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Abstract
Objective  Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain 
network organization, with prior work suggesting differential connectivity alterations with respect to functional 
connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in 
long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic 
distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-
demographic and clinical phenotypes.

Methods  We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD 
diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, 
we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with 
resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-
based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized 
CD alterations relative to canonical networks and explored spatial associations with functional and microstructural 
cortical gradients as well as cytoarchitectonic cortical types.

Results  Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating 
shorter average connection length and thus suggesting reduced long-range connectivity but increased short-
range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions 
in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the 
sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual 
differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores.

Limitations  Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism 
poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, 
warranting future studies in more balanced cohorts.
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Background
Autism spectrum disorder (ASD) is a prevalent neurode-
velopmental condition [1, 2], commonly manifesting in 
atypical social cognition and communication, repetitive 
behaviors and interests, sometimes together with imbal-
ances in affective, sensory, and perceptual processing [2–
4]. Despite extensive research, pathomechanisms of ASD 
remain incompletely understood. Convergent evidence 
from molecular, histological, and neuroimaging work 
suggests atypical brain network organization, motivating 
continued efforts to identify substrates of autism connec-
topathy [5–10].

By interrogating brain structure and function in vivo, 
magnetic resonance imaging (MRI) lends itself as a win-
dow into the human connectome [11, 12]. Resting-state 
functional MRI (rs-fMRI) [13–16] can probe whole-brain 
intrinsic functional networks [17–20], both in terms of 
functionality and spatial layout [21–25]. Moreover, rs-
fMRI analysis has become common in the study of typi-
cal and atypical neurodevelopment [5, 25, 26], and in 
identifying substrates of symptom profiles in complex 
neurodevelopmental conditions such as ASD [25, 27–30]. 
Across the cortex, there is an important inter-regional 
variability of functional connection length: patterns of 
strong local connectivity are typical for unimodal areas, 
including the somatosensory and visual systems, where 
fast and efficient local signal transmission is necessary 
[23, 31]. Contrarily, long-range connections are increas-
ingly found in heteromodal association systems and 
paralimbic networks, systems that implicate more inte-
grative, cognitive-related processing [31, 32]. While lon-
ger connections are metabolically expensive to build and 
maintain [31, 33], they conversely provide gains in terms 
of processing flexibility and integrative capacity [23, 31, 
32].

Increasing evidence suggests widespread functional 
connectivity alterations in ASD, generally reporting 
mosaic patterns of under- and overconnectivity in ASD 
as compared to neurotypical controls (NT) [5, 34–37]. 
In individuals with ASD, short- and long-range connec-
tivity is likely affected differently [34, 38]. While under-
connectivity in ASD is reported at a global level and in 
transmodal systems, such as the default mode network 
(DMN) [5, 35, 39], there is some literature also empha-
sizing overconnectivity in the condition, primarily in uni-
modal cortical areas and subcortico-cortical networks [9, 
35, 40]. Of note, atypical connectivity has been shown 

to vary with inter-individual differences and potential 
ASD subtypes [29, 41, 42]. It has been hypothesized that 
ASD is associated with long-range underconnectivity, 
but short-range overconnectivity [38, 43, 44]. However, 
as studies report diverging results, existing evidence fails 
to provide a comprehensive and mechanistic explanation 
and spatial mapping of ASD-related connectivity altera-
tions. Associations between connectivity alterations, 
on the one hand, and phenotype variations as well as 
developmental mechanisms, on the other hand, remain 
to be established as well [45, 46]. Functional connectiv-
ity and distance length are spatially linked, as long- and 
short-range connections are neither randomly nor evenly 
distributed across the cortex, but characteristic connec-
tion length of a cortical region mirrors its position in 
the putative cortical hierarchy [31, 32]. Thus, combining 
functional neuroimaging and topological information 
can provide further insights into connectivity shifts in 
ASD. Previous studies have proposed connectivity dis-
tance (CD) as a metric that combines functional connec-
tivity with measures of spatial proximity between brain 
areas [31, 38, 47], notably with geodesic distance between 
areas along the cortical surface [47, 48]. CD is the aver-
age distance to connected nodes of a given vertex, thus 
capturing functionally relevant connection lengths [31, 
47]. In NT populations, CD has been found to increase 
with distance to primary cortical areas [31], supporting 
that short-range connections predominate in unimodal 
regions while long-range connections are increasingly 
present in transmodal association systems, such as the 
DMN. Additional evidence has underlined impaired seg-
regation and integration between cortical hierarchies in 
ASD mirrored in functional neuroimaging [49].

The recognized etiological heterogeneity in ASD 
motivates contextualization of neuroimaging-based 
phenotypes against established measures of neural orga-
nization, to explore potential pathways of susceptibil-
ity. Converging evidence hints towards a relationship 
between CD and cortical microarchitecture [31, 32, 47, 
50, 51], notably cellular composition, columnar topogra-
phy, and lamination of the cortex [50, 52]. Local increases 
in cell density and smaller pyramidal cells [53–55], sug-
gestive of short-range overconnectivity at the expense of 
long-range connections, could potentially impact macro-
level connections and circuit function [54, 56]. Neuronal 
cell size, density, and connection types vary across corti-
cal areas and their modalities, as observed in histological 

Conclusions  Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially 
impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of 
ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.

Keywords  Autism spectrum disorder, Magnetic resonance imaging, Functional connectivity, Neurodevelopmental 
disorders, Distance profiling, Connectivity disruptions



Page 3 of 14Weber et al. Molecular Autism           (2024) 15:38 

studies as early as in the foundational descriptions of cor-
tical types [57]. The microstructural organization of the 
cortex is generally thought to correlate with large-scale 
functional organization, with unimodal regions exhibit-
ing stronger lamination patterns while transmodal sys-
tems express reduced laminar differentiation [58]. More 
recently, analyzing post mortem histological reconstruc-
tions of the human brain has allowed for additional his-
tological contextualization of imaging findings [59–63]. 
In particular, the 3D BigBrain dataset has been used to 
derive microstructural cortical gradients that run from 
sensory to paralimbic systems [64]. Despite some differ-
ences [64, 65], this hierarchical axis is largely converg-
ing with descriptions of the functional cortical hierarchy 
[23], and decompositions of resting-state functional con-
nectivity [24, 66, 67]. As such, these resources set the 
stage to explore whether connectome contractions in 
ASD follow microstructural and functional gradients, 
indicating a connectopathological susceptibility aligning 
with cortical hierarchical organization. In this study, we 
thus aim to extend and build upon previous description 
of atypical functional connectivity [9, 11, 43] and atypical 
functional network hierarchy in ASD [25], by specifically 
interrogating shifts in connectivity distances in ASD.

Considering the mounting evidence of the differen-
tial impact of long- vs. short-range connectivity altera-
tions in ASD, we aimed to investigate CD in individuals 
with ASD and NT as a possible underpinning of shorter 
average connection length, i.e. contracted connectome 
profiles in ASD. We leveraged the multi-centric Autism 
Brain Imaging Data Exchange (ABIDE-I) repository [68] 
and quantified CD alterations in ASD relative to NT by 
combining rs-fMRI connectivity analysis with cortex-
wide geodesic distance mapping. We contextualized 
ASD-related CD reductions across functional networks 
and sensory-transmodal gradients of cortical functional 
hierarchy [24]. On a microscopic scale, we investigated 
correlation to histology-derived gradient maps and corti-
cal types, to find a more complete explanatory model for 
connectome contractions in ASD.

Methods
Participants
We studied data from the first release of the Autism 
Brain Imaging Data Exchange (ABIDE) [68], a multi-
centric data and imaging collection consortium. Similar 
to previous work [25, 69, 70], we included imaging and 
clinical data from three different sites that included data 
from > = 10 ASD and NT respectively, i.e., University of 
Pittsburgh School of Medicine (PITT), New York Univer-
sity Langone Medical Center (NYU), and University of 
Utah School of Medicine (USM). ABIDE data has been 
collected in alignment with local institutional review 
board frameworks and made publicly available in an 

anonymized form in accordance with the Health Insur-
ance Portability and Accountability Act (HIPAA) guide-
lines. ASD individuals were identified in an in-person 
diagnostic interview using the Autism Diagnostic Obser-
vation Schedule (ADOS), and subjects with genetic disor-
ders associated to ASD, or contraindications to scanning 
such as pregnancy were excluded from the study. NT 
controls did not have any history of psychiatric disease. 
Due to the small number of female participants included 
in the first ABIDE release [68], we limited our analysis 
to male individuals. Additionally, we only retained cases 
with acceptable T1-weighted imaging quality and sur-
face extraction outcomes. After excluding cases with high 
head motion (cutoff: >2SD over mean framewise dis-
placement, n = 10), we obtained a sample size of n = 211 
(103/108 ASD/NT). Frame censoring was not performed. 
To assess symptom severity, we considered ADOS scores 
[4], which evaluate three characteristic symptomatic 
domains of ASD, i.e., communication and language, 
reciprocal social interactions and restricted/repetitive 
behaviors. Furthermore, we considered intelligence quo-
tient (IQ) and IQ subscores for verbal and performance 
IQ as measured by the Wechsler Adult Intelligence 
Scale [71]. Since previous literature suggests cognitive 
imbalances, such as high variability between verbal and 
nonverbal abilities, in ASD [72, 73], we additionally cal-
culated and analyzed the ratio of verbal over nonverbal 
IQ [74]. Detailed demographic information is provided in 
Table 1.

MRI acquisition parameters
Data from all three sites were acquired on 3T Siemens 
scanners. Acquisition protocols for T1-weighted (T1w) 
and rs-fMRI were as follows for the three included sites: 
(i) NYU. Data were acquired on Allegra scanner using 
3D-TurboFLASH for T1w (repetition time (TR) = 2530 
ms; echo time (TE) = 3.25 ms; inversion time (TI) = 1100 
ms; flip angle = 7°; matrix = 256 × 256; 1.3 × 1.0 × 1.3 mm3 
voxels) and 2D-echo planar imaging (EPI) for rs-fMRI 
(TR = 2000ms; TE = 15 ms; flip angle = 90°; matrix = 80 × 80; 
180 volumes, 3.0 × 3.0 × 4.0 mm3 voxels); (ii) PITT. Data 
were acquired on an Allegra scanner using 3D-MPRAGE 
for T1w (TR = 2100 ms; TE = 3.93 ms; TI = 1000 ms; flip 
angle = 7°; matrix = 269 × 269; 1.1 × 1.1 × 1.1 mm3 vox-
els) and 2D-EPI for rs-fMRI (TR = 1500 ms; TE = 35 
ms; flip angle = 70°; matrix = 64 × 64; 200 volumes, 
3.1 × 3.1 × 4.0 mm3 voxels); (iii) USM. Data were acquired 
on a TrioTim scanner using 3D-MPRAGE for T1w 
(TR = 2300 ms; TE = 2.91 ms; TI = 900 ms; flip angle = 9°; 
matrix = 240 × 256; 1.0 × 1.0 × 1.2 mm3 voxels) and 2D-EPI 
for rs-fMRI (TR = 2000ms; TE = 28 ms; flip angle = 90°; 
matrix = 64 × 64; 240 volumes; 3.4 × 3.4 × 3.0 mm3 voxels).
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MRI Processing
a) Structural MRI processing. T1w data were prepro-
cessed using FreeSurfer v5.1 [75–77] (https://surfer.nmr.
mgh.harvard.edu), which included bias field correction, 
intensity normalization, removal of non-brain tissue, and 
white matter segmentation. For accurate gray/white mat-
ter separation and cortical modelling, a mesh model was 
fit onto the white matter volume. Resulting surfaces were 
spherically aligned to a template based on sulco-gyral 
patterns.

b) Geodesic distance. We calculated geodesic distance 
as the physical distance of vertices along the pial surface. 
Specifically, we computed each individual’s intra-hemi-
spheric geodesic distance map between all pairs of verti-
ces within each hemisphere, using the HCP Workbench 
surface-geodesic-distance command [78] (https://www.
humanconnectome.org/software/workbench-command) 
and resampled data to Conte69 surface space to obtain 
10,242 vertices per hemisphere [79] (https://github.com/
Washington-University/HCPpipelines). Additionally, we 
extracted intracranial volume measures using FreeSurfer 
v5.1 [80]. Briefly, this approach leverages the registration 
matrix between an individual image to a standard atlas 
space to estimate intracranial volume [81, 82].

c) Resting-state fMRI processing. The rs-fMRI data 
were processed as described previously [49] based on 
the configurable pipeline for the analysis of connectomes 
(C-PAC) (https://fcp-indi.github.io/) [83], including slice-
time and head motion correction, skull stripping and 
intensity normalization. Data were corrected for head 

motion, as well as white matter and cerebrospinal fluid 
signals using CompCor [84], followed by band-pass fil-
tering (0.01–0.1  Hz). Both T1w and rs-fMRI data were 
linearly co-registered and mapped to MNI152 space. 
Functional imaging data were mapped to correspond-
ing mid-thickness surfaces. We resampled data to the 
Conte69 surface template [79] via Workbench [78] with 
10,242 surface points (vertices) per hemisphere. Due 
to the ongoing debate about global signal regression 
(GSR) [85], we did not apply GSR, but conducted addi-
tional control analyses using data that underwent GSR. 
We smoothed timeseries using a 5  mm full-width-at-
half-maximum Gaussian kernel and computed intra-
hemispheric functional connectivity (FC) as the Pearson 
correlation between all pairs of vertices within each 
hemisphere. FC matrices were Fisher r-to-z-transformed, 
to render correlation coefficients more normally dis-
tributed. Subjects with a mean framewise displacement 
(FD) > 0.3 mm in rs-fMRI (two SD from the mean across 
all subjects) were excluded (n = 9). Data were harmo-
nized for site effects while preserving effects of age and 
ASD diagnosis using ComBat [86], which minimizes site-
specific scaling factors by estimating their additive and 
multiplicative influence in a linear model, using empirical 
Bayes to predict site parameters more accurately [87, 88].

d) Connectivity distance profiling. We integrated FC 
and geodesic distance measures to compute CD pro-
files, as described previously [25, 47, 48]. Each partici-
pant’s FC matrix was masked to only consider the 10% 
strongest (i.e., highest absolute) values per hemisphere. 

Table 1  Study cohort demographic information for ASD and neurotypical control (NT) groups. Age in years (y), SD = standard 
deviation
Group ASD NT
n 103 108
Mean Age (SD) [y] 20.842 (8.112) 19.220 (7.103)
Mean IQ (SD) 104.359 (15.734) 114.176 (12.310)
Mean Verbal IQ (SD) 101.767 (16.823) 113.269 (12.541)
Mean Performance IQ (SD) 105.903 (15.623) 111.833 (12.489)
Mean IQ Ratio (V/Q) (SD) 0.972 (0.167) 1.020 (0.121)
Mean ADOS (SD) 12.612 (3.734) -
Mean ADOS Communication (SD) 4.243 (1.531) -
Mean ADOS Social Interaction (SD) 8.369 (2.683) -
Mean ADOS Repetitive Behavior (SD) 2.029 (1.485) -
Site PITT NYU USM
n(ASD)/n(NT) 19/20 35/51 49/37
Mean Age (SD) for ASD/NT [y] 20.595 (7.416)/19.618 (6.489) 16.841 (7.536)/17.512 (6.730) 23.795 (7.642)/21.258 (7.479)
Mean ADOS (SD) 12.684 (3.127) 11.286 (4.191) 13.531 (3.373)
Mean ADOS Communication (SD) 4.211 (1.084) 3.629 (1.646) 4.694 (1.461)
Mean ADOS Social Interaction (SD) 8.474 (2.366) 7.657 (2.980) 8.837 (2.511)
Mean ADOS Repetitive Behavior (SD) 2.737 (1.195) 2.057 (1.083) 1.735 (1.741)
Mean IQ (SD) ASD/NT 112.316 (13.634)/110.250 (8.559) 105.286 (13.768)/114.961 (12.091) 100.612 (16.794)/115.216 (14.075)
Mean Verbal IQ (SD) ASD/NT 109.842 (12.208)/108.35 (10.479) 104.171 (14.168)/114.824 (12.106) 96.918 (18.689)/113.784 (13.742)
Mean Performance IQ (SD) ASD/NT 111.263 (14.185)/109.150 (8.015) 105.343 (13.750)/111.608 (13.180) 104.225 (17.171)/113.595 (13.459)
Mean IQ Ratio (V/Q) (SD) ASD/NT 0.999 (0.151)/0.996 (0.099) 0.998 (0.141)/1.039 (0.142) 0.943 (0.188)/1.006 (0.098)

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://www.humanconnectome.org/software/workbench-command
https://www.humanconnectome.org/software/workbench-command
https://github.com/Washington-University/HCPpipelines
https://github.com/Washington-University/HCPpipelines
https://fcp-indi.github.io/
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This threshold was chosen as prior literature suggested 
potential bias towards inter-individual differences with 
stricter cutoffs, and corresponding loss of functional 
specificity with more lenient thresholds [31]. Previous 
literature applying similar methodology applied a similar 
cutoff [47, 48]. CD was computed by binarizing thresh-
olded FC matrices and retrieving the row-wise average 
geodesic distance in these nodes, generating a single 
value per vertex for each participant. The resulting CD 
maps, thus, reflects the average distance on the cortex 
from each region to the areas to which it is strongly con-
nected to, thereby combining anatomical and functional 
information.

Statistical analysis
We fit surface-based linear models correcting for age and 
head motion (as measured by mean framewise displace-
ment) at each vertex i.

CDi = ß0+ ß1 * Age + ß2* Diagnosis + ß3* Head Motion.
and group differences between ASD and NT were 

assessed in vertex-wise two-tailed Student’s t-tests using 
the BrainStat toolbox (https://github.com/MICA-MNI/
BrainStat) [60]. Additionally, we computed vertex-wise 
effect sizes using Cohen’s d. Resulting p-values were 
adjusted for multiple comparisons using random field 
theory correction for non-isotropic images [89].

Several post-hoc analyses investigated the relationship 
between CD and behavioral metrics. Within ASD, we 
tested for associations to ASD symptom severity scores, 
specifically, total ADOS scores and ADOS subscores for 
communication, social interaction, and repetitive behav-
iors. In both ASD and NT groups, we examined the cor-
relation to total IQ as well as verbal and performance IQ 
subscores, and the ratio of verbal and performance IQ 
[74]. First, we assessed the whole-brain association of CD 
with behavioral metrics in a vertex-wise linear model as 
described above. Additionally, we assessed the associa-
tion to behavioral metrics within clusters of significant 
group differences which were identified in the previous 
step. Mean CD values were extracted from each cluster 
and the correlation to IQ and ADOS metrics were deter-
mined, adjusting for multiple comparisons using a false 
discovery rate (FDR) correction method [90].

Contextualization to macro- and microscale principles of 
cortical organization
We explored effect sizes for group differences between 
ASD and NT individuals, i.e. Cohen’s d-values, and stud-
ied associations to macro- and microscale cortical pat-
terns. For the whole-brain large-scale investigation, we 
analyzed mean CD and effect sizes in each of the seven 
previously described intrinsic functional networks 
[21]. Subsequently, we assessed the spatial correlation 
between Cohen’s d effect sizes and scores of the principal 

functional gradient that describes sensory-transmodal 
functional differentiation [24], while accounting for spa-
tial autocorrelation with 5000 spin permutations [91]. 
We similarly investigated effect sizes within cytoarchi-
tectonic cortical types of Von Economo and Koskinas 
[57, 58] leveraging the ENIGMA toolbox [61]. Finally, we 
assessed associations to the BigBrain histology gradient 
that describes microstructural differentiation [92], again 
sourced from the ENIGMA toolbox [61].

Results
Reduced connectivity distance (CD) in autism
Mean CD in NT was higher within transmodal regions 
(i.e., heteromodal and paralimbic regions), such as the 
prefrontal and cingulate cortex and temporo-occipital-
parietal junction, while CD values were lower in primary 
sensory and motor regions (Fig. 1A).

Comparing groups with linear models that additionally 
corrected for age and head motion revealed diffuse CD 
reductions in ASD relative to NT (Fig.  1B), with twelve 
clusters deemed significant after multiple comparisons 
correction (pRFT<0.05). Clusters were mainly localized in 
the left and right temporal lobes and left prefrontal cor-
tex (Figs. 1B and 2A). Cohen’s d effect sizes for between-
group differences amounted to d = 0.600 in the temporal 
and left prefrontal cortex (Fig. 1B). Overall, there was a 
consistent shift of the CD distributions in ASD relative to 
NT across all significant clusters (Fig. 1C). Of note, CD 
was averaged per vertex, hence, the apparent decrease 
mirrors an increase in short-range connections at the 
expense of long-range links [47].

Effects of age, symptom severity and intelligence measures
Within clusters of significant ASD-related reductions 
identified in the vertex-wise model, there was no signifi-
cant correlation to age (r = 0.151, pFDR=0.274, Table  2). 
Moreover, there were no between-group effects when 
comparing children and adults, which indicated that 
ASD-related CD reductions were stable across pediatric 
and adult cohorts (t=-0.469, pFDR=0.640, Fig. 2B; Table 2).

Within clusters of significant between-group differ-
ences, CD in the ASD group also did not show any sig-
nificant associations with ADOS symptom severity 
scores (r = 0.047, pFDR>0.4) nor with ADOS subscores 
for communication (r = 0.028, pFDR>0.4), social interac-
tion (r = 0.049, pFDR = > 0.4), and repetitive behaviors and 
interests (r=-0.037, pFDR>0.4). On the other hand, when 
averaged within all clusters, there was a significant asso-
ciation of CD with full (r = 0.324, pFDR<0.001), verbal 
(r = 0.304, pFDR<0.001), and performance IQ (r = 0.245, 
pFDR=0.001; Table  2), while no significant interaction 
between diagnosis group and IQ measures was detect-
able (full IQ: r=-0.004, pFDR=0.561, verbal IQ: r = 0.005, 
pFDR=0.561, performance IQ: r=-0.011, pFDR=0.214, IQ 

https://github.com/MICA-MNI/BrainStat
https://github.com/MICA-MNI/BrainStat
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ratio: r = 1.476, pFDR=0.128). Similar results were obtained 
in cluster-wise analysis. Figure  2D-E shows correlation 
between behavioral metrics and mean CD across all clus-
ters, while separate cluster-wise analyses can be found in 
Supplemental Fig. 2 & Supplemental Table 1.

In addition to cluster-wise analyses, we assessed whole-
brain associations between CD and clinical metrics using 
a linear model of the influence of a behavioral score on 
CD while accounting for head motion and age. Overall, 
vertex-wise findings were consistent with within-cluster 
results (Supplemental Fig. 3).

Relation to cortical organization
Macroscale functional contextualization. Effect sizes dif-
fered across seven intrinsic functional networks [21], 
with higher effects towards transmodal compared to 
sensory/motor networks and peak reductions in CD in 
the limbic network (Cohen’s d=-0.159, Fig.  3A). These 
findings were recapitulated when correlating effects 
against the intrinsic functional gradient [24] (r=-0.381, 
pspin<0.001), which were significant even when using null 
models correcting for spatial autocorrelation (Fig. 3B).

Microstructural and cytoarchitectonic contextualiza-
tion. For cortical types as proposed by Von Economo 
and Koskinas [58], we were able to see notable effect 
size variations that also became larger towards limbic/
paralimbic regions, with highest effect sizes being pres-
ent in agranular polar cortex (Cohen’s d = 0.201, Fig. 3C). 
On the other hand, effects sizes and the primary BigBrain 

microstructural gradient were not significantly correlated 
(r=-0.148, pspin=0.265; Fig. 3D).

Control analyses
To ensure the robustness of our results across different 
data processing methods, we repeated analyses using 
functional connectivity that underwent GSR. Supple-
mental Fig. 1 shows respective effect size maps for both 
CD differences from uncorrected and from GSR-cor-
rected functional CD maps. In both contrasts, highest 
between-group differences were localized in the left tem-
poral lobe and left prefrontal cortex, as well as the right 
frontal lobe. However, group differences appeared higher 
for uncorrected data in medial prefrontal regions bilater-
ally, as well as the right temporal lobe. The congruence 
of both maps (r = 0.546, p < 0.001) suggested robustness 
of our results with respect to GSR application vs. omis-
sion during data preprocessing. There was no statisti-
cally significant difference in effect sizes between both 
approaches (t=-0.167, pFDR=0.912).

To further characterize the thresholded FC matri-
ces, we determined the correlation between triangular 
matrices of each participant in each group separately 
(mean ± SD rASD=0.408 ± 0.179, rNT=0.414 ± 0.141).

Moreover, we assessed intracranial volume and head 
motion as potential confounds for geodesic distance 
measures. There was no significant between-group differ-
ence in intracranial volume (t = 0.694, p = 0.488) or head 
motion (mean framewise displacement (FD): t = 1.437, 

Fig. 1  A | Workflow for CD computation and average CD maps. B | Effect size map for group differences (ASD vs. NT). Clusters of significant changes after 
multiple comparisons correction are outlined (pFDR<0.05, vertex-based linear model). C | Distribution of CD values within clusters of significant reduction
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Fig. 2  A | Clusters of significant CD reduction in ASD vs. NT. Color intensity does not reflect effect size but as a visual differentiation between clusters. B-E 
| Correlation between mean CD in clusters and age, age group (children < 18 years, adults > 18 years), total ADOS score, ADOS subscores for communica-
tion, social interaction, and repetitive behavior, as well as full IQ and IQ subscores for verbal and nonverbal IQ. IQ ratio denotes the ratio of verbal over 
nonverbal IQ. Correlation coefficients are listed in Table 2
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p = 0.152). Of note, there were eminent site-related differ-
ences in ADOS scores, suggesting behavioral phenotype 
differences between the cohorts or variations in clinical 
symptom severity assessment (F = 3.904, p = 0.023, Sup-
plemental Fig. 4A).

CD and group differences were largely congruent 
across sites, with some differences affecting occipital, 
opercular, and parietal regions (Supplemental Fig. 4B). To 
mitigate potential confounds relating to acquisition site, 
we utilized ComBat harmonization [88]. To ensure reli-
ability, we compared results with those after site correc-
tion using a surface-based linear model. Resulting t-value 

maps from both approaches were highly congruent (r=-
0.977, pspin<0.001).

Finally, we tested the robustness of our results in CD 
across different FC thresholds. While our main approach 
considered the 10% strongest connection, we replicated 
our findings based on 5% and 20% FC thresholds. Both 
mean CD and effect size maps showed high congruence 
when compared to the main approach based on 10% FC 
(mean CD: r = 0.748, pspin<0.001; r = 0.676, pspin<0.001 
respectively, Cohen’s d: r = 0.968, pspin<0.001; r = 0.919, 
pspin<0.001 for 5%-CD and for 20%-CD respectively).

Discussion
Atypical brain connectivity is thought to be at the core of 
autism [93]. Here, we combined functional connectivity 
analysis with cortex-wide geodesic distance mapping to 
characterize shifts in the spatial extent of regional con-
nectivity profiles [25, 47, 48]. Leveraging the open-access 
ABIDE dataset composed of ASD and NT individuals, we 
found robust evidence for global CD reductions in ASD, 
hinting towards a deficiency in long-range connections 
and a compensatory increase in short-range connectiv-
ity. Examining associations to functional topography, 
we noted a significant correlation to sensory-transmo-
dal functional gradients, with most marked findings 
in paralimbic and heteromodal functional zones [24]. 
Likewise, contextualization against cytoarchitectural 
taxonomy [57, 58, 61] revealed most marked effects in 

Table 2  Correlation between mean CD (CD) in clusters of 
significant group differences and age, age group (children < 18 
years and adults > = 18 years) as well as behavioral metrics. 
P-values were corrected for multiple comparisons using false 
discovery rate correction (q < 0.05). Supplemental table 1 
provides values for each of the twelve clusters separately

Pearson’s r (95% CI) p
Age 0.151 (0.017–0.281) 0.070
ADOS Total 0.047 (-0.148–0.238) 0.780
ADOS Communication 0.028 (-0.167–0.22) 0.780
ADOS Social Interaction 0.049 (-0.146–0.24) 0.780
ADOS Repetitive Behavior -0.037 (-0.229–0.158) 0.780
Full IQ 0.324 (0.197–0.44) < 0.001
IQ ratio (Verbal/Nonverbal) 0.087 (-0.049–0.219) 0.349
Verbal IQ 0.307 (0.18–0.425) < 0.001
Performance IQ 0.245 (0.114–0.368) 0.001

Fig. 3  Relation to cortical organization. A | Effect sizes of between-group differences (ASD vs. NT) in functional CD measures, stratified within seven 
intrinsic networks proposed by Yeo, Krienen, et al. [21] B | Correlation to the principal functional gradient [24]. Spatial associations were assessed using 
Spearman’s rank test, and p-values were adjusted for spatial autocorrelation using a spin test [91, 129]. C | Effect size for the between-group difference in 
functional CD in each cortical type as proposed by Von Economo and Koskinas [58]. D | Association to microstructural gradients derived from the 3D Big-
Brain [59]. Abbreviations: SMN = somatomotor network, DAN = dorsal attention network, VAN = ventral attention network, FPN = frontoparietal network, 
DMN = default mode network
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agranular and polar cortices with low laminar differentia-
tion. Findings were relatively robust across FC thresholds 
employed in CD computation, and were consistent across 
the different sites and age strata included in the study. 
While findings were largely similar irrespective of using 
GSR during preprocessing, effect size maps from GSR-
corrected CD exhibited a shift towards more positive 
values than those from non-corrected CD. As such, GSR 
appeared to be associated with farther distance between 
vertices in the ASD group relative to the NT group, 
potentially indicating a masking effect of global signals 
in short-range connections. CD reductions were stable 
across symptom severity metrics. While our findings did, 
thus, not capture imaging correlates of inter-individual 
differences in autism symptom load, these findings may 
suggest that CD reductions could constitute a stable 
imaging phenotype in neurodevelopmental conditions 
such as autism. On the other hand, CD alterations were 
positively correlated to both verbal and performance IQ 
measures, suggesting that these imbalances may index 
overall cognitive function in ASD. Collectively, imbal-
ances in connectivity length distribution constitute a sta-
ble imaging phenotype of atypical neurodevelopment in 
ASD, with regional susceptibility intertwined with over-
arching principles of macroscale cortical organization.

The CD measure employed in this work combined rs-
fMRI as an established in vivo proxy for functional inter-
actions [94] with cortex-wide geodesic distance mapping 
[24, 47, 95, 96] to profile average functional connection 
length. This metric has been suggested to mirror func-
tional and hierarchical properties of cortical areas, and to 
stratify systems in a data-driven, yet anatomically mean-
ingful way [31, 32]. Previous work provided descriptions 
of atypical hierarchical cortical organization in ASD [25], 
which we have refined and expanded upon as part of the 
description of CD characteristics in ASD provided in the 
present article. Prior research and our current findings 
have consistently demonstrated that long-range cortico-
cortical connections predominate in transmodal net-
works, which comprise heteromodal association systems 
such as the default mode network as well as paralimbic 
cortices [26, 39, 49]. These connections ensure efficient 
integration of functional signals in higher-order networks 
that are increasingly involved in abstract, integrative, 
as well as internally-generated cognitive and affective 
processes [16, 24, 97]. As CD reflects averaged distance 
values per each vertex, the measure remains somewhat 
opaque about the precise distribution of short- and 
long-range connections. Yet, the direction of findings 
as well as inspection of distributional histograms indi-
cated shifts towards short-range links at the expense of 
long-range connections in ASD. The observed decrease 
in long-range connectivity in ASD in this study may 
indicate brain reorganization characterized by reduced 

inter-network connectivity together with compensatory 
strengthening of local connections [43]. The topography 
of CD changes in ASD may indeed be particularly mean-
ingful in the context of cortical hierarchies, a conjecture 
supported by the macro- and microscale contextualiza-
tion analyses conducted in the current work. Here, we 
observed a sensory-fugal pattern of ASD-related CD 
alterations when cross-referencing our findings to intrin-
sic functional measures. Specifically, we observed that 
ASD-related CD alterations mirrored the intrinsic func-
tional gradient of information abstraction, which runs 
from primary input to unimodal regions to higher-level 
cognition in transmodal cortices [30, 49]. Stratifying 
findings across seven intrinsic networks derived in pre-
vious work [21], we also found the largest effect sizes in 
limbic networks, confirming that ASD-related CD altera-
tions primarily affect paralimbic/fugal systems. While 
cross-referencing ASD-related effects to microstructure-
based neural data did reveal a weak trend, however no 
significant association to this trajectory, cytoarchitecture 
type stratification of our in vivo imaging-derived met-
rics showed the strongest effect sizes in limbic agranular 
and polar cortices [57]. Of note, the lack of association 
to microstructural patterns as derived from the BigBrain 
gradient might originate from the current scarcity of dif-
ferent high-resolution histological datasets, and warrants 
confirmatory analysis upon the availability of aggregated 
histological data from multiple subjects.

Our findings demonstrated increased vulnerability for 
ASD-associated connection length contractions in het-
eromodal and paralimbic cortices that collectively make 
up the transmodal core of cortical organization [66, 
98–100]. When considering anatomical but also func-
tional connectivity relationships across the cortex, both 
paralimbic as well as heteromodal association cortices 
are situated at a high distance from primary sensory and 
motor regions interacting with the here and now [101, 
102]. When considering cortical microarchitecture, par-
ticularly its laminar organization, there has been evi-
dence for an axis that differentiates sensory/motor on 
the one end from paralimbic systems on the other end 
[62, 64, 103, 104]. These characteristics are highlighted 
in spatial variations in the visibility of the internal gran-
ular layer, commonly referred to as layer IV [101, 105, 
106]. In effect, the agranular cortex lacks the respective 
layer, the dysgranular cortex exhibits rudimentary layer 
IV characteristics, and the granular cortex shows clear 
layer IV [101]. Limbic and paralimbic cortical systems 
comprise mainly the agranular and dysgranular extent 
of this spectrum [101, 102, 107]. As such, paralimbic 
systems are microstructurally most segregated from 
granular systems interacting with the external environ-
ment [64]. Converging, but also somewhat different from 
the microstructural gradient is the sensory-association 
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functional gradient, which radiates from sensory and 
motor systems towards heteromodal areas in the DMN 
[24, 64, 103]. These regions may contain complex micro-
structural signatures, including agranular types as well 
as granular cortices [23, 57, 58, 98]. In both heteromodal 
association systems as well as paralimbic cortices, there is 
prior evidence to suggest increased susceptibility to neu-
rodevelopmental perturbations [62, 101]. Deficiency in 
long-range connectivity potentially results from cellular 
and laminar alterations [47], which may present a com-
mon substrate for different psychiatric and neurodevel-
opmental conditions [51, 62]. Risk genes for ASD as well 
as other neurodevelopmental conditions impact cortico-
genesis as early as in germinal stages [108, 109], impact-
ing later axonal development that may disproportionally 
affect heteromodal systems [54, 110]. In future work, 
it remains thus to be established whether the current 
findings are specific to autism, or also visible in related 
neurodevelopmental indications. Our results, neverthe-
less, provide further justification to study microcircuit 
and macroscale alterations based on compact interme-
diary phenotypes such as CD. As such, they establish a 
perspective for future research, in order to better inves-
tigate and ultimately understand differentially impacted 
cortical hierarchies across common neurodevelopmental 
conditions.

Neuroimaging correlates of the typically developing 
connectome indicate marked shifts from local towards 
more distributed network patterns connections, while 
facilitating signaling across lobes and hemispheres [111, 
112]. This progression highlights increased functional 
integration across brain networks, with short-range con-
nections undergoing functional refinement [113, 114]. As 
such, network characteristics change from emphasized 
local processing in children to spatially and functionally 
distributed effects [112, 114, 115]. A potential microscale 
developmental mechanism driving this redistribution in 
typical development may be synaptic pruning [116–119]. 
In addition to its role in healthy brain maturation [120, 
121], atypical pruning has been suggested in ASD [116, 
122–124]. One common target of genetic alterations 
associated with increased risk for ASD are glutamergic 
synapses [125], which are involved in connection forma-
tion and pruning processes [117, 126]. Histological find-
ings of atypical synaptic density in ASD could potentially 
be a downstream effect of this genetic susceptibility [54, 
110, 127]. In mice, behavioural atypicalities have been 
observed in association with altered mTOR-signalling 
and deficient autophagy in this pathway [122, 124]. Addi-
tionally, altered microglial activity has been associated to 
long-range connectivity, suggesting another potential cel-
lular underpinning [121, 124].

In effect, these alterations may be associated with local 
overconnectivity while not ensuring reliable long-range 

information relay [116, 122]. While speculative, our 
results potentially suggest a differential impact of prun-
ing between long- and short-range connections, spe-
cifically, a higher requirement for longer connections 
to be retained in autism. Further research contextual-
izing imaging findings to cellular patterns reflecting on 
pruning mechanisms is needed to further explore this 
phenomenon. Histological investigations of cell archi-
tecture and microglial activity are necessary to inves-
tigate whether findings from animal studies translate 
to humans, and could thus substantially contribute to a 
more detailed understanding of differential neurodevel-
opment with regards to neuronal connection length, and 
the involvement of atypical pruning in the underlying 
pathomechanism.

Limitations
The present study investigated connectome contrac-
tions in ASD, expanding upon previous findings of atypi-
cal connectome hierarchy [25]. We analyzed data from 
an open-access repository, and selected data from three 
different acquisition sites according to previously estab-
lished inclusion criteria [25]. As such, the current data-
set was considered adequate to address our research 
question, and previous analyses have conducted several 
analyses to explore the effect of image quality and motion 
on findings. On the other hand, we acknowledge that 
our results warrant further validation upon availability 
of independent large-scale datasets. Differences in scan-
ning protocols were addressed through state-of-the-art 
data harmonization protocols preserving variance in 
terms of age and diagnosis status. We thus acknowledge 
the heterogeneity of the original data as a potential limi-
tation to the generalizability of our results. One appar-
ent site-dependent caveat is the notable difference in 
ADOS scores, suggesting substantial behavioral pheno-
type differences between cohorts or variations in clinical 
assessment practices. Consequently, further research is 
necessary to confirm our results regarding the invariance 
of CD towards symptom severity scales.

ASD is a complex and heterogeneous condition, with 
important inter-individual variations across diagnosed 
individuals. In this study, we have presented results based 
on group differences obtained from comparing ASD to 
NT individuals to identify an overarching connectivity 
pattern shift in ASD. While we assessed associations of 
these findings against age as well as clinical and cogni-
tive measures, we do recognize that there may be com-
plementary strategies for a more targeted assessment of 
ASD subtypes [8, 108, 128], which may show diverging 
imaging and clinical phenotypes, and may be associated 
to different developmental mechanisms.

Additionally, we investigated several potential con-
founds to our data. Namely, we could confirm the 
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robustness of our methodology across signal regression 
in image processing. Moreover, total intracranial volume 
as a likely influential factor on geodesic distance mea-
surements did not show significant variation between the 
groups.

ASD is characterized by heterogeneous symptom 
phenotypes and prevalent comorbidity with other neu-
rodevelopmental conditions, most notably attention 
deficit-hyperactivity disorder (ADHD). In the present 
study, we did not examine comorbidities or other condi-
tions with similar symptom profiles. Further research is 
needed to confirm this association in larger samples, and 
to also examine the specificity of these brain-behavior 
associations for autism vis-à-vis other neurodevelopmen-
tal indications.

Conclusion
In a multicentric cohort of ASD and NT individuals, we 
calculated connectivity distance measurements to stratify 
long- versus short-range functional connections. ASD 
was associated with lower mean functional connection 
length, with CD reductions appearing invariant to age 
or symptom severity. As such, CD possibly constitutes a 
relatively stable marker of ASD-associated connectome 
reorganization. On the other hand, CD changes were 
modulated by intelligence measures, specifically, higher 
CD was associated with higher IQ scores. Thus, our 
findings point towards contracted connectome profiles 
as markers for overall impaired cognitive performance. 
Conceptually, connectome contractions as imaged by 
CD implicate decreased communication efficiency [32, 
47], offering a potential explanation for their potential 
contribution to general cognitive function in atypical 
development.
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