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Abstract

Science is and always has been based on data, but the terms ‘data-centric’ and the ‘4th paradigm’ of
materials research indicate a radical change in how infermation is retrieved, handled and research is
performed. It signifies a transformative shift towards managingast data collections, digital repositories,
and innovative data analytics methods. The integration of Artificial Intelligence (Al) and its subset Machine
Learning (ML), has become pivotal in addressing.all these.challenges. This Roadmap on Data-Centric
Materials Science explores fundamental concepts.and:methodologies, illustrating diverse applications in
electronic-structure theory, soft matter theory, microstructure research, and experimental techniques
like photoemission, atom probe tomography, and.electron microscopy.

While the roadmap delves into specific areas within the broad interdisciplinary field of materials science,
the provided examples elucidate key.concepts applicable to a wider range of topics. The discussed
instances offer insights into addressing the multifaceted challenges encountered in contemporary
materials research.
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Section 1: Introduction
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Introduction

Materials science and engineering play a pivotal role in fostering prosperity, enhancing lifestyle, and
advancing the development of environmentally sustainable “technologies. The field is profoundly
interdisciplinary, encompassing physics, chemistry, biology, mathematics, and computer science. It
addresses intriguing inquiries such as: Are new semiconductors with increased efficiencies for solar
modules available, and can they surpass the flexibility of materials under discussion today? Which catalyst
materials would be optimal for a specific chemical reaction, e.g., splitting of water to produce hydrogen?
What combination of alloying constituents imparts unique bending strength, extreme hardness, and
corrosion-resistant properties of metallic alloys? Furthermore; how should a surface be coated to attain
the utmost thermal protection, e.g., for improving the.energy efficiency of turbines?

In recent years, materials science hasfentered an.era marked by an unprecedented surge in data,
stemming from both experiments and computations.This influx has surpassed the capacities of traditional
methods to manage these data effectively. The'so-called 4 V challenge is clearly becoming eminent. It can
be summarized as follows:

Volume: Addressing strategies to manage large datasets efficiently, exploring data storage solutions, and

leveraging scalable technologies to{andle voluminous data.

Variety: Discussing approaches to handle the diverse forms and meanings of data, including data
normalization techniquesand methods for dealing with heterogeneous datasets.

Velocity: Examining ways to cope,with the rapid changes in data and the arrival of new datasets in real-
time, emphasizing the importance of agile methodologies.

Veracity: Exploring.methods to assess and enhance the quality and reliability of data, including data
validation techniques, quality control measures, and uncertainty quantification.

Amidst these, challenges, and most importantly, big data in materials science unveils extraordinary
opportunities to advance scientific knowledge and to address important challenges like those noted
above. Ta seize these opportunities, researchers must adopt fresh perspectives, innovative concepts, and
novel methods: This paradigm shift, i.e., a new way of thinking, is commonly referred to as the 4th
paradigm of materials research, a term made known by Jim Gray in his inspiring, final talk in 2007 [1]. In
essence; 'data-centric research' and the ‘4th research paradigm’ represent a departure from traditional
research methodologies. It emphasizes the significance of correlations and statistical predictions, focusing
on mean prediction values and variance (or uncertainty) as key elements in the investigative process. In
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this way the high intricacy of several co- and counter-acting processes is considered. It reflects that big
data reveal correlations and dependencies that cannot be seen when studying small data sets;,and,:in
difference to the past, it is accepted that a detailed causal explanation is not always possible. Causal
inference, when possible, may not necessarily be expressed in terms of a simple, closed analytic equation
or an insightful, simple physical model. We will get back to this point below.

Let us briefly recall the first three research paradigms. Experimental research, théinitial paradigm, dates
back to the Stone Age and developed first metallurgical techniques in the Copper and:Bronze Ages. The
control of fire marked a significant breakthrough. In the late 16th century, analyticaliequations became
the central instrument for describing physical relationships, establishing theoretical physics as the second
paradigm. The change was led by Brahe, Galileo, Kepler, and Newton/ The next chapter started in the
1950s, when electronic-structure theory for solids [2, 3], the Monte Carlo method [4], and molecular
dynamics [5, 6] were introduced. These developments enabled computer-based studies and analyses of
thermodynamics and statistical mechanics on the one hand and, of quantum mechanical properties of
solids and liquids on the other hand. They define the beginning.of computational materials science, what
is nowadays considered the third paradigm of materials research.

Today, big data and Al revolutionize various aspects of life,.including materials science. [1, 7, 8] To navigate
this 4th paradigm successfully, researchers must embrace new.research concepts, and this Roadmap on
Data-Centric Materials Science provides a summary of ideas for exploring the data-centric landscape of
materials science and engineering. As materials science is a.very broad and interdisciplinary field, only
some areas of this landscape can be covered. However, we trust that the addressed examples explicate
many of the basic concepts and that they can be helpful also for other topics than those addressed
explicitly in the different contributions.

Science is and always has been based on data, but the terms ‘data-centric’ and the ‘4th paradigm’ of
materials research signifies a transformative shift towards retrieving and managing vast data collections,
digital repositories, and innovativerdata analytics methods. The integration of Al and its subset ML has
become pivotal in addressing all these challenges. In the data analysis, we are looking for structures and
patterns in the data. As mentionedabove,.materials properties and function are often not just governed
by one single process but there are mahy. Some drive, others just facilitate, and again others hinder the
materials property or function of interest. The interplay of various processes is very intricate. In analogy
to genes in biology, we discuss elemental materials features (e.g., electronegativity of the atoms that build
the material) that correlate with.the materials property of interest. The primary features that connect
with of a certain materials property or function are called the relevant ‘materials genes’. Together with
environmental parameters (e.g., temperature), they determine (in a statistical sense) the material’s
property and function.[9]

In recent years,/major/advances in ML and computing power, in particular the advance of hardware
accelerators like GPUs, have enabled deep neural networks, with billions of trainable parameters, leading
to breakthroughsin computer vision and natural language processing. A key strength of deep learning is
thatdit addresses not only the objective for classification, regression or other tasks, but also the learning
of how to represent the input data itself. Thus, there is no need for explicit feature modeling: images can
be ingested@as arrays of pixels, and text documents are simply sequences of tokens. High-level structures
in visual or textual contents, like people interacting with objects in a scene or argumentation and
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sentiments in a conversation, are automatically discovered and latently captured by the deeprneural
network itself.

Obviously, this predictive methodology of deep learning has potential in many application areas,
conceivably including materials science and particularly microscopy images. However,the successof deep
learning builds on various assumptions, including the availability of large training data with. ‘independent
and identically distributed’ (iid) samples. These assumptions are not easily satisfied for materials data,
and feature engineering and physics-based modeling is still indispensable. [e.g«Ref. 10]

At its core, ML operates as an interpolation technique, fitting and connecting the data upon which it is
trained, applying regularization (or smoothening) to achieve generalization. T\he ML model excels in
exploiting the data space covered by the training data but exhibits diminished reliability when entering
uncharted data realms typically called the out-of-distribution (OOD)‘regime. When the training data are
iid or representative of the full population, extrapolation may work. However, for materials science this
requirement is hardly fulfilled, i.e., the data selection is governed by.subjective and technical issues, and
often it is strongly biased and unbalanced. Still, materials scientiststare searching for statistically
exceptional situations, and important processes are often,triggered by, ‘rare events’ that are not or not
well covered by the available data set, or smoothed out by.the regularization. [e.g. Ref. 11] This all implies
caution when applying ML. IS

Similar to any scientific theory or model, antAl model possesses a range of applicability,[12] often
inadequately defined. Consequently, there"is an argument advocating the importance of Al
interpretability, as it not only sheds light on the underlying mechanism but also provides some confidence
in extrapolations. The contributions by/Boley et al..(2.1), Ghiringhelli and Rossi (2.2), and Foppa and
Scheffler (2.3) address these issues in more detail.

A special point in materials science is.that data is typically not big. This implies that some ML methods are
not suitable. In general, standard ML methods need to be used with caution and modification or new
concepts have been and still need to be developed. Interestingly, Gaussian Process Regression and
Random Forests are still often and helpfully used, but several new concepts were established in recent
years, e.g., crystal-graph neural network, message passing and equivariance, subgroup discovery, and
SISSO (sure independence screen and sparsifying operator). In particular the latter can deal with
correlations between a big (even immense) number of elemental materials features (millions or trillions)
and just a few data dozens data points of the property of interest. SISSO derives an analytical equation
for describing the materials property and its statistical correlation with the relevant materials genes. The
approach as well asirecent advancements, implementations, and challenges are described by Yao et al. in
contribution (3.41).

When data are scarce, the critical request is, that they must be highly accurate, precise, and well
characterized. Thisiissummarized by the request that experimental data must be ‘clean’, but it is not often
achieved in matefrials science and rarely fulfilled in heterogeneous catalysis. The ‘clean-data concept’ for
experimental studies is described in contribution (3.2) by Trunschke et al. Advancements in obtaining
high-quality .data from electronic-structure theory are described by Kokott et al. in (3.3). The general
challenge to/find the best-suited Al method for a certain application is severe, and the reproducibility of
published Al studies is often problematic. The NOMAD concept is described in contribution (3.4). A
strategy to overcome the bottleneck of scarce data in deep learning is the augmentation of a small,
accurate data set by synthetically generated data. This is discussed by Giri et al. in contribution (3.5) and
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exemplified by generating synthetic Hamilton Matrices for deep learning applied to
multiphotoabsorption. Spatiotemporal models like random fields and Gaussian processes have
demonstrated promising outcomes in integrating data from multiple sources and guiding scientific
discovery in various disciplines. Contribution (3.6) by Xian et al. discusses their application to materials
science and hints at further directions to be explored to leverage their full potential in‘materials discovery.
When trying to apply machine learning methods that have already proved successful in *hard matter
physics" to soft matter, several technical obstacles need to be overcome, including, the intrinsic multi-
scale nature of this part of condensed matter. Bereau and Kremer argue thatiwhen this can be achieved,
it would usher soft matter in a new era, where poor scale separation can be efficiently addressed, and
insight will be gained for phenomena that are currently too complex for traditiona\lmethods (contribution
3.7). In contribution (3.8), Goyal et al. show that significant computational gains can be achieved in the
numerical simulation of microstructure continuum mechanics models,when traditional direct numerical
simulation is replaced by modern deep-learning based methods when the ‘Al models are informed by
physical insight. Digitalizing the entire workflow in data-rich imaging techniques in material science from
synthesis, sample preparation, data acquisition and post-processing inan integrated way is the topic of
contribution (3.9) by Freysoldt et al. There, it is discussed that machine.learning techniques can leverage
the data science approach by removing the human inspectionias the limiting factor to digest larger and
larger amounts of data in order to discover relevant, bat possibly rare patterns. Recently, large-language
models (LLMs) have also entered the field of materials science. Raabe et al. provide an overview and
perspective in contribution (3.10).

Section 4 then addresses several applications of\data=centric materials science, typically paired with
methodological developments. Experimental methods cover photoemission, electron microscopy, and
atom-probe tomography. In contribution (4.1), Purcell et al. consider the role of Al in high-throughput
materials discovery using computational workflows while Liebscher et al. as well as Schloz et al. discuss
the roadmap to Al and ML driven data analytics in‘'scanning transmission electron microscopy (STEM) in
contributions (4.2) and (4.3), respectively.,Atom probe tomography is another imaging-based technology
to analyze the composition of materials at the near-atomic scale. Its enhancement using ML is the topic
of contribution (4.4) by Li et al¢ln cantribution (4.5), Logsdail et al. investigate the potentials of a data-
driven approach for heterogeneous .catalysis. Finally, in contribution (4.6), Fratzl discusses recent
advancements of x-ray scattering and diffraction for materials at the nanoscale with respect to the
retrieval and analytics of large amounts of data.
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Section 2: Data and Uncertainty

Section 2.1 — From Prediction to Action: Critical Role of Performance Estimation
for Machine-Learning-Driven Materials Discovery

Mario Boley?, Felix Luong?, Simon Teshuva?, Daniel F. Schmidt?, Lucas Foppa% and Matthias
Scheffler?

1Monash University, Department of Data Science and Al o
2The NOMAD Laboratory at the Fritz Haber Institute of the Max-Planck:Gesellschaft and IRIS-Adlershof
of the Humboldt-Universitat zu Berlin

Status

In recent years, the materials science community has established a large-scale infrastructure for data
sharing that promises to increase the efficiency of the “data-driven”.discovery of novel useful materials
[1]. Growing data collections are envisioned to lead to increasingly accurate statistical models for property
prediction that can significantly reduce the number“of.necessary experiments or first principles
computations and, thus, substantially improve the cost and time for critical discoveries [2]. Indeed, the
combination of public datasets and robust statistical estimation techniques like cross validation (CV)
enables a collaborative improvement process (“common task framework” [3, 4]). As a result, there are
now models that can predict certain materials properties well on average with respect to the same
distribution as the training data. Unfortunately, the in-distribution expected performance, as estimated
by CV, is not directly coupled with the performance for the discovery of novel materials: expected
performance fails to capture the model behavior for the very few exceptional materials that one aims to
discover, and, fundamentally, in-distribution performance is irrelevant for a discovery process that is
designed to generate high-performing.materials more frequently than they occur in the initial training
data.

Recognizing these issues, the«.community increasingly focusses on active learning approaches [5] like
Bayesian optimization for model-driven blackbox optimization [6] (BBO). These methods manage an
iterative modelling and data‘acquisition process and aim to optimize the cumulative “reward” received
for the acquired data points overitime, such as the maximum property value discovered so far. This
process, illustrated in_Figure 1, is enabled by an acquisition function that leverages the predictions of a
statistical model together with its uncertainty quantification to effectively manage the underlying trade-
off of exploration{learning more about the candidate space) and exploitation (aim to sample high value
candidates). This shift to_consider actions instead of just predictions constitutes an important step
towards accelerated materials discovery, but it reveals shortcomings not only in existing modelling
approaches butmore fundamentally in the methodological framework used to improve those models. In
particular; the inapplicability of established performance estimation frameworks based on pre-generated
data renders it extremely costly to conclusively compare and to systematically improve methods.
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Figure 1 Schematic steps of iterative model-driven discovery process. At time t: (i) probabilistic property model is
fitted to sample {X_y11, .-, Xo; X1; ... ; X¢_1} of materials population's, i.e., a conditional density function p(y | x)
is learned that provides probability density of property value y for material x, which gives rise to both (mean)
prediction f(x) = E,(Y | X = x) and uncertainty (variance) o’(x) = V,(Y | X = x) where expected value and
variance are taken with respect to p; (ii) remaining population is ranked by acquisition function, e.g., “expected
improvement” of reward a(x) = E, (R, — R,_g| X; = %), which for conditionally normal property models can be
computed as a(x) = f(x) + o?(x)p(R, | x)/(1 =P(R; | x)) where P is the modelled cumulative distribution
function; and (iii) label for top-rankedsmaterial is acquired and added to data sample generating reward, e.g.,
defined as R, = max{y(X;): —N < i < t} when maximizing a single property or figure of merit y, which incentivizes
the discovery of materials with high y-value as'early as possible in the process. While standard statistical analysis
assumes the initial data points X_y4q, ..., X, to be drawn with respect to some sampling distribution Dy, this
distribution does not have to be balanced or representative of the whole population. However, any concentration
away from a representative, i.e/, unifarm, sampling distribution, poses the risk of delayed reward generation, and a
misspecified acquisition function.or model, in particular one with over-confident predictions, even risks to never
escape local maxima represented insthé initial data collection. The sampling distribution of subsequent points
D4, D,, ..., Dy vary and dependion the combination of model p and acquisition function a. Hence, they cannot be
pre-generated for new/methods rendering label generation a key bottleneck in method development.

Current and Future Challenges

To illustrate these challenges;.let us consider as example the discovery of double perovskite oxides with
high ab initio computed bulk modulus, where we use two popular statistical models, Gaussian process
(GP) regression and random forest (RF), and two BBO data acquisition strategies, expected improvement
[7]1 (El) of rewards and pure exploitation [8] (XT). GPs are the traditional BBO model, because their
Bayesian approach provides a principled quantification of “epistemic” uncertainty, i.e., uncertainty from
a lack of training data related to a specific test point. However, they can struggle already with moderately
high-dimensional representations such as the 24 features used in this example. In contrast, RFs are known
to work robustly well with high-dimensional feature spaces [9], while their ensemble-based uncertainty
guantification does not represent epistemic uncertainty. Interestingly, as shown in Figure 2, CV indicates
that RF has the better in-distribution predictive performance not only in terms of squared error but also

10

Page 10 of 93



Page 11 of 93

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

in terms of log loss, which takes uncertainty into account. Nevertheless, RF is outperformed by GP.in.terms
of the produced discovery rewards, demonstrating that standard in-distribution performance estimation
techniques can suggest sub-optimal methods.

This demonstrates that already method selection is a real challenge for practical problems. However, the
situation is much worse for methodological research that aims to not only determine, which of a small
number of established methods works best, but to test dozens of combinations of models and acquisition
functions. Absent innovation in performance estimation, comparing K methods.interms of their expected
discovery reward across L repetitons of T rounds requires the acquisition of KLT labels in'addition to any
pre-generated initial data. This is because, even when starting from a commoninitial training distribution,
each method produces its own sequence of proposal distributions. Sincethese distributions are unknown
a priori, there is no way to pre-generate data from them, blocking theusual collaborative improvement
process around an initially released dataset. Thus, the prohibitive €ost of expected reward estimation
currently blocks substantial progress in addressing other important challenges like unsound uncertainty
guantification or acquisition function optimization with infinite ¢andidate populations, particularly when
using non-invertible materials representations.

Advances in Science and Technology to Meet Challenges

Given these considerations, a central research goal should be to find reliable approaches for estimating a
method’s expected discovery reward based on existing data. Agimple but infeasible state-of-the-art
strategy is to run a method repeatedly using sub-samples of size n from the given dataset as initial data
and the sub-sample complement as candidate pool;.such that the ratio n/N is close to N/M where M is
the overall population size. That is, one naively uses theiinitial dataset as proxy for the population. For at
least two reasons, this simplistic approach is likely to produce misleading results (see Figure 2, middle
left). Firstly, the real rewards are determined bythe exceptional materials in the tail of the target property
distribution, which are almost certainly not well represented in the available dataset. Secondly, changing
the absolute sizes of initial data and candidate population misestimates model performance and, more
severely, misrepresents the real overwhelming number of uninteresting materials that an efficient search
must largely avoid.

Here, we present an adjusted réwardsestimation approach that provides random initial and candidate sets
with realistic absolute numbersof unrepresented exceptional materials as well as distinct ordinary
materials to distract fromithem: Let X4, ..., X() denote the initial data elements in increasing order of
their target property or figure of merit values. Based on an estimate @ of the unrepresented fraction of
top materials a = #{X€Q: y(X)> y(X(n))}/M create:
1. an initial dataset by drawing a size-N bootstrap sub-sample (Efron, 1979), i.e., sample with
replacement, from the low property value materials X, ..., X(y—jan) @nd
2. acandidate set consisting of an up-sampled and stochastically perturbed set X, ..., XM—[&M] from
the unsampled (out=of-bag) elements of the bootstrap sample and an up-sampled and
stochastically perturbed set XM—[&M]+1: ..., Xy of the held-out top [&N] materials.
The required a-estimate can be obtained via Monte Carlo simulations if the sampling distribution of the
data or at least its level of concentration is approximately known. Alternatively, one can obtain a relatively
small'uniformirandom sample of size U from the population minus the N previously sampled materials
and, following a Bayesian estimation procedure for the success parameter of a binomial distribution, set
a =(€.+ 1)/(U + 2) where C is the number of elements in the uniform sample with a y-value greater
than y(X(y)). As shown in Figure 2 (bottom left), reward estimation with this approach performs much
betterthan naive estimation for our bulk modulus example. It accurately predicts GP with El to produce
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the highest bulk modulus and highest cumulative reward out of the four candidate methods.{Moreover,
outside of GP with XT, which in the real experiment fails to produce any bulk modulus improvement, the
adjusted reward estimation correctly predicts the relative order of all other methods. As'desired, this is
based entirely on the initially available data plus a small number of uniformly sampled data points without
requiring the over thousand additional calculations that were needed to confirm thistesult.

Real Rewards MSE
1.80 0.10
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Figure 2 Performance of Gaussian process (GP). and random forest (RF) models for discovering double perovskites
with high bulk modulus. Left column: Rewards generated by models with either expected improvement (El) or pure
exploitation (XT) acquisition functionnas well as their naive and adjusted reward estimation using @ =
0.0294 determined from a uniform population sample of size 100. Real rewards are mean rewards based ten
repetitions (100 for uniform). [Estimated rewards are the mean of 20 sub-sampling repetitions. All error bars
correspond to 90% confidence intérvals. GP with El has the highest mean reward (1.657 eV /A3) and discovers the
highest bulk modulus (1.723%eV /A3 ‘on average) in 35 rounds, which is qualitatively predicted by adjusted reward
estimation. Right column: Model predictive performance estimates in terms of the mean squared error MSE
Ep,(y(X) — f(X))? where f(X) is the prediction for random input point X with property value y(X), log loss
Ep(Inp(y(X) | X))dwhere p is the modelled density of y(X), and miscalibration indicator EpZ2 with Z = (y(X) —
f(X))/o(X) whereia(X)is theimodelled standard deviation of y(X) given X and Z? > 1 and Z? < 1 correspond to
over- and under-confidence, respectively. Here, all expected values refer to unknown true distributions estimated
via 20 repetitions of sub-sampling with replacement from available data (i.e., bootstrap sampling). In-distribution
performance’is' performance with respect to the initial sampling distribution D, out-of-distribution is with respect
to the uniform mixture of the distributions D, to D5, of the data points examined by the various discovery processes.
While RF'provides a better mean squared error, both in- and out-of-distribution, its out-of-distribution log loss is
increasing with,the size of the training, indicating a failure of its uncertainty quantification.
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Concluding Remarks

The lack of reliable approaches to estimate expected discovery rewards from a given datasét is a,serious
roadblock for the development of active learning methods for materials discovery. |Without such
estimators, the evaluation of each candidate method requires the acquisitionsof a potentially/large
number of labels in addition to any initially available data collection, preventing thetusual collaborative
process that led to fast-paced improvements of predictive model performance withifixed distributions.

Naive reward estimation from the initial data typically fails because of unsuitable data proportions and
underrepresented extreme events. We presented an adjusted approach that, by correcting for these
factors, successfully assesses which combination of acquisition function and statistical model works best
for the exemplary task of double perovskite bulk modulus optimization./This or similar approaches could
become efficiently computable proxies for real method performances @and.thus enable fast community-
driven improvements to data-driven methods for materials discovery.

Acknowledgements
This work was supported by the Australian Research Council (DP210100045) and the ERC Advanced Grant
TEC1p (European Research Council, Grant Agreement No. 740233).

References v

[1] M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C. Felser, M. Greiner, A. GroR,
C. T. Koch, K. Kremer and others, "FAIR data enabling new horizons for materials research,"
Nature, vol. 604, no. 7907, pp. 635-642, 2022.

[2] J. Schmidt, M. R. Marques, SsaBotti and M."A:Marques, "Recent advances and applications of
machine learning in solid-state materials science," npj Computational Materials, vol. 5, no. 1, p. 83,
2019.

[3] D.Donaho, "50 Years of Data Seience;" Journal of Computational and Graphical Statistics, vol. 26,
no. 4, pp. 745-766, 2017.

[4] C.Sutton, L. M. Ghiringhelli, T.Yamamoto, Y. Lysogorskiy, L. Blumenthal, T. Hammerschmidt, J. R.
Golebiowski, X. LiuzA. Zilettiand M. Scheffler, "Crowd-sourcing materials-science challenges with
the NOMAD 2018 Kaggle competition," npj Computational Materials, vol. 5, no. 1, p. 111, 2019.

[5] T.Lookman; P.:V. Balachandran, D. Xue and R. Yuan, "Active learning in materials science with
emphasis on adaptive sampling using uncertainties for targeted design," npj Computational
Materials, vol. 5, no. 1, p. 21, 2019.

[6] B.Shahriari,"K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the
Loop: AiReview of Bayesian Optimization," Proceedings of the IEEE, vol. 104, no. 1, pp. 148--175,
2016.

[7]1 D.Zhan and H. Xing, "Expected improvement for expensive optimization: a review," Journal of
Global Optimization, vol. 78, no. 3, pp. 507-544, 2020.

13



oNOYTULT D WN =

aOuvuuuuuuuuundADdDDDIEDNDMNDIAEDNDMNDAEWWWWWWWWWWNNNDNNNDNNNDN=S S @92 Qa0
VWO NOOCULLhAWN-_rOCVONOOCTULDWN—_,rOCVOONOOCULDDWN=—_,rOUOVUONOOCULPMNWN—_ODOVUONOUVPSD WN =0

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

Roadmap on Data-Centric Materials Science Modelling Simul. Mater. Sci. Eng. (2024)

[8] G. De Ath, R. M. Everson, A. A. Rahat and J. E. Fieldsend, "Greed is good: Exploration an

exploitation trade-offs in Bayesian optimisation," ACM Transactions on Evolutionary
Optimization, vol. 1, no. 1, pp. 1-27, 2021.
®
[9] G. Biau and E. Scornet, "A random forest guided tour," Test, vol. 25, pp. 197--2 01e.

[10] B. Efron, "Bootstrap Methods: Another Look at the Jackknife," Ann. Statist., 7, no. p. 1-26,

4

14

Page 14 of 93



Page 15 of 93

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

Section 2.2 — Reliable Quantification of Uncertainties: The Biggest Challenge for

Data-Centric Materials Modeling?
Luca M. Ghiringhelli? and Mariana Rossi3

! Department of Materials Science and Engineering, Friedrich-Alexander Universitit, Erlangen-Nirnberg,
Germany

2Physics Department and IRIS-Adlershof, Humboldt Universitit zu Berlin, Berlin, Germany

3 MPI for the Structure and Dynamics of Matter, Hamburg, Germany

Status

Artificial-intelligence (Al) and, in particular, machine-learning (ML) modelling’is substantially increasing
the reach and predictive power of material-science simulations. Such strategies are adopted for two broad
classes of applications: a) surrogate modelling of materials properties, €:g., learning energies and forces
of given atomic configurations, where the Hamiltonian is known but computationally intensive to evaluate
(Refs. 1 and 2 and references therein), and b) materials genomics, i.e., the identification of the features
that can explain and be used to model certain materials’ /fproperty (the genes for that material and
property), together with fitting of a predictive model for the given praperty as function of the identified
genes (Ref. 3 and references therein).

Often, the performance of predictive models is focused on/averages (e.g., the mean absolute error), and
little attention is given to the distribution of errars (e.g, via the so-called violin plots) and to the inspection
of the outliers, i.e., the data points that yield the largest prediction errors. Are these data points simply
wrongly measured or could they herald some different physical mechanism that was not captured by the
model trained to yield acceptable average errors?

Scientifically, it is equally important for a ‘ML model to yield predicted values for new data points and,
concurrently, provide reliable uncertainty quantification (UQ). In other words, the model should be able
to recognize if it can make a confident prediction solely from the input representation of a test data point,
identifying whether it is similar to_the data points used for training (interpolatory regime) or dissimilar
(extrapolatory regime). The correct metric for,assessing this similarity is, however, most often unknown
and systematically finding it for a\given ML model is one of the most difficult steps for a reliable
uncertainty estimate.

Several strategies have been'developed for UQ, spanning from rigorous and computationally extremely
expensive Bayesian estimates to pragmatic ensemble-of-models training [4-6]. However, many such
estimates have been.shownito be overconfident when test data are drawn far from the sampling
distribution of the ftraining data [7-9]. This limitation represents a serious drawback for the overall
reliability of ML models in atomistic simulations, where they promise to deliver first-principles quality
results.

Current and:Future Challenges

Besides ithe obvious intrinsic benefit of reliably quantifying the uncertainty of an ML model, these
estimatesare also a vital part of the so-called active-learning (AL) algorithms. AL denotes a strategy where
the model constructs new (training) data points either in regions where a property of interest needs to be
optimized (éxploitation task) or in regions where the model uncertainty is large (exploration task),
resulting in @ more accurate model with a lower amount of training points. In material science, these
algorithms are often desirable, because little initial information is known about a material or materials
classrand calculating labels (properties) is expensive.

15



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

In view of the exploitation task, it is desirable to adopt model classes that allow for a computationally
inexpensive optimization (e.g., Gaussian processes). However, the biggest challenge in both surrogate
modelling and materials genomics is the UQ in extrapolative regions for the exploration task. In practice,
recognizing that a data point belongs to the extrapolation region is the actual conundrum. Statistics and
information-theory modelling approaches rely on the fact that training data are representative of the
overall population where predictions will be made. In both surrogate modelling and materials genomics
applications, the unseen data may carry physical information that is not presentiin the model training.
Electronic-structure data carries a further challenge due to its intrinsic aleatoric, uncertainty stemming
from numerical convergence and basis sets. It is often difficult, but necessary, to separate it from the
model (epistemic) uncertainty, for defining whether training data refinement.is needed or whether the
model can be really improved. ~

An aspect that cannot be disregarded in this discussion is that the definition of the metrics for uncertainty
guantification is not uniform across different studies. These metrics differ on;their sensitivity to outliers
and performance with respect to estimating true errors [14]. Systematic testing of these metrics over a
wide range of materials and properties is not yet available to the community. This hinders further progress
in the field and should be urgently tackled by the community: As for.any physical modeling, one does not
expect a model to be predictive outside its physical scope. Xet, in the traditional development of physical
theories (sometimes referred to as “model-based”, as opposed. to “data-centric”, approach) describing
the limit of validity of a theory is an essential part of it. Such limits of validity are typically expressed as
inequalities as function of key parameters governing the/physical property or process. We identify the
data-centric identification of the limits of validitysof an ML model as, arguably, the biggest challenge in Al
applied to materials science.

Advances in Science and Technology to Meet Challenges

The full acceptance of ML tools within thesxcommunity, for both surrogate modeling and materials
genomics, may depend on two interrelated aspects: The introduction of algorithms for a) reliable UQ,
especially for data points that are outside the training distribution and b) finding explanations why any
given outlier is an outlier.

For the first aspect, in the realm of surrogate model potentials, Baeysian-based frameworks offer an
intrinsic definition of uncertainty, v?ﬁich can be judiciously used [11]. For neural-network architectures,
committee ensemble models can'deliver some degree of uncertainty prediction. In both cases, correctly
accounting for correlations in the training set data is essential for avoiding overconfident model
predictions [12], but UQ can. still be unreliable for out-of-sample data points. A promising alternative is
the use of deep ensemblesior variations thereof. Finally, because the surrogate model is trained to predict
energy and forces, but these quantities are almost never the observable that is being sought in a
simulation, advances in error definition and propagation through derived properties have been gaining
much attention [13].

For the second aspect, a promising route is the use of subgroup discovery for the identification of the so-
called domains of applicability (DAs, regions of the input space where a predictive model yields small
errors) [10], which are given in form of descriptive rules, i.e., inequalities over a set of features, identified
among-a larger set of candidates. Although it has been shown that DAs can be found and the descriptive
rulgs give insight on the analyzed ML models, the method has not been yet further developed to
systematically identify outliers and exploited to improve the underlying ML model, e.g., in an AL fashion.
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Concluding Remarks

The recent literature has shown that, with carefully selected training data sets and physical expertise
(domain knowledge), the resulting ML predictive models allow for important discoveries in materials
science. However, unleashing the full potential of data-centric approaches and fulfilling their promise to
deliver results of ab initio quality requires that the uncertainty of the predictions be quantified. This UQ
needs to be robust and reliable and the related algorithm should be relatively straightforward to
implement, such that users have a transparent access to it.

Although reliability has to be prioritised, any UQ algorithm must not add a substantial camputational cost
to the ML model it is being applied to, since in materials modelling efficiency is often @ core requirement
to achieve meaningful simulations. This observation applies both to theirealm of surrogate modelling
where, e.g., millions of force evaluations with uncertainty quantification need to be carried out, and to
the realm of materials genomics where, e.g., millions of candidate systems'need to be classified including
this quantification. Achieving such a framework requires the community te“adopt more widespread
standards and work together on benchmarking efforts targeted at error prediction.

Reaching this goal would enable the systematic, fully data-centric.improvement of the learned model, via
the active-learning strategies, and the assessment of the limits of validity of the learned models.
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Status

Artificial-intelligence (Al) approaches in materials science usually attempt @ description of all possible
scenarios with a single, global model. However, the materials that are usefulifora given application, which
requires a special and high performance, are often statistically exceptional. Fortinstance, one might be
interested in identifying exceedingly hard materials, or materials with band gap within a narrow range of
values. Global models of materials’ properties and functions are designed to perform well in average for
the majority of (uninteresting) compounds. Thus, Al might well overlook theuseful materials. In contrast,
subgroup discovery (SGD) [1,2] identifies local descriptions of the materials/space, accepting that a global
model might be inaccurate or inappropriate to capture the usefubmaterials subspace. Indeed, different
mechanisms may govern the materials’ performance across the immense materials space and SGD can
focus on the mechanism(s) that result in exceptional performance.

The SGD analysis is based on a dataset P, which contains/a known.set of materials. P is part of a larger
space of possible materials, the full, typically/infinite population P. For the materials in P, we know a
target of interest Y (metric or categorical), such as,a materials’ property, as well as many candidate
descriptive parameters ¢ possibly correlated with the underlying phenomena governing Y (Fig. 1). From
this dataset, SGD generates propositions,.r about the descriptive parameters, e.g., inequalities
constraining their values, and then identifies selectors o, conjunctions of m, that result in SGs that
maximize a quality function Q:
0(BSG) = (SS—G)V . (u(sc,ﬁ))1 " (Eq.1)

Sp

In Eqg. 1, the ratio sg;/sp is called tm coverage, where sg; and sp are the number of data points in the
SG and in P, respectively. The utility function u(SG, P) measures how exceptional the SGs are compared
to P based on the distributions of Y/values in the SG and in P. Q establishes a tradeoff between the
coverage (generality) and the utility (exceptionality), which can be tuned by a tradeoff parameter y.
Typically, the identified selectors only depend on few of the initially offered candidate descriptive
parameters. The identified SGiselectors (or rules) describe the local behaviour in the SG and they can be
exploited for the identification of new materials in P.
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Figure 1 Subgroup discovery (SGD) identifies descriptions of exceptional subselections.of the dataset. These
descriptions (rules) are selectors o constructed as conjunctions of propositions 7 about the data. The symbol A
denotes the “AND” operator.

Current and Future Challenges

The potential of SGD to uncover local patterns in materials science has been demonstrated by the

identification of structure-property relationships, [3] and by the discovery of materials for heterogeneous

catalysis. [4] Additionally, using (prediction) errors as target in SGD, we identified descriptions of the

regions of the materials space in which (machine-learning) models have low [5] or high errors. [6] Thus,

the domain of applicability (DoA) of the models could be established. Despite these encouraging results,

the advancement of the SGD approach in materials science requires addressing key challenges:

= The quality function introduces one generality-exceptionality tradeoff, among a multitude of possible
tradeoffs that can be relevant for a given application and that can be obtained with different y. For
instance, the required hardness of a material depends on the type of device in which it will be used
and the DoA of a model depends on the accuracy that is acceptable to describe a certain property or
phenomenon. However, choosing the appropriate y and assessing the similarity - or redundancy -
among the multiple rules obtained with:different tradeoffs are challenging tasks.

=  Widely used utility functions assess the exceptionality of SGs by comparing the data distribution of
the SG and that of P via a single@mmary—statistics value. For example, the positive-mean-shift utility
function for metric target favors the identification of SGs with high Y values only based on the means
of the two distributions. Thus, it is'often assumed that the distributions are well characterized by the
chosen summary-statistics value and that P is representative of the full population P. However,
distributions in materials s¢ience are typically non-normal and P might not reflect the infinitely larger,
unknown P. This calls“for the consideration of utility functions that circumvent the mentioned
assumptions.

= The mechanisms governing materials can be highly intricate and the relevant descriptive parameters
to describe a certain materials’ property are often unknown. Thus, one would like to offer many
possibly.relevant candidate parameters and let the SGD analysis identify the key ones. However,
optimizing the quality function is a combinatorial problem with respect to the number of descriptive
parameters and efficient search algorithms are therefore crucial. [7]

Advances in'Science and Technology to Meet Challenges

In order to address some of these open questions, we approach the SGD as a multi-objective-optimization
problem for the systematic identification of SG rules that correspond to a multitude of generality-
exceptionality trade-offs. Coherent collections of SG rules are obtained by considering the Pareto front of
optimal SGD solutions with respect to the objectives coverage and utility function, as illustrated for the
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example of identification of perovskites with high bulk moduli in Fig. 2. Once the coherent collections of
SG rules are identified, the overlap between SG elements can be used to assess their similarity. A high
similarity between SG rules might indicate that the rules are redundant. Thus, the similarity analysis can
be used to choose the SG rules that should be considered for further investigation.or exploitation.
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Figure 2 Left panel: A coherent collection of SG rules describing ABO3 perovskites with high bulk modulus (B,) is
identified at the Pareto front of SGD solutions with respect to the objectives coverage and the utility function

cumulative Jensen-Shannon divergence. Right panel: The identified rules constrain the values of the radiii of the s

orbitals of isolated A, B and B*! species (75 4, 7 p @and rscgt, respectively), the electron affinity and ionization potential

of isolated B species (EAg and IPg, respectively), the expected oxidation state of A (n,), the equilibrium lattice
constant (ay), and the cohesive energy (Ej).

Noteworthy, the cumulative Jensen-Shannenidivergence (Ds) [8] between the distribution of bulk moduli
in the SG and in the entire dataset is.used as quality function in the example of Fig. 2. D;s assumes small
values for similar distributions and increases as the distribution of target values in the SG is, e.g., shifted
or narrower with respect to the distribution of the entire dataset. Crucially, D;s does not assume that one
single summary-statistics' value,.represents the distributions. Divergence-based utility functions
addressing, e.g., high or low.target values, will thus be an important advance. We note that the utility
function might also incorporateiinformation on multiple targets or physical constraints that are specific
to the scientific question being addressed. [9] However, in order to ensure that the training data is
representative of the relevant materials space one would like to cover, the iterative incorporation of new
data points and training of SGD rules in an active-learning fashion might be required.

Concluding'Remarks

SGD can/accelerate the identification of exceptional materials that may be overlooked by global Al models
becauseitfocuses on local descriptions. However, further developments are required in order to translate
the/SGD concept to the typical scenario of materials science, where datasets might be unbalanced, or not
belrepresentative of the whole materials space and the most important descriptive parameters are
unknown. The multi-objective perspective introduced in this contribution provides an efficient framework
for dealing with the compromise between generality and exceptionality in SGD. The combination of this
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strategy with efficient algorithms for SG search and with a systematic incorporation of new data points to
better cover the materials space will further advance the Al-driven discovery of materials.
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Status

Modern high-performance computing (HPC) systems are,evolving towards greater heterogeneity and
diversification. The heterogeneity is due to the use of specialized processing units for specific tasks,
nowadays with a strong (commercial) focus on Al-specific algorithms. This strategy, led by companies like
Nvidia with their (general-purpose) GPUs and\tools like. CUDA, is driven by the need to enhance
computational performance while containing electrical-power consumption and total cost. Present-day
exascale and pre-exascale systems commonly integrate'GPUs with CPUs of different architectures and
vendors. Additionally, alternative accelefators like tensor processing units (TPU), neural processing units
(NPU), field programmable gate arrays (FPGA), and emerging technologies like neuromorphic and
guantum processors add to the array of high-performance computing options. These will further
contribute to the heterogeneity and. diversification of high-performance computing but have not yet
broken into scientific computing. Except.for the quantum processor, the other accelerators adhere to
classical architectures characterised by varying levels of parallelism.

To tap the power of accelerators, Ahodes must incorporate efficient internode communication schemes
(like the well established MPI)fand Jalign with programming models associated with the available
accelerators. Examplesyinclude CUDA for Nvidia GPUs, ROCm for AMD GPUs, or SYCL/DPC++ for Intel
GPUs. The neural network-based Al codes often rely on the availability and development of frameworks
such as pyTorch and tensorflow, where the developers of these frameworks take the burden to adapt the
framework to accelerators. For instance, pytorch provides versions of its framework with support for
CUDA or ROCm backends. However, not all of the Al methods can be seamlessly translated into a neural-
network representation and not all applications are well suited for neural networks. Consequently,
significant adaptation is required, leading to limited accelerator support. For example, the widely used
decision-tree=based Aldibrary, XGBoost, offers a CUDA version, but is still lacking a ROCm equivalent.

Current and Future Challenges

Thecurrent challenge involves developing performance-portable and maintainable code for Al methods,
in (general,“on HPC systems. This task will become even more challenging with the increasing
heterogeneity of HPC systems. In a typical HPC system, internode communication is necessary and the
message passing interface (MPI) has proven to be a flexible and effective solution for doing this. The so-
called»MPI+X paradigm combines MPI with intra-node parallelization models and/or accelerator
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offloading models (X). The choice of accelerator offloading model is largely determined by the specific
accelerators in use, together with problem requirements and personal taste.

We summarise various strategies that have been developed to address this challenge in Figure 1. For
offloading work onto an accelerator, the most straight-forward approach would be to write thealgorithms
with accelerator-specific interfaces such as CUDA. While this in principle allows toftap all\(performance)
capabilities, these interfaces are limited to specific accelerators. Given the abundance of existing CUDA
code in scientific computing, AMD and Intel have introduced tools to facilitate theitranslation of such code
into their HIP/ROCm and SYCL/DPC++ language, which more or less resemble the semantics of CUDA.
Moreover, the HIP and SYCL programming models even claim some universality by enabling code
execution not only on AMD or Intel GPUs, respectively. However, the viability and-broader adoption of
these comparably recent approaches remains to be demonstrated.

An alternative approach involves the utilisation of architecture-independent.- and typically more abstract
- programming models, which come in various forms. One category employs compiler directives to
manage loop parallelization and data management. Examplestinclude,OpenMP [6] and OpenACC [7].
Programming with these directives aims at a single codebase compatible with different accelerators.
Directive-based approaches can also facilitate the reusé of, existing' CPU-based code and enable an
incremental code-porting workflow by successively “offloading” performance-critical parts of the code.
Success-stories have been observed adapting these models'[8]. 4

Another approach are C++ portability frameworks such as Kokkos[1] and RAJA[5]. They provide high-level
parallel abstractions such as the parallel implementation of the traditional “for”, “reduce”, and “scan”
operations, which the framework maps_to specific hardware backends that use the corresponding
platform-native programming models. These may;.in\addition, serve as forerunners for corresponding
extensions to be added to the C++ standard.

Strategies to port codes

4 Code >
3l CuDA ROCm .,
NVIDIA AMD Intel
GPUs GPUs GPUs
\
OpenACC
OpenMIP
NVIDIA GPUs, AMD
2. Code GPUs, and more
- J
\
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3. Code’ | Parallel NVIDIA GPUs, AMD
' Abstractions GPUs, and more

o
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Figure 1 Strategies to port codes onto diversified and heterogeneous high-performance computers< Translators
convert from one programming model to another, directives are compiler instructions to dictate how a'piece of code
should be compiled, and parallel abstractions define how a computation workload may be calculated in parallel.
The library will then map the abstractions to GPUs.

Advances in Science and Technology to Meet Challenges

As an example of how the code-portability challenge can be met for an originally developed Al application
which is different from deep-learning, we outline the porting of an implementation of the sure-
independence screening and sparsifying operator (SISSO) to GPUs using Kokkos. SISSO'is a combination of
symbolic regression and compressed sensing. It first generates a list<0f up to_trillions of analytical
expressions from an initial set of primary features and mathematical opera%rs. It then uses an £
regularised least squares regression to find the best low-dimensional linear model from the generated
expressions. In preparation for (pre-)exascale computing, we converted /the most computationally
intensive components of SISSO, i.e. expression generationgand £, regularisation, in our initial
MPI+OpenMP code to a MPI+OpenMP+Kokkos implementation, in‘order to demonstrate scalability and
portability on exascale-ready HPC platforms.

Throughout the development, we refactored the data structuresto suit the access pattern of accelerators,
and carefully optimised the memory migration between host and device. This results in an approximately
tenfold speedup by the GPUs of two generations of Nvidia GPUs for a test problem with ~60 billion
generated features and ~36 billion least squares regression problems (see Figure 2). The code also scales
to at least 64 nodes, see Figure 2. We expect that scaling to much higher node counts can be achieved
with increasing the size of the training dataset. Notably, the same code also runs on AMD Instinct MI200
GPUs with a similar speedup without any cade.modifications, except for compilation settings. Given that
the Kokkos framework supports backends for,CUDA, HIP, SYCL, OpenMP, we expect our code can also be
smoothly ported to other accelerators. Since, Kokkos is developed and maintained with strong
commitments by the US DOE laboratories, we expect it to receive continuous support and will extend to
future HPC hardware.

One key question when usingsan abstraction framework is how close its performance comes to the
“native”, i.e. architecture-specificporogramming models. In our case, we compared the performance of
our batched least-squares-regression algorithm (for €, regularization) to a native CUDA implementation
co-developed with Nvidia engineers: This new CUDA code is about twice as fast as the Kokkos version.
However, it is worth noting that Kokkos' continuous development is promising. For instance, during our
development, transitioning,from Kokkos version 3 to version 4 resulted in a 10% speedup without
requiring any codexmodifications from us in the application code.
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Figure 2 The process and performance of porting SISSO++ on different HPC platforms ‘with Kokkos library. The scaling
test is performed on (1), the Talos cluster at MPCDF up to 64 nodesswith 40.Intel Skylake CPU cores and 2 Nvidia
V100 GPUs on each node, and (2), the Raven cluster at MPCDF, on up to 64 nodes with 72 Intel Xeon Icelake CPU
cores and 4 Nvidia A100 GPUs on each node.

Concluding Remarks S

The growing diversity and heterogeneity in (pre-)exascale‘high-performance computing poses significant
challenges to software developers, including perfermance portability and code maintainability. To tackle
these issues, developers have adopted various strategies, such as code duplication (typically abstracted
internally by some application-specific interfaces), (semi-)automatic code translation, directive-based
portability models, and high-level abstraction frameworks. For our SISSO++ code, which is an Al
application not readily amenable to the well-established (and portable) Al frameworks like, e.g.,
Tensorflow, we opted for the MPI+X paradigm. which is well established in HPC, specifically using
MPI+OpenMP+Kokkos. The usage of the Kokkos abstraction framework enhances both the code
performance and portability, and italso helps reduce code-maintenance burdens. The Kokkos framework
is also expected to pave the way for adopting the parallel abstract concepts in future C++ language
standards. Due to the generality. ofi.be Kokkos framework, and already proven for SISSO++ by a seamless
transition over two generatiohs of Nvidia GPUs, we anticipate that our SISSO++ code will easily adapt also
to future HPC architectures. Our'porting strategy outlined here can serve as an example for other non-
neural network based ‘Alcode development efforts.
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Status

Materials design typically targets an application that requires the synthesis of asmaterial which is
characterised by measurable and reliable properties and functions that are maintained during its use.
Inexpensive and abundant raw materials, reproducibility, and scalability are decisive factors for success.
The relationships between the structure and the function of a material‘aredusually complex and intricate
and they prevent a strictly in-silico design for realistic conditions. Thus,the experimental input is crucial.
Artificial-intelligence (Al) methods have the potential to reduce the significant efforts related to the
synthesis and characterization of materials, accelerating materials discovery. However, rigorously
conducted experiments that provide consistent training data for Al aré indispensable. They directly
determine the reliability of generated insights.

The applications of Al in materials science are diverse.*? For example, the optimization of synthesis and
functional properties in high-throughput experiments requires mathematical models which are iteratively
trained in order to ensure an efficient experimental design. The elucidation of materials structures can be
facilitated by Al. Besides, new materials can be predicted viathe identification of correlations and patterns
in experimental and computational data sets.' This leads to a variety of data set structures. The
interdisciplinary nature of materials science and the multitude of experimental techniques applied
produce a broad spectrum of data formats;. all'of'\which can ultimately be traced back to spectroscopic,
thermodynamic or kinetic relationships and are,already standardised to some extent. Experimental data
in materials research are usually not."big data", which places additional demands on the methods of data
analysis.

However, if the data becomes FAIR2i.e., Findable, Accessible, Interoperable, and Reusable and open, i.e.,
generally accessible after publicatio\n, machines can systematically analyse this information beyond the
boundaries of a single laboratory/and field of research, learn from it and develop disruptive solutions.* A
particularly sustainable,generation of/insight is achieved through the use of interpretable Al algorithms
that uncover descriptors, ie., correlations between key physical parameters and the material properties
and functions.

Current and Future Challenges

Predictions could be morereliable if the materials function of interest was determined exclusively by the
bulk properties of the material. However, when the material’s function is affected, or even governed by
interfacial and kinetic/phenomena, such as in case of batteries, sensors, biophysical applications or
catalysis/ the relationships between the materials parameters and the function become extremely
complex. On the one hand, this is caused by the strong influence of defects and minor impurities. On the
other’hand, the.material properties respond to the fluctuating chemical potential of the environment in
which they are used. This gives metadata such as the sequence of experimental steps and the time frame
a particular importance.®

Innorder to make experimental data useful for a digital analysis, the measurements have to follow so-
called “standard operating procedures” (SOPs), as is already common practice in some research areas. An
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important cornerstone for such workflows is the introduction of certified standards that enables the direct
evaluation of measured data when they are published together with the results of the standard.
Awareness of the need for rigorous work and standardization of experiments has grown considerably in
academic research in recent times and it is reflected in initiatives for standardized measurement
procedures and test protocols (Reference 4 and references cited therein).

The currently most common form of publication in scientific journals does ot support the direct
electronic access to the data. The use of natural language processing (NLP)-tools is,one approach to
analyse and understand human language in published articles.® These computer science techniques can
help to identify trends, but do not provide consistent data sets, as data in publications are not presented
uniformly, for example often only in the form of graphical representations, and data‘as well as metadata
are not necessarily provided completely.

The most effective solution to enable the use of experimental data in Abis to apply machine-readable
SOPs in automated experiments. In this way, standardized and complete data and metadata sets can be
generated that can be shared after publication in repositories;asis already widely done in computational
materials science and synthesis of complex molecules. The latterialso requires the development of
ontologies. We note that digital SOPs are an important preliminary step for enabling autonomous research
by robots in the future.’

Advances in Science and Technology to Meet Challenges

The most common Al methods require large amounts of data, and only the smallest part of available data
in materials science meets the quality requirements for. data-efficient Al. In a use case study,® we have
shown how a “clean” data-centric approach in interfacial catalysis enables the identification of descriptors
based on a data set that can be generated in theiexperimental practice with reasonable effort (Figure 1).
Here the term “clean data” refers to the fact'that the considered materials were carefully synthesized,
characterized, and tested in catalysis according te SOPs reported in an experimental handbook.®

Large-scale applications in the field of energy storage such as water splitting and the efficient use of
resources in the production of consumer goods are generally based on highly complex catalysed reactions
at interfaces. The selective oxidation'of the'short-chain alkanes ethane, propane and n-butane to valuable
olefins and oxygenates was chosén as‘an example of a reaction type that is known for its complicated
reaction networks. Contrel over the selective formation of desired products in this network and the
minimization of CO, formation requires sophisticated catalyst materials and adapted reaction conditions.

Experimental procedures that capture the kinetics of the formation of the active phase from the catalyst
precursors have been designed and specified in a SOP.® A typical set of twelve chemically and structurally
diverse catalyst materials<was included in the study that combines rigorously conducted clean
experiments (in catalyst ‘synthesis, physicochemical characterization and kinetic evaluation with
interpretable "Alf using the sure-independence-screening-and-sparsifying-operator (SISSO) symbolic
regression approach.? Previously obtained empirical findings are correctly reflected by the data analysis,
which proves the value of the data set.

Interpretable, Al goes far beyond empirical interpretations. It addresses the full complexity of the
dynamically changing material and the full catalytic process by identifying non-linear property-function
relationships described by mathematical equations in which the target catalytic parameters depend on
several key physicochemical parameters of the material measured in operando and after different stages
in the life cycle of the catalyst. These key descriptive parameters, that the Al approach identifies out of
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many offered ones, reflect the processes triggering, favouring or hindering the catalytic performance. In
analogy to genes in biology, these parameters are called “materials genes” of heterogeneous catalysis,
since they describe the catalyst function similarly as genes in biology and relate, for instance, to the color
of the eyes or to health issues. Thus, these materials genes capture complex relationships. They describe
a correlation (with uncertainties) but they do not provide the detailed description,of the underlying
processes.

This data-centric approach discloses, which of the often time-consuming and expensive characterization
techniques are important for the catalyst design. The chemist is also provided with practical guidelines for
optimizing certain material properties to further improve the catalyst’s function.

~
systematic clean experiments interpretable artificial intelligence
precursor reaction conditions catalyst ldentification of correlations as nonlinear

analytical expressions of key

synthesis | rapid activation ; fupctlonal : performance (Qysicochemical paramerses
(kinetic) analysis
; wm Y Vg 4 N,
(5D fresh | “activated spent L gz
sample sample sample g D
- ' 5%
raw materials \If \lf e S S E S
: : S : ; | : o8
solvents ex situ analysis Ls| insitu analysis [ @b . '\ 7 =
additives, etc. parameter: 1 L=
= spectroscopy = spectroscopy ! lmprovgd 5 ®
L miCrOSCOpy . minOSCOpy il material o 5
= diffraction i =1
. ?r?esn?rgztll(;:alysis . catalyst design d; = f (key parameters)

Figure 1 Clean experiments designed.to capture the kinetics of the formation of the catalyst active state under
reaction conditions are used to generateia consistent and detailed data set, which is then analysed via the sure-
independence-screening-and-sparsifying-operator (SISSO) artificial intelligence (Al) approach in order to uncover the
key physicochemical parameters describing the catalytic performance. The figure is reproduced from reference 8
CC-BY 4.0).

( ) ~

Concluding Remarks

Reproducibility is probably the most basic and crucial requirement of materials science. Al is an efficient
tool in materials research and development, but its application requires that we change the way we work
and deal with data. Complete; uniform and reliable data sets are required that comply with the FAIR
principles. These can be obtained by working across laboratories according to standard operating
procedures ("handbooks"), which also include the analysis of benchmarks. Important elements for the
gradual development of'autonomous materials research, in addition to technical progress in robotics,
are the use of machine-readable handbooks, automated experiments with standardized data analysis and
upload to local data infrastructures as well as the standardized publication of experimental data in
overarching open repositories.
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Status

The quality of input data is critical for data driven science. Detailed, high-level (i..e, quantum many-body
theory based) simulations, although expensive, can provide immensely valuable data on which other
methods can build, if three main issues can be addressed: First; the system size of accurate quantum-
mechanical simulations is often restricted by the computationalhcamplexity of the underlying simulation
algorithms. Second, the accuracy of the predicted data for new complex materials critically depends on
the accuracy of the specific physical model chosento derive quantum-mechanical simulation data, limiting
subsequent data-driven models. Third, the number ofiatomic-scale configurations that must be covered
for a statistically sound description grows dramatically with the complexity of a material, necessitating
more and faster high-level calculations tomprovide input data for subsequent, Al-driven research.
Simulations of real-world materials require‘addressingall three points at the same time.

Hybrid density functionals (hybrids) have emerged as a practical reference method for ab initio electronic-
structure-based simulations because they. resolve several known accuracy issues of lower levels of
density-functional theory (DFT)| while offering affordable computational cost on current high-
performance computers. Thererarestwo main computational bottlenecks for atomistic simulations using
hybrid DFT: evaluating the non-local exact exchange contribution and finding the solution of a generalized
eigenvalue problem (matrix diagonalization). Here, we discuss advances and perspectives for both
challenges as recently implementediin the all-electron code FHI-aims [1].

The current reach ofthese methods is documented by run times and scaling of hybrid DFT simulations for
several challengingimaterials, including hybrid organic/inorganic perovskites [2] and organic crystals, with
up to 30,000 atems (50,000 electron pairs) in the simulation cell. Despite such large systems sizes, the
simulations cahn be run withhmoderate computational resources.
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Figure 1 Average runtime to evaluate the exchange operator (blue bars) and the ELPA eigenvalue solver (red bars)
per self-consistent field iteration. The HSEO6 hybrid functional was.used for all simulations. The following systems
were simulated (from left to right): phenylethylammonium lead iodide (PEPI) with a defect complex [2], a 4x4x4
paracetamol supercell, a 15,288-atoms Ice XI supercell (inleuding a force evaluation), and a 30,576-atoms Ice XI
supercell. All calculations were carried out onithe Raven HPC cluster at the MPCDF using Intel Xeon IceLake (Platinum
8360Y) nodes with 72 cores per node.

Current and Future Challenges

A resolution-of-identity-based real-space implementation of the exact exchange algorithm [3-5] was
optimized to allow for much improved exploitation of sparsity and load balancing across ten thousands of
parallel computational tasks.<Resultshshow drastically improved memory and runtime performance,
scalability, and workload distribution on CPU clusters. The improvements pushed the simulation limits
beyond 10,000 atoms, .compared to an earlier implementation that reached system sizes around 1,000
heavy atoms [4]. This new.code implementation can perform computation of energy, forces, and stress
for periodic and non-periodic'systems for several fashions of hybrid density functionals. In addition, for
materials including heavy elements, perturbative spin-orbit coupling can be combined with the hybrids
[6]. Due to the inherent O(N®) scaling, the solution of the eigenvalue problem beyond 10,000 atoms
becomes the bottleneck.during the simulations.

The direct eigensolver/library ELPA [7] has long offered unrivalled performance for parallel matrix
diagonalizations. Extensive profiling, fine tuning and work on portability was carried out to adapt ELPA to
the most current HPC architectures, further reducing the time for the diagonalization bottleneck for
simulation sizes up to many thousands of atoms. Key to future success of ELPA is exploiting full capabilities
of GPU-accelerated high-performance clusters. ELPA already has a well-established support for NVIDIA
GPUs [8,9]. Recently, we ported ELPA to AMD GPUs, enabling the solution of a problem with a matrix size
with leading dimension of more than 3 million on 1024 AMD-GPU nodes of the LUMI pre-exascale system
at.CSCin Finland.
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Although the library APIs for AMD and NVIDIA are very similar, we find very different run-time and
performance behaviour for the ELPA code. Thus, a new abstraction layer driving the GPU computations
within ELPA has been implemented. Below this abstraction layer, the vendor specific implementations co-
exist and can be independently developed and optimized. We believe that thisvery flexible approach
facilitates the integration of upcoming new architectures, e.g., Intel GPUs.

Similar GPU strategies will be needed for the exact exchange algorithm, but are not yet exploited, as the
porting of CPU code to GPU architecture is not at all straightforward. In the.CPU implementation, the
inherent sparsity of real-space approach keeps the size of matrices used for dense matrix-matrix
operations moderate. Thus, with the current algorithm the full capabilities.of GPUs cannot be used, and
speedups would be limited by communication. An overhaul of the algorithm, and:GPU-specific storage
and communication patterns will be needed to make it amenable for hetefogeneous, GPU-accelerated
architectures.

Advances in Science and Technology to Meet Challenges

The achievements for hybrid DFT simulations demonstrated above isia big success and paves the way to
efficient use of exa-scale resources in the future. Still, the"accuracy of hybrids is limited by construction.
The required fraction of exact exchange is an open point. A related question is the treatment of the
electron correlation — hybrid density functionals addressing this’point only insufficiently. Approaches
using range-dependent parameters for the fraction of exact exchange or double hybrids are a way forward
to improve the accuracy of the ab initio model. The GW approach and the CCSD method provide much
more accurate access to electronic structure quantitiesiper se, but the complexity of these methods will
limit their application to smaller system sizes for the foreseeable future.

From a technological point of view, we think:that sufficiently large memory per node and task will be
needed for any enhanced electranic structure method, i.e., usually non-local operators are evaluated,
which require finding a good balance between communication across nodes and tasks and storing data.
Here, the tighter integration of accelerators within the HPC node, as, for example, expected for the
upcoming Nvidia (Grace-Hopper)'and AMD (MI300) technologies, looks very promising. There are two
main hurdles for scientific software devélopers: library APIs for solving mathematical and physical
problems are partially vendor-specificand/or not performance optimal. Addressing both points increase
the reach of scientific code (and‘in turn reduces the need for code duplication) and will reduce the overall
cost of research significantly. As a difficult task remains the optimization of communication patterns
between CPUs and GPUs. for specific architectures. Also new workload distribution models might be
needed to better use all available resources, e.g., compute with GPUs and CPUs at the same time (right
now often CPUs afe idling while GPUs do the work).

Concluding Remarks

The new exact exchange algorithm implemented in FHI-aims and the highly optimized ELPA library enables
simulations of large system sizes at moderate runtimes. On the one hand, these implementations allow
one to increase statistical sampling to address the huge configuration space that comes with the large
systemisizes»On the other hand, the accuracy of hybrid DFT simulations is sufficient for many applications.
We believe that with the aid of future exa-scale resources in combination with sophisticated data-driven
models, hybrid functionals will be established as default method for DFT simulations of materials. In
general, exploiting sparsity is key to low-scaling electronic structure methods for large scale simulations.
Real-space algorithms using localized wavefunctions are especially well suited. Nevertheless, the data
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distribution and communication pattern may need architecture-specific optimizations that complicates
software design and code maintenance.
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Status

When, at the end of 2014, the NOMAD Repository & Archive [1, 2Jawent online, it was the first data
infrastructure in computational materials science that fulfilled what was laterand independently defined
by the acronym FAIR (Findable, Accessible, Interoperable, and Reéusable). This definition and the request
that scientific data should be FAIR was introduced in a very general scientific-data context by Wilkinson
et al. in 2016 [3]. As of today, the NOMAD Repository stores input'and output files from more than 50
different atomistic (ab initio and molecular mechanics) codes and totals more than 13 million entries,
uploaded by over 500 international authors from their local'storage, or from other public databases. The
NOMAD Archive stores the same information, but converted, normalized, and characterized by means of
a metadata schema, the NOMAD Metainfo [4],.which allows for the labeling of most of the raw data in a
code-independent representation. One of the'benefits of normalized data is that they are accessible in a
format that makes them suitable for direct artificial-intelligence (Al) analysis.

NOMAD also offers the Al toolkit [5], a JupyterHub-based platform for running notebooks on NOMAD
servers, without the need for any registration.or downloaded software. The data-science community has
introduced several platforms for performing Al-based analysis of scientific data, typically by providing rich
libraries for Al. General-purpose frameworks such as Binder [6] and Google Colab [7], as well as materials-
science dedicated frameworks such as pylren [8] , AiidalLab[9] , and MatBench [10] are the most used by
the community. In all these cases, a big effort’is devoted to education via online and in-person tutorials.
The main specificity of the NOMABR ‘Al toolkit is its connection with the extensive NOMAD Archive.
Moreover, together with the NOMAD Qasis [2], users can work with their private as well as community
data within the same software platform and using the same API.

Current and Future Challenges

Besides providing the frameworkfor performing custom-made Al analysis, the NOMAD Al toolkit provides
a set of tutorial notebooks introducing users step by step into both the most popular and widely known
Al methodologies; with showcase applications in materials science, and into the more advanced ones, i.e.,
methodologies that have been published in the latest years. Due to the very nature of the Jupyter
technology, these'tutorial notebooks are interactive, in the sense that users can modify lines of codes and
check theteffect of the modifications. Also, the tutorial notebooks have direct access to the whole NOMAD
data, sothat users can apply the learned techniques to new data, including data uploaded by them.

Importantly,.the Al toolkit includes notebooks that present actual Al software as used for producing
results for peer-reviewed publications. This feature suggests that scientific reproducibility can reach its
full potential, at least for Al analysis tools. For instance, users can re-train Al models with exactly the same
set of hyperparameters as used in the original publications, on exactly the same data, including the
train/validation/test set splits. A piece of information that nowadays is not required in peer-reviewed
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publications. However, such addition would be scientifically appropriate as it would directly‘enable the
reproducibility of reported results. The NOMAD Al toolkit enables this important step.

As already noted by the proponents of the FAIR principles for scientific software [11], providing complete
information on the algorithms and software used to analyze data is all but trivial4This is particularly
challenging if one wants to provide live software that can be run on demand, mainly because pieces of
software, e.g Python scripts for an Al analysis, require a virtual environment where libraries that are used
for efficiently performing certain routine tasks are installed. These libraries get-repeatedly updated, and
unfortunately backward compatibility is not necessarily ensured. This means that, the same set of
commands that at release time allows to install and run a software, at a later point in time may not yield
a correct installation. Besides, in the case that the software is run in aontaineri(as for the NOMAD Al
toolkit), when a new container is created the software for the container platform gets updated. In other
words, special care and planning has to be devoted to maintaining the, whole ecosystem of software so
that exactly the same datasets yield in time exactly the same Al models‘and therefore exactly the same
predictions over the same test data.

Advances in Science and Technology to Meet Challenges

Platforms like the NOMAD Al toolkit also foreshadow the scientific-reproducibility utopia. Much of the
technology that allows for reaching these goals still needs to. bedeveloped, but some important steps
have been taken already. First of all, Jupyter notebooks can'be uplaaded to NOMAD as easily as the data.
The upload timestamps and other provenance metadata that allow for the unique identification of each
analysis script. Furthermore, users are encouraged to provide a rich set of metadata that are made
searchable and therefore will allow other users'to locate the notebooks by e.g., model class for the Al
analysis, or by used libraries, including their versions. In its current state, the NOMAD Al toolkit allows for
the findability and interoperability of the Al-analysis,software. In fact, a unique container is currently used
for all the notebooks, thus allowing for a full interoperability among the different Al analysis tools. The
complexity of the maintenance of such an environment rapidly increases with the number of uploaded
notebooks which poses challenges to ensure that stored notebooks can run over the years and produce
the same results. However, each set of obtained results, including all the intermediate results along the
analysis workflow, can be stored (according to FAIR principles) and automatic tests could be run to check
the conformity of the results produeed.by the re-trained model with the reference ones. Knowing that
some piece of code is at some point initime unable to reproduce old results is the necessary condition to
try and fix the code in,orderto‘conform with the reference results. This solution, which requires quite
some human effort, introduces a possibly interesting generalization on the idea of reproducibility, which
in some sense is a black=box requirement. l.e, in each step of the analysis, the same input needs to yield
the same output, but the details inside the black box are allowed to change.

A radically alternative routeis to partly renounce to a full interoperability among the notebooks and
maintain several different,containers within the NOMAD Al toolkit. Such an approach would allow for the
creation of specificicontainers that are not updated, thus allowing for the software installed therein to be
always executable. Although the tools used in these not-updated containers cannot always be combined
with software installed into other containers , it can still be deployed on new data that have been
uploaded at a later time.

Concluding Remarks

The introduction and gradual implementation of the FAIR practices for scientific-data management and
stewardship revealed that another crucial component of scientific research needs to adopt the FAIR
concepts: The scientific software for data production and analysis. As for data, the key point is the
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reproducibility of research finding, i.e., the practical possibility to re-obtain the same results starting from
the same hypotheses (the input settings) and methods.

Clearly, providing only the input data and results in a data archive, even if fully FAIR-data ecompliant, is
not enough for reproducibility, if part of the results are obtained in an incompletely.documented way
and/or via some custom-tailored analysis software, which is not properly stored and versioned.

The NOMAD Al toolkit already enables re-run Al software on FAIR data for a relatively small set of Jupyter
notebooks at the price of human-intensive maintenance. The grand-challenge is to develop a strategy to
scale up such maintenance in a (semi-)automatic fashion, so that all Al tools from the community can be
preserved according to FAIR practices, fully achieving scientific reproducibility. -~

Clearly, these reproducibility concepts and the use of Jupyter notebooks also imply that newcomers to Al
can use the software that already exists at the NOMAD infrastructure, train themselves and adjust and
advance the analysis tools towards their own but different appli¢ations.
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Status

Training of Deep Learning (DL) models requires a large amount of data in the first place and the data set
must be sufficiently diverse for the network to be transferable such that it produces unbiased predictions.
At the same time, the data size needs to be balanced to compensate/for the cost of their generation.
Strategies to deal with scarce data problems include Transfer Learning (TL), Self-Supervised Learning,
Generative Adversarial Networks (GANs), Model Architecture, PhysicszInforméd Neural Network, and
Deep Synthetic Minority Oversampling techniques to name a few recent approaches, as pointed out in

[1].

Here, we focus on a specific route to overcome the scarce training data bottleneck, namely the generation
of random synthetic training data under suitable constraints determined by the physics involved [2-4]. In
our approach we aim at modelling system dynamics by eneodipg it into a Hamilton matrix for the
interaction of (bound) electrons with intense laser light. The latter can be very noisy and fluctuating from
shot to shot, as produced by X-ray Free Electron Lasers (XFEL). We vary the elements of the Hamilton
matrix randomly about a matrix of an existing model system in one physical dimension (1D), creating
synthetic Hamilton matrices (SHMs) for systems ‘which could but do not necessarily exist in nature for
which calculations can be done quicklyicompared to real 3D systems. From the large set of SHMs
augmented with different deterministic realizations of noisy laser pulses, we compute photoelectron
spectra to train a fully-connected deep neural'network (DNN). Figure 1 shows an application of the DNN
(trained with spectra from SHMs) toxa real 3D system for which it predicts, without knowing the system
explicitly, how the noisy spectrum_would. look like if a “clean” (Gaussian) laser pulse would have been
used. The good agreement with the ground truth demonstrates that the trained DNN can be transferred
from 1D to 3D problems and gives anidence in our SHM deep learning concept (SHM-DL).
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Figure 1 Photoelectron spectra for the He atom (a)—(d) from noisy laser pulses with a central photon energy of 21
eV and peak intensity / as given in the panels. In (d) the spectra from different single noisy pulses are shown with
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dominant contributions from angular momentum /=2 (purple) and /=0 (yellow) after absorption of two photons by
the ionized electron at / = 2 x 10'® W/cm?. Panels (a)-(c) show the spectra which result from averaging the single-
shot spectra (green-dashed), the reference (i.e. the spectra calculated from a clean Gaussian laser pulse,.gray-
shaded) and the predicted spectra (blue solid) for a clean pulse by the DNN (Figure with permission from [2]).

Very recently, the idea of synthetic data generation based on existing data has been taken up for
composite materials [4], where a limited number of original full-field micro-mechanical simulation data
are randomly rotated in physical 3D space to generate additional data to train a recurrent neural network
for the non-linear elasto-plastic response of Short Fiber Reinforced Composités. Similarideas using TL are
being explored in other areas [5].

Current and Future Challenges -

An important problem in the context of spectra generated by XFEL double pulses is the delay between the
pulses which jitters in an unknown way from shot to shot. The SHM-DL approach can extract the time-
delay of a double-pulse from the spectrum it has generated. Importantly, we can sort single-shot noisy
spectra according to the time-delay of the double pulse with which the spectra were generated. With a
second network the time-delay sorted pulses, binned over small‘delay intervals (1fs) can be purified as
shown in Figure 2. This constitutes a substantial generalization to predict a hidden parameter (the time-
delay of the pulses) [3].
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Figure 2'Reconstruction of double pulse time-delay and purification of noisy spectra for a single Hamilton matrix
takenfrom test data. Single-shot fluctuating spectra for random time-delays are passed through the trained network
to reconstruct.the underlying time delays which are shown as scattered points where the color gradient represents
the reference time-delay. We consider 12 intervals of time delay in the range 2—14 fs with an interval length of 1 fs.
All single-shot spectra which fall into interval of time-delay are averaged. The averaged spectra are passed through
another network which maps averaged noisy spectra to purified ones. The predicted purified spectra (red) are
compared to reference spectra (black). Adapted with permission from [3].
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The task the SHM-DL has successfully completed so far, is the mapping of spectra generated by. noisy
pulses to spectra generated by Gaussian (Fourier limited) pulses. Can we also predict via SHM=DL maps
spectra for other clean pulse forms, e.g., for pulse forms which are not even realizable gxperimentally?
This would be very interesting for systems whose response to light cannot be computed (too complicated)
but measured, e.g., with noisy pulses as described, since with SHM-DL we do not need to compute the
“true” spectrum of the desired system.

The primary vision of the SHM-DL approach is a 21 century spectroscopy.-Applied.to molecular ro-
vibrational spectra, e.g., it could replace the traditional normal mode model for the assignment and
classification of spectral, leaving it to the trained network to associate_appropriate SHMs with the
spectrum, thereby classifying it by means much more flexible than traditional,.structurally predefined
normal modes.

The long-term goal is to develop SHM-DL to become capable of identifyinga.single SHM (or a small group
of SHMs) which describe the system so well, i.e. represent the system, such that from the reconstructed
SHM(s) time-dependent system evolution in general and other'observables can be computed/predicted.
This would constitute a physics-rooted form of generalization which:delivers at the same time physical
insight as it provides an optimal parametrization of a physical system with a Hamilton matrix of chosen
size. First attempts are promising that identify SHMs in relation to t.wo— or multidimensional spectroscopy
[6].

Advances in Science and Technology to Meet Challenges

Technically, even the SHM-DL approach remains a challenge regarding the computing power needed to
numerically produce the spectra (training data):from.the SHMs. Hence, (i) a reduction of the required
training data size by better knowledge of the underlying physics is desirable as well as (ii) a reduction of
computational costs by ultra-efficient quantum propagation in time to obtain the spectra [7]. (iii)
Furthermore, the computed spectra as'training data must be balanced. For the time being this is done by
simply discarding spectra from the'training set which are too close to each other. However, this implies a
large waste of computing time. To reduce this waste several advances are desirable: Firstly, use of an
optimal metric to determine” the“Euclidean “distance” between two spectra. Here, recently the
Wasserstein metric has become popular [8], or approximations to it which are computationally cheaper.
A more elegant, physics-orientéd advance would be to find an approximate inversion of the SHM-to-
spectrum map, or any other way which allows us to shift the balancing of the spectra to suitable choices
of the SHMs.

Thinking ahead, the idea of SHMs could be realized not with DNNs but other DL approaches. Most
promising are GANs or variants thereof, where the relevant SHM is constructed by the GAN from a random
one successively with €omputationally costs eventually reduced compared to the present SHM-DL
sampling approach. Moreover, the GAN approach would directly predict an SHM which describes the
system’scoupling to light.

Finally;;and almost trivial since true for many DL applications: SHM-DL would benefit enormously from a
possibility for inherent error quantification.
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Concluding Remarks
We have introduced the idea of synthetic Hamilton matrices (SHMs), random representations,for the
dynamics of systems coupled to light, which could exist but not necessarily exist in nature. This approach
enables sampling of the training space solving the dynamics with SHMs efficiently incorporating
sufficiently generic features to be transferable to real systems. They serve the purpose to augment
training data for DL with DNNs. We demonstrated that this SHM-DL approachhworks,by purifying
photoelectron spectra from noisy pulses and identifying pulse delays which jitterdn an unknown manner,
as supplied by X-ray Free-electron Lasers. The approach is physics-orientedsand therefore promises
physics insight beyond the prediction of spectra through the DL based identification of the relevant
Hamilton matrix from a spectrum for a system, unknown to the DNN.
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Status

Understanding the structure-property relations of materials and optimizing chiemical synthesis or device
manufacturing processes requires integrating multimodal datasets from both theory and experiments [1]
that often encompass spatial and temporal dependence. The explicit spatiotemporal characteristics may
be exploited in model-building for data integration. Historically, spatial and spatiotemporal models were
largely developed in the contexts of geoinformatics, biostatistics, and quantitative ecology, many of which
remain underappreciated by the materials science community. In‘these models, the temporal and spatial
subsystems are typically considered in 1D and 2D/3D, respectively. Spatiotemporal models describe their
subsystems jointly to capture the interactions throughreovariance functions or dynamical processes
derived from physical knowledge [2]. They are structured and interpretable and are considerably more
tractable than first-principles methods.

Random fields (RFs) and Gaussian processes (GPs), also known as kriging, are two established categories
of models designed for spatial and spatiotemporal data. RFs already have established use in the statistical
modeling of microstructured materials {3],'while GPs.are invented in mining engineering and they are a
classic example of surrogate models. We discuss herethree diverse examples from materials data science
that indicate their broad applicability and utilityx(i) In metal additive manufacturing, Saunders et al. [4]
combined three GPs with distinct characteristics to model the pairwise relationships between materials
microstructure, melt pool geometry,"and mechanical property obtained from multiphysics simulation, all
of which are also time-dependent. (ii) In photoemission spectroscopy, Xian and Stimper et al. [5]
constructed a Markov RF withynearest-neighbor interaction and transformed the band dispersion
reconstruction problem into’ a classification problem. The coordinates in their problem are the two
momenta and energy of photoelectrons, the use of pre-computed energy bands from electronic structure
theory provides an effective initialization. (iii) In combinatorial materials screening, Kusne et al. [6]
constructed a GP in the chemical compositional space to guide the search for the optimal stoichiometry
within a family of tertiary phase-change materials. Their algorithm was integrated into a synchrotron
beamline and may,be run ina closed loop driven by active learning.
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Figure 1 lllustrations of spatial models of (left) photeemission datain the energy-momentum coordinates
using a Markov random field [5] and (right) combinatorial'material screening data in the chemical
compositional space using a Gaussian process [6].

Current and Future Challenges

One defining characteristic of materials science data is its abundance of data types, from videos to images
to atomic structures [1]. Comparatively; spatiotemporal models, besides the classic examples like RFs and
GPs, may also take the form of point processes [7], state space models [8], and diffusion processes [9],
which are as yet not used for data integration, but have their respective benefits to representing specific
data types. Besides coordinates withiconcréete physical meaning, one could also consider direct spatial or
dynamical models of the latentSpace in data integration, as it is often more robust to noise and
dimensional scaling artifacts, especially for multiple data modalities. This leads to the question of problem
mapping from data type tomodel category and subsequent model specification as the primary challenges.
The three examples in.the previous subsection illustrate that building spatial and spatiotemporal models
are not limited to the physical dimensions attached to their original meaning. The straightforward way for
problem mapping(is to first identify the data types related to a particular problem, then consider the
native data typesto theimodel and find the match. For example, point process models would be suitable
for modeling the transport of point defects because of their sparse distribution.

Secondly;we should'pay special attention to the data quality in the subsystems to be integrated, including
resolution, unit size (such as pixel size for image data), missingness, structuredness, and fidelity (such as
noiselevel)sMany of these problems are not yet formally addressed, thereby motivating further research
ona case-by-case basis guided by domain knowledge. For example, data resolution and fidelity affect the
choice of integration ordering, i.e., from high to low or in reverse. For experimental data, the unit size is
usually notthe same as the resolution because of blurring introduced by the instrument response. Thirdly,
we should consider the scalability of the model during development, which may be left unnoticed until
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later in model deployment using real-world data. For spatiotemporal models that aim to handle large
datasets, scalability is often a primary determinant of model choice.

Advances in Science and Technology to Meet Challenges

The two main paradigms in materials science that benefit from advancements in spatiotemporal models
are: (i) Self-driving (or autonomous) laboratories [10]. They deploy robots and machine learning-driven
sequential decision-making from streaming data to search through high-dimensional parameter spaces
(such as process, composition, and property parameters) for materials optimization. A growing number
of them are installed at large-scale research facilities such as X-ray or neutron sources or in regular
research institutions for organic and inorganic synthesis. (ii) Combined large-scale atomistic simulation
and video-mode recording of time-resolved experiments [4]. Here both the simulation and the data
analysis may be powered by machine learning algorithms, while data_integration between the two
modalities through a spatiotemporal model is needed to obtain experimentally validated physical
parameters. Both of these two paradigms will benefit from the following developments:

From the model development side, accurately accounting for’long-range‘dependence (LRD) [8] in both
spatial and temporal dimensions is one of the crucial yet unmet challenges. LRD manifests in the slowly
decaying dependence structure, such that the Markov assumption is no longer a valid approximation.
Current approaches using deep-state space models{are limited to video frame classification and
generation, further improvements on both spatial and temporal LRD, computational efficiency, and the
accommodation of graph-structured data will be fitting for the demands in materials data integration.

From the data engineering side, the data integration process often involves the comparison of metadata
from two or more sets of measurements or calculations, which require that the data formats are
interoperable. Systematic documentation of metadata is crucial for successful data integration projects,
which now lie at the center stage of the FAIR principle [1]. For materials optimization platforms that
depend on streaming data, the development of automated (meta)data logging systems that include
anomaly and distribution shift detection.is essential for the quality control of data acquisition. It will also
pave the way for efficient data intégration and enable online search and process optimization.

Concluding Remarks N

Spatiotemporal models have demonstrated promising outcomes in integrating data from multiple sources
and guiding scientific discovery{ The future of spatiotemporal models for materials data science should
explore the interplay between the'domain knowledge used in problem mapping and model specification
to ensure a faithful representation of the problem context to achieve the desired interpretability and
performance.

Acknowledgments
The work was partially supported by BiGmax, the Max Planck Society’s Research Network on Big-Data-
Driven MaterialsScience.

References

[1] MuScheffleret al., “FAIR data enabling new horizons for materials research,” Nature, vol. 604, no.
7907, Art. no. 7907, Apr. 2022, doi: 10.1038/s41586-022-04501-x.

[2] " N. Cressie and C. K. Wikle, Statistics for Spatio-Temporal Data, 1st edition. Hoboken, N.J: Wiley,
2011:

[3]..M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials. New
York: Chapman and Hall/CRC, 2007. doi: 10.1201/9781420010275.

46

Page 46 of 93



Page 47 of 93

oNOYTULT D WN =

(4]

(5]
(6]

(7]

(8]

(9]

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

R. N. Saunders, K. Teferra, A. Elwany, J. G. Michopoulos, and D. Lagoudas, “Metal AM process=
structure-property relational linkages using Gaussian process surrogates,” Additive Manufacturing;
vol. 62, p. 103398, Jan. 2023, doi: 10.1016/j.addma.2023.103398.

R. P. Xian et al., “A machine learning route between band mapping and band structure,” Nature
Computational Science, vol. 3, no. 1, pp. 101-114, Dec. 2023, doi: 10.1038/s43588-022-00382-2.
A. G. Kusne et al., “On-the-fly closed-loop materials discovery via Bayesian active learning,” Nature
Communications, vol. 11, no. 1, p. 5966, Dec. 2020, doi: 10.1038/s41467-020-19597-w.

R.T. Q. Chen, B. Amos, and M. Nickel, “Neural Spatio-Temporal Point Processes,” presented at the
International Conference on Learning Representations, Oct. 2020. Accessed: Jan. 14, 2024. [Online].
Available: https://openreview.net/forum?id=XQQA6-So14

J. T. H. Smith, S. De Mello, J. Kautz, S. W. Linderman, and W. Byeon, “Convolutional State Space
Models for Long-Range Spatiotemporal Modeling.” arXiv, Oct. 30, 2023«doi:
10.48550/arXiv.2310.19694.

Z. Chang, G. A. Koulieris, and H. P. H. Shum, “On the Design Fundamentals of Diffusion Models: A
Survey.” arXiv, Oct. 19, 2023. doi: 10.48550/arXiv.2306.04542.

[10] M. Abolhasani and E. Kumacheva, “The rise of self-drivingdabs.in‘chemical and materials sciences,”

Nat. Synth, vol. 2, no. 6, Art. no. 6, Jun. 2023, doi: 10.1038/s44160-022-00231-0.

47



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

Section 3.7 — Soft-Matter Simulations
Tristan Bereau® and Kurt Kremer?

nstitute fur Theoretical Physics, Heidelberg University, Heidelberg, Germany
2Max Planck Institute for Polymer Research, Mainz, Germany

Status

Soft matter is a sub-class of condensed matter that comprises systems with a/characteristic energy on par
with thermal energy at room temperature, kgTyo0m (about 2.5 - 1072 eV at T=300K). The low energy gives
rise to significant conformational (intra-molecular) flexibility, leading to the spontaneous self-assembly of
supramolecular mesoscopic structures. Relevant systems include polymers,€olloids, and complex fluids,
for which soft-matter physics have provided a foundational understanding [1]. Soft matter offers a slew
of modern-day applications, e.g., food products, rubbers for automotives, electronics or medical
applications. This makes the discipline both scientifically and technologically highly relevant.

A crucial aspect central is the relevance of multiple scales: phenomeha occur at various length- and time-
scales, some of which decouple. This simplifies the tackling of complex systems: to build simpler models
and focus solely on the relevant degrees of freedom. Scale separation takes its roots in renormalization
group theory, and with significant implications in various'aspects of theory (e.g., scaling concepts in
polymer physics) as well as computer simulations (i.e.,/multiscale modelling). Figure 3 illustrates the
benefits of multiscale modelling for two applications: high=throughput screening of drug-membrane
permeability, and a hierarchical description of polymeric organic electronics.
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Panel reproduced from [2]. (b) Hierarchy of descriptions of P3HT, a prototypical polymer for organic electronics.
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Charges are transported primarily along the backbone of the chains, while the aliphatic side chains are needed to
process the material. Panel reproduced from [3].

Soft-matter science has gone through substantial evolution in the last half centdry. In polymer. physics,
experiments and theory have worked hand in hand early on to measure coveted critical.exponents, and
link to general statistical mechanics theory. Computer simulations have played an increasingly important
role—they offer invaluable microscopic detail and reach out to ever-growing system sizes [4], [5]. They
combine basic generic concepts with specific material properties. In the last decade, data-driven methods,
and more recently machine learning (ML), have become increasingly populariin soft matter. They offer an
inductive approach to help bridge the scales, and more broadly solve complex/structure-property
relationships. o

Though the penetration of ML in soft matter has been lagging againstshardicondensed matter, more
recent developments show that the outstanding challenges faced by conformational flexibility (i.e. the
role of entropy) are increasingly being addressed. In accordance with, other fields of physics, chemistry,
and materials science, the pursuit of stronger inductive/bias (i.e., building physics in the model)
systematically helps build better models in an area that issnotoriously’scarce in data—experimental or
from computer simulations. The continued developmentrof Mb.techniques for soft-matter physics, and
the cross-penetration of ML with multiscale modelling/is helping push soft-matter physics toward higher-
precision predictive modelling, soft-materials design /and | optimization, and reproducing entire
experiments on the computer [6].

Current and Future Challenges
The field of big-data-driven materials Science.in the context of soft-matter simulations faces several
outstanding challenges:

1. The foremost challenge is tackling the "black box" nature of complex machine learning models
like deep neural networks. Why does a machine learning model make certain decisions? To this
end, interpretability and explainability are paramount. Important developments have been made
in the direction of symbolic regression, thereby discovering mathematical equations governing
the complex phenomena eQaracteristic of soft matter systems. Still, more effort is needed to
gather further insight and intuition behind the underlying physics.

2. What makes soft-mattersystems fascinating is also what makes them challenging: their multiscale
nature. The aggregate effect'of many small parts often sums up to large-scale supramolecular
behavior—this ‘emergent phenomenon is an outstanding challenge to effectively learn in ML
models, and‘adequately generalize. This is the main reason why computer simulations remain
essential nowadays and cannot easily be replaced by ML models alone. Looking to the future, the
fusion of-ML with physics-based simulation methods (e.g., molecular dynamics or Monte Carlo
methods) is'lexpected to have a strong impact. The recent combination of large-language models
with multi-agent collaborations strikes us as a relevant component toward modelling complex
soft=matter.systems [7].

3. Furthermore, navigating non-equilibrium dynamics stands as a colossal challenge. Almost all soft
matter systems—including all of life—exist far from equilibrium. Worse, even systems that appear
in equilibrium typically depend on non-equilibrium effects via their processing: the mere
preparation (e.g., synthesis and subsequent treatment) impacts the final product [8]. The absence
of a'well-established theory for non-equilibrium statistical mechanics can be an opportunity for
inductive methods.
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Though soft-matter science is already traditionally an interdisciplinary field, bringing together physics,
chemistry, biology, and materials science, the advent of data-driven methods and ML further reaches out
into computer science. The training of scientists that can efficiently work and communicate between
these different fields is more important than ever.

Advances in Science and Technology to Meet Challenges

Compared to hard condensed matter, soft matter lags behind in terms of ML integration, in large part due
to the need to address the associated conformational flexibility. One outstanding challenge lies at the
level of system representation, i.e., how to encode the fluctuating system configuration for input to an
ML model. Atomic representations developed for electronic properties have focused on single
configurations (e.g., [9]). Here instead, observables are averaged over a typically very broad Boltzmann
distribution of configurations. Much less work has been proposed in the context of ensemble-averaged
ML representations, though ideas have been proposed [10], [11].

Capturing multiscale phenomena lies at the heart of soft-matter physics—from microscopic molecular
architecture to mesoscopic structure, to macroscopic behavior. Limitations in the generalizability of ML
models strongly limits the current prospects of replacing physics-based models. It is not so clear how
extensive the training of an ML model ought to be to reproduce emergent phenomena, such as the self-
assembly of soap bubbles from amphiphilic molecules. Coarse-grained modelling has been at the forefront
of soft-matter simulations—it exploits scale separation to focus on the most relevant degrees of freedom.
Advances in combining coarse-grained modelling with ML is key to further develop data-driven soft-
matter simulations. Much work is currently focused on ML=based coarse-grained potentials [12], [13],
where striking an adequate balance between accuracy and computational speed is of critical importance.
Longer term, it is not clear to what extent ML models might be able to generalize enough to replace the
integration of classical equations of motion.

Concluding Remarks

It is difficult to overstate the significant impact of first theory, and later computer simulations, on our
understanding of soft matter. Bringing soft.matter to the fourth paradigm of science (i.e., data-driven
methods) will require the tackling of several outstanding challenges. The ongoing developments of
machine learning will hopefully continue. to naturally evolve from hard condensed matter to soft matter,
thereby addressing the needs to model configurational entropy. We foresee that these technical hurdles
may help usher soft matter in a'new era, where poor scale separation can be efficiently addressed, and
insight can be gained for phenomena that are too complex for traditional methods.
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Status

Mathematical modeling plays a pivotal role in the study of continuum mechanics and material design,
offering profound insights into material behaviors and microstructures,/whichdn turn, support and guide
material optimization and design. Typically, this modeling process involvesformulating partial differential
equations (PDEs) based on fundamental physical principles such as massiand enérgy conservation as well
as force equilibrium. Non-equilibrium aspects such as the role of microestructure and the underlying
carriers of inelastic deformation such as dislocations and mechanicalhtwins are also represented by PDEs,
e.g., in the form of mean field defect density equations that/couple to stress and strain [1]. These PDEs,
for given initial conditions and boundary values, are subsequently solved using numerical methods, with
finite element and spectral methods being popular choices. Unfortunately, these traditional numerical
techniques are computational very costly, a challenge that.becomes particularly pronounced when
dealing with design studies that require a multitude of/simulations under varying configurations. To
address this computational burden and streamline the design.cycle, there is a pressing need to develop
surrogate models that can replace the traditional simulations, often reliant on the methods mentioned
above, like finite elements, spectral methods, or finite velume techniques. These surrogate models are
particularly valuable during the design phase, offering a more computationally tractable solution.

The use of artificial neural networks (ANNSs) in surrogate modeling, driven by advances in machine learning
and deep learning, has therefore become a field of growing interest [2]. While neural networks-based
material modeling can be traced back te [3], it is in the last decade, with the rapid progress in deep
learning and the availability of powerful hardware, that the development of surrogate models using ANNs
has surged and continues to expand. Data utilized for constructing these surrogate models can comprise
a combination of experimental data, empirical knowledge, and synthetic data generated through
numerical solvers. Within the realm of continuum mechanics, numerous methodologies have emerged
for building surrogate{models using ANNs. For example, in [4] a neural network architecture, namely,
conditional generative adversarial networks, has been employed to predict stress and stress fields for a
given microstructure’geometry;s[5] employed a convolutional neural network (CNN) to estimate von
Mises stress for  microstructures consisting of isotropic elastic and elasto-plastic grains, within
microstructures, withnextensions to heterogeneous periodic microstructures [6] as depicted in Fig. 1.
Furthermore, [7] explores the application of the Fourier Neural Operator (FNO) for the surrogate modeling
of stress and strain in heterogeneous composites. Additionally, in recent times, there have been attempts
to generatesphysics-based solutions by using large language models (LLMs) based on the requirements
mentioned by a user, see (https://doi.org/10.1016/j.em|.2024.102131); however, it targets at generating
scripts (e.g., Python) to generate finite-element simulation code. But those simulation codes are still of
highfidelity, hence, are computationally still expensive.
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Figure 4 The schematic illustration.of the machine-learning-based surrogate model for predicting the history-
dependent local von Mises stress'in a solid aggregate that comprises sets of crystalline grains which are characterized
here by different elastic-plastic stiffhess. The material parameters considered (varied from grain-to-grain) in the
simulations include E: Xoung's' modulus, [: Poisson ratio, [lo: initial inelastic flow resistance (viz. plastic
deformation), ho: initial isotropic hardening, and [1: von Mises equivalent stress. We construct a surrogate model
of stress fields for visco-plastic polycrystalline materials using the U-Net architecture as shown in (a), which predicts
von Mises stress field/500 times. faster than conventional spectral solvers, see (b). The figure is modified from [5]
and [6] with permission.
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Current and Future Challenges in Using Big Data Methods for Continuum Mechanics

Often, surrogate modeling is'conducted purely based on large amounts of data, mostly by training ANNs
with themi"However,within the context of continuum (micro-)mechanics, there exists a wealth of
established physical and empirical knowledge [8] that ANN-based surrogate methods have yet to fully
incorporate. In the following, we discuss the notable challenges in bridging this gap for surrogate modeling
in continuum mechanics.

a) Physics-enhanced surrogate modeling: Incorporating physics-based knowledge into surrogate
maodeling is an active research field. For instance, in [9] and [10], physics-based knowledge,
including the underlying PDEs and empirical knowledge, has been leveraged to introduce biases
into ANNSs, resulting in outputs that approximate the underlying physics, such as enforcing
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divergence-free conditions as well as mass and energy conservation. However, it is essential to
note that these approaches primarily aim to satisfy the physical laws in a weak sensé. Hence, the
output from the trained ANNs may not be fully physically meaningful, particularly at a local scale.
Therefore, we need to explore the design of neural network architectures that are capable to
inherently produce an output that satisfies physics in a strong sense, with atparticular focus on
critical properties like divergence-free behavior, as well as mass and energy conservation both,
on a global and local scale.

Stable dynamic prediction: Surrogate modeling has been used for predicting, time-dependent
stress and stress fields of heterogeneous solids subject to homogenous steady-state external
loading conditions. Within this framework, these surrogate models.can be regarded as dynamical
systems. Given that surrogate models typically emulate stable physical behavior thereby
mimicking the basic rules of continuum mechanics, it is essential for them to possess inherent
stability, i.e., mimicking also convergence. This stability’ ensures that predictions remain
consistently stable and bounded. Consequently, it is imperative that ANN-based surrogate models
are designed to have these stability properties inherently. embedded.

Learning low-dimensional latent space representation: Often, the'field of interest in continuum
mechanics is two or three-dimensional real space, ideally also,informed by the solid’s crystal and
phase state (including also non-equilibrium features,such as crystal defects and related inner
structural descriptors), adding further dimensions and anisotropy features to the problem to be
solved. Consequently, the data obtained for these scendrios are high-dimensional, especially
while dealing with high-resolution spatial fields. However, it is a common observation that such
high-dimensional solutions can often be accurately represented in a low-dimensional latent
space. The creation of this low-dimensional space is further guided by constraints designed to
simplify the dynamics and engineering design processes. For instance, it is possible to construct a
latent space in such a way that the systemidynamics evolve in a nearly linear fashion, aligning with
principles like Koopman theory and dimensionality reduction techniques.

Predicting multi-functiondlity of materials:An aspect going beyond continuum mechanics is the
quest for an efficient multi-dimensional descriptor representation of materials and the underlying
predictive ANN and activedearning models when it comes to the multi functionality of materials.
This notion refers to a material design challenge, were not just the mechanical response but also
its often non-linear interplaywithfunctional properties such as magnetism, electrochemistry or
electrical features is/targeted.(Example scenarios would be mechanically strong invar alloys and
magnets [11], elastically compliant materials with high biocompatibility [12], or high-performance
materials that are:free of any critical and expensive elements [13] to name but a few placative
examples. Forssuch purposes the original low-dimensional descriptions are often insufficient and
ANN models as well as latent space representations will increasingly have to embrace these multi-
functionalities, because this is particularly a field where conventional simulation spaces become
too large to be tractable by classical physics-based theory alone.

Advances to Meet these Challenges

In our pursuit of designing neural network architectures that inherently adhere to physical properties
(e.g., divergence-free, energy preserving), we seek to utilize fundamental mathematical vector calculus.
For illustration, .in order to design ANNs to produce divergence-free quantities, we seek to obtain
intermediate, quantities so that divergence-free quantities are obtained by taking the curl of those
intermediate quantities. Such techniques find widespread use in solving PDEs (e.g., Maxwell equation)
with divergence-based constraints. Additionally, for achieving stable time evolutions through neural
networks, we extend concepts proposed in [14] to encompass high-dimensional spatial and temporal
data. Furthermore, our empirical studies indicate that CNNs that explore local features underperform
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compared to FNO, which explore global features present in the data. Therefore, our exploration centers
on incorporating these physical properties within the context of FNO. We further need to‘explore how
these trained networks are used for engineering studies such as predicting optimal material property
configurations, drawing inspiration from [15]. What is more, we seek to discover suitable low-dimensional
latent representation through autoencoders with the intent to simplify the tasksof predictions and
engineering studies. Algorithmic developments in this direction have been pursued,in [16], which requires
further investigation in the context of continuum mechanics.

Concluding Remarks

We conclude by emphasising that it is imperative to develop new machine learning and deep learning
methodologies for tackling problems pertaining to the continuum mechanics of heterogeneous and
anisotropic solids that adhere to the strong forms of essential physical principles both on a global and on
a local scale. Doing so offers several advantages: firstly, it €nhances the interpretability and
generalizability of machine learning-based surrogate models. Secondly, it reduces the amount of required
training data. Thirdly, it can enhance solver performance by up‘o,several thousand times compared to
conventional solution methods such as FEM or spectral methods»As aniinitial endeavour in this direction,
we have demonstrated how to construct machine learning surrogate models that inherently produce
divergence-free stress fields, thereby satisfying mechanical'equilibrium conditions. Learning suitable low-
dimensional latent representations not only reduces online inference time but also facilitates engineering
studies with minimal computational resources. Additionally, acquiring training data for engineering
applications is both economically expensive .and time+consuming. Therefore, it is crucial to devise
strategies for cleverly gathering training data, ensuring that the limited data covers a wide range of
parameter space.
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Status

Most modern engineering materials exhibit a complex microstructure/that und?rpins the properties of
the material in beneficial — or sometimes detrimental — ways. This appliesto structural alloys, to ceramic
materials like concrete or protective coatings, as well as to functionalhmaterials for energy storage,
electronics, heterogeneous catalysis, etc. Steels, for example,fconsist of several meta-stable phases
formed during casting, thermo-mechanical processing, or in operation. To image the interplay of grain
morphology and texture, chemical composition, crystallographic relationships, and local properties of
distinct regions, various complementary ‘imaging’ experiménts are available, such as electron microscopy,
atom probe tomography, beam diffraction (electron,»X-ray, synchrotron), or spatially resolved
spectroscopy. Thanks to progress in experimentation, data storage‘apacities, and digital data processing,
these techniques yield an ever-increasing data pool. A'single experiment can provide GBs or even TBs of
data, which is further multiplied by highsthroughput experimentation or in situ monitoring of
transformations that add a time dimension. This big'data is both a challenge and a great opportunity for
data-driven research.

So far, it is mostly up to human experts to identify the microstructural features of interest within the
experimental data. Often, it is not clear a priori.what features relate to performance in the applied
context. Once identified, one would like to quantify their number density, size distribution, chemical
characteristics, and functional properties;.in order to extract quantitative processing-microstructure-
property relationships that facilitate material design. To automate this process, pattern recognition
algorithms are actively being developed [1,2, 3], often specifically targeted at a particular experiment for
a particular type of material. Uponfsuccess, they provide a secondary characterization of the material ina
reproducible and scalable way. This becomes particularly attractive when combined with high-throughput
experimentation to systematically'explore a material space.

Merging such derived data, possibly even from different experiments, with traditional materials’
characterization across multiple samples while tracking their synthesis and processing history alongside
necessitates a careful data management. Electronic lab books [4], integrated work-flow environments [5],
structured materialdatabases [6], and flexible data sharing platforms [7] cover some, but not all aspects.
The barriers between them effectively limit data-driven material’s design.
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Figure 1 Crystallographic segmentation of atomically resolved STEM-HAADF frames via symmetry descriptors,
clustering, and distinguishing feature selection for enhanced performance (taken from [1] with permission).
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Current and Future Challenges

Suitable algorithms for pattern recognition are available fromiother fields, but must be adapted to a
specific research question, see Figure 1. Exploiting domain knowledge.to define suitable descriptors and
selecting robust algorithms [1,2] will remain a scientific challenge in the coming years due to the vast
variety of relevant phenomena and patterns. The actuah integration of automatic microstructure
evaluation in research practice is still at infancy. Progress is presenﬂy hindered by:

(1) a lack of established data and file formats. Experimental raw data is typically acquired in instrument-
specific file formats. Extracting all potentially relevant data for machine-learning workflows is often not
possible or impaired. Community efforts.have been undertaken to establish open data formats [8,9]. An
alternative effort aims at read-function librariesithat support multiple formats [10]. For storing analysis
output, ideally in conjunction with input dataj.no standard exists. Similarly, exchanging data between
different data management systems.is severely hindered by inherent heterogeneity in data structures and
metadata, in the naming and unit convention of data fields, and by assuming implicit context (e.g.,
providing an instrument’s name rather thaniits measurement parameters).

(2) a lack of flexible workflows or tool chains. Material science research routinely combines different
characterization methods, but'rarely so.in'a digitally integrated way. Researchers have their individual
ways to document a material’s synthesis and processing history, how each experiment’s specimen was
prepared, and how dataswas post-processed. Common approaches (via file name, free-form notes,
folders, ...) are ill-suited for.automatic processing. Electronic lab-book systems help to manage those data
[4], but typically reach:their limits4in collaborations across labs.

(3) a cultural gap (between, experimentalists accustomed to graphical user interfaces (GUIs) and
programming-oriented data) scientists. Present-day analysis strongly relies on humans to inspect the
data. Instrument manufacturers therefore provide monolithic visualization tools with a GUI, that read the
instrument’s raw files, provide a fixed set of processing schemes and export results in established general-
purpose image (jpg, tiff) or data formats (csv, hdf5) that drop context. In contrast, the wider machine-
learning field thrives on plugging together open-source libraries and code snippets on demand, that
require significant coding skills.

Advances in/Science and Technology to Meet Challenges

To reconcile/'the cultural gap, today’s interactive data visualization and future advanced data processing
must be'interlinked. GUI-based visualization tools could open up by establishing plug-in mechanisms to
exchange data and visualization items with external modules. An alternative route, that circumvents the
GUTl integration challenges, is to follow the successful model in computational material science [5, 7]: focus
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on input/output data format normalization, and employ separate tools that work with these formats for
analysis and visualization, all coupled together by a managing framework, see Figure 2. Further efforts:to
standardize input, but more importantly for recurring output such as classification signatures,
segmentation maps, interface location, geometric shape information, etc. are urgently needed.

In this context, exploiting automatic code generation from machine-readable datafoermat:definitions,- in
conjunction with ontologies and knowledge graphs - could be a game-chahger to speed up the
development, as they reduce the human effort in defining standards and implementing corresponding
code for possibly different programming languages. Similarly, the trend towards higher abstraction in
machine-learning software should be exploited to generate processing metadata. When the
transformation chain is built at run-time via high-level objects (which later generate the actual code for
the hardware at hand on the fly), the high-level representation should automatically annotate the data
output with the details of the processing chain.

At a higher level, workflow and data management tools must be adapted to deal with the specific
challenges of experimental data. As experimental data sets can become very large, moving or copying
around entire data sets is prohibitive. In most cases, raw data, will be<stored close to where it was
generated. Computational resources for advanced machine learning might be located elsewhere, and only
need part of the data, or specifically pre-processed data that reduces transfer size via dimensionality
reduction or compressed sensing. Thus, workflows that deahwith, both distributed data and distributed
computation will be needed, while maintaining consistency in metadata and ensuring that data access
across computer systems is reliably authenticated to/ avoid premature publication or leakage of
confidential data.
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machine
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Figure 2 Sketch of a possible digital infrastructure for handling data from experimental imaging techniques in an
integrated workflow.
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Concluding Remarks

The success of data-rich imaging techniques in material science lies in the promise that materials’
properties are linked to recurring patterns that can be discovered by inspecting a few representative
examples. Machine-learning techniques can leverage this approach by removing the human inspection as
the limiting factor to digest larger and larger amounts of data in order to discover relevant, but possibly
rare patterns. At the same time, they offer the unique chance to characterize the underlying distributions
in a statistically significant manner as more data becomes available, thus generating secondary high-level
characterizing data that might serve as valuable descriptors for associated properties. Digitalizing the
entire workflow from synthesis, sample preparation, data acquisition and post-processingin an integrated
way as sketched in Fig. 2 is critical to achieve these goals.

~
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Status

Large Language Models (LLMs) could grow into a transformative research tool in materials science,
bridging the gap between text-based data and actionable insights. Qpportunities lie in accelerated
materials synthesis, discovery, processing and property design. LLMs can be used as indirect or direct
tools. By indirect, we refer to situations where LLMs help invextracting data and building databases from
scattered sources. This does not involve the actual process of materials discovery but it is a precursor
step. Such databases can then be used by other machine learning (ML) methods. With their direct role in
materials discovery we mean that LLMs can even extract causal relationships from collected data, serve
to build domain-specific knowledge graphs, renderhypotheses and guide progress-critical experiments,
data collection and simulation (1-3). The latter aspect is,essential because LLMs do not obey any built-in
causal rules. Instead, they connect language tokens in a probabilistic way, without considering logic, self-
consistency or conservation laws. This means thatthey can violate elementary scientific rules. They
mimic scientific context by using probability measures that rest on majority but not on proof or logic.
This explains why there are opportunities but also pitfalls. The latter can be mitigated by combining
LLMs with other methods such as classical theory, thermodynamics, kinetics, materials property data
bases, explainable artificial intelligence, active)learning etc. LLMs are also capable of generating
hypotheses and they can be used to\build domain-specific knowledge graphs which in turn can enhance
predictive models (4, 5).

Materials science stands.at the confluence of several disciplines. Research topics range from latest
quantum mechanical insights.into the behavior of electrons in complex systems to large-scale processing
of billions of tons of /material (concrete, steel) and materials exposed to harsh environmental conditions
(catalysts, corroding products). Developing data-centric methods to leverage disruptive progress in this
field must, therefore, reflect/and embrace this heterogeneity in the underlying data from which
knowledge can be extracted, combined and used.

In the portfolio of model-based artificial intelligence (Al) methods, LLMs seem to offer new
opportunities to discover materials and processes that may otherwise remain hidden in the complexity
and scattered information that already exists (6). One avenue to use LLMs is accelerated materials
discovery (7-9). This is due to the fact that language-based token systems that connect words based on
probability are particularly strong in extracting and combining knowledge that already exists in text
form. Therefore, while LLMs may not be necessarily suited for disruptive conceptual discoveries from
text connections, they can accelerate design based on existing concepts (10). Although this is a rather
conservative approach, it is already a big step forward, because the traditional trial-and-error approach
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of material discovery is time-consuming and resource-intensive. Also, LLMs can analyse vast datasets,
extracting patterns and correlations that would elude human researchers. For instance, LLMs can
process published literature, patents, and experimental data to suggest combinations of novel matetrial
compositions and even possible properties, as will be shown below in more detailé By integrating
databases like the Materials Project or the Cambridge Structural Database, LLMs can‘effer quantitative
predictions about material structures, compositions, and potential applications, significantly,reducing
the time from conception to application.

However, it should also be noted that Krenn and Zeilinger (11) recently suggested a more disruptive
approach to use LLMs. They introduced SemNet, a dynamic knowledge organization method in the form
of a continuously evolving network, constructed from 750,000 scientific'papers dating back to 1919.
Each node in SemNet represents a physical concept, and a link is established between two nodes when
the concepts are jointly explored in articles. SemNet has proven its utility,by enabling the authors to
pinpoint influential research topics from the past. The authors trained SemNet to forecast trends in
guantum physics, and these predictions have been validated using historical data.

A few examples of using LLMs in materials science have been recently presented. Jablonka et al. (2)
conducted a hackathon using LLMs such as GPT-4 for chemistry.and materials science. The participants
leveraged LLMs for a variety of purposes, such as predicting propegties of molecules and materials,
creating new tool interfaces, extracting knowledge from unstructured data, and developing educational
applications. Being more specific, An et al. (12) argued that the construction of knowledge graphs for
domain-specific applications like metal-organic frameworks (MOFs) can be resource-intensive. LLMs,
particularly domain-specific pre-trained models, have been successfully employed to create such graphs.
For example, a study explored the use of state=of-the-art pre-trained general-purpose and domain-
specific language models to extract knowledgetriples for MOFs (12). The authors constructed a
knowledge graph benchmark with 7. relations for 1248 published MOF synonyms. Experimental probing
revealed that such domain-specific pre-trained language models (PLMs) outperformed general-purpose
PLMs for predicting MOF related triples. Theiauthors also conceded from their overall benchmarking
results that the use of PLMs alone to.create'domain-specific knowledge graphs is still far from being
practical and requires the development of better-informed PLMs for specific materials design tasks. The
group of Olivetti used LLMs to generate knowledge graphs (MatKG2) for the entire domain of materials
science, taking ontological informatioh into account as opposed to using statistical co-occurrence alone
(14). Zhao et al. (13) used fine-tuned Bidirectional Encoder Representations from a Transformer (BERT)
model and tested it with respect to data extraction from published corpora. They reported that the
model achieved amiimpressive F-score of 85% for the task of materials named entity recognition. The F-
score is a metriciused to.evaluate the accuracy of a model in binary classification tasks. Sasidhar et al.
(16) integrated natural language processing and deep learning for the design of corrosion-resistant
alloys (17). They.also highlighted the general challenges in utilizing textual data in machine learning
models for material' datasets and proposed an automated approach to transform language data into a
format suitable for subsequent deep neural network processing. This method significantly improved the
accuracy of pitting potential predictions for alloys, providing insights into the critical descriptors for alloy
resistance, like configurational entropy and atomic packing efficiency. Pei et al. (10) proposed a concept
of ‘context similarity’ to select chemical elements with high mutual solubility for discovering high-
entropy alloys. They trained a word-embedding language model with the abstracts of 6.4 million papers
to calculate the ‘context similarity’. With this approach they designed a workflow to design lightweight
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high-entropy alloys, which suggested even 6- and 7-component lightweight high-entropy alloys by
finding nearly 500 promising alloys out of 2.6 million candidates.

Gupta et al. (8) developed MatSciBERT, a materials domain-specific language model for text.mining/and
information extraction. They argued that conventional language processing alone, such as encoded in
the form of BERT models, may not yield optimal results when applied to materials sciencexdue to their
lack of training in materials-specific notations and terminology. To address this challenge, the authors
introduced a specific materials-aware language model they refer to as MatSciBERT. This. model was
trained on an extensive corpus of peer-reviewed materials science publications. The authors claimed
that their model surpasses SciBERT, a large language model trained on a broader and less materials-
specific scientific corpus, in three critical tasks, named entity recognition, relation-classification, and
abstract classification. The developers made trained weights of MatSciBERT publicly accessible, enabling
accelerated materials discovery and information extraction from materials science texts. A recent study
introduced a larger GPT version, named MatGPT (18), based on ailarger scientific corpus than
MatSciBERT. In their study the group claim that the MatGPT model'embeddings outperform MatSciBERT
and achieve an improved band gap prediction based on the Materials Project combined with graph
neural networks (GNN).

Current and Future Challenges: LLMs and Knowledge Graphs for Materials Discovery

The current flagship in the world of LLMs is the Generative Pre-trained Transformer 4 model (GPT-4)
from OpenAl. It is based on 8 separate models, each contaihing dozens of network layers and 220 billion
parameters, which are supposedly linked together using the Mixture of Experts (MoE) architecture. GPT-
4 is built on a transformer architecture, combining self-attention and feed-forward neural networks to
process input tokens. Each token represents atext.string containing a word or phrase. Therefore, the
token limit represents the amount of text that:an LLM can consider at a given time as input. Early LLM
releases had very low token limits'since LLM calculation time is strongly dependent on the token length.
Initial releases of GPT3 had a token limit.of 2,048 tokens, but recent releases of GPT-4 has a token limit
of 128,000 tokens. To put this inta context, the average length of a PubMed abstract is 114 tokens (sd
48.83) and an article is 2,378 tokens\(sd 1,604.79). So while increasing complexity of the LLMs has
enabled using entire papers (0r even groups of papers) as input, there is still the computational cost of
running GPT-4 calculations to consider. As an example, when asking a question of medium complexity
via a string of fewer than/10 tokens,.such as 'Composition and property ranges of material XY', then the
rough total cost estimate to answer this question for GPT-4 is about 7-10 Euros. Getting the same
answer from a classical knowledge graph would incur only about one-hundredth of this cost and also
take less time, pravided the information is in the corpora and mapped in a graph accessible by search
engines.

Using knowledge graphs also removes the hallucination effect, an error made by LLMs when rendering
combinations'that:appear plausible to the model’s probability measures but false when tested against
high-fidelity information or logic. It appears due to multiple factors, such as when LLMs are trained on
contradictory datasets, overfitting, etc. An urgent and vital topic in LLMs is, therefore, quantifying the
level of the hallucination effects and developing a systematic method to recognise and mitigate them.
On'the other hand, LLMs have the advantage that they can process and understand the context from
scientificliterature, patents, and database entries. When combined with knowledge graphs that
structure this information, it provides a rich database of materials science knowledge which can be
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readily queried. This integration allows for the rapid assimilation of existing knowledge and the
identification of knowledge gaps.

Vice versa, LLMs, with their ability to process and generate large volumes of text, can also serve to
construct domain-specific knowledge graphs, optimize algorithms for faster discovery; and enable'more
efficient design and exploration of materials. The synergy between LLMs and knowledge graphs could
hence be a useful next step to materials discovery, offering a paradigm shift from'traditional, iterative
experimental methods to a more quality-controlled data-driven model. This combination would allow
better alignment of reliable high-quality data exploitation (through knowledge graphs)and semantic
contextualization (through LLMs).

LLMs can also analyse patterns and relationships within a knowledge graph.to g;erate hypotheses-
based suggestions for suitable search spaces pertaining to potentially hovel materials and properties.
For instance, by understanding the relationship between crystal structure and electronic properties,
LLMs coupled to knowledge graphs could likely be used to suggest nhew compositions or corresponding
search spaces for magnets, battery materials or solar cell absorbers.

Advances to Meet Challenges associated with the use of LLMs in Materials Science

While the opportunities are vast, applying LLMs in materials science also has challenges. Data quality
and availability are critical as models are only as good|as the data t?1ey train on. Ensuring data integrity
and representativeness is paramount. Furthermore, the interpretability of LLM outputs is crucial for
gaining trust in their predictions. Developing madels;that can provide not just predictions but also
insights into the underlying mechanisms is an essential' goeal. Another point is the Chain of Thought
Prompting, an approach to enhance LLMs ;,comprehension of causal relationships and reduce
hallucination. It involves forcing the models to verbalize different steps of reasoning they have gone
through in reaching conclusions. This makes the process more transparent. Such ideas have not been
implemented in materials science butin other areas such as medical science (1).

The quality of the information that can be extracted from LLMs depends on the quality and timeliness of
the input text. For material sciencet\hat can be only achieved if the latest literature that has been going
through proper peer review processes is being used. However, only one-third of the current scientific
corpora is open access. Therefore, some of the corpora currently used for training LLMs is in part of
questionable quality. Also, current:LLMs might simply miss the latest literature. This means that the
model weights are not fitted to the latest state of the art. These two aspects show that fine-tuning prior
to the use of such LUMs is recommendable. On the other hand, recent literature sometimes also
overlooks knowledge that already exists long in the literature so that some findings reported in papers
are more like re=discoveries;'a problem that can be likely mitigated when LLMs are used. In this context,
is it worth that Application Programming Interfaces (APIs) being now offered by a few companies to
allow accessing millions of publications along with metadata. Another issue is that extracting text from
PDF files; the standard format of the literature, results in poorly formatted corpora with numerous
errors (e.g., missing text, insertion of text from other items such as tables in the middle of sentences,
headers and page numbers, etc.).

An'unresolved open front of LLMs is the potential violation of existing copyright when tapping into web-
based resources, which becomes an obvious issue with the use of journals, textbooks, and other
scientific literature in training. Another concern is if further tuning of LLMs leads to slow asymptotic
knowledge increase because high-quality peer-reviewed content on certain topics is not growing at a
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sufficiently high rate and is often not freely accessible for training. In other words, it is not likely that
LLMs can gain knowledge quicker than the generic basic research used to train them. To meet both
challenges, the rapidly growing fraction of open-access literature and the use of pre-publication and
self-archiving services is of great value, likely leading to higher quality improvement and less
hallucination of LLMs. Some of these aspects also connect to general limit considerations regarding
model capacity and scaling laws, which were recently shown to depend essentially.the number of model
parameters, the size of the dataset and the amount of computation power used for training.
Performance was shown to depend less on other architectural hyperparameteérs such as depth and
width. However, irrespective of these theoretical considerations, the scientific community has not yet
seen the capacity limits of the GPT model in current applications. This mgans thaifor the same data size,
the GPT model improved further as the number of parameters was further increased.

Concluding Remarks

LLMs offer great potential in the complex interplay between advanced computational methods and the
nuanced, often experimentally and empirically grounded field of materials science. Opportunities lie in
accelerated material discovery; enhancement and improved/pattern.and result analysis of data obtained
from existing computational tools such as atomistic simulations; better knowledge synthesis and data
management from research articles, reports, and property studies; support in hypothesis development
and outlier analysis; and advanced decision-making support in mateérials selection and design, including
aspects such as costs, sustainability and regulatory constraints. Pitfalls exist regarding the quality,
availability, bias and legal status of the training data; lack of built-in logic or conservation laws; lack of
the reflection of microstructure, synthesis, sustainability.and processing complexity; and the danger of
over-reliance and even complacency regarding LLM predictions, i.e. the decay of individuals’ own critical
thinking, rigorous validation or falsification'and the'thrive towards deep understanding of the underlying
causality behind phenomena which are key factors that have made the scientific method the most
successful and reliable approach in-history.

This contemplation about a few generic prorand con aspects shows that while LLMs offer transformative
potential in materials science, their successful integration into the field necessitates careful
consideration of the quality and co%leteness of the data they are trained on, a thorough
understanding of the underlying physical and chemical principles, and a balanced approach to leveraging
their computational power with eritical human expertise.
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Status

Computational, high-throughput materials discovery is seen as a promising route to advance a myriad of
technologies including batteries [1], renewable energy [2],.and pharmaceuticals [3]. With the increasing
amount of computer power over the past several decades, millions of materials’ properties were
calculated on hundreds of thousands of materials, with the aidof high-throughput workflow. These efforts
led to the recent discovery of 2.2 materials below the convex hull'by Merchant, et al. [4]. Such workflows
allow a user to define a set of calculation parameters and run those calculations for a large set of materials.
The results then populated several large databases, e.g. Materials Project, AFLOW, Open Quantum
Materials Database, NOMAD, etc. [5]. However, as.the materials space is practically infinite, such studies
can only address a marginal part of it, even for relatively simple properties.

The computational funnel model [6] extends high-throughput studies to complex materials properties by
screening out materials after each step according to selection criteria based on the expected result. In
theory, this means that the costliest calculations or experiments are done only for the most promising
candidates. Naturally, this process is the more successful, the faster and the more reliable undesired
materials can be disregarded.

Active learning provides one way/f combining Al models and high-throughput workflows [7] The goal of
this algorithm is to balance exploitation and exploration to select new data points that can optimize a
property or better train an’Al model for a given material property, while simultaneously finding a global
optimum for it in a data=efficientmanner. By using an acquisition function that balances exploration and
exploitation to select which materials to calculate next, these frameworks can improve the efficiency of
the studies by selecting which materials enter the funnel in a non-subjective manner (see Section 2.1). In
essence, both the active learning framework and the selection funnels attempt to achieve the same goal,
that can be achieved synergistically: Active learning suggests which materials enter the workflows and the
high-throughput funnel removes the unpromising candidates after each step of the workflow.

In fact, active learning already has been used in several different applications using density functional
theory (DFT)rand materials discovery frameworks. The need for these frameworks is highlighted in a
recent publication from Li, et al. who demonstrated that 95% of existing data is redundant and that
uncertainty-based active learning frameworks can create smaller, but as effective datasets for machine
learning [8]. Hengrui and coworkers recently developed an entropy-targeted active learning to explore
parts.of materials space that is under-explored, complimenting these results [9]. Finally active learning
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codes can also be applied to other problems, such as searching configurational space of malecules on
surfaces [10].

Current and Future Challenges
The main challenge in fully realising the potential of Al-guided workflows is integrating active learning
schemes, and the Al models and the suited acquisition function they are based on, into advanced selection
funnels. The criteria used for each step of the funnels are either based on an expected error bound of a
lower accuracy calculation or a physics-informed heuristic, e.g., a material havingitoo large of an electronic
band gap or being too dense. The end goal of the screening criteria is to reduce the overall cost and time
of a study, while still exploring the relevant parts of materials space.

~
While useful, the current screening criteria are a potential obstacle when combining active learning with
high-throughput workflows. Because they are not necessarily derived from the data that underlies the Al-
model, an overzealous screening procedure can exclude materials that would drastically improve model
performance and possibly correct an initial bias. Importantly, the heuristics used to screen out materials
may not directly relate to the target property, but be controlled by an unknown third process, leading to
an incorrect physical interpretation. Furthermore, adding selection funnels to active learning frameworks
could perpetuate the initial bias of the models as the dataset will be directed towards the existing
conditions. One potential solution to this problem’ is through using multi-objective learning to
simultaneously optimize both the screening criteria and the targ@t property. However, a less complex
solution would be preferable.

The final challenge with creating these workflows is toincorporate them into existing materials discovery
frameworks. Currently, the tools used for.materials'discovery such as AFLOW [11], atomate [12], and Aiida
[13]. Without native integration, multiple, potentially incompatible solutions must be created leading to
a less transparent ecosystem. An additional benefit of fully integrating these methods is an improved
selection procedure. The use of cost-aware and efficient acquisition functions is becoming increasingly
popular, [14] and including the Al model training and selection steps inside the workflow libraries
themselves will improve the estimated costsfor these acquisition functions and multi-fidelity approaches.
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33 Mavg; density, p; molar volume, Vm; andireduced mass, W), harmonic properties (Debye temperature, Op,~, and the
34 maximum [-point frequency, wr,max), and the.anharmonicity factor, 6*, b) The workflow obtained from the expected
35 thermal conductivity for a given inputfeatures of.the most important inputs. Adapted from Ref [11]

:? An expanded use of explainable’Al methods presents a clear path to achieve the necessary combination
38 of methods presented above. By learning the conditions for screening out materials from the Al models
39 themselves, explainable Al attempts to expands the predictive power of machine learning models, and
40 give insights into the relationship between the input physico-chemical materials features and target

41 properties. These methods can relate to either the regression method used, e.g. linear or symbolic

42 regression, or post-processing techniques that uncover the relationships. By better understanding the

43 connections betweéen the input features and a target property, one can then replace the physics-derived
Zg heuristics with ones from the model itself.

j? We recently demonstrated thecapabilities of this approach, by creating an Al-guided workflow for finding
48 thermal instlators,[15]. For this project we modelled the thermal conductivity, k,, of a material based on
49 its structural, harmonic, and the anharmonic properties (see [15] for a complete list). We then applied
50 feature importance metrics, and found only three inputs were important. From here we were able to map
51 the@xpected value of k, against each of these inputs to find the screening procedure highlighted in Figure
52 1b. With this workflow we were able to efficiently find 16 predicted ultra-thermal insulators with a k. less
53 than 2W/mK out of an initial set of 732 materials [15].
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To fully address the challenges associated with creating sustainable, Al-guided workflows, active learning
techniques must be integrated into them. While the selection funnels can find a list ofthundreds»of
possible candidate materials, it cannot identify which predictions are the most important to validate next.
However, introducing an acquisition function the workflows can then maximize the quality of.information
gained per calculation or experiment. In turn this will allow us to speed up the discovery.of good materials
for vital applications. More importantly, by redoing the feature importance study after each iteration we
can further refine the screening criteria and continue calculations that were initially discarded because
they broke one of the old metrics.

Concluding Remarks

Al-guided workflows have the potential to revolutionise materials discovery frameworks by focusing
calculations or experiments on the most promising materials, and potentially remove the initial bias of
data selection. By using an appropriate acquisition function to‘determine/which experiments or
computations to run next, we can automate these calculations. In turn:the focus of the researchers
working on these problems can instead be on further developing new methods and not managing a large
set of calculations. Furthermore, explainable-Al methods will help.elucidate why the models are deciding
which candidates to calculate next. With this insight, part of the physical mechanisms driving, facilitating,
or hindering the different processes may also be understood: Finally, as the frameworks become better
focused the overall efficiency of these efforts will be sighificantly eEhanced.
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Section 4.2 — Roadmap for Big Data and Artificial Intelligence Driven Data

Analytics in Scanning / Transmission Electron Microscopy (S/TEM)
C.H. Liebscher?, G. Dehm?, C. Freysoldt?!, A. Leitherer?? and L.M. Ghiringhelli>*

! Max-Planck-Institut fir Eisenforschung, Diisseldorf, Germany

2 The NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft and IRIS=Adlershof of
the Humboldt-Universitat zu Berlin, Berlin, Germany

3 Present address: ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and
Technology, Castelldefels (Barcelona), Spain

* Department of Materials Science and Engineering, Friedrich-Alexander Universitit, Erlangen-Nirnberg,
Germany -

Status

Recent developments in aberration-corrected electron optics, spectrometer,and detector technologies
enable to capture multimodal signals within a single experiment in'a_scanning / transmission electron
microscope (S/TEM) down to the atomic level. These advancements have greatly expanded our
understanding of the atomic constitution of materials, which is largely driven by the rich and multimodal
data streams. Spectroscopic techniques such as energy dispersive X-ray (EDS) or electron energy-loss
spectroscopy (EELS) can nowadays probe the local composition¥and electronic structure of complex
materials at the atomic level. New scanning diffraction methods, termed 4D-STEM, capture 2D electron
diffraction patterns in each probe position of the 2D raster grid and have facilitated to image light
elements at atomic resolution, determine local structures and strain with sub-nanometer precision [1].
Further, the spectroscopic and 4D-STEMstechniques.can be combined with tomographic approaches to
obtain the 3D nature of materials. Advances in in'situ probing capabilities and fast electron detectors
make it possible to directly observe the dynamic evolution of materials under different external stimuli
with high spatial and temporal resolution. The common theme of these techniques is that nowadays the
experimental data is often represented asia three- or higher-dimensional data set as shown in Fig. 1 (left)

[2].

The ever-growing data complexity,}ze, and speed at which it is created in experiment renders human-
based analysis not only impractical, but also largely limits the discovery of latent features, which often
equip a material with a‘certain functionality [2]. This has stimulated the development of automated
computer-based and machine-learning analysis algorithms to harvest the rich information contained in
the data and to turnithe data,into'interpretable physical quantities [1]. For example, principle component
analysis and clustéring were employed to automatically separate different phases in a bismuth ferrite
sample at atomic resolution’obtained from a multi-gigabyte 4D-STEM data set [3]. The development of
open-source-based’ data-analysis tools has been paramount for treating and interpreting
multidimensional and darge-scale data sets from different microscope manufacturers in an efficient
manner and provide flexible platforms towards on-the-fly data analysis even of big data sets [4].
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Figure 1 Multimodal data streams and related high-dimensional data representation (left). Data-analysis
algorithms for dimension reduction of large-scale data, autematic patterfvrecognition / segmentation and
guantitative classification of the data (middle). Perspective to harvestithe variety of signals and content contained
in big data to uniquely identify the 3D physical structure of a sample‘with atomic precision, its evolution with high
time resolution to discover new material phenomena on the.atomic and electronic scale. Partially reproduced from
[5], https://creativecommons.org/licenses/by/4.0/.

Current and Future Challenges

Incremental data acquisition and analysis are stil.,common even in modern microscopy laboratories. The
experiment is sequentially followed by.the interpretation of the collected signals and eventually the loop
repeats with refined measurements‘until'sufficient insights into physical material quantities are gained.
There are several challenges associated with this incremental approach in the era of big microscopy data:

1. handling, storage, and Iabe}mg of the data to enable reproducible data analysis
2. human-based data analysis often largely exceeds experimental time frames

3. limited interdigitation of.data acquisition and analysis

4. lack of automated or autonomous data analysis tools

These technical restrictions often directly compromise material characterization and with this new
material discoveries. One of the greatest challenges is the interdigitation of data-stream generation in a
microscopy experiment and its direct analysis to provide live feedback to the researcher. Different
approaches can be envisioned here where parallelized high-performance computation (HPC) utilizing
modern graphical processing unit (GPU) capabilities is directly performed at the microscope computer [6]
or edge computingiin a distributed system, where the HPC tasks are performed either on cloud servers or
at HPC.centres [7].

The broad variety of data streams utilized to probe materials ranging from simple 2D images to 3D or
higherdimensional hyperspectral data sets, to time series probing material evolution or 3D tomographic
reconstructions require the development of versatile and autonomous data analysis algorithms. Typically,
advanced algorithms to reduce the dimensionality of hyperspectral data, segment or recognize patterns
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in images, and classify features in multidimensional data sets are employed as separate or{sequential
instances as shown in Fig. 1 (middle) [1], [2]. It has been shown that unsupervised machine learning:is
capable to automatically segment different crystalline regions in atomic resolution images and video
sequences solely based on crystal structure symmetry without requiring prior knowledge on the
underlying structure [8]. Using a trained Bayesian deep neural network , it is even pessible to classify
crystal structures in atomically resolved images and identify defective regions or interfaces by.considering
the uncertainty in the prediction [5]. In a future direction, one would envision that.novel big-data and
machine-learning algorithms will be integrated in hybrid algorithm architectures that perform automatic
or even autonomous tasks.

Advances in Science and Technology to Meet Challenges ~

Advances in computing architectures for microscope laboratories are onesside of the coin, but integrated
or hybrid machine learning based algorithms need to be deployed alongside to.€nable automatic analysis
of large-scale data. Recent developments in machine-learning and.in particular deep-learning approaches
in electron microscopy hold great promise for laying the foundation.for autonomous data-analysis and
electron-microscope operation [1], [9]. Ultimately, the aim/is to enable the discovery of new material
phenomena and to probe the physical properties of materials and their evolution with atomic precision.
Since the physical nature of electron wave propagation’and. interaction in a crystalline material is well
understood, ground truth training data for a deep learning model can be efficiently generated [10].
However, a large deep-learning model would need to contain information not only of all known crystal
structures and phases, but more importantly of different paoint, line, or planar defect types. Recognizing
defects from supervised learning, however, is nearly impossible to achieve at the day of writing, since the
atomic configurations existing in nature are.not necessarily known or understood. Instead, a convolutional
neural network can be trained on simulated.imagesiof pristine crystal structures, while still localizing and
obtaining information on material imperfections,[5].

a)

Figure 2 Dimension reduction of neural-network representations of a classification model trained on simulated
atomic resolution STEM images of pristine crystal structures. Each point in the scatter plots corresponds to a local
image patch of an experimental image. The color scale corresponds to two items of information that the model
provides: a) Classification assignments of experimental STEM images of interfaces, here grain boundaries, in face-
centered,cubic (fcc) Cu, body-centered cubic (bcc) Fe and hexagonal close packed (hcp) Ti. b) Mutual information
guantifying the uncertainty of the prediction of the deep learning model. Bulk regions appear as clusters of low

74

Page 74 of 93



Page 75 of 93

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-107303.R1

model uncertainty while interfaces correspond to diluted regions with high model uncertainty. Reproducedfrom
[5], https://creativecommons.org/licenses/by/4.0/.

Figure 2 shows the neural network representations obtained after dimension reduction of the fully
connected layer before the classification and the corresponding uncertainty of the prediction."Although
the model was trained on pristine crystal structures, it is capable to distinguish the different types of
interfaces (here: grain boundaries) and the model uncertainty provides an indirect:way to locate material
imperfections. Furthermore, the unsupervised-learning analysis of the structureofthe latent space, might
be able to identify out-of-distribution interface structures that are similar to one another while
significantly different from the training data. Until now, the model cannot relatethese interface structures
to known or unknown building blocks of the interface. Approaches combining:supervised, unsupervised
and active learning are needed to further explore regions in data sets with high uncertainty, which may
represent an unknown interface structure or surface configuration. Furthermore, the classification tasks
have to be extended to also consider local composition and electronic structure to fully exploit the data
and yield a holistic picture of the physical nature of a material on theratomic level. Future models should
enable live feedback at high time resolution to facilitate autonomous steering of the experiment and
consider active re-training to include disturbed or unknownatomic structures.

Concluding Remarks S

Big data in electron microscopy is already a reality and will play an increasing role in the future not only
for the sake of data acquisition, but to holistically.characterizeevery single atom in a material paving the
way for atomic scale materials discovery. Spectrascopic and scanning diffraction data sets (e.g. 4D-STEM)
contain information on the elemental nature, the electronic and 3D structure of a material and hence this
information needs to be fully harvested. Technelogical advancements in computing infrastructure have
to be developed in parallel with hybrid machine learning algorithms in electron microscopy laboratories
to move away from incremental experimentation. Combinations of unsupervised and supervised learning
approaches have the potential to automatically identify and label different crystal structures and atomic
species in complex data sets and will eventually uncover latent patterns in an automatic fashion. This will
guide scientists to interesting regions in a sample and accelerates the deployment of physical material
models. Ultimately, novel hardware\developments will be needed that can make independent decisions
on the next measurement steps to reduce the generated amount of data, while still providing essential
information on the underlying physical nature of the material.
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Status

The success of inherently data-based machine learning (ML) in materials'science can‘also be observed in
its sub-field of structure research through (scanning) transmission electron microscopy, (S)TEM [1,2].
Here, ML has become a game changer for post-acquisition data analysis, such as image reconstruction [3],
improvement of data by denoising and resolution enhancement [1,2;4]“and structure recognition
[1,2,5,6,7]. One of the bottle-necks for the efficiency with which, electron microscopes can generate
materials knowledge is also the investment of time and human, highly/microscope-specific expertise
required to align the instrument for optimal performance, especially; when the materials question to be
solved requires switching between different modes of operation. While some data-driven ML models have
already demonstrated to be capable of measuring aberfations very quickly [8], they are not yet capable
of handling the complexity of a modern microscope which, for somé’instruments, requires managing more
than 500 current supplies. A few groups are also applying ML methods towards real-time data analysis
and automating experiments as illustrated in Fig.'d for the case of STEM [9]. In contrast to the field of
cryo-electron microscopy, where fully automated experiments can run for multiple days by repeating the
same image acquisition process for automatically, exchanged samples at many pre-defined sample
positions, the complexity of adaptive ML-drivenrexperiments in materials science (S)TEM experiments is
much higher, given the inhomogeneity of most samples, the wide variety of signals to choose from and
switch between, and the sequential process with which the data is acquired. Conventional ML methods
used on already acquired data sets can.simply not be applied one-to-one. New ML approaches for real-
time applications in electron microscopy are still rare and most notably their on-the-fly implementation
on the microscope has so far not been realized [9].
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Figure 1 Schematic of an Al-controlled scanning transmission/electron microscope using a pixelated detector to
acquire 4D-STEM datasets. Electrons are emitted from the electron gun and guided through a system of
electromagnetic lenses and are deflected by scan coils before they interact with the specimen. The electron beam is
then guided to the detector, which records a diffraction patternof approx. 1 MB size for thousands of scan position,
thus, resulting in a 4D-STEM dataset of typically»10s of GB.in uncompressed size. ML methods analyse the raw or
compressed data in real-time and control the hardware components of the microscope to optimize the experiment.
The controlled components shown here are the sean coils and a programmable phase plate (inspired by the
commercially available design by adaptem.eu), but it canalso be lens currents, aberration-corrector settings, etc.

&

Current and Future Challenges

In addition to the requirementfor v&y fast'data processing and fast access to electron optical components
of the microscope, method developments will also need to consider the following two crucial
components: The first keyscomponent/s the fast handling of huge microscopy data. Electron microscopes
can nowadays acquire several GBs of data within seconds which, means that ML methods for real-time
applications should be'capable,of processing huge data sets within a fraction of a second. Obviously, a
tight integration between hardware and software will play a crucial part in the solution to this problem.
Edge computing and camera integrated compression techniques [10] are here just two examples to be
mentioned. Another important component for the development of new real-time ML methods is a high
level of adaptability. The environment in the microscope constantly changes between, but sometimes
even during_experimental sessions. ML methods need to deal in real-time with data that has been
acquiredunder these circumstances without a significant loss in performance. Furthermore, methods that
aim for an automation of the experiment are required to easily adapt to different experimental goals.
The high complexity and cost of ownership of state-of-the-art electron microscopes allows only a few labs
staffed withdexpert operators who have undergone extensive microscope-specific training to run them.
Maximizing these instrument’s scientific output per time as well as democratizing access to them calls for
improving their user interface in analogy to how modern chatbots have recently started to enable
anybody to write complex computer programs.
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Advances in Science and Technology to Meet Challenges

Advances in the method development that combines deep learning and reinforcement learning (RL) show
promise that dynamic decision-making problems can be solved with a strong performance by a machine
alone. Operating an electron microscope in an automated fashion could therefore benefit from this
development. A first step towards this direction has been proposed in Ref. [9], wheretthe combination of
deep learning and RL offers the possibility to perform low-dose experiments for electron,ptychography
through adaptive scanning. A schematic of the adaptive scanning workflow is&hown in Figure 2. The
advantage of this approach is that it is highly adaptable to a wide range of scanningmicroscopy techniques
through the modification of a reward function that expresses the research goal. Hence, various imaging
and spectroscopy techniques, such as STEM EELS, that have already been shown to benefit from an
optimized scanning scheme, could be further advanced through afsuccessfulrautomation of the
experiment. But also many other parameters of the experiment, such as<adjustable aberrations, lens
currents, or the phase shifts in programmable phase plates (see Fig<1).can be optimized to improve the
efficiency of the experiment with which a given research questionhis being addressed. Recent
developments in software for processing natural language are likely. to result'in the highly technical user
interface of electron microscopes being extended by chatbots@and comparable features.

In order to deal with 10s of GB of data per scan, it has been shown [10] that compression based on data-
dependent linear transformations yields superior results when compared to conventional techniques like
binning, or singular value decomposition, both in terms of campression ratio and quality of the
information extractable from the data-set. The integration of artificial neural network (ANN)-based
feature recognition techniques has the potential to further'enhance compression performance. Before
collecting the main data-set, a network can be pre-trained in a similar way to adaptive scanning [9], but
with the aim of capturing the diffraction patterns as'best as possible with as few values as possible.

a) 1S (k)2 Q)

predicted
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Figure 2 Schematic of a ML-driven adaptive scanning workflow for the purpose of optimizing the scanning in a 4D-
STEM experiment in real-time. The employed ML methods consist of a convolutional neural network for the atomic
structure extraction and a recurrent neural network for the sequential prediction of scan positions. Training of the
networks is performed through RL. Reproduced with permission from Springer Nature [9].
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Concluding Remarks

In summary, data-based ML methods have already shown to be very powerful for post-processing tasks
of electron microscopy data, but given the high complexity of these microscopes, their application in
useful real-time data analysis and experiment automation methods still lags behind. Some initial
developments of workflows that leverage ML methods to perform and optimizé specific tasks of an
electron microscope show promise for transitioning this fully human-controlled instrument to a (partially)
autonomously operating machine being capable of carrying out precision.measurements in a fully
documented and fully reproducible manner. We expect that this development will largely increase the
research output obtained from this type of instrumentation.
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Section 4.4 — Machine Learning for Analyzing Atom Probe Tomography Data
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Status

Atom probe tomography (APT) is a burgeoning characterization technique.thatprovides compositional
mapping of materials in three-dimensions at the near-atomic scale [1]. The dataebtained by APT takes
the form of a mass spectrum, from which the composition of the analysed:material can be extracted,
and a point cloud that reflects the distribution of all the elements withinithe region-of-interest of the
material being studied. Material-relevant data must be extracted.from this point cloud through the use
of data processing or mining techniques. These go from simply the local composition of a phase or a
microstructural object, sometimes extracted via cluster-finding or nearest-neighbour algorithms today
classified as machine-learning but used in the APT community. for many decades[3]. Phase morphology
or even partial structural information can be obtained but the infermation can be limited or distorted
because of trajectory aberrations that are caused by heterogenities in the specimen’s end shape down
to the near-atomic scale. Today, data reconstruction and processing is most often done in commercially-
available software, which does not allow for exploiting the cutting-edge methods arising from big data
and machine-learning, and also remains very much user-depedent [4]. The enormous potential to mine
atom probe data is clear, but this requires.complete FAIR-compliant analysis workflows that make use of
machine-learning to facilitate more reliable:and reproducible data processing and extraction, to really go
beyond what human users can achieve. This section reviews challenges of APT data analysis (partially)
solved by the application of machinelearning and points out the remaining crucial locks to be addressed
in the future.

+ Peak assignment
» Peak decomposition /

* Hydrogen analysis

+ Tomographic
reconstruction

* Segmentation

* Quantification of the
microstructure

« Structural analysis

deconvolution Figure 1 Summary of typical APT data

analysis workflow, from the processing of
the experimental data to form and
analyse the mass spectrum to the
reconstruction of the 3D point cloud, all of
these steps typically require user input,
highlighting potential for ML-learning and
possible complete data processing
workflows.
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Current and Future Challenges

A critical challenge is that present-day APT data processing tools and workflows are inherited from
"traditional" interactive data analysis based on user-interactions, through a fixed set of data analysis
techniques and visualization that leaves little flexibility to explore novel and processes, as'summarised in
Figure 1. User-input includes assignment of peaks to particular atomic or molecular species to‘manually
retrieved structural information and microstructure segmentation and quantification. Machine-learning
has the potential to automate many of these analysis steps, with models that arelbased on physical
input and constraints. Some progress has been made across the community withsdedicated machine
learning algorithms to mine compositional [5] and structural information[6].For instance, for mass peak
assignment, we introduced an approach that uses known isotopic abundances.to identify patterns in
mass spectra, outperforming human users without loss of accuracy [7]. Following.reconstruction of the
3D point clouds, automated identification and quantification of grain boundaries were proposed, and for
more general microstructure segmentation, Saxena et al. [8] introduced an approach that uses
clustering in the compositional space, demonstrating unique capabilities for.segmentation of the various
phases, along with the quantification of their composition and marphologies. These would normally
have been extracted through manually positioned regions of interest, which is time-consuming and
error-prone. Structural imaging by APT is hindered by the anisotropicspatial resolution and the limited
detection efficiency [3]. Recent efforts have managed to overcome these for the ever-challenging
analysis of chemical short-range order (CSRO) by using convolutional neural networks, using the
workflow in Figure 2 [9]. A key challenge for the future is to move 3way from the developing individual
tools to tackle isolated problems to think about.complete'data analysis workflows, from patches to a
logical patchwork that will also facilitate adoption.’A way to solve this would be to open the programs
themselves via APIs at all levels, or at least facilitate data exchange through open data formats
accessible to external processing by independent tools.

Machine learning
enhanced APT

e

Figure 2 Machine-learning enhanced APT to break the
inherent resolution limitation of atom probe
tomography, and precisely image multiple arrangements
of atoms associated with CSRO, in 3D. Adapted from Figs.
3a and 4b, c in Ref. [9], under a Creative Commons
Attribution 4.0 International License.
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methods. There is a need to agree on a more opened data
format and metadata conventions as a critical
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usage across software, techniques and communities. And
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already been processed. As such, the community will
have push to provide a complete set of tools equivalent
to the currently available integrated beginning-to-end
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workflows, i.e. from an experiment to a publishable image, yet these will have to be open andextendable
to include machine-learning steps and fully documented to also include traceable information regarding
the sample and the specimen with appropriate metadata. A prerequisite is also the use of open and
documented data formats. As a preliminary effort in this directions, let us mention here Paraprobe [10],
that is fully open-source and provides clear documentation of each analysis step for pest-processing APT
datasets that offers orders of magnitude performance gain, automation, and reproducibility. For now,
these open tools are seldom used, and the community seems to wait user-friendlyplatforms, which so far
do not exist. This hinders complete FAIR-workflows that are so far lackingzwhich, precludes direct
correlations with other computational or experimental techniques, but also wider, meta-analyses as
introduced by Meier et al.[5]. Finally, there is a need for a repository of benchmark datasets that would
allow to evaluate the performance of new developments in a transparent way across the community.

Concluding Remarks

Although the above-mentioned efforts have demonstrated the potential.for state-of-the-art machine
learning to meet existing challenges for APT data processing, somemajor aspects remain to be tackled to
fulfil the full potential. Machine-learning has the potential to'help address many of APT shortcomings,
and, for instance, resolve some aberrations that plague the accuracy of the measurements by better
interfacing with modelling efforts in APT. This is necessary to reach true atomic-resolution that will help
extract more precise local atomic arrangements. Optimisation of the data acquisition, and establishing a
dialog between the instrument and the data processing are also areas that will need exploring — in this
regards, APT is far behind other high end microscopy techniques. Overall, we are only at the beginning of
the use of machine-learning for APT, but the preliminary work that has been done across the community
lays solid ground to build better, more encompassing and efficient tools in the future.
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Status

Heterogeneous catalysis is vital to sustain humanity and to address important.societal challenges such as
achieving net zero. Heterogeneous catalysis is also chemically. complex, 'and the realisation of new
catalysts is challenging. Catalysts themselves can contain multiple.active elements; for example, the
catalyst used for the Haber-Bosch process, which is integral to feeding 50% of the global population,
typically contains iron, aluminium, calcium, potassium, and oxygen, with activity subtly dependent on
composition. [1,2] The composition of catalytic materials.can,be explored successfully via data-driven
approaches, yet catalytic reactions occur at the surfaces and interf@ces of these materials, and therefore
the material properties must be investigated also as a function of the reactive surfaces and interacting
medium; [3] furthermore, a rational design 'process must/also consider the intricacy of reaction
mechanisms to ensure appropriate reactivity and,product selectivity, which includes sensitivity to
temperature and pressure, to result in truly industrially relevant catalysts. The complexity of such catalytic
systems quickly becomes intractable to fully.explore with current experimental or computational efforts.

Historically, catalysts have been identified and their application optimised via empirical investigations,
using previous success to guide future decision-making. Such “top-down” experimentation has recently
seen the integration of high-throughput experimentation (HTE) into workflows, accelerating catalyst
discovery through parallelisation of testing; in the more advanced cases, the HTE is coupled with data-
driven analysis of reactivity/selectiv\ity and/automation to self-consistently optimise the efficacy of the
catalytic system towards a target property, working within a defined parameter space. [4] The current
HTE approaches do not typically include advanced in situ or operando characterisation, but these methods
are increasingly available‘separately.and benefit from similar emergent capabilities in automated data-
driven analysis.

Alongside experiment, the 'advancement of computational capabilities allows the “bottom-up”
interrogation of elemental and structural knowledge from across the periodic table, presenting significant
opportunities for accelerated data-driven discovery. Promising materials can be considered further using
parameterised models| to explore surface structures and composition as a function of operating
conditions,«[5,6] and réaction mechanisms derived using automated construction of chemical reaction
networks, providing vast quantities of data relating to a reaction landscape [7] from which rates and
product ‘distributions are accessible via kinetic modelling. With the knowledge calculated within this
sampling spacejthe efficacy of the catalytic system can be linked against key “descriptors” of the catalyst
and its operating conditions, providing powerful shortcuts when navigating across the reaction landscape
to find better catalysts via e.g., active learning protocols. In the most state-of-the-art approaches,
descriptors are derived as compound functions of both experimental and computational information, via
multi-fidelity data models. [8]
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Current and Future Challenges

Data-driven models are dependent on large, accurate, and complete datasets, yet such expefimental data
remains challenging to locate, access, use, or reproduce. Historically, the reward structure of the research
community has been towards positive results, which means that negative results are not shared. [9]
Incomplete datasets lead to sampling bias and inaccuracy of data models; furthermore, hidden data can
also present a challenge for reproducibility, whereby not all the experiment parameters are reported for
future investigators. Data quantity and quality are also important aspects, 4et most experimental
investigations typical focus in a small chemical space, which lead to smallndatasets. Indeed, data
completeness can again become challenging when only the “best” catalysts are considered for higher-
level characterisation methods, such as in situ electron microscopy; and simultaneously, data quality is
compromised, as differing standards of analysis are introduced, and odtcomes.reported in contrasting
formats. [10] The combination of identifiable data sources is also a current<challenge, as the quality and
qguantity of information can vary in relation to synthetic methods, catalytic testing, and characterisation;
and these data may be embedded in images, making collecting accurate data a challenge.

Similar challenges relating to data completeness and accuracy.exist.in the.computational catalysis domain.
Here, greater efforts have been made to creating standardised, complete, and publicly available datasets,
[11,12] yet the realisations often remain limited to subsets of catalysts/reactants/products (e.g. oxygen
evolution reaction electrocatalysts [12]) and a current'challenge.is to expand knowledge space. More
pertinent is the need for accurate computational data that can be c8nfident|y correlated with experiment.
Considering machine-learning forcefields (MLFEEs), which'are a notable success from the application of
data-driven approaches in materials modelling, a.current challenge is to build these approaches to
reproduce experiment, and not just higher-level'computational models. Further extension of the MLFFs
should then include multiple compaositional and environmental aspects of a fully operational
heterogeneous catalyst; and for this mare efficient modelling paradigms are needed to create bigger
datasets. Future challenges then arise with the.integration of computational and experimental datasets,
whereby parameters and observables from each respective domain must be collated and compared on
an equal footing to provide value to theresearchers of the future.

Advances in Science and Technology to Meet Challenges

There are multiple technological advances identifiable to meet the challenges and fully achieve the
potential of data-driven approaches.(Within the laboratory, greater accessibility of automated high-
throughput facilities, capable of synthesising, testing, and characterising catalysts, will be powerful in
facilitating on-the-fly data-driven-catalyst discovery, and must be coupled with public accessibility in
centralised repositoriessto ‘achieve larger, consistent, and more complete datasets. For modelling,
improved software models are still needed to simulate a more accurate description of complete catalytic
conditions, including the effects of temperature, pressure, and solvents, to provide accurate surrogate
models of energy landscapes that can be explored rapidly, with automated discovery again an
opportunity. And at theinterface of computation and experiment, greater integration of catalytic datasets
to provide holistic coverage is necessary to account for deficits in knowledge from either the experimental
or computational domains alone; indeed, one needs to harness the individual strengths of “top-down”
and “bottom-up” perspectives to derive complementary data, rather than distinct.

These scientific and technological advances are coupled also with a need for greater discussion between
members of the catalytic community, and advocacy of standardisation. Whilst the principles of findable,
accessible; interoperable, and reusable (FAIR) data have developed strong roots in the computational
modelling domain, the distribution or centralisation of experimental data remains limited, and focused
oh positive results. The value of all data should be championed, and the importance of metadata to aid
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users in understanding value and limitations of a given dataset; deposition of results in an‘accessible
resource should be encouraged, especially for experiment, where uptake is more urgently’needed. The
communication between researchers should include experimental and computational communities; and
span academia, industry, and third-party organisations, at all levels of scientific investigation, in order to
deliver better understanding of data needs and standardisation of data-collection procedures. The work
here is implicitly multidiscipline, and so the interaction of chemists, materialsf¢scientists, physicists,
computer scientists, data scientists and other domain experts should be encodraged to maximise the
opportunity for multi-fidelity models that address shortcomings arising in individual research domains.
Finally, there is the need to train and distribute knowledge among researchers of the value of their data;
we should be educating in a cross-disciplinary manner about the importance of detailed digital data
collection, in both experiment and computation. Such action will lead/to engagement and investment
towards necessary tools to accelerate the big-data driven discovery lin_heterogeneous catalysis; such
software capabilities already exist, driven by the explosion in interest toewards data-driven discovery, but
the potential is yet to be realised.

Concluding Remarks

The status for data-driven approaches in heterogeneous catalysis is promising, with strong application in
computational fields and increasing demonstrations of potential in experimental laboratories. However,
challenges remain with respect to ensuring the quality and completeness of individual datasets, as well as
improving accessibility and standardisation. Opportunitiesthave béen highlighted that include increased
automation within research environments, improved cross-discipline communication, and efforts among
users to reach distribution standards that will benefit emergent as well as established researchers.
Catalysis is an extremely challenging but valuable field,,with impact on all of humanity. Adoption of the
outlined approaches can facilitate the update of emergent data-driven methods for a transition to cleaner,
more active heterogeneous catalysts that benefitithe global population. There are many examples of good
practice, but efforts are still needed if we are te. maximise the potential value for all.
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Section 4.6 — Synchrotron Small Angle X-Ray Scattering — Perspectives of

Machine Learning
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Status

X-ray scattering and diffraction pertain to a major set of techniques to characterize the structure of
materials at the nanoscale. Small-angle x-ray scattering (SAXS), in particular, has been developed in the
1950s to resolve structures in the size range 1 — 100 nanometers [1]. Despite the development of electron
microscopes some years later, it remained an important technique, mostly,bécause x-rays are less strongly
absorbed than electrons, which allows for in-operando experiments; studying the effect of physical
stimuli, such as temperature, pH or humidity on material structure. A strong boost in the use of small-
angle scattering came with the availability of synchrotron radiation'that improved the time resolution of
in-operando experiments, but also opened to possibility to transform SAXS into a multiscale imaging tool.
In this approach, the general idea is that nanoscale information is extracted from analyzing the scattering
patterns, while mapping of the specimens provides the information at the microscale (see Fig. 1). The first
attempts with SAXS-based imaging go back to the 1990s [2]. This evolved until the development of SAXS
tomography which yields six-dimensional data: three dimensions in real space through scanning and
rotating the specimen (typically with micrometér.resolution) , as well as three additional dimensions from
the scattering patterns within each voxel (containing.nanoscale information) [3, 4].

B
2 32 24 38 30 48 42 sa e

Figure 1 Principle of scanning-SAXS imaging. The specimen (for example a tooth section) is scanned across the x-ray
beam with7a diameter-between tens of nanometers and several micrometers. Parameters extracted from the
scattering patternscan then be mapped with a resolution corresponding to the x-ray beam diameter. In the figure,
this is the thickness of mineral particles in dentin (the star indicates an area with a caries lesion). Picture adapted
from[5].

The enormous advance in the brilliance of x-ray beams, as well as in x-ray optics enables not only the
collection of multidimensional SAXS-tomography data but also the measurement of massive numbers of
Specimens even within short times.

Current and Future Challenges
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These advances upstream of the specimen in the experiment, however, lead to new<challenges
downstream of the specimen, linked to the treatment and the evaluation of massive amounts of data: A
schematic of the workflow in a SAXS measurement is shown in Fig. 2. The traditional way of conducting
such an experiment would be the path symbolized by (A) and (B) in this figure. (A) represents specimen
preparation and the experiment planning and (B) the data collection. These data would thenbe brought
back from the synchrotron experiment for treatment and analysis. However, with the increased speed of
data collection, a general challenge in this approach resides in the fact thatithe experimentalist is
essentially blind without some capabilities of data diagnostics. This requires elementary pre-analysis of
the data to see whether a modification of the beamline setup could improve the experiment. Recognizing
this, software packages involving fast data diagnostics were developed, an example being DPDAK, an open
code software introduced at the BESSY and the DESY synchrotrons (in Bérlin and.Hamburg, respectively)
[6].

Detector

Specimen

X-ray beam

Experiment Setup

Raw Data
Repository

®

Specimen
preparation

Measurement
Results

Figure 2 Schematic workflow of a small-angle x-ray scattering experiment. The traditional approach would be
characterized by the arrows A (experiment planning to define the experiment setup) and B (data collection). With
increasing data rates; several feedback loops involving machine learning are beginning to improve the quality and
speed of the experiment: C is a readjustment of the experiment setup based on rapid data diagnostics, D is data
reduction and denoising, E is data analysis and F automatic material synthesis based on the measurement results.

With the amount of data collected in each beamtime session increasing continuously over the years, a
number of additional challenges appear from the fact that manual data treatment becomes impossible.
This applies to the cleaning of data (such as denoising, background subtraction, image reconstruction,
normalization, etc.) and even more to the data analysis, which in SAXS often involves data fitting. These
steps are indicated by the arrows (D) and (E) in Fig. 2.
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Advances in Science and Technology to Meet Challenges

Especially in SAXS tomography experiments, radiation damage should not be underestimated., since every
specimen position will be hit several times by an intensive x-ray beam due to the fequired rotation/of the
specimen around multiple axes [4]. A typical strategy is then to reduce the irradiation time,»which
inevitably increases the noise in the data. To avoid problems with this noise in the 6D data reconstruction
after the measurements, Zhou and coworkers propose a machine learning (ML). algorithm for the
denoising of scattering data [7]. This approach facilitates step (D) in the diagram of Fig. 2.

The reconstruction of SAXS tomography data is equally challenging due to their high dimensionality. A
possible traditional approach consists in calculating invariants of the SAXS data befere reconstruction,
which replaces the three-dimensional SAXS data by scalars that can be reconstructed much more
efficiently [8]. SAXS invariants are useful, since they contain information about velume and surface of
nano-size objects in the specimen [1] and allow, for example, the calculation ‘of particle sizes in bone or
dentin [2, 5, 8]. In the last few years, ML approaches are being déveloped fortomographic data
reconstruction. Omori and coworkers review these developments . for temography using SAXS but also x-
ray diffraction and other modalities [9]. While these advances relate to step (D) in Fig. 2, the review also
addresses ML approaches for segmentation and analysis of the reconstructed data [9] (step (E) in Fig. 2).

Once data are reconstructed, every voxel in SAXS tomography datajcontains a scattering pattern to be
analyzed. This means a massive effort for data analysis (Step (E) in Fig. 2) after reconstruction. Similar
numbers of SAXS patterns need to be analyzed in.other situations, for example when material structures
are studied as function of physical parameters (temperature, pressure, pH, humidity, etc.) in multiple
measurements. A recent review by Anker and coworkers addresses machine learning (ML) approaches
to analyze a range of synchrotron-based experiment data, including SAXS but also powder diffraction,
pair distribution function, inelastic neutron scattering and X-ray absorption spectroscopy data. While the
traditional approach would be to fit a physical moedel to the data, supervised ML can be used to train a
model for the prediction of structure:based on data, but also to predict the scattering data based on a
known structure and also to predictsparameters based on some physical understanding of the system
[10]. In another recent work [11],/a ML-basedranalysis of SAXS data is proposed, which is based on
Gaussian random fields that avoids{he common model fitting of the data.

The approaches discussed until now are improving workflows in nearly all steps of SAXS
experimentation (step{C)to (E)in Fig.2). A last step (F) potentially closes the loop towards a fully
automatized experimentation. This challenge is currently being taken up under the label of Autonomous
Experimentation. Beaucage and.Martin report on the development of an open liquid handling platform
for autonomous formulation and x-ray scattering [12]. Yager and coworkers review this new paradigm
and show how autonemous x-ray scattering can enhance efficiency and help discover new materials
[13].

Concluding Remarks

Small-angle x-ray scattering is an old method that is currently seeing an enormous increase in activity due
to highly brilliant&-ray sources, more performant x-ray optics and — most recently — rapid progress in the
treatment and the analysis of large amounts of data. As discussed above, several approaches have been
developed addressing some of the steps in the workflow sketched in Fig. 1 through machine learning, but
there are many more opportunities for applying such methods. Faster and, therefore, more effective tools
for onlinedata diagnostics based on machine learning during the experiment could bring a major
improvement. Indeed, this has the potential to significantly reduce measurement times and radiation
damageron sensitive specimens by allowing dynamic experiment planning. Moreover, better automatic
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tools for data cleaning, noise reduction, as well as to correct for background and instrumental reselution
will be essential for high-throughput experiments or tomographic measurements. Finally, there arée
further needs for combining physical models with machine learning methods in, data fitting, a
development which may require a wide-spread effort in training relevant models for a variety of material
classes. In conclusion, machine learning approaches have an important role to play.in many areas of
synchrotron x-ray scattering and the developments in this direction have only just begun.
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