Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Roadmap on data-centric materials science

MPG-Autoren
/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons251787

Foppa,  Lucas       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21549

Ghiringhelli,  Luca M.       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons126963

Kokott,  Sebastian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons213527

Leitherer,  Andreas       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons237953

Purcell,  Thomas       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22181

Trunschke,  Annette       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bauer, S., Benner, P., Bereau, T., Blum, V., Boley, M., Carbogno, C., et al. (2024). Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering, 32(6): 063301. doi:10.1088/1361-651X/ad4d0d.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-7EE4-4
Zusammenfassung
Science is and always has been based on data, but the terms "data-centric" and the "4th paradigm of" materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of Artificial Intelligence (AI) and its subset Machine Learning (ML), has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research.