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ABSTRACT

Most media content consumed today is provided by digital plat-
forms that aggregate input from diverse sources, where access
to information is mediated by recommendation algorithms. One
principal challenge in this context is dealing with content that is
considered harmful. Striking a balance between competing stake-
holder interests, rather than block harmful content altogether, one
approach is to minimize the exposure to such content that is in-
duced specifically by algorithmic recommendations. Hence, mod-
eling media items and recommendations as a directed graph, we
study the problem of reducing the exposure to harmful content via
edge rewiring. We formalize this problem using absorbing random
walks, and prove that it is NP-hard and NP-hard to approximate
to within an additive error, while under realistic assumptions, the
greedy method yields a (1 − 1/𝑒)-approximation. Thus, we intro-
duce Gamine, a fast greedy algorithm that can reduce the exposure
to harmful content with or without quality constraints on recom-
mendations. By performing just 100 rewirings on YouTube graphs
with several hundred thousand edges, Gamine reduces the initial
exposure by 50%, while ensuring that its recommendations are at
most 5% less relevant than the original recommendations. Through
extensive experiments on synthetic data and real-world data from
video recommendation and news feed applications, we confirm the
effectiveness, robustness, and efficiency of Gamine in practice.
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1 INTRODUCTION

Recommendation algorithms mediate access to content on digital
platforms, and as such, they critically influence how individuals
and societies perceive the world and form their opinions [12, 21,

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599489

𝑔1

𝑔2 𝑔3

𝑔4

𝑏1
𝑏2

𝑏3

(a) Minimizing segregation

𝑔1

𝑔2 𝑔3

𝑔4

𝑏1
𝑏2

𝑏3

(b) Minimizing exposure

Figure 1: 3-out-regular directed graphs with four good nodes

(white) and three bad nodes (gray). Edges running from good

to bad nodes are drawn in red. The left graph minimizes

the segregation objective from Fabbri et al. [10], but random

walks oscillate between good nodes and bad nodes. In con-

trast, only the right graph minimizes our exposure objective.

36, 42, 44]. In recent years, platforms have come under increasing
scrutiny from researchers and regulators alike due to concerns
and evidence that their recommendation algorithms create filter
bubbles [6, 26, 28, 45] and fuel radicalization [19, 27, 39, 41, 49]. One
of the main challenges in this context is dealing with content that
is considered harmful [4, 7, 50]. To address this challenge while
balancing the interests of creators, users, and platforms, rather than
block harmful content, one approach is to minimize the exposure
to such content that is induced by algorithmic recommendations.

In this paper, we study the problem of reducing the exposure to
harmful content via edge rewiring, i.e., replacing certain recommen-
dations by others. This problem was recently introduced by Fabbri
et al. [10], who proposed to address it by modeling harmfulness as a
binary node label andminimizing themaximum segregation, defined
as the largest expected number of steps of a random walk starting
at a harmful node until it visits a benign node. However, while
Fabbri et al. [10] posed a theoretically interesting and practically
important problem, their approach has some crucial limitations.

First, treating harmfulness as dichotomous fails to capture the
complexity of real-world harmfulness assessments. Second, the
segregation objective ignores completely all random-walk continu-
ations that return to harmful content after the first visit to a benign
node, but benign nodes do not act as absorbing states in practice. The
consequences are illustrated in Fig. 1a, where the segregation ob-
jective judges that the graph provides minimal exposure to harmful
content (the hitting time from any harmful node to a benign node
is 1), while long random walks, which model user behavior more
realistically, oscillate between harmful and benign content.

In this paper, we remedy the above-mentioned limitations. First,
we more nuancedly model harmfulness as real-valued node costs.
Second, we propose a novel minimization objective, the expected
total exposure, defined as the sum of the costs of absorbing random
walks starting at any node. Notably, in our model, no node is an ab-
sorbing state, but any node can lead to absorption, which represents
more faithfully how users cease to interact with a platform. Our
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exposure objective truly minimizes the exposure to harmful content.
For example, it correctly identifies the graph in Fig. 1b as signifi-
cantly less harmful than that in Fig. 1a, while for the segregation
objective by Fabbri et al. [10], the two graphs are indistinguishable.

On the algorithmic side, we show that although minimizing the
expected total exposure is NP-hard and NP-hard to approximate
to within an additive error, its maximization version is equiva-
lent to a submodular maximization problem under the assumption
that the input graph contains a small number of safe nodes, i.e.,
nodes that cannot reach nodes with non-zero costs. If these safe
nodes are present—which holds in 80% of the real-world graphs
used in our experiments—the greedy method yields a (1 − 1/𝑒)-
approximation. Based on our theoretical insights, we introduce
Gamine, a fast greedy algorithm for reducing exposure to harmful
content via edge rewiring. Gamine leverages provable strategies for
pruning unpromising rewiring candidates, and it works both with
and without quality constraints on recommendations. With just
100 rewirings on YouTube graphs containing hundred thousands of
edges, Gamine reduces the exposure by 50%, while ensuring that
its recommendations are at least 95% as relevant as the originals.

In the following, we introduce our problems, REM and QREM
(Section 2), and analyze them theoretically (Section 3). Building on
our theoretical insights, we develop Gamine as an efficient greedy
algorithm for tackling our problems (Section 4). Having discussed re-
lated work (Section 5), we demonstrate the performance of Gamine
through extensive experiments (Section 6) before concluding with
a discussion (Section 7). All code, datasets, and results are publicly
available,1 and we provide further materials in Appendices A to F.

2 PROBLEMS

We consider a directed graph 𝐺 = (𝑉 , 𝐸) of content items (𝑉 ) and
what-to-consume-next recommendations (𝐸), with 𝑛 = |𝑉 | nodes
and𝑚 = |𝐸 | edges. Since we can typically make a fixed number of
recommendations for a given content item, such recommendation

graphs are often 𝑑-out-regular, i.e., all nodes have 𝑑 = 𝑚/𝑛 out-
neighbors, but we do not restrict ourselves to this setting. Rather,
each node 𝑖 has an out-degree 𝛿+(𝑖) = |Γ+(𝑖) |, where Γ+(𝑖) is the
set of out-neighbors of 𝑖 , and a cost 𝑐𝑖 ∈ [0, 1], which quanti-
fies the harmfulness of content item 𝑖 , ranging from 0 (not harm-
ful at all) to 1 (maximally harmful). For convenience, we define
Δ+ = max{𝛿+(𝑖) | 𝑖 ∈ 𝑉 } and collect all costs into a vector
c ∈ [0, 1]𝑛 . We model user behavior as a random-walk process
on the recommendation graph 𝐺 . Each edge (𝑖, 𝑗) in the recom-
mendation graph is associated with a transition probability 𝑝𝑖 𝑗
such that

∑
𝑗∈Γ+(𝑖 ) 𝑝𝑖 𝑗 = 1 − 𝛼𝑖 , where 𝛼𝑖 is the absorption prob-

ability of a random walk at node 𝑖 (i.e., the probability that the
walk ends at 𝑖). Intuitively, one can interpret 𝛼𝑖 as the probability
that a user stops using the service after consuming content 𝑖 . For
simplicity, we assume 𝛼𝑖 = 𝛼 ∈ (0, 1] for all 𝑖 ∈ 𝑉 . Thus, we can
represent the random-walk process on 𝐺 by the transition matrix
P ∈ [0, 1 − 𝛼]𝑛×𝑛 , where

P[𝑖, 𝑗] =
{
𝑝𝑖 𝑗 if (𝑖, 𝑗) ∈ 𝐸 ,
0 otherwise .

(1)

110.5281/zenodo.7936816

This is an absorbing Markov chain, and the expected number of
visits from a node 𝑖 to a node 𝑗 before absorption is given by the
entry (𝑖, 𝑗) of the fundamental matrix F ∈ R𝑛×𝑛≥0 , defined as

F =

∞∑︁
𝑖=0

P𝑖 = (I − P)−1 , (2)

where I is the 𝑛 × 𝑛-dimensional identity matrix, and the series
converges since ∥P∥∞ = max𝑖

∑𝑛
𝑗=0 P[𝑖, 𝑗] = 1 − 𝛼 < 1. Denoting

the 𝑖-th unit vector as e𝑖 , observe that the row vector e𝑇
𝑖
F gives the

expected number of visits, before absorption, from 𝑖 to any node,
and the column vector Fe𝑖 gives the expected number of visits from
any node to 𝑖 . Hence, e𝑇

𝑖
Fc =

∑
𝑗∈𝑉 F[𝑖, 𝑗]c𝑗 gives the expected

exposure to harmful content of users starting their random walk at
node 𝑖 , referred to as the exposure of 𝑖 . The expected total exposure
to harm in the graph𝐺 , then, is given by the non-negative function

𝑓 (𝐺) = 1𝑇 Fc , (3)
where 1 is the vector with each entry equal to 1.

We would like tominimize the exposure function given in Eq. (3)
by making 𝑟 edits to the graph 𝐺 , i.e., we seek an effective post-
processing strategy for harm reduction. In line with our motivating
application, we restrict edits to edge rewirings denoted as (𝑖, 𝑗, 𝑘),
in which we replace an edge (𝑖, 𝑗) ∈ 𝐸 by an edge (𝑖, 𝑘) ∉ 𝐸 with
𝑖 ≠ 𝑘 , setting 𝑝𝑖𝑘 = 𝑝𝑖 𝑗 (other edits are discussed in Appendix B).
Seeking edge rewirings to minimize the expected total exposure
yields the following problem definition.
Problem 1 (𝑟 -rewiring exposure minimization [REM]). Given a

graph 𝐺 , its random-walk transition matrix P, a node cost vector c,
and a budget 𝑟 , minimize 𝑓 (𝐺𝑟 ), where 𝐺𝑟 is 𝐺 after 𝑟 rewirings.

Equivalently, we can maximize the reduction in the expected
total exposure to harmful content,

𝑓Δ (𝐺,𝐺𝑟 ) = 𝑓 (𝐺) − 𝑓 (𝐺𝑟 ) . (4)
Note that while any set of rewirings minimizing 𝑓 (𝐺𝑟 ) also maxi-
mizes 𝑓Δ (𝐺,𝐺𝑟 ), the approximabilities of 𝑓 and 𝑓Δ can differ widely.

As Problem 1 does not impose any constraints on the rewiring
operations, the optimal solution might contain rewirings (𝑖, 𝑗, 𝑘)
such that node 𝑘 is unrelated to 𝑖 . To guarantee high-quality recom-
mendations, we need additional relevance information, which we
assume to be given as a relevance matrix R ∈ R𝑛×𝑛≥0 , where R[𝑖, 𝑗]
denotes the relevance of node 𝑗 in the context of node 𝑖 . Given such
relevance information, and assuming that the out-neighbors of a
node 𝑖 are ordered as r𝑖 ∈ 𝑉 𝛿+(𝑖 ) , we can define a relevance func-
tion \ with range [0, 1] to judge the quality of the recommendation
sequence at node 𝑖 , depending on the relevance and ordering of rec-
ommended nodes, and demand that any rewiring retain \ (r𝑖 ) ≥ 𝑞
for all 𝑖 ∈ 𝑉 and some quality threshold 𝑞 ∈ [0, 1]. One potential
choice for \ is the normalized discounted cumulative gain (nDCG),
a popular ranking quality measure, which we use in our exper-
iments and define in Appendix D.1. Introducing \ allows us to
consider a variant of REM with relevance constraints.
Problem 2 (𝑞-relevant 𝑟 -rewiring exposure minimization [QREM]).
Given a graph 𝐺 , its random-walk transition matrix P, a node cost
vector c, a budget 𝑟 , a relevance matrix R, a relevance function \ ,

and a quality threshold 𝑞, minimize 𝑓 (𝐺𝑟 ) under the condition that

\ (r𝑖 ) ≥ 𝑞 for all 𝑖 ∈ 𝑉 .
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For 𝑞 = 0, QREM is equivalent to REM. Collecting our notation
in Appendix Table 3, we now seek to address both problems.

3 THEORY

To start with, we establish some theoretical properties of our prob-
lems, the functions 𝑓 and 𝑓Δ, and potential solution approaches.

Hardness. We begin by proving that REM (and hence, alsoQREM)
is an NP-hard problem.

Theorem 1 (NP-Hardness of REM). The 𝑟 -rewiring exposure

minimization problem is NP-hard, even on 3-out-regular input graphs
with binary costs c ∈ {0, 1}𝑛 .

Proof. We obtain this result by reduction from minimum vertex
cover for cubic, i.e., 3-regular graphs (MVC-3), which is known to be
NP-hard [16]. A full, illustrated proof is given in Appendix A.1. □

Next, we further show that REM is hard to approximate under
the Unique Games Conjecture (UGC) [24], an influential conjecture
in hardness-of-approximation theory.

Theorem 2. Assuming the UGC, REM is hard to approximate to

within an additive error of both Θ(𝑛) and Θ(𝑟 ).

Proof. We obtain this result via the hardness of approximation
of MVC under the UGC. A full proof is given in Appendix A.2. □

Both Theorem 1 and Theorem 2 extend from 𝑓 to 𝑓Δ (Eq. (9)).

Approximability. Although we cannot approximate 𝑓 directly,
we can approximate 𝑓Δ with guarantees under mild assumptions,
detailed below. To formulate this result and its assumptions, we
start by calling a node safe if e𝑇

𝑖
Fc = 0, i.e., no node 𝑗 with 𝑐 𝑗 > 0

is reachable from 𝑖 , and unsafe otherwise. Note that the existence
of a safe node in a graph 𝐺 containing at least one unsafe node
(i.e., 𝑐𝑖 > 0 for some 𝑖 ∈ 𝑉 ) implies that𝐺 is not strongly connected.
The node safety property partitions 𝑉 into two sets of safe resp.
unsafe nodes, 𝑆 = {𝑖 ∈ 𝑉 | e𝑇

𝑖
Fc = 0} and 𝑈 = {𝑖 ∈ 𝑉 | e𝑇

𝑖
Fc > 0},

and 𝐸 into four sets, 𝐸𝑆𝑆 , 𝐸𝑆𝑈 , 𝐸𝑈𝑆 , and 𝐸𝑈𝑈 , where 𝐸𝐴𝐵 = {(𝑖, 𝑗) ∈
𝐸 | 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵}, and 𝐸𝑆𝑈 = ∅ by construction. Further, observe
that if 𝑆 ≠ ∅, then 𝑓 is minimized, and 𝑓Δ is maximized, once
𝐸𝑈𝑈 = ∅. This allows us to state the following result.

Lemma 1. If there exists a safe node in 𝐺 and we allow multi-edges,

maximizing 𝑓Δ is equivalent to maximizing a monotone, submodular

set function over 𝐸𝑈𝑈 .

Proof. Leveraging the terminology introduced above, we ob-
tain this result by applying the definitions of monotonicity and
submodularity. A full proof is given in Appendix A.3. □

Our motivating application, however, ideally prevents multi-
edges. To get a similar result without multi-edges, denote by Λ+ =

max{𝛿+(𝑖) | 𝑖 ∈ 𝑈 } the maximum out-degree of any unsafe node
in 𝐺 , and assume that |𝑆 | ≥ Λ+. Now, we obtain the following.

Theorem 3. If |𝑆 | ≥ Λ+
, then maximizing 𝑓Δ is equivalent to

maximizing a monotone and submodular set function over 𝐸𝑈𝑈 .

Proof. Following the reasoning provided for Lemma 1, with the
modification that we need |𝑆 | ≥ Λ+ to ensure that safe targets are
always available for rewiring without creating multi-edges. □

Observe that the larger the number of zero-cost nodes, the
smaller the number of edges, or the more homophilous the linking,
the higher the probability that safe nodes exist in a graph. Notably,
the precondition of Theorem 3 holds for the graph constructed to
prove Theorem 1 (Appendix A.1, Fig. 10) as well as for most of the
real-world graphs used in our experiments (Appendix E, Fig. 17).
However, Theorem 3 only applies to the maximization version of
REM (Eq. (9)) and not to the maximization version of QREM, since
in the quality-constrained setting, some safe nodes might not be
available as rewiring targets for edges emanating from unsafe nodes.
Still, for the maximization version of REM, due to Theorem 3, us-
ing a greedy approach to optimize 𝑓Δ provides an approximation
guarantee with respect to the optimal solution [34].

Corollary 1. If the precondition of Theorem 3 holds, then the greedy

algorithm, which always picks the rewiring (𝑖, 𝑗, 𝑘) that maximizes

𝑓Δ (𝐺,𝐺1) for the current 𝐺 , yields a (1 − 1/𝑒)-approximation for 𝑓Δ.

Note that Corollary 1 only applies to themaximization version of
REM, not to itsminimization version, as supermodularminimization
is less well-behaved than submodular maximization [22, 52].

Greedy Rewiring. Given the quality assurance of a greedy ap-
proach at least for REM, we seek to design an efficient greedy
algorithm to tackle both REM and QREM. To this end, we analyze
the mechanics of individual rewirings to understand how we can
identify and perform greedily optimal rewirings efficiently. As each
greedy step constitutes a rank-one update of the transition matrix P,
we can express the new transition matrix P′ as

P′ = P + u(−v)𝑇 , (5)
where u = 𝑝𝑖 𝑗e𝑖 and v = e𝑗 − e𝑘 , and we omit the dependence on 𝑖 ,
𝑗 , and 𝑘 for notational conciseness. This corresponds to a rank-one
update of F, such that we obtain the new fundamental matrix F′ as

F′ = (I − (P + u(−v)𝑇 ))−1 = (I − P + uv𝑇 )−1 . (6)
The rank-one update allows us to use the Sherman-Morrison

formula [43] to compute the updated fundamental matrix as

F′ = F − Fuv𝑇 F
1 + v𝑇 Fu

. (7)

The mechanics of an individual edge rewiring are summarized
in Table 1. They will help us perform greedy updates efficiently.

To also identify greedily optimal rewirings efficiently, leveraging
Eq. (7), we assess the impact of a rewiring on the value of our objec-
tive function, which will help us prune weak rewiring candidates.
For a rewiring (𝑖, 𝑗, 𝑘) represented by u and v, the value of the
exposure function 𝑓 for the new graph 𝐺 ′ is

𝑓 (𝐺 ′) = 1𝑇 F′c = 1𝑇
(
F − Fuv𝑇 F

1 + v𝑇 Fu

)
c = 1𝑇 Fc − 1𝑇

(
Fuv𝑇 F
1 + v𝑇 Fu

)
c

= 𝑓 (𝐺) − (1𝑇 Fu) (v𝑇 Fc)
1 + v𝑇 Fu

= 𝑓 (𝐺) − 𝜎𝜏

𝜌
= 𝑓 (𝐺) − Δ , (8)

with 𝜎 = 1𝑇 Fu, 𝜏 = v𝑇 Fc, 𝜌 = 1 + v𝑇 Fu, and

Δ = 𝑓Δ (𝐺,𝐺 ′) = 𝜎𝜏

𝜌
=

(1𝑇 Fu) (v𝑇 Fc)
1 + v𝑇 Fu

. (9)

The interpretation of the above quantities is as follows: 𝜎 is the
𝑝𝑖 𝑗 -scaled 𝑖-th column sum of F (expected number of visits to 𝑖), 𝜏 is
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Table 1: Summary of an edge rewiring (𝑖, 𝑗, 𝑘) in a graph

𝐺 = (𝑉 , 𝐸) with random-walk transition matrix P and funda-

mental matrix F = (I − P)−1.

𝐺 ′ = (𝑉 , 𝐸′), for 𝐸′ = (𝐸 \ {(𝑖, 𝑗)}) ∪ {(𝑖, 𝑘)}, (𝑖, 𝑗) ∈ 𝐸, (𝑖, 𝑘) ∉ 𝐸

P′ [𝑥,𝑦] =


0 if 𝑥 = 𝑖 and 𝑦 = 𝑗 ,

P[𝑖, 𝑗] if 𝑥 = 𝑖 and 𝑦 = 𝑘 ,

P[𝑥,𝑦] otherwise .

F′ = F − Fuv𝑇 F
1+v𝑇 Fu , with u = 𝑝𝑖 𝑗e𝑖 , v = e𝑗 − e𝑘 , cf. Eq. (7)

the cost-scaled sum of the differences between the 𝑗-th row and the
𝑘-th row of F (expected number of visits from 𝑗 resp. 𝑘), and 𝜌 is
a normalization factor scaling the update by 1 plus the 𝑝𝑖 𝑗 -scaled
difference in the expected number of visits from 𝑗 to 𝑖 and from 𝑘

to 𝑖 , ensuring that F′1 = F1. Scrutinizing Eq. (9), we observe:

Lemma 2. For a rewiring (𝑖, 𝑗, 𝑘) represented by u and v, (i) 𝜌 is

always positive, (ii) 𝜎 is always positive, and (iii) 𝜏 can have any sign.

Proof. We obtain this result by analyzing the definitions of 𝜌 ,
𝜎 , and 𝜏 . The full proof is given in Appendix A.4. □

To express when we can safely prune rewiring candidates, we
call a rewiring (𝑖, 𝑗, 𝑘) greedily permissible if Δ > 0, i.e., if it reduces
our objective, and greedily optimal if it maximizes Δ. For QREM,
we further call a rewiring (𝑖, 𝑗, 𝑘) greedily 𝑞-permissible if it ensures
that \ (r𝑖 ) ≥ 𝑞 under the given relevance function \ . With this
terminology, we can confirm our intuition about rewirings as a
corollary of Eqs. (8) and (9), combined with Lemma 2.

Corollary 2. A rewiring (𝑖, 𝑗, 𝑘) is greedily permissible if and only

if 𝜏 > 0, i.e., if 𝑗 is more exposed to harm than 𝑘 .

For the greedily optimal rewiring, that is, to maximize Δ, we
would like 𝜎𝜏 to be as large as possible, and 𝜌 to be as small as
possible. Inspecting Eq. (9), we find that to accomplish this objective,
it helps if (in expectation) 𝑖 is visited more often (from 𝜎), 𝑗 is more
exposed and 𝑘 is less exposed to harm (from 𝜏), and 𝑖 is harder to
reach from 𝑗 and easier to reach from 𝑘 (from 𝜌).

In the next section, we leverage these insights to guide our effi-
cient implementation of the greedy method for REM and QREM.

4 ALGORITHM

In the previous section, we identified useful structure in the funda-
mental matrix F, the exposure function 𝑓 , and our maximization
objective 𝑓Δ. Now, we leverage this structure to design an efficient
greedy algorithm for REM and QREM. We develop this algorithm in
three steps, focusing on REM in the first two steps, and integrating
the capability to handle QREM in the third step.

Naïve implementation. Given a graph 𝐺 , its transition matrix P,
a cost vector c, and a budget 𝑟 , a naïve greedy implementation for
REM computes the fundamental matrix and gradually fills up an
initially empty set of rewirings by performing 𝑟 greedy steps before
returning the selected rewirings (Appendix C, Algorithm 3). In each
greedy step, we identify the triple (𝑖, 𝑗, 𝑘) that maximizes Eq. (9) by
going through all edges (𝑖, 𝑗) ∈ 𝐸 and computing Δ for rewirings
to all potential targets 𝑘 . We then update 𝐸, P, and F to reflect a

rewiring replacing (𝑖, 𝑗) by (𝑖, 𝑘) (cf. Table 1), and add the triple
(𝑖, 𝑗, 𝑘) to our set of rewirings. Computing the fundamental matrix
naïvely takes time O(𝑛3), computing Δ takes time O(𝑛) and is done
O(𝑚𝑛) times, and updating F takes time O(𝑛2). Hence, we arrive
at a time complexity of O(𝑟𝑛2 (𝑛 +𝑚)). But we can do better.

Forgoing matrix inversion. When identifying the greedy rewiring,
we never need access to F directly. Rather, in Eq. (9), we work
with 1𝑇 F, corresponding to the column sums of F, and with Fc,
corresponding to the cost-scaled row sums of F.We can approximate
both via power iteration:

1𝑇 F = 1𝑇
∞∑︁
𝑖=0

P𝑖 = 1𝑇 + 1𝑇 P + (1𝑇 P)P + ((1𝑇 P)P)P + . . . (10)

Fc =

( ∞∑︁
𝑖=0

P𝑖
)
c = c + Pc + P(Pc) + P(P(Pc)) + . . . (11)

For each term in these sums, we need to perform O(𝑚) multiplica-
tions, such that we can compute 1𝑇 F and Fc in time O(^𝑚), where^
is the number of power iterations. This allows us to compute 1𝑇 Fu
for all (𝑖, 𝑗) ∈ 𝐸 in time O(𝑚) and v𝑇 Fc for all 𝑗 ≠ 𝑘 ∈ 𝑉 in time
O(𝑛2). To compute Δ in time O(1), as F is now unknown, we need
to compute Fu for all (𝑖, 𝑗) ∈ 𝐸 via power iteration, which is doable
in time O(^𝑛2). This changes the running time from O(𝑟𝑛2 (𝑛+𝑚))
to O(𝑟^𝑛(𝑛 +𝑚)) (Appendix C, Algorithm 4). But we can do better.

Reducing the number of candidate rewirings. Observe that to
further improve the time complexity of our algorithm, we need
to reduce the number of rewiring candidates considered. To this
end, note that the quantity 𝜏 is maximized for the nodes 𝑗 and 𝑘
with the largest difference in cost-scaled row sums. How exactly
we leverage this fact depends on our problem.

If we solve REM, instead of considering all possible rewiring tar-
gets, we focus on the Δ+ + 2 candidate targets 𝐾 with the smallest
exposure, which we can identify in time O(𝑛) without sorting Fc.
This ensures that for each (𝑖, 𝑗) ∈ 𝐸, there is at least one 𝑘 ∈ 𝐾 such
that 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 , which ascertains that despite restricting to
𝐾 , for each 𝑖 ∈ 𝑉 , we still consider the rewiring (𝑖, 𝑗, 𝑘) maximiz-
ing 𝜏 . With this modification, we reduce the number of candidate
targets from O(𝑛) to O(Δ+) and the time to compute all relevant
v𝑇 Fc values from O(𝑛2) to O(Δ+𝑛). To obtain a subquadratic com-
plexity, however, we still need to eliminate the computation of Fu
for all (𝑖, 𝑗) ∈ 𝐸. This also means that we can no longer afford
to compute 𝜌 for each of the now O(𝑚Δ+) rewiring candidates
under consideration, as this can only be done in constant time if
Fu is already precomputed for the relevant edge (𝑖, 𝑗). However, 𝜌
is driven by the difference between two entries of F, whereas 𝜏 is
driven by the difference between two row sums of F, and 𝜎 is driven
by a single column sum of F. Thus, although 𝜎𝜏 > 𝜎𝜏 ′ does not
generally imply 𝜎𝜏/𝜌 > 𝜎𝜏 ′/𝜌 ′, the variation in 𝜎𝜏 is typically much
larger than that in 𝜌 , and large 𝜎𝜏 values mostly dominate small
values of 𝜌 . Consequently, as demonstrated in Appendix F.3, the
correlation between Δ̂ = Δ𝜌 = 𝜎𝜏 and Δ = 𝜎𝜏/𝜌 is almost perfect.
Thus, instead of Δ, we opt to compute Δ̂ as a heuristic, and we
further hedge against small fluctuations without increasing the
time complexity of our algorithm by computing Δ for the rewirings
associated with the O(1) largest values of Δ̂, rather than selecting

326



Reducing Exposure to Harmful Content via Graph Rewiring KDD ’23, August 6–10, 2023, Long Beach, CA, USA

the rewiring with the best Δ̂ value directly. Using Δ̂ instead of Δ,
we obtain a running time of O(𝑟^Δ+ (𝑛 +𝑚)) when solving REM.

When solving QREM, we are given a relevance matrix R, a rele-
vance function \ , and a relevance threshold 𝑞 as additional inputs.
Instead of considering the Δ+ + 2 nodes 𝐾 with the smallest expo-
sure as candidate targets for all edges, for each edge (𝑖, 𝑗), we first
identify the set of rewiring candidates (𝑖, 𝑗, 𝑘) such that (𝑖, 𝑗, 𝑘) is
𝑞-permissible, i.e., \ (r𝑖 ) ≥ 𝑞 after replacing (𝑖, 𝑗) by (𝑖, 𝑘), and then
select the node 𝑘𝑖 𝑗 with the smallest exposure to construct our most
promising rewiring candidate (𝑖, 𝑗, 𝑘𝑖 𝑗 ) for edge (𝑖, 𝑗). This ensures
that we can still identify the rewiring (𝑖, 𝑗, 𝑘) that maximizes 𝜎𝜏 and
satisfies our quality constraints, and it leaves us to consider O(𝑚)
rewiring candidates. Again using Δ̂ instead of Δ, we can now solve
QREM in time O(𝑟^ℓ𝑔𝑚 + ℎ), where ℓ is the maximum number of
targets 𝑘 such that (𝑖, 𝑗, 𝑘) is 𝑞-permissible, 𝑔 is the complexity of
evaluating \ , and ℎ is the complexity of determining the initial set
𝑄 of 𝑞-permissible rewirings.

Thus, we have arrived at our efficient greedy algorithm, called
Gamine (Greedy approximate minimization of exposure), whose
pseudocode we state as Algorithms 1 and 2 in Appendix C. Gamine
solves REM in time O(𝑟^Δ+ (𝑛 +𝑚)) and QREM in time O(𝑟^ℓ𝑔𝑚 +
ℎ). In realistic recommendation settings, the graph 𝐺 is 𝑑-out-
regular for 𝑑 ∈ O(1), such that Δ+ ∈ O(1) and 𝑚 = 𝑑𝑛 ∈ O(𝑛).
Further, for QREM, we can expect that \ is evaluable in time O(1),
and that only the O(1) nodes most relevant for 𝑖 will be considered
as potential rewiring targets of any edge (𝑖, 𝑗), such that ℓ ∈ O(1)
and ℎ ∈ O(𝑚) = O(𝑛). As we can also safely work with a number
of power iterations ^ ∈ O(1) (Appendix D.3), in realistic settings,
Gamine solves both REM and QREM in time O(𝑟𝑛), which, for
𝑟 ∈ O(1), is linear in the order of the input graph 𝐺 .

5 RELATEDWORK

Our work methodically relates to research on graph edits with
distinct goals, such as improving robustness, reducing distances, or
increasing centralities [5, 32, 37], and research leveraging random
walks to rank nodes [30, 35, 48] or recommend links [38, 51]. The
agenda of our work, however, aligns most closely with the literature
studying harm reduction, bias mitigation, and conflict prevention
in graphs. Here, the large body of research on shaping opinions
or mitigating negative phenomena in graphs of user interactions

(especially on social media) [1, 3, 8, 13–15, 33, 46, 47, 53, 54] pursues
goals similar to ours in graphs capturing different digital contexts.

As our research is motivated by recent work demonstrating how
recommendations on digital media platforms like YouTube can fuel
radicalization [29, 41], the comparatively scarce literature on harm
reduction in graphs of content items is evenmore closely related. Our
contribution is inspired by Fabbri et al. [10], who study how edge
rewiring can reduce radicalization pathways in recommendation
graphs. Fabbri et al. [10] encode harmfulness in binary node labels,
model benign nodes as absorbing states, and aim to minimize the
maximum segregation of any node, defined as the largest expected
length of a random walk starting at a harmful node before it visits a
benign node. In contrast, we encode harmfulness in more nuanced,
real-valued node attributes, use an absorbing Markov chain model
that more naturally reflects user behavior, and aim to minimize
the expected total exposure to harm in random walks starting at

any node. Thus, our work not only eliminates several limitations
of the work by Fabbri et al. [10], but it also provides a different
perspective on harm mitigation in recommendation graphs.

While Fabbri et al. [10], like us, consider recommendation graphs,
Haddadan et al. [18] focus on polarization mitigation via edge inser-
tions. Their setting was recently reconsidered by Adriaens et al. [2],
who tackle the minimization objective directly instead of using
the maximization objective as a proxy, providing approximation
bounds as well as speed-ups for the standard greedy method. Both
Fabbri et al. [10] and the works on edge insertion employ with
random-walk objectives that—unlike our exposure function—do
not depend on random walks starting from all nodes. In our ex-
periments, we compare with the algorithm introduced by Fabbri
et al. [10], which we call MMS. We refrain from comparing with
edge insertion strategies because they consider a different graph
edit operation and are already outperformed by MMS.

6 EXPERIMENTAL EVALUATION

In our experiments, we seek to
(1) establish the impact of modeling choices and input parame-

ters on the performance of Gamine;
(2) demonstrate the effectiveness of Gamine in reducing expo-

sure to harm compared to existing methods and baselines;
(3) ensure that Gamine is scalable in theory and practice;
(4) understand what features make reducing exposure to harm

easier resp. harder on different datasets; and
(5) derive general guidelines for reducing exposure to harm in

recommendation graphs under budget constraints.
Further experimental results are provided in Appendix F.

6.1 Setup

6.1.1 Datasets. To achieve our experimental goals, we work with
both synthetic and real-world data, as summarized in Table 2. Below,
we briefly introduce these datasets. Further details, including on
data generation and preprocessing, are provided in Appendix E.

Synthetic data. As our synthetic data, we generate a total of 288
synthetic graphs of four different sizes using two different edge
placement models and various parametrizations. The first model,
SU, chooses out-edges uniformly at random, similar to a directed
Erdős-Rényi model [9]. In contrast, the second model, SH, chooses
edges preferentially to favor small distances between the costs of the
source and the target node, implementing the concept of homophily

[31]. We use these graphs primarily to analyze the behavior of our
objective function, and to understand the impact of using Δ̂ instead
of Δ to select the greedily optimal rewiring (Appendix F.3).

Real-world data. We work with real-world data from two do-
mains, video recommendations (YT) and news feeds (NF). For our
video application, we use the YouTube data by Ribeiro et al. [29, 41],
which contains identifiers and “Up Next”-recommendations for
videos from selected channels categorized to reflect different de-
grees and directions of radicalization. For our news application, we
use subsets of the NELA-GT-2021 dataset [17], which contains 1.8
million news articles published in 2021 from 367 outlets, along with
veracity labels from Media Bias/Fact Check. Prior versions of both
datasets are used in the experiments reported by Fabbri et al. [10].
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Table 2: Overview of the datasets used in our experiments.

For each graph 𝐺 , we report the regular out-degree 𝑑 , the

number of nodes 𝑛, and the number of edges𝑚, as well as the

range of the expected exposure 𝑓 (𝐺 )/𝑛 under our various cost

functions, edge wirings, and edge transition probabilities.

Datasets with identical statistics are pooled in the same row.

Dataset 𝑑 𝑛 𝑚 𝑓 (𝐺 )/𝑛
SU, SH
(2 ·4 ·36 graphs)

5 10𝑖 5×10𝑖 [1.291, 15.231]for 𝑖 ∈ {2, 3, 4, 5}

YT-100k
(3 · 6 graphs)

5
40 415

202 075 [0.900, 8.475]
10 404 150 [0.938, 8.701]
20 808 300 [0.989, 9.444]

YT-10k
(3 · 6 graphs)

5
150 572

752 860 [0.806, 5.785]
10 1 505 720 [0.883, 7.576]
20 3 011 440 [0.949, 8.987]

NF-Jan06
(3 · 6 graphs)

5
11 931

59 655 [4.217, 9.533]
10 119 310 [4.248, 9.567]
20 238 620 [4.217, 9.533]

NF-Cov19
(3 · 6 graphs)

5
57 447

287 235 [4.609, 11.068]
10 574 470 [4.392, 10.769]
20 1 148 940 [4.329, 10.741]

NF-All
(3 · 6 graphs)

5
93 455

467 275 [5.565, 11.896]
10 934 550 [5.315, 11.660]
20 1 869 100 [5.138, 11.517]

Parametrizations. To comprehensively assess the effect of mod-
eling assumptions regarding the input graph and its associated
random-walk process on our measure of exposure as well as on the
performance of Gamine and its competitors, we experiment with a
variety of parametrizations expressing these assumptions. For all
datasets, we distinguish three random-walk absorption probabilities
𝛼 ∈ {0.05, 0.1, 0.2} and two probability shapes 𝜒 ∈ {U, S} over the
out-edges of each node (Uniform and Skewed). For our synthetic
datasets, we further experiment with three fractions of latently
harmful nodes 𝛽 ∈ {0.3, 0.5, 0.7} and two cost functions 𝑐 ∈ {𝑐𝐵, 𝑐𝑅},
one binary and one real-valued. Lastly, for our real-world datasets,
we distinguish three regular out-degrees 𝑑 ∈ {5, 10, 20}, five quality
thresholds 𝑞 ∈ {0.0, 0.5, 0.9, 0.95, 0.99} and four cost functions, two
binary (𝑐𝐵1, 𝑐𝐵2) and two real-valued (𝑐𝑅1, 𝑐𝑅2), based on labels
provided with the original datasets, as detailed in Appendix E.2.2.

6.1.2 Algorithms. We compare Gamine, our algorithm for REM
and QREM, with four baselines (BL1-BL4) and the algorithm by Fab-
bri et al. [10] for minimizing the maximum segregation, which we
callMMS. In all QREM experiments, we use the O(1)-computable
normalized discounted cumulative gain (nDCG), defined in Ap-
pendix D.1 and also used byMMS, as a relevance function \ , and
consider the 100 most relevant nodes as potential rewiring targets.

As MMS can only handle binary costs, we transform nonbinary
costs 𝑐 into binary costs 𝑐′ by thresholding to ensure 𝑐𝑖 ≥ ` ⇔
𝑐′
𝑖
= 1 for some rounding threshold ` ∈ (0, 1] (cf. Appendix D.2).

SinceMMS requires access to relevance information, we restrict our
comparisons with MMS to data where this information is available.

Our baselines BL1-BL4 are ablations of Gamine, such that out-
performing them shows how each component of our approach is
beneficial. We order the baselines by the competition we expect
from them, from no competition at all (BL1) to strong competition
(BL4). Intuitively, BL1 does not consider our objective at all, BL2
is a heuristic focusing on the 𝜏 component of our objective, BL3
is a heuristic focusing on the 𝜎 component of our objective, and
BL4 is a heuristic eliminating the iterative element of our approach.
BL1–BL3 each run in 𝑟 rounds, while BL4 runs in one round. In each
round, BL1 randomly selects a permissible rewiring via rejection
sampling. BL2 selects the rewiring (𝑖, 𝑗, 𝑘) with the node 𝑗 maxi-
mizing e𝑇

𝑗
Fc as its old target, the node 𝑖 with 𝑗 ∈ Γ+(𝑖) maximizing

1𝑇 Fe𝑖 as its source, and the available node 𝑘 minimizing e𝑇
𝑘
Fc as its

new target. BL3 selects the rewiring (𝑖, 𝑗, 𝑘) with the node 𝑖 maxi-
mizing 1𝑇 Fe𝑖 as its source, the node 𝑗 with 𝑗 ∈ Γ+(𝑖) maximizing
e𝑇
𝑗
Fc as its old target, and the available node 𝑘 minimizing e𝑇

𝑘
Fc as

its new target. BL4 selects the 𝑟 rewirings with the largest initial
values of Δ̂, while ensuring each edge is rewired at most once.

6.1.3 Implementation and reproducibility. All algorithms, includ-
ing Gamine, the baselines, andMMS, are implemented in Python
3.10. We run our experiments on a 2.9 GHz 6-Core Intel Core i9 with
32 GB RAM and report wall-clock time. All code, datasets, and re-
sults are publicly available,2 and we provide further reproducibility
information in Appendix D.

6.2 Results

6.2.1 Impact of modeling choices. To understand the impact of a
particular modeling choice on the performance of Gamine and its
competitors, we analyze groups of experimental settings that vary
only the parameter of interest while keeping the other parameters
constant, focusing on the YT-100k datasets. We primarily report the
evolution of the ratio 𝑓 (𝐺𝑟 )/𝑓 (𝐺 ) =

(
𝑓 (𝐺 )−𝑓Δ (𝐺,𝐺𝑟 )

)
/𝑓 (𝐺 ), which

indicates what fraction of the initial expected total exposure is left
after 𝑟 rewirings, and hence is comparable across REM instances
with different starting values. Overall, we observe that Gamine
robustly reduces the expected total exposure to harm, and that it
changes its behavior predictably under parameter variations. Due
to space constraints, we defer the results showing this for variations
in the regular out-degree𝑑 , the random-walk absorption probability
𝛼 , the probability shape 𝜒 , and the cost function 𝑐 to Appendix F.1.

Impact of quality threshold 𝑞. The higher the quality threshold
𝑞, the more constrained our rewiring options. Thus, under a given
budget 𝑟 , we expect Gamine to reduce our objective more strongly
for smaller 𝑞. As illustrated in Fig. 2, our experiments confirm
this intuition, and the effect is more pronounced if the out-edge
probability distribution is skewed. We further observe that Gamine
can guarantee 𝑞 = 0.5 with little performance impact, and it can
strongly reduce the exposure to harm even under a strict 𝑞 = 0.95:
With just 100 edge rewirings, it reduces the expected total exposure
to harm by 50%, while ensuring that its recommendations are at
most 5% less relevant than the original recommendations.

6.2.2 Performance comparisons. Having ensured that Gamine ro-
bustly and predictably reduces the total exposure across the entire
210.5281/zenodo.7936816
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spectrum of modeling choices, we now compare it with its competi-
tors. Overall, we find that Gamine offers more reliable performance
and achieves stronger harm reduction than its contenders.

Comparison with baselines BL1–BL4. First, we compare Gamine
with our four baselines, each representing a different ablation of
our algorithm. As depicted in Fig. 3, the general pattern we observe
matches our performance expectations (from weak performance of
BL1 to strong performance of BL4), but we are struck by the strong
performance of BL3 (selecting based on 𝜎), especially in contrast to
the weak performance of BL2 (selecting based on 𝜏). This suggests
that whereas the most exposed node does not necessarily have a
highly visited node as an in-neighbor, the most visited node tends
to have a highly exposed node as an out-neighbor. In other words,
for some highly prominent videos, the YouTube algorithm problem-
atically appears to recommend highly harm-inducing content to
watch next. Despite the competitive performance of BL3 and BL4,
Gamine consistently outperforms these baselines, too, and unlike
the baselines, it smoothly reduces the exposure function. This lends
additional support to our reliance on 𝜎𝜏 (rewiring a highly visited 𝑖
away from a highly exposed 𝑗 ) as an iteratively evaluated heuristic.

Comparison with MMS. Having established that all components
of Gamine are needed to achieve its performance, we now compare
our algorithm withMMS, the method proposed by Fabbri et al. [10].
To this end, we run both Gamine andMMS using their respective
objective functions, i.e., the expected total exposure to harm of
random walks starting at any node (total exposure, Gamine) and the
maximum expected number of random-walk steps from a harmful
node to a benign node (maximum segregation, MMS). Reporting
their performance under the objectives of both algorithms (as well
as the total segregation, which sums the segregation scores of all
harmful nodes) in Fig. 4, we find that under strict quality control
(𝑞 ∈ {0.9, 0.95, 0.99}), Gamine outperformsMMS on all objectives,
andMMS stops early as it can no longer reduce its objective function.
For 𝑞 = 0.5,MMS outperforms Gamine on the segregation-based
objectives, but Gamine still outperforms MMS on our exposure-
based objective, sometimes at twice the margin (Fig. 4g). Further,
while Gamine delivers consistent and predictable performance that
is strong on exposure-based and segregation-based objectives, we
observe much less consistency in the performance of MMS. For
example, it is counterintuitive thatMMS identifies 100 rewirings
on the smaller YT-100k data but stops early on the larger YT-10k
data. Moreover,MMS delivers the results shown in Fig. 4 under 𝑐𝐵1,
but it cannot decrease its objective at all on the same data under
𝑐𝐵2, which differs from 𝑐𝐵1 only in that it also assigns harm to anti-
feminist content (Appendix E, Table 7). We attribute this brittleness
to the reliance on the maximum-based segregation objective, which,
by design, is less robust than our sum-based exposure objective.

6.2.3 Empirical scalability of Gamine. In our previous experiments,
we found that Gamine robustly and reliably reduces the expected
total exposure to harm. Now, we seek to ascertain that its practical
scaling behavior matches our theoretical predictions, i.e., that under
realistic assumptions on the input, Gamine scales linearly in 𝑛 and
𝑚. We are also interested in comparing Gamine’s scalability to that
of MMS. To this end, we measure the time taken to compute a
single rewiring and report, in Fig. 5, the average over ten rewirings
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Figure 2: Performance of Gamine for quality thresholds 𝑞 ∈
{0.0, 0.5, 0.9, 0.95, 0.99} as measured by 𝑐𝐵2, run on YT-100k

with 𝑑 = 5 and 𝛼 = 0.05. Gamine can ensure 𝑞 = 0.5 with

little loss in performance, and it can reduce our objective

considerably even under a strict 𝑞 = 0.95.
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Figure 3: Performance of Gamine with 𝑞 = 0.0, compared

with the four baselines BL1, BL2, BL3, and BL4 under 𝑐𝐵1,
run on YT-100k with 𝛼 = 0.05 and 𝜒 = U. As BL4 is roundless,

we apply its rewirings in decreasing order of Δ to depict its

performance as a function of 𝑟 . Gamine outcompetes all

baselines, but BL3 and BL4 also show strong performance.

for each of our datasets. This corresponds to the time taken by
1-REM in Gamine and by 1-Rewiring inMMS, which drives the
overall scaling behavior of both algorithms. We find that Gamine
scales approximately linearly, whereas MMS scales approximately
quadratically (contrasting with the empirical time complexity of
O(𝑛 log𝑛) claimed in [10]). This is because our implementation
of MMS follows the original authors’, whose evaluation of the
segregation objective takes time O(𝑛) and is performed O(𝑚) times.
The speed of precomputations depends on the problem variant
(REM vs. QREM), and for QREM, also on the quality function \ . In
our experiments, precomputations add linear overhead for Gamine
and volatile overhead for MMS, as we report in Appendix F.2.

6.2.4 Data complexity. Given that Gamine strongly reduces the
expected total exposure to harmwith few rewirings on the YouTube
data, as evidenced in Figs. 2 to 4, one might be surprised to learn
that its performance seems much weaker on the NELA-GT data
(Appendix F.4): While it still reduces the expected total exposure
and outperformsMMS (which struggles to reduce its objective at all
on the NF data), the impact of individual rewirings is much smaller
than on the YouTube datasets, and the value of the quality threshold
𝑞 barely makes a difference. This motivates us to investigate how
data complexity impacts our ability to reduce the expected total
exposure to harm via edge rewiring: Could reducing exposure to
harm be intrinsically harder on NF data than on YT data? The
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(a) YT-100k, 𝑞 = 0.99
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(b) YT-10k, 𝑞 = 0.99
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(c) YT-100k, 𝑞 = 0.95
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(d) YT-10k, 𝑞 = 0.95
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(e) YT-100k, 𝑞 = 0.9
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(f) YT-10k, 𝑞 = 0.9
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(g) YT-100k, 𝑞 = 0.5
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(h) YT-10k, 𝑞 = 0.5
Figure 4: Performance of Gamine and MMS when measured

under 𝑐𝐵1 by the maximum segregation or the total segre-

gation from Fabbri et al. [10], or by the total exposure as

defined in Eq. (3), run on YT-100k (left) and YT-10k (right)

with 𝑑 = 5, 𝛼 = 0.05, and 𝜒 = U. For all but 𝑞 = 0.5, Gamine
outperforms MMS on all objectives, and MMS stops early

because it can no longer reduce the maximum segregation.

answer is yes. First, the in-degree distributions of the YT graphs are
an order of magnitude more skewed than those of the NF graphs
(Appendix E.2.3, Fig. 15). This is unsurprising given the different
origins of their edges (user interactions vs. cosine similarities), but
it creates opportunities for high-impact rewirings involving highly
prominent nodes in YT graphs (which Gamine seizes in practice,
see below). Second, as depicted in Fig. 6, harmful and benign nodes
are much more strongly interwoven in the NF data than in the YT
data. This means that harmful content is less siloed in theNF graphs,
but it also impedes strong reductions of the expected total exposure.
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Figure 5: Scaling of Gamine andMMS under 𝑐𝐵1 with 𝛼 = 0.05,
𝜒 = U, and 𝑞 = 0.0 (REM) resp. 0.99 (QREM). We report the

seconds 𝑠 to compute a single rewiring as a function of𝑚 = 𝑑𝑛

(MMS does not identify any rewirings on NF-Cov19 and NF-

All). Gamine scales more favorably than MMS.
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Figure 6: Fractions of edges running between news outlet

resp. video channel categories for real-world graphs with

𝑑 = 5, withmarginals indicating the fraction of sources (right)

resp. targets (top) in each category. News outlet categories are

denoted as triples (veracity score, conspiracy-pseudoscience

flag, questionable-source flag); for video channel categories,

{left, right}-center is abbreviated as {left, right}-c; and label

colors are coarse indicators of harm. In NF-All, harmful and

benign nodes are more interconnected than in YT-10k.

Third, as a result of the two previous properties, the initial node
exposures are much more concentrated in the NF graphs than in
the YT graphs, as illustrated in Fig. 7, with a median sometimes
twice as large as the median of the identically parametrized YT
graphs, and a much higher average exposure (cf. 𝑓 (𝐺 )/𝑛 in Table 2).
Finally, the relevance scores are much more skewed in the YT data
than in the NF data (Appendix E.2.3, Fig. 16). Hence, while we are
strongly constrained by 𝑞 on the YT data even when considering
only the 100 highest-ranked nodes as potential rewiring targets, we
are almost unconstrained in the same setting on the NF data, which
explains the comparative irrelevance of 𝑞 on the NF data. Thus, the
performance differences we observe between the NF data and the
YT data are due to intrinsic dataset properties: REM and QREM are
simply more complex on the news data than on the video data.

6.2.5 General guidelines. Finally, we would like to abstract the
findings from our experiments into general guidelines for reducing
exposure to harm in recommendation graphs, especially under
quality constraints. To this end, we analyze the metadata associated
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functions sharing a name are defined differently for the YT

and NF datasets (based on their semantics). The NF datasets

generally exhibit more concentrated exposure distributions

than the YT datasets and higher median exposures.
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Figure 8: Channel class of videos in rewirings (𝑖, 𝑗, 𝑘) on YT-

100k with 𝑑 = 5, 𝛼 = 0.05, and 𝜒 = U, computed using 𝑐𝑅1, for
different quality thresholds. Rewirings between classes are

color-scaled by their count, using blues if 𝑐𝑅1 (𝑘) < 𝑐𝑅1 ( 𝑗), reds
if 𝑐𝑅1 (𝑘) > 𝑐𝑅1 ( 𝑗), and grays otherwise. For 𝑞 = 0.0, we only

replace costly targets 𝑗 by less costly targets 𝑘 , as expected,

but for 𝑞 = 0.99, we see many rewirings with 𝑐𝑅1 (𝑘) ≥ 𝑐𝑅1 ( 𝑗).
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Figure 9: Mapping the nodes in each rewiring (𝑖, 𝑗, 𝑘) to their

costs (𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 ), we report the fraction of rewirings in each

cost class under 𝑐𝐵1 and 𝑞 ∈ {0.0, 0.5, 0.9, 0.95, 0.99}, for YT

graphs with 𝑑 = 5, 𝛼 = 0.05, and 𝜒 = U. While most intuitively

suboptimal classes occur rarely (e.g., 001, 011, 101), under

quality constraints, we often rewire among harmful nodes.

with our rewirings. In particular, for each set of rewirings (𝑖, 𝑗, 𝑘)
obtained in our experiments, we are interested in the channel resp.
news outlet classes involved, as well as in the distributions of cost
triples (𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 ) and in-degree tuples (𝛿−(𝑖), 𝛿−( 𝑗)). As exemplified
in Fig. 8, while we consistently rewire edges from harmful to benign

targets in the quality-unconstrained setting (𝑞 = 0.0), under strict
quality control (𝑞 = 0.99), we frequently see rewirings from harmful
to equally or more harmful targets. More generally, as illustrated in
Fig. 9, the larger the threshold𝑞, the more we rewire among harmful,
resp. benign, nodes (𝑐𝑖 = 𝑐 𝑗 = 𝑐𝑘 = 1, resp. 0)—which MMS does
not even allow. Furthermore, the edges we rewire typically connect
nodes with large in-degrees (Appendix F.5, Fig. 28). We conclude
that a simplified strategy for reducing exposure to harm under
quality constraints is to identify edges that connect high-cost nodes
with large in-degrees, and rewire them to the node with the lowest
exposure among all nodes meeting the quality constraints.

7 DISCUSSION AND CONCLUSION

We studied the problem of reducing the exposure to harmful con-
tent in recommendation graphs by edge rewiring. Modeling this
exposure via absorbing random walks, we introduced QREM and
REM as formalizations of the problem with and without quality
constraints on recommendations. We proved that both problems are
NP-hard and NP-hard to approximate to within an additive error,
but that under mild assumptions, the greedy method provides a
(1−1/𝑒)-approximation for the REM problem. Hence, we introduced
Gamine, a greedy algorithm for REM and QREM running in linear
time under realistic assumptions on the input, and we confirmed its
effectiveness, robustness, and efficiency through extensive experi-
ments on synthetic data as well as on real-world data from video
recommendation and news feed applications.

Our work improves over the state of the art (MMS by Fabbri et al.
[10]) in terms of performance, and it eliminates several limitations
of prior work. While Fabbri et al. [10] model benign nodes as ab-
sorbing states and consider a brittlemax-objective that is minimized
even by highly harm-exposing recommendation graphs, we model
benign nodes as transient states and consider a robust sum-objective
that captures the overall consumption of harmful content by users
starting at any node in the graph. Whereas MMS can only handle
binary node labels, Gamine works with real-valued node attributes,
which permits a more nuanced encoding of harmfulness.

We see potential for future work in several directions. For exam-
ple, it would be interesting to adapt our objective to mitigate polar-
ization, i.e., the separation of content with opposing views, with
positions modeled as positive and negative node costs. Moreover,
we currently assume that all nodes are equally likely as starting
points of random walks, which is unrealistic in many applications.
Finally, we observe that harm reduction in recommendation graphs
has largely been studied in separation from harm reduction in other
graphs representing consumption phenomena, such as user inter-
action graphs. A framework for optimizing functions under budget
constraints that includes edge rewirings, insertions, and deletions
could unify these research lines and facilitate future progress.
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ETHICS STATEMENT

In this work, we introduceGamine, a method to reduce the exposure
to harm induced by recommendation algorithms on digital media
platforms via edge rewiring, i.e., replacing certain recommenda-
tions by others. While removing harm-inducing recommendations
constitutes a milder intervention than censoring content directly,
it still steers attention away from certain content to other content,
which, if pushed to the extreme, can have censorship-like effects.
Although in its intended usage, Gamine primarily counteracts the
tendency of recommendation algorithms to overexpose harmful
content as similar to other harmful content, when fed with a con-
trived cost function, it could also be used to discriminate against

content considered undesirable for problematic reasons (e.g., due
to political biases or stereotypes against minorities). However, as
the changes to recommendations suggested by Gamine could also
be made by amending recommendation algorithms directly, the
risk of intentional abuse is no greater than that inherent in the
recommendation algorithms themselves, and unintentional abuse
can be prevented by rigorous impact assessments and cost function
audits before and during deployment. Thus, we are confident that
overall, Gamine can contribute to the health of digital platforms.

APPENDIX

In addition to Table 3, included below, the written appendix to this
work contains the following sections:
A Omitted proofs
B Other graph edits
C Omitted pseudocode
D Reproducibility information
E Dataset information
F Further experiments
This appendix, along with the main paper, is available on arXiv
and also deposited at the following DOI: 10.5281/zenodo.8002980.
To facilitate reproducibility, all code, data, and results are made
available at the following DOI: 10.5281/zenodo.7936816.
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Table 3: Most important notation used in this work.

Symbol Definition Description

Graph Notation

𝐺 = (𝑉 , 𝐸 ) Graph
𝑛 = |𝑉 | Number of nodes
𝑚 = |𝐸 | Number of edges

𝛿−(𝑖 ) = | { 𝑗 | ( 𝑗, 𝑖 ) ∈ 𝐸} | In-degree of node 𝑖
Γ+(𝑖 ) = { 𝑗 | (𝑖, 𝑗 ) ∈ 𝐸} Set of out-neighbors of node 𝑖
𝛿+(𝑖 ) = |Γ+(𝑖 ) | Out-degree of node 𝑖

𝑑 Regular out-degree of an out-regular graph
Δ+ = max{𝛿+(𝑖 ) | 𝑖 ∈ 𝑉 } Maximum out-degree
𝑆 = {𝑖 ∈ 𝑉 | e𝑇

𝑖
Fc = 0} Set of safe nodes

𝑈 = {𝑖 ∈ 𝑉 | e𝑇
𝑖
Fc > 0} Set of unsafe nodes

Λ+ = max{𝛿+(𝑖 ) | 𝑖 ∈ 𝑈 } Maximum out-degree of an unsafe node

Matrix Notation

M[𝑖, 𝑗 ] Element in row 𝑖 , column 𝑗 ofM
M[𝑖, :] Row 𝑖 ofM
M[:, 𝑗 ] Column 𝑗 ofM

e𝑖 𝑖-th unit vector
1 All-ones vector
I Identity matrix

∥M∥∞ = max𝑖
∑𝑛

𝑗=0 M[𝑖, 𝑗 ] Infinity norm

Notation for REM and QREM

(𝑖, 𝑗, 𝑘 ) Rewiring replacing (𝑖, 𝑗 ) ∈ 𝐸 by (𝑖, 𝑘 ) ∉ 𝐸 with 𝑝𝑖𝑘 = 𝑝𝑖 𝑗 , cf. Table 1
𝑟 ∈ N Rewiring budget
𝛼 ∈ (0, 1] Random-walk absorption probability

𝑝𝑖 𝑗 ∈ (0, 1 − 𝛼 ] Probability of traversing (𝑖, 𝑗 ) from 𝑖

P ∈ [0, 1 − 𝛼 ]𝑛×𝑛 Random-walk transition matrix
F =

∑∞
𝑖=0 P

𝑖 = (I − P)−1 Fundamental matrix
𝑐 Cost function with range [0, 1]
𝑐𝑖 ∈ [0, 1] Cost associated with node 𝑖
c ∈ [0, 1]𝑛 Vector of node costs
^ ∈ N Number of power iterations
𝜒 ∈ {U, S} Shape of probability distribution over the out-edges of a node

Notation for QREM Only

R ∈ R𝑛×𝑛≥0 Relevance matrix
\ Relevance function with range [0, 1]
𝑞 ∈ [0, 1] Quality threshold
r𝑖 ∈ 𝑉 𝛿+(𝑖 ) Relevance-ordered targets of out-edges of 𝑖

idx𝑖 ( 𝑗 ) Relevance rank of node 𝑗 for node 𝑖
𝑇𝛿+(𝑖 ) = { 𝑗 | idx𝑖 ( 𝑗 ) ≤ 𝛿+(𝑖 ) } Set of the 𝛿+(𝑖 ) nodes most relevant for node 𝑖
DCG =

∑
𝑗 ∈Γ+(𝑖 )

R[𝑖,𝑗 ]
log2 (1+idx𝑖 ( 𝑗 ) )

Discounted Cumulative Gain
iDCG =

∑
𝑗 ∈𝑇𝛿+(𝑖 )

R[𝑖,𝑗 ]
log2 (1+idx𝑖 ( 𝑗 ) )

Ideal Discounted Cumulative Gain
nDCG =

DCG(𝑖 )
iDCG(𝑖 ) Normalized Discounted Cumulative Gain

Notation Related to the Exposure Function 𝑓 and its Analysis

𝑓 (𝐺 ) = 1𝑇 F𝑐 Exposure function (minimization objective)
𝑓Δ (𝐺,𝐺𝑟 ) = 𝑓 (𝐺 ) − 𝑓 (𝐺𝑟 ) Reduction-in-exposure function (equivalent maximization objective)
𝐺 ′ , P′ , F′ Graph𝐺 , transition matrix P, fundamental matrix F, as updated by rewiring (𝑖, 𝑗, 𝑘 ) , cf. Table 1

u = 𝑝𝑖 𝑗 e𝑖 Vector capturing the source 𝑖 of a rewiring (𝑖, 𝑗, 𝑘 ) and the traversal probability of (𝑖, 𝑗 )
v = e𝑗 − e𝑘 Vector capturing the old target 𝑗 and the new target 𝑘 of a rewiring (𝑖, 𝑗, 𝑘 )
𝜎 = 1𝑇 Fu 𝑝𝑖 𝑗 -scaled 𝑖-th column sum
𝜏 = v𝑇 Fc c-scaled sum of differences between the 𝑗-th row sum and the 𝑘-th row sum
𝜌 = 1 + v𝑇 Fu Normalization factor ensuring that F′1 = F1
Δ = 𝑓Δ (𝐺,𝐺 ′ ) = 𝜎𝜏/𝜌 Reduction of 𝑓 obtained by a single rewiring (𝑖, 𝑗, 𝑘 )
Δ̂ = Δ𝜌 = 𝜎𝜏 Heuristic for Δ
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