and the Schouten tensor as

L̂µν → Lµν = L̂µν − Ω−1∇µ∇νΩ+ 1/2 Ω−2 gλδ ∇λΩ∇δΩ gµν . (2.8)

The conformal Weyl tensor satisfies ∇µ

(

Ω−1 Cµ
νλη

)

= Ω−1 ∇̂µ Ĉ
µ

νλη where ∇ and ∇̂
denote the Levi-Civita connections of gµν and ĝµν . The identity above thus implies for
the rescaled conformal Weyl tensor Wµ

νλη = Ω−1 Cµ
νλη the relation

∇µ W
µ
νλη = 2Ω−1 ∇̂[λ L̂η]ν , (2.9)
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whence
2∇[λ Lη]ν −∇µ ΩWµ

νλη = 2 ∇̂[λ L̂η]ν . (2.10)

Conformal transformation of the matter fields.

We combine the conformal rescaling of the metric with the rescalings

Uµ = Ω−1 Ûµ Uµ = Ω Ûµ, ρ = Ω−e ρ̂, with e = const. > 0.

In the following it will always be understood that

w = w(ρ̂) = w(Ωe ρ), w′ = w′(ρ̂) = w′(Ωe ρ),

and similarly with the function w∗ introduced later. Equations (1.1) imply

T̂ = ĝµν T̂µν = 3w − ρ̂, R̂ = 4λ− T̂ = 4λ+ ρ̂− 3w,

and L̂µν = L̂∗
µν + 1

6 λ ĝµν with

L̂∗
µν =

1

2
(ρ̂+ w) Ûµ Ûν +

1

6
ρ̂ ĝµν = Ω−2

(

1

2
(ρ̂+ w)Uµ Uν +

1

6
ρ̂ gµν

)

, (2.11)

It follows that ∇̂λL̂ην = ∇̂λL̂
∗
ην . The Ricci scalar of the conformal metric satisfies

6Ω∇µ∇
µΩ+ Ω2 R− 12∇µΩ∇

µΩ = 4λ+ ρ̂− 3w.

Written in the form

6Ω s− 3∇µΩ∇
µΩ = λ+

1

4
(ρ̂− 3w) with s =

1

4
∇µ∇

µΩ +
1

24
ΩR, (2.12)

it will be referred to as λ-equation. Equations (2.8), (2.11), (2.12) give

∇µ∇νΩ = −ΩLµν + s gµν +Ω−1 ρ̂+ w

2

(

Uµ Uν +
1

4
gµν

)

(2.13)

which will be referred to as Ω-equation. Applying a derivative to the λ-equation (2.12)
gives with (2.13) the s-equation

∇µs+ Lµν ∇
νΩ = Ω−2 ρ̂+ w

2

(

Uµ U
ν ∇νΩ +

1

4
∇µΩ

)

+
1

24
(1− 3w′)Ω−1 ∇µρ̂. (2.14)

It follows
∇̂[λ L̂η]ν = ∇[λ L̂

∗
η]ν − Ω−1

(

L̂∗
ν[λ ∇η] Ω+ gν[λ L̂

∗
η]ρ∇

ρΩ
)

,

which gives with (2.11) and ∇λρ̂ = Ωe (∇λρ+ e ρΩ−1∇λΩ) the relation

2 ∇̂[λ L̂η]ν = Ω−3 (ρ̂+ w)
(

Uν U[λ ∇η] Ω− gν[λ Uη] Uρ∇
ρΩ

)

(2.15)

+e ρ Ωe−3

(

(1 + w′)∇[λΩUη] Uν +
1

3
∇[λΩ gη]ν

)
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+Ω−2 (ρ̂+ w)
(

∇[λ Uη] Uν + U[η ∇λ] Uν

)

+Ωe−2

(

(1 + w′)∇[λ ρ Uη] Uν +
1

3
∇[λ ρ gη]ν

)

.

The conformal matter equations

Equations (2.2) and (2.3) transform with ∇µρ̂ = Ωe
{

∇µ ρ+ e ρΩ−1∇µΩ
}

into

0 = Uµ ∇µρ+ (ρ+Ω−ew)∇µ Uµ − Ω−1 (−e ρ+ 3 ρ+ 3Ω−ew)Uµ ∇µΩ, (2.16)

0 = (ρ+Ω−ew)Uµ ∇µ Uν + w′ (gµ ν + Uµ Uν)∇µ ρ (2.17)

−Ω−1 (ρ+Ω−e w − e ρw′)(gµ ν + Uµ Uν)∇µΩ.

In the case of pure dust, where w = 0 and e = 3, the equations read

0 = Uµ ∇µρ+ ρ∇µ U
µ, 0 = ρUµ ∇µ Uν − Ω−1 ρ (gµ ν + Uµ Uν)∇µΩ.

The Ω−1 term in the second equation reflects the conformal non-covariance of the system.
In the case of pure radiation with w = 1

3 ρ̂, and e = 4 the conformal equations reduce to

Uµ ∇µρ+
4

3
ρ∇µ U

µ = 0,
4

3
ρ Uµ ∇µ Uν +

1

3
(gµ ν + Uµ Uν)∇µ ρ = 0,

and have thus the same form as their physical versions.

Equation (2.7) transforms into

Uρ∇ρ∇[µ Uν] + w′ U[µ ∇ν] ∇ρ U
ρ (2.18)

−∇π U[µ ∇ν] U
π − (1 − 3w′)U[µ Lν]ρ U

ρ − w′ ∇[µ Uν]∇π U
π =

+(1− 3w′)
{

Ω−1 ∇[µ Uν] U
ρ∇ρΩ− Ω−1 U[µ ∇ν] Uρ ∇

ρΩ + Ω−2 U[µ∇ν]ΩUρ∇ρΩ
}

−w′′ ρ̂+ w

w′

{

∇π U
π Uρ∇ρ U[µUν] − 3Ω−1Uπ ∇πΩUρ∇ρ U[µ Uν]

−Ω−1∇π U
π ∇[µΩUν] + 3Ω−2 Uπ ∇πΩ∇[µΩUν]

}

.

With êµ a = Ω eµ a the relation (2.5) transforms into

ea(F ) = Ω−1 f̂a = Uµ ∇µUν e
ν
a − ea(logΩ). (2.19)

3 The gauge and the implied equations.

We express the equations in terms of an orthonormal frame field ek = eµ k∂xµ , k = 0, 1, 2, 3,
so that gjk ≡ g(ej , ek) = ηjk = diag(−1, 1, 1, 1) and e0 is a time-like vector field. The
space-like frame vector fields are then given by the ea, where a, b, c = 1, 2, 3 denote spatial
indices to which the summation convention also applies. In the following all tensor fields
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considered in the previous sections will be expressed in terms of this frame field. The
contravariant coordinate version of the metric is given by gµν = ηjk eµ j e

ν
k.

The connection coefficients, defined by ∇jek ≡ ∇ej ek = Γj
l
k el, satisfy Γjlk = −Γjkl

with Γjlk = Γj
i
k gli, because ∇igjk = 0. The covariant derivative of a tensor field Xµ

ν ,
given in the frame by X i

j , takes the form ∇k X
i
j = X i

j ,µ e
µ
k + Γk

i
l X

l
j − Γk

i
l X

i
j .

The frame and the connection coefficients satisfy the first structural equations

eµ i, ν e
ν
j − eµ j, ν e

ν
i = (Γj

k
i − Γi

k
j) e

µ
k, (3.1)

which ensures that the connection is torsion free, and the second structural equations

Γl
i
j, µ e

µ
k − Γk

i
j, µ e

µ
l + 2Γ[k

i p Γl]pj − 2 Γ[k
p
l] Γp

i
j (3.2)

= ΩW i
jkl + 2 {gi [k Ll]j + Li

[k gl]j}.

To restrict the gauge freedom for the frame we set e0 = U so that U = Uk ek with
Uk = δk 0, choose at the points of a given smooth space-like hypersurface S transverse
to the flow line of U vector fields ea, a = 1, 2, 3, so that g(ej , ek) = ηjk, assume the
orthonormal frame ek to be extended by Fermi-transport in the direction of e0 = U so
that 0 = FUek = ∇Uek − g(ek,∇UU)U + g(ek, U)∇UU , and assume the ea to be chosen
on S so that the resulting orthonormal frame field is smooth. In terms of this frame the
Fermi transport law reduces to

Γ0
a
b = 0. (3.3)

To restrict the gauge freedom for the coordinates xµ, we assume that τ ≡ x0 = 0 on S
and the xµ be dragged along with U so that

< e0, dx
µ >= eµ 0 = Uµ = δµ 0.

The remaining non-vanishing connection coefficients are given by

fa ≡ Γ0
0
a = δab Γ0

b
0, χab ≡ Γa

0
b = δbc Γa

c
0 and Γa

b
c.

It holds ∇i Uk = Γi
0
k = χab δ

a
i δ

b
k + fb δ

0
i δ

b
k and U i∇i Uk = fb δ

b
k, ∇i U

i = χa
a.

The first structural equations supply the constraint

eµ a, ν e
ν
b − eµ b, ν e

ν
a = (Γb

c
a − Γa

c
b) e

µ
c + (χba − χab) δ

µ
0, (3.4)

and the evolution equations

eµ a, 0 = −χa
b eµ b + fa δ

µ
0. (3.5)

The second structural equations imply for Γa
b
c and χab the constraints

Γb
a
c, µ e

µ
d − Γd

a
c, µ e

µ
b + 2Γ[d

a i Γb]ic − 2 Γ[d
i
b] Γi

a
c (3.6)

= ΩW a
cdb + 2 {ga [d Lb]c + La

[d gb]c},

χab, µ e
µ
c − χcb, µ e

µ
a + 2Γ[c

0 p Γa]pb − 2 Γ[c
p
a] Γp

0
b = ΩW 0

bca + 2L0
[c ga]b, (3.7)
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and the evolution equations

Γa
b
c, 0 + f b χac − χa

b fc + χa
d Γd

b
c = ΩW b

c0a − gb a L0c + Lb
0 gac, (3.8)

χac, 0 − fc, µ e
µ
a + fb Γa

b
c − fa fb + χa

b χbc = ΩW 0
c0a + Lac + L0

0 gac. (3.9)

No equation for fa is implied by the structural equations.

The fluid equations (2.16), (2.17) imply in our gauge the evolution equation

∇0ρ+ (ρ+Ω−ew)χa
a − Ω−1 (−e ρ+ 3 ρ+ 3Ω−ew)∇0Ω = 0, (3.10)

and the constraint

(ρ+Ω−ew) fa + w′ ∇a ρ− Ω−1 (ρ+Ω−ew − e ρw′)∇aΩ = 0. (3.11)

With ρ̂ = Ωe ρ the latter is seen to be (2.19), which reads with fa = Uµ ∇µUν e
ν
a

fa = ea(F + logΩ). (3.12)

Equation (2.18) is equivalent to the two equations

e0(fa)− w′ ea(χc
c) + χac f

c + (1− 3w′)La0 − w′ χc
c fa = (3.13)

= (1 − 3w′) (Ω−1 ∇0Ω fa +Ω−1 χab ∇
bΩ− Ω−2 ∇0Ω∇aΩ)

−w′′ ρ̂+ w

w′
(χc

c fa − 3Ω−1∇0 Ω fa − Ω−1 χc
c ∇aΩ + Ω−2 ∇0Ω∇aΩ),

and
e0(χ[ab])− χc[a χb]

c − w′ χc
c χ[ab] = (1 − 3w′)Ω−1 ∇0Ωχ[ab]. (3.14)

With χc[a χb]
c = −χ[ac] σb

c + χ[bc] σa
c, where σab = χ(ab), the latter can be read as a

linear homogeneous ODE for χ[ab].

The system of conformal field equations reads with e = const.

6Ω s− 3∇kΩ∇kΩ− λ =
1

4
(ρ̂− 3w), (3.15)

∇k ∇jΩ+ ΩLkj − s gkj = Ω−1 ρ̂+ w

2

(

Uk Uj +
1

4
gkj

)

, (3.16)

∇k s+∇iΩLik = (3.17)

Ω−2 ρ̂+ w

2

(

Uk U
i∇iΩ +

1

4
∇kΩ

)

+
1

24
(1 − 3w′)Ωe−1

{

∇µ ρ+ e ρΩ−1∇kΩ
}

,

∇i Ljk −∇j Lik −∇lΩ W l
kij = 2 ∇̂[i L̂j]k, (3.18)

∇l W
l
kij = 2Ω−1 ∇̂[i L̂j]k, (3.19)
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with
2 ∇̂[i L̂j]k = Ω−3 (ρ̂+ w)

(

Uk U[i∇j] Ω− gk[i Uj] U
l ∇lΩ

)

(3.20)

+e ρΩe−3

(

(1 + w′)∇[iΩUj] Uk +
1

3
∇[iΩ gj]k

)

+Ω−2 (ρ̂+ w)
(

∇[i Uj] Uk + U[j ∇i] Uk

)

+Ωe−2

(

(1 + w′)∇[i ρ Uj] Uk +
1

3
∇[i ρ gj]k

)

.

4 Regularity of the equations.

In the following an equation will be called ‘regular’ if no negative or non-integer powers of
Ω occur in it. The structural equations are regular in this sense but the tensorial equations
can be problematic. It will use from now on the notation

∇kΩ = Σk. (4.1)

The asymptotic dust equation of state.

With the asymptotic dust equation of state and e = 3 there enter in various places of
the equations functions such as

w = (Ω3 ρ)k+1 w∗, w′ = Ω3 k ρk
(

(k + 1)w∗ +Ω3ρ (w∗)′
)

,

ρ̂+ w = Ω3 ρ (1 + Ω3 kρk w∗), 1− 3w′ = 1− 3Ω3 k ρk
(

(k + 1)w∗ +Ω3 ρ (w∗)′
)

.

As w∗ → 0 they approach the values of the corresponding quantities of the pure dust
equation of state. Therefore it is clear that equations which are singular in that case must
also be singular in the present case.

In the present case the singular terms cannot be handled as in the pure dust case
because equation (2.3) remains a partial differential equation and the Ω−1 terms cannot
be compensated by suitable choices of k. Moreover, the expression

w′′ ρ̂+ w

w′
= (1 + ρ̂k w∗)

(

k + ρ̂
(2 + k) (w∗)′ + ρ̂ (w∗)′′

(1 + k)w∗ + ρ̂ (w∗)′

)

,

which comes with a singular factor in the equation

e0(fa)− w′ ea(χc
c) + χac f

c + (1− 3w′)La0 − w′ χc
c fa =

= (1− 3w′) (Ω−1 Σ0 fa +Ω−1 χab Σ
b − Ω−2 Σ0 Σa)

−w′′ ρ̂+ w

w′
(χc

c fa − 3Ω−1 Σ0 fa − Ω−1 χc
cΣa +Ω−2 Σ0 Σa),

is not even defined if w′ = 0. Since there is no obvious way to handle it, this case will not
be considered any further in this article.

The asymptotic radiation equation of state.

11



The asymptotic radiation equation of state with e = 4 gives rise to expressions like

ρ̂+ w = Ω4 ρ

(

4

3
− (Ω4 ρ)k w∗

)

, w′ =
1

3
− (Ω4 ρ)k

(

(k + 1)w∗ +Ω4 ρ (w∗)′
)

,

ρ̂− 3w = 3Ω4 (k+1) ρk+1 w∗(Ω4 ρ), 1− 3w′ = 3 (Ω4 ρ)k
(

(k + 1)w∗ +Ω4 ρ (w∗)′
)

,

w′′ ρ̂+ w

w′
= −(Ω4 ρ)k

(

4− 3 ρ̂k w∗
) k (1 + k)w∗ + 2 (1 + k) ρ̂ (w∗)′ + ρ̂2 (w∗)′′

1− 3 (1 + k) ρ̂k w∗ + 3 ρ̂1+k (w∗)′
.

The limits as w∗ → 0 are well defined and yield the corresponding functions in the pure
radiation case. If ρ > 0 and bounded as Ω → 0 we can assume for small |Ω| that

w′ =
1

3
− Ω4 k ρk

(

(k + 1)w∗ +Ω4 ρ (w∗)′
)

> 0. (4.2)

The structural equation are regular with no condition on k. Equations (3.15), (3.16),
(3.17) are immediately seen to be regular with 4 k ∈ N0. The fluid equation (3.10) reads

∇0ρ+ ρ

{(

4

3
− (Ω4 ρ)k w∗

)

χa
a + 3Ω4 k−1ρk w∗)Σ0

}

= 0. (4.3)

It is regular if 4 k ∈ N. As long as the term in curly brackets is continuous, the function
ρ will stay positive if it positive on some Cauchy surface. With (4.2) the constraint (3.11)
can be solved for ∇a ρ in a neighbourhood of Ω = 0

∇a ρ = −ρ
4− 3 (Ω4 ρ)k w∗

3w′
fa − Ω4 k−1 ρk+1 (4 k + 3)w∗ + 4Ω4 ρ (w∗)′

w′
Σa. (4.4)

The equation is regular if 4 k ∈ N. Inspection of the equations

e0(fa)− w′ ea(χc
c) + χac f

c + (1− 3w′)La0 − w′ χc
c fa = (4.5)

= (1− 3w′) (Ω−1 Σ0 fa +Ω−1 χab Σ
b − Ω−2 Σ0 Σa)

−w′′ ρ̂+ w

w′
(χc

c fa − 3Ω−1 Σ0 fa − Ω−1 χc
cΣa +Ω−2 Σ0 Σa),

and
e0(χ[ab])− χc[a χb]

c − w′ χc
c χ[ab] = (1− 3w′)Ω−1 Σ0 χ[ab], (4.6)

shows that they are regular if 4 k − 1 ∈ N. With the expressions above the equations

6Ω s− 3Σk Σ
k − λ =

1

4
(ρ̂− 3w), (4.7)

∇k Σj = −ΩLkj + s gkj +Ω−1 ρ̂+ w

2

(

Uk Uj +
1

4
gkj

)

, (4.8)

∇k s+Σi Lik = (4.9)

Ω−2 ρ̂+ w

2

(

Uk U
iΣi +

1

4
Σk

)

+
1

24
(1− 3w′)Ω3

{

∇k ρ+ 4 ρΩ−1Σk

}

,
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are seen to be regular if 4 k ∈ N0. We have finally

∇i Ljk −∇j Lik − Σl W
l
kij = ΩMijk, (4.10)

∇l W
l
kij = Mijk, (4.11)

where
Mijk = 2Ω−1 ∇̂[i L̂j]k = Ω−4 (ρ̂+ w)

(

Uk U[iΣj] − gk[i Uj] Σ0

)

(4.12)

+4 ρ

(

(1 + w′)Σ[i Uj] Uk +
1

3
Σ[i gj]k

)

+Ω−3 (ρ̂+ w)
(

∇[i Uj] Uk + U[j ∇i] Uk

)

+Ω

(

(1 + w′)∇[i ρ Uj] Uk +
1

3
∇[i ρ gj]k

)

.

Its components, given by

M0b0 = Ω−4 ρ̂+ w

2
(Σb − Ω fb)−

2 + 3w′

6
(Ω∇b ρ+ 4 ρΣb), (4.13)

Mab0 = −Ω−3 (ρ̂+ w)χ[ab] (4.14)

M0bc =

{

−Ω−4 ρ̂+ w

2
Σ0 +

1

6
(Ω∇0ρ+ 4 ρΣ0)

}

gbc (4.15)

Mabc =
1

3

{

Ω∇[a ρ gb]c + 4 ρΣ[a gb]c
}

, (4.16)

are regular if 4 k ∈ N0.

5 Cauchy problems.

To solve the conformal equations with an asymptotic radiation equation of state we extract
from the complete system a symmetric hyperbolic reduced system for the unknown

Z = (Ω, Σk, s, eµ a, Γa
b
c, ρ, χab, fa, Ljk, Ci

jkl),

where the Ricci scalar R = R[g] = 6Lj
j of gµν plays the role of a conformal gauge source

function that controls implicitly the evolution of the conformal factor. It can be prescribed
as an arbitrary function of the coordinates. The present discussion is concerned with the
transition from the ‘physical part of the solution’ to scri and beyond. In physical terms
this involves a discussion of a domain of infinite temporal extent but in conformal terms
it involves only a finite step in the conformal time τ . The specification of R[g] is thus not
particularly critical. It is chosen to be constant.

Symmetric hyperbolic reduced equations.

The reduced system is essentially built from the equations which contain derivatives in
the direction of U . However, sometimes these equations are modified by using constraints,
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i.e. equations which do not contain derivatives in the direction of U . For the first six
components of Z we get the system

e0(Ω) = Σ0,

e0(Σ0)− f cΣc = −ΩL00 − s+Ω−1 3 (ρ̂+ w)

8
,

e0(Σa)− fa Σ0 = −ΩL0a,

∇0 s+Σi Li0 =
1

8
Ω−2 {(1− 3w′)w − 3 (ρ̂+ w)}Σ0

−
1

24
(1− 3w′) (Ω3 ρ+Ω−1 w)χa

a,

where (3.10) resp. (4.3) has been used to replace ∇0ρ,

eµ a, 0 = −χa
b eµ b + fa δ

µ
0,

Γa
b
c, 0 = −f b χac + χa

b fc − χa
d Γd

b
c + ΩW b

c0a − gb a L0c + Lb
0 gac,

∇0ρ+ (ρ+Ω−4 w)χa
a +Ω−1 (ρ− 3Ω−4w)Σ0 = 0,

Adding a suitable contraction of (3.7) to equation (4.5) gives the equation

e0(fa)− w′ ec(χa
c) = −χac f

c − (1− 3w′)La0 + w′ χc
c fa (5.1)

+(1− 3w′) (Ω−1 ∇0Ω fa +Ω−1 χab ∇
bΩ− Ω−2 ∇0Ω∇aΩ)

−w′′ ρ̂+ w

w′
(χc

c fa − 3Ω−1∇0 Ω fa − Ω−1 χc
c ∇aΩ + Ω−2 ∇0Ω∇aΩ),

+w′ (2χ[c
e Γa]e

c − 2 f c χca − 2 Γ[c
e
a] χe

c − 2L0
a).

Adding (4.6) to (3.9) gives

e0(χba)− ea(fb) = −fd Γa
d
b + fa fb − χa

d χdb +ΩW 0
b0a + Lab + L0

0 gab, (5.2)

−2 (χc[a χb]
c + w′ χc

c χ[ab] + (1− 3w′)Ω−1 Σ0 χ[ab]).

If equations (5.1) and (5.2) are written as a system for fa and χbc with principal part

1

w′
e0(fa)− ec(χa

c) = . . . , e0(χba)− ea(fb) = . . . .

they represent, with given right hand sides, a symmetric hyperbolic system.

To derive the reduced systems for the curvature fields we follow the methods of [4]
and earlier articles. Equation (4.10) provides a system for the unknowns L0a = La0 and
Lab = Lba that contains no derivatives of L00. Where this quantity appears in the equation
the contraction −L00 + gabLab = Lj

j = R/6 can be used to express it in terms of Lab

and the gauge source function R = R[g] = const. The system is given by
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∇0 L0a − gbc ∇b Lac = Ω(M0a0 − gbcMbac), a = 1, 2, 3, (5.3)

∇0 Laa −∇a L0a = Σl W
l
a0a +ΩM0aa, a = 1, 2, 3, (5.4)

2∇0Lab −∇a L0b −∇b L0a = −2ΣlW
l
(ab)0 + 2ΩM0(ab), (5.5)

a, b = 1, 2, 3, a < b.

To extract the desired system from (4.11) consider the fields

hj
k = gj k + U j Uk, lj k = gj k + 2U j Uk, ǫijkl = ǫ[ijkl], ǫjkl = U i ǫijkl , with ǫ0123 = 1.

The symmetric, trace-free U -electric part wjl and the U -magnetic part w∗
jl of W

i
jkl,

wjl = Wipkq U
i hp

j U
k hq

l, w∗
jl = 1/2Wipmn ǫ

mn
kq U

i hp
j U

k hq
l,

allow us to represent the rescaled conformal Weyl tensor in form

Wijkl = 2 (li[k wl]j − lj[k wl]i − U[k w
∗
l]p ǫ

p
ij − U[iw

∗
j]p ǫ

p
kl).

Suitable evolution equations for wjl and w∗
jl is given by ∇i Wi(a|dc| ǫb)

dc = Kdc(a ǫb)
dc,

∇iWi(a|0|b) = K0(ab) which read in detail

e0 (w
∗
ab)−Dd wc(a ǫb)

dc = −χedw
∗
cf ǫ(a

fe ǫb)
dc (5.6)

+(χe
(a w

∗
b)e − χw∗

ab) + fdwc(a ǫb)
dc,

and
e0(wab) +Dd w

∗
c(a ǫb)

dc = −2χwab + 2χc
(a wb)c (5.7)

+χ(a
cwb)c − χcdwcd gab + 2w∗

(a
e ǫb)ed f

d −M0(ab),

with ‘spatial derivatives’ Daw
∗
bc ≡ ea (w

∗
bc)−Γa

e
b w

∗
ec −Γa

e
c w

∗
be = ∇a w

∗
bc. The compo-

nents of Mjkl on the right hand sides of equations (5.3) - (5.7) are given by

M0a0 − gbcMbac = Ω−4 ρ̂+ w

2
(Σa − Ω fa)−

w′

2
(Ω∇a ρ+ 4 ρΣa),

M0ab = −

{

Ω−4 ρ̂+ w

2
Σ0 −

1

6
(Ω∇0ρ+ 4 ρΣ0)

}

gab, Mdc(a ǫb)
dc = 0,

where here and in (5.3), (5.4), (5.5) equations (4.3) and (4.4) must be used to replace ∇0ρ
and ∇aρ.

Observing the symmetry of wab, w
∗
ab (but ignoring their trace-freeness, which can later be

recovered as a consequence of the initial data and the equations above), equations (5.6)
and (5.7) can written as system for the unknowns wab and w∗

ab with a ≤ b, a, b = 1, 2, 3.
If the equations wab, 0 = . . ., w∗

ab, 0 = . . . are then written with a factor 2 if a < b, the
system is seen to be manifestly symmetric hyperbolic.

Together with the previous equations we have obtained now a quasi-linear system for the
unknown Z which can be written in the form Aµ ∂µZ = B with matrix-valued functions
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B = B(Z) and Aµ = Aµ(Z) that are symmetric, i.e. tAµ = Aµ, with A0 defining a
positive definite bilinear form if the e0 a are not too large.

Cauchy data for the conformal equations.

Solutions that admit smooth conformal extensions at future time-like infinity can be
constructed from data for the conformal field equations on a compact Cauchy hypersurface
S in the ‘physical domain’, where Ω > 0, or on the compact 3-manifold S = J + = {Ω = 0}
that represents future time-like infinity.

Unless the field U is assumed to be orthogonal to S, the data, which must satisfy
the constraints induced by the conformal field equations on S, are in general expressed in
terms of the unit normal to S and then transformed into a frame ek with e0 = U . This
requires calculations involving the complete system of conformal field equations which are
fairly tedious (see [6] where the presence of a boundary requires this) and give little insight.
The calculation will be skipped here.

We will first construct asymptotic end data on J+ with the assumption that U is
orthogonal to J +. It is interesting to note that in the case of a pure dust equation of
state one is forced into this requirement without forcing the field U to be hypersurface
orthogonal in the physical domain (see [4]). In the present case this assumption implies
a genuine restriction. The analysis of the asymptotic end data follows essentially the one
given in the vacuum case [1] with some modifications if matter fields are involved [?], [4]

To analyse the constraints, i.e. the equations that do not involve derivatives in the
direction of U , we assume that k ≥ 1. The restrictions of the equations to J+ are then
regular and the expressions containing the quantities w∗, (w∗)′ drop out. The unknowns
are then determined as follows.

The requirement that U is orthogonal to J + implies

e0 a = 0, Σa = 0, χab is the second fundamental form induced on J+.

The first structural equation (3.1) implies on J + the first structural equation with respect
to the the frame ea and metric hab induced on J +. The Γa

c
b are thus the connection

coefficients of the covariant derivative operator D induced by the metric hab in the frame
ea. The second structural equation (3.2) reduces to the relation Ra

cdb[h] = 2 ga [d Lb]c +
2La

[d gb]c, equivalent to

Lab[g] = lab[h] with lab[h] = Rab[h]−
1

4
R[h]hab.

This gives L00 = gab Lab − Lj
j = R[h]/4−R/6 where R = R[g] represents the conformal

gauge source function. Equations (3.11), (3.15), (3.16), (3.17) imply

fa = −
1

4
∇aρ, Σ0 = ν ≡

√

λ/3 > 0, χab = s/ν gab, ∇a s = −ν L0a,

where it is assumed that U is future directed and Ω is decreasing in the direction of U .
By a rescaling gµν → θ2 gµν and Ω → θΩ, where θ > 0 is smooth with prescribed value
and suitable normal derivative on J +, it can be achieved that

s = 0 whence χab = 0, L0a = 0 on J +.
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Equation (3.18), which reduces to

Dc lda ǫb
cd = ν w∗

ab,

relates the Cotton tensor of h, given on the left hand side, to the U -magnetic part ofW i
jkl.

The constraints induced by (3.19), given by ∇l W
l
0ij = Mij0, translate with Mab0 = 0

and M0b0 = 0 to the constraint
Da wab = 0, (5.8)

and to Da w∗
ab = 0, which is not a constraint but the identity satisfied by the Cotton

tensor.

If the data
eα a, ρ, wab,

are prescribed on J + so that hαβ = δab eα a e
β
b defines the contravariant version of a

Riemannian metric, ρ > 0, and wab = wba, wc
c = 0 with wab satisfying (5.8) with the

covariant derivative operator D defined by h, all the unknowns subsumed by Z can be
determined in our gauge.

On the preservation of the constraints.

Smooth data on J+ as described above, determine a smooth solution to the symmetric
hyperbolic reduced equations that cover a neighbourhood of J+ = {τ = 0} with Ω > 0
in the past of J +, where the parameter τ on the flow lines of U is negative, and Ω < 0 in
the future of J + where τ > 0 [9]. We can assume it to exist in a range −τ∗ ≤ τ ≤ τ∗ with
some τ∗ > 0 and τ = 0 on J +.

Once this solution has been obtained, it remains to show that the solution to the
reduced equations does in fact also satisfy the constraints and thus the complete system
of conformal equations. Since the proof follows a standard recipe which has been worked
out in detail in earlier articles (see [4], and in particular [3], [7] for a discussion of the
Einstein-perfect-fluid equations with a general equation of state), we skip this step.

There remains, however, an open question. Since we assumed U to be orthogonal
to J+ we should expect U to be hypersurface orthogonal, that is χ[ab] = 0 in the range
−τ∗ ≤ τ ≤ τ∗. Because χ[ab] = 0 on J +, one could think this to be a consequence
of equation (4.6). Since this equation is neither a constraint nor satisfied as part of the
reduced system, we use a different argument. The evolution of χab is governed by equation
(5.2), which implies

e0(χ[ba]) = D[afb] + χ[ac] βb
c − χ[bc] βa

c − 2w′ χc
c χ[ab] − 2 (1− 3w′)Ω−1 Σ0 χ[ab],

with βab = χ(ac).We formally write here Dafb = ea(fb) − fd Γa
d
b, not implying that D

denotes a covariant derivative away from J+. Among the constraints which we can assume
to be satisfied there is the relation (3.11) or its more concise version (3.12), i.e.

fa = ea(f) with f = F + logΩ and F ′ = −(ρ̂+ w)−1 w′. (5.9)

Since the connection ∇ is torsion free it follows

0 = ∇a∇bf −∇b∇af = 2 (D[afb] − χ[ab] e0(f)),
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where the function

e0(f) = e0(F + log Ω) = −
w′

ρ+Ω−4 w
∇0ρ+Ω−1 ρ+Ω−4 w − 4 ρw′

ρ+Ω−4 w
∇0Ω,

is regular if k ≥ 1. The resulting ODE for χ[ab] implies that χ[ab] = 0, equation (4.6) is
satisfied, and U is hypersurface orthogonal in the range −τ∗ ≤ τ ≤ τ∗.

With this we discussed all the ingredients needed to obtain existence results. General
results in symmetric hyperbolic systems [9] allow us to draw the following conclusions.

Let the reduced conformal Einstein-λ-perfect-fluid equations with asymptotic radiation
equation of state where k ≥ 1 be given in terms of the gauge discussed above so that
e0 = U . Assume the future directed flow vector U to be orthogonal to the compact 3-
manifold J+ = {Ω = 0}. Let on J + be given a minimal end data set consisting of a
smooth frame field ea = eα a ∂xα, a positive function ρ, and a symmetric trace-free tensor
field wab that satisfies Da wab = 0 where D is the covariant derivative operator associated
with the metric h that satisfies h(ea, eb) = δab. Then:

− As discussed above, a complete set of Cauchy data for the conformal field equations can
be calculated from the minimal set if the gauge conditions, the constraints, and the special
features of J + = {Ω = 0} are taken into account.

− These data determine a smooth solution Ω, g, . . . , to the conformal field equation
(unique up to extensions) so that Ω < 0 in the future of J +, Ω > 0 in the past of
J+, and ĝ = Ω−2 g, Û = ΩU , ρ̂ = Ω4 ρ satisfy where Ω 6= 0 the Einstein-λ-perfect-fluid
equations with asymptotic radiation equation of state. The flow field Û is hypersurface
orthogonal.

− Let S by a Cauchy hypersurface in the ‘physical domain’ of this solution where Ω > 0
and denote by ∆ the Cauchy data induced by the solution on S. Let ∆′ be Cauchy data on
S for the same system of equations. If these data are sufficiently close to ∆ they develop
into a solution which is time-like and null geodesically future complete, admits a smooth
conformal boundary J ′+ representing its future time-like infinity and a smooth conformal
extension beyond with ρ > 0.

− If the cases where w∗ = 0 is admitted, the resulting set of solutions contains as special
cases the FLRM-pure-radition solutions which develop a smooth conformal boundary in
the future.

Given the data ∆′ whence the corresponding flow field U ′ on S, the field equations
allow us to determine the quantity U ′

[i∇
′
jU

′
k] on S. In the last statement it is not required

that this quantity vanishes on S. Thus the flow field U ′ determined by the data ∆′ will
not necessarily be hypersurface orthogonal and U ′ need not be orthogonal to J ′+.

If Cauchy data are given on J + with a flow vector field U that is not necessarily
orthogonal to J+ the result stated at the end of the introduction is obtained.

18



References

[1] H. Friedrich. Existence and structure of past asymptotically simple solution of Ein-
stein’s field equations with positive cosmological constant. J. Geom. Phys. 3 (1986)
101 - 117.

[2] H. Friedrich. On the existence of n-geodesically complete or future complete solutions
of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys.
107 (1986), 587 - 609.

[3] Friedrich, H. (1998) Evolution equations for gravitating ideal fluid bodies in general
relativity. Phys. Rev. D 57, 2317–2322.

[4] H. Friedrich. Sharp asymptotics for Einstein-λ-dust flows. Commun. Math. Phys.
(2016) DOI 10.1007/s00220-016-2716-6. arXiv:1601.04506

[5] H. Friedrich. Hierarchies of asymptotic behaviour in cosmological models with positive
λ. In preparation.

[6] H. Friedrich, G. Nagy. The initial boundary value problem for Einstein’s vacuum field
equations. Comm. Math. Phys. 201 (1999) 619 - 655.

[7] H. Friedrich, A. Rendall. The Cauchy Problem for the Einstein Equations. In: B.
Schmidt (ed.): Einstein’s Field Equations and Their Physical Implications. Springer,
Lecture Notes in Physics, Berlin 2000.
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