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Abstract

We study data corruption robustness for reinforcement learning with human feedback (RLHF) in

an offline setting. Given an offline dataset of pairs of trajectories along with feedback about human

preferences, an ε-fraction of the pairs is corrupted (e.g., feedback flipped or trajectory features manip-

ulated), capturing an adversarial attack or noisy human preferences. We aim to design algorithms that

identify a near-optimal policy from the corrupted data, with provable guarantees. Existing theoretical

works have separately studied the settings of corruption robust RL (learning from scalar rewards directly

under corruption) and offline RLHF (learning from human feedback without corruption); however, they

are inapplicable to our problem of dealing with corrupted data in offline RLHF setting. To this end, we

design novel corruption robust offline RLHF methods under various assumptions on the coverage of the

data-generating distributions. At a high level, our methodology robustifies an offline RLHF framework

by first learning a reward model along with confidence sets and then learning a pessimistic optimal pol-

icy over the confidence set. Our key insight is that learning optimal policy can be done by leveraging

an offline corruption-robust RL oracle in different ways (e.g., zero-order oracle or first-order oracle),

depending on the data coverage assumptions. To our knowledge, ours is the first work that provides

provable corruption robust offline RLHF methods.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for addressing

complex tasks across diverse domains, ranging from large language models (LLMs) to robotics and game-

playing [CL+17; Zie+19; SO+20; OW+22; BJ+22; SDB23]. At the core of RLHF is its unique ability to
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Type of Coverage Suboptimality Gap Robust RL Oracle # Oracle Calls

Uniform (ξ) O
(
H3+

√
Hd

ξ ε1−o(1)
) R-LSVI [Zha+22], zero-

order access
1

Relative Condition Number (α)
Õ
(
H2dκ

√
αε
)

+ Õ
(
H5/4d3/4(αε)1/4

) R-LSVI [Zha+22], zero-

order access
Õ
(
H3/2d5

ε3

)

Generalized Coverage Ratio (ν) O
(
νκ
√
εH2d3/2

) Algorithm 7 (Our method),

first-order access
O
(

1
εν

)

Table 1: We design corruption robust RLHF through reduction to corruption robust offline RL problem. Under uniform

coverage and low relative condition number, we use R-LSVI [Zha+22] as an oracle, and obtain suboptimality gap

of O(ε1−o(1)) and O(ε1/4) respectively, in terms of ε (fraction of corrupted data). Calls to R-LSVI are zero-order

i.e. we only obtain a robust policy and an estimate of the value function. Under bounded generalized coverage ratio,

we design a new robust offline RL method (algorithm (7)) that also returns an estimate of the sub-gradient (first order

access). Using algorithm (7), we can improve the dependence on ε to O(
√
ε) and also significantly reduce the number

of oracle calls.

model reward functions solely from preference data, making it particularly well-suited for scenarios where

explicit reward signals are challenging to define. Following reward model estimation, traditional RLHF

approaches employ online reinforcement learning algorithms for subsequent policy optimization. However,

the integration of offline RL within the RLHF pipeline holds promise for alleviating limitations inherent to

online RL, notably in terms of sample efficiency and safety concerns [Lev+20; Kid+20]. By incorporating

offline RL algorithms, RLHF becomes more adaptable to scenarios where online data collection proves

prohibitive, facilitating the reuse of valuable pre-existing datasets [SDB23].

The real-world deployment of RLHF faces substantial challenges rooted in the reliability of the prefer-

ence data, which is integral to its effectiveness. These challenges primarily arise from two sources: adver-

sarial corruption and inherent noise [Cas+23; Xue+23; CNL24]. Adversarial entities, acting with malicious

intent, may deliberately manipulate feedback labels or trajectory features, introducing potential biases in

the reward model. Simultaneously, inherent human subjectivity within crowd-sourced preference data can

contribute substantial noise, impeding accurate reward estimation. In light of these challenges, a pivotal re-

search question emerges: Can we devise a robust variant of RLHF that efficiently learns from adversarially

corrupted or noisy preference data, exhibiting graceful scalability amidst increasing corruption levels?

In this paper, we initiate the study of corruption-robust offline reinforcement learning from human

feedback. Although there are several works on corruption robust offline reinforcement learning [Zha+22;

Ye+23b], and provable preference based reinforcement learning [Zha+23; ZJJ23], ours is the first work

to combine these two threads and provide provable corruption robust offline RLHF methods. We design

corruption robust offline RLHF methods through reduction to corruption robust offline RL methods. In par-

ticular, we modify the existing RLHF framework through three steps – (1) Robustly learn a reward model

by solving a robust logistic regression problem, (2) Construct a confidence set around the learned model,

and (3) learn a pessimistic optimal policy over the confidence set through reduction to offline RL. We in-

stantiate this general framework for datasets with various types of coverage assumptions, and as is often the

case in offline RL, different coverage assumptions require different algorithms. For example, under uniform

coverage, the solution to the robust logistic regression (step 1) gives a reward estimate that is O(ε1−o(1))
close to the true parameter. In this case, just one call to a robust offline RL method is sufficient to obtain an

O(ε1−o(1))-optimal policy.

However, the problem is significantly harder under weaker coverage assumptions e.g. low relative con-
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dition number. In this case, the reward estimate might not be close to the true parameter. However, we show

that their difference in likelihood is bounded, and this observation lets us construct a confidence set around

the estimate. We then perform projected subgradient descent over this set to learn an approximately optimal

reward parameter θ. At each iteration, we utilize corruption robust offline RL method [Zha+22] as a biased,

and zero-order oracle, and use the technique of Gaussian approximation [NS17] to construct an approximate

sub-gradient. We upper bound the error of projected sub-gradient descent with biased zero-order oracle and

prove a final sub-optimality bound of Õ(ε1/4) in terms of ε.

Finally, we show that we can improve the dependence on ε from ε1/4 to
√
ε if the offline data satisfies

the assumption of bounded generalized coverage ratio, an assumption recently considered by Gabbianelli

et al. [Gab+23] (see also [JYW21] for a similar coverage ratio). In this case, we construct a new corrup-

tion robust offline RL that is first-order i.e. not only returns an approximately optimal policy but also an

approximate sub-gradient of the optimal value function.

Our Contributions: Consider the standard Huber contamination model where ε-fraction of the data

(human feedback, features of the trajectories or both) are corrupted. Moreover, consider a linear Markov

decision process [Jin+20] with horizon length H , and feature dimension d. Then we prove the following set

of results.

1. When the offline data has uniform coverage, we show that it is possible to learn a policy with sub-

optimality gap at most O
(
H3
√
dε1−o(1)

)
.1

2. When the offline data satisfies the condition of low relative condition number, a condition substantially

weaker than the uniform coverage, we bound the sub-optimality gap by at most Õ
(
H2dε1/4

)
. In

order to achieve this bound, we reduce our problem to standard corruption robust offline RL, and

use an existing corruption-robust method [Zha+22] as a zero-order oracle. Along the way, we also

develop a method of convex optimization with biased zero-order oracle that might be of independent

interest.

3. Finally, when the offline data satisfies both low relative condition number, and bounded coverage ratio

we bound the sub-optimality gap by at most Õ
(
H2d3/2

√
ε
)
. The assumption of bounded coverage

ratio is generally not comparable to low relative condition number, but is substantially weaker than

the assumption of uniform coverage. We obtain the improved dependence of O(
√
ε) by designing a

new corruption-robust offline RL method, that we believe will be of interest to researchers working

on offline RL.

1.1 Related Work

Preference-based RL: Our work is related to preference-based reinforcement learning (PbRL) [Wir+17;

Lee+21]. Although the field of PbRL is not new, there have been significant recent interests in designing

provably optimal RL methods from preferences [Zha+23; ZJJ23; WLJ23]. In particular, Zhu et al. [ZJJ23]

proposed a pessimistic maximum likelihood estimation for provable PbRL under clean data. Our algo-

rithm, in particular the reward confidence set construction, is related to the method proposed by Zhan et

al. [Zha+23]. However, unlike [Zha+23] we don’t build a confidence set around the probability transi-

tion function, but rather use reduction to offline RL. Finally, there are several works on PbRL in online

setting [PSL21; Cha+21; Che+22] which are complementary to the work on offline setting.

Corruption robust RL: Our work is closely aligned with the research on corruption robust RL, where

the challenge lies in designing agents that can effectively learn in the presence of adversarial corruption on

1The term ε1−o(1) approaches ε as ε → 0. We actually show a dependence of ε · exp(
√

log(1/ε)) which is ε1−o(1).
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both rewards and transitions [Rak+20]. Zhang et al. [Zha+22] has considered linear MDP, and have de-

signed corruption robust offline RL by robustifying the least squares value iteration method. On the other

hand, [Ye+23b] has considered corruption robustness in general MDPs by adopting uncertainty weighting to

nonlinear function approximation [Ye+23a]. In the online RL setting, Lykouris et al.; Chen et al. [Lyk+21;

CDJ21] proposed robust RL methods capable of accommodating up to ǫ ≤ O(1/
√
T ) fraction of corrup-

tions. Zhang et al. [Zha+21] developed an online policy gradient method that is resilient against a constant

fraction of adaptive corruption.

2 Preliminaries

Markov Decision Process: LetM = (S,A, P ⋆, r⋆,H, ρ) be an episodic Markov Decision Process (MDP)

where S denotes the state space and A denotes the action space. The initial state is sampled from the

distribution ρ. P ⋆ = (P ⋆
1 , . . . , P

⋆
H) denote the transition kernels where for each h ∈ [H], P ⋆

h (·|s, a) ∈ ∆(S)
denotes the distribution over states given that the system is in state s at step h and action a is taken. Let

r⋆ : S × A be the reward function where r⋆h(s, a) is the reward obtained from taking action a from state

s at time-step h. We can also extend the reward function to reward over trajectories by taking the sum

of the rewards over the H steps. Specifically, given a trajectory τ = (s1, a1, s2, . . . , sH+1), we define

r⋆(τ) =
∑H

h=1 r
⋆
h(sh, ah).

Policy: Policies denote mappings from histories of traversed state-action pairs to distributions over

actions. Formally, a non-stationary history-dependent policy π = (π1, . . . , πH) is a sequence of mappings

where, for each h ∈ [H], πh : Hh → ∆(A), with Hh = S × (S × A)H−1 × S denoting the history

space up to time-step h. The space of such policies is denoted by Πhis. We further denote by qπh(s, a) =
P(sh = s, ah = a|π, P ⋆) the state-action occupancy measure for every time-step h ∈ [H].The expected

performance of a given policy π with respect to the true transitions P ⋆ and true reward r⋆ is denoted by

V π(P ⋆, r⋆) = E

[ H∑

h=1

r⋆(sh, ah)
∣∣∣sh ∼ P ⋆

h , ah ∼ πh ∀h
]
.

2.1 Offline RLHF

We have an offline dataset D =
{
(τn,0, τn,1, on

}N
n=1

of N pairs of trajectories, where each pair (τn,0, τn,1)
is associated with feedback on ∈ {+1,−1} representing the human preference, coming from a latent model

assumed to satisfy the following assumption.

Assumption 2.1 (Preference-based model). Given a pair of trajectories (τ0, τ1), and a preference o ∈
{+1,−1}, the probability that τ1 is preferred over τ0 satisfies

P
(
o = 1|τ0, τ1

)
= σ

(
r⋆(τ1)− r⋆(τ0)

)
,

where σ : R→ [0, 1] is a monotonically increasing link function.

In this paper, we will utilize the sigmoid link function σ(x) = 1/(1 + exp(−x)), commonly used in

the literature on RLHF [CL+17]. For our setting, the rewards are bounded and the range of the function is

bounded away from 0 and 1. This also implies that there exists a constant κ such that supp∈[0,1]

∣∣∣dσ
−1(p)
dp

∣∣∣ ≤
κ.
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The performance of a given policy π is measured by the notion of suboptimality gap with respect to a

target policy π⋆. Formally, we want to minimize the following quantity

SubOpt(π, π⋆) = V π⋆
(r⋆, P ⋆)− V π(r⋆, P ⋆) .

We will write Σdiff
µ0,µ1 to denote the difference feature covariance matrix, which is defined as

Σdiff
µ0,µ1 = Eτ0∼µ0,

τ1∼µ1

[(
φ(τ0)− φ(τ1)

) (
φ(τ0)− φ(τ1)

)⊤]
.

Similarly, we will write Σavg
µ0,µ1 to denote the average feature covariance matrix, which is defined as

Σavg
µ0,µ1 = Eτ0∼µ0,

τ1∼µ1

[(
φ(τ0) + φ(τ1)

) (
φ(τ0) + φ(τ1)

)⊤]
.

2.2 Contamination Model

In this paper, we study the problem of corruption robustness in offline RLHF. We assume that the collected

data contains an ǫ-fraction of contaminated samples, i.e. an attacker, who is given access to the data before-

hand, is allowed to arbitrarily modify up to an ǫ-fraction of the data samples (both the the trajectory features,

and the human feedback). Motivated by the sample corruption model in robust statistics and robust offline

RL [Zha+22], we propose the Huber contamination of human preferences for RLHF as follows.

Assumption 2.2 (ε-corruption in Offline RLHF). Let ε ∈ [0, 1] denote the contamination parameter and

D̃ = {(τ̃n,0, τ̃n,1, õn}Nn=1 be a dataset of N pairs of trajectories and human preferences. An attacker

inspects D̃ and arbitrarily modifies any up to ǫN tuples from D̃. We denote the corrupted dataset by D =
{(τn,0, τn,1, on)}Nn=1. In other words, there are at most ǫN indices n, for which we have õn 6= on, or

τ̃n,1 6= τn,1, or τ̃n,0 6= τn,0.

2.3 Parametric Markov Decision Processes

It is generally impossible to design provable offline RL algorithms without making any parametric assump-

tions on the underlying MDP. Therefore, throughout this paper, we will assume that the MDP is linear i.e.

the reward and the transition are linear functions of by d-dimensional features.

Definition 2.3 (Linear MDP [Jin+20]). We assume access to known feature map φ : S ×A → R
d, and that

there exist {θh}h∈[H] and signed measures µh = (µ1
h, . . . , µ

d
h) over the state space so that

rh(s, a) = φ(s, a)⊤θh and Ph(s
′ | s, a) = φ(s, a)⊤µh(s

′).

We also assume ‖φ(s, a)‖2 ≤ 1 for any s, a, max {‖θh‖2 , ‖µh(S)‖2} ≤
√
d for any h ∈ [H].

Given a trajectory τ = (s1, a1, s2, . . . , sH+1) we will often write φ(τ) = [φ(s1, a1);φ(s2, a2); . . . ;φ(sH , aH)]

to denote the feature of the trajectory τ . Note that φ(τ) ∈ R
Hd and ‖φ(τ)‖2 ≤

√∑H
h=1 ‖φ(sh, ah)‖22 ≤√

H .
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Algorithm 1 Robust RLHF (with Uniform Coverage)

Require: (a) Corrupted dataset D, (b) corruption parameter ǫ, (c) corruption robust offline RL algorithm

RobRL.

1: Partition dataset D uniformly at random into two datasets D1 and D2 of equal size.

2: ⊲ Estimate reward parameter of linear MDP θ̂ = (θ̂1, . . . , θ̂H).

3: Let xn = φ(τn,1)− φ(τn,0) and solve the following trimmed maximum likelihood estimation problem

using algorithm (4).

θ̂ ← argmax
θ

max
Ŝ⊆D1

|Ŝ|=(1−ε)N/2

∑

n∈Ŝ

logPθ(o
n | xn) (2)

4: Let π̃ be the policy returned by RobRL with reward function rh(s, a) = φ(s, a)⊤θ̂h and dataset D2.

5: Return π̃.

3 Robust RLHF with Uniform Coverage

We now provide our first algorithm for corruption robust reinforcement learning from human feedback

(RLHF). Standard RLHF framework estimates the reward parameter by solving a maximum likelihood esti-

mation problem. We essentially robustify this step and replace it with a robust version of logistic regression.

Let Pθ(o | φ(τ1) − φ(τ0)) be the probability of observing feedback o from a comparison of trajectory τ1

and τ0. Then algorithm (1) solves a trimmed maximum likelihood estimation problem,

θ̂ ← argmaxθ max
S⊆D:|S|=(1−ε)N

∑

n∈S
log Pθ(o

n | xn) (1)

where xn = φ(τn,1) − φ(τn,0). Therefore, the estimate θ̂ is chosen to maximize the likelihood over best

subset containing (1− ε)-fraction of the points.

With an estimate θ̂ of the reward parameter, algorithm (1) uses a robust offline RL method (input RobRL)

to compute an approximately optimal policy π̃. For this step, algorithm (1) uses the features from the dataset

D̂ but the reward is defined according to the estimated model θ̂ i.e. rh(s, a) = θ̂⊤h φ(s, a). Finally, note that

we want the two steps – reward estimation, and policy optimization to use separate datasets, so algorithm (1)

partitions the dataset D, uniformly at random into two datasets of equal size at the beginning. Before

providing the performance guarantees of algorithm (1), we discuss how to solve the trimmed maximum

likelihood estimation (MLE) problem (1).

Solving Trimmed MLE: In general, the optimization problem in eq. (1) is hard to solve. But for the

setting of generalized linear models, [Awa+22] proposed an alternating optimization method that converges

to a stationary point under certain assumptions on the link function. At each iteration t, the alternating

optimization updates Ŝ and θ̂ as

1. Ŝt ← argmax S⊆[N]

|S|=(1−ε)N

∑
n∈S logPθ̂t(o

n | xn).

2. θ̂t+1 ← argmaxθ:‖θ‖2≤
√
Hd

∑
n∈Ŝt

log Pθ(o
n | xn),

where xn = φ(τ1,n) − φ(τ0,n). The method stop when the improvement in the likelihood is less than a

threshold η.

6



Given an estimate θ̂ generated by algorithm (4), let the set Ŝ contain (1−ε)N data-points with the largest

log-likelihood under θ̂. Then we say that θ̂ is a γ-stationary point if the following condition is satisfied.

1

N

∑

n∈Ŝ

∇θ logPθ̂(on | xn)⊤
(θ⋆N − θ̂)

‖θ⋆N − θ̂‖2
≤ γ (3)

Lemma (A.1) (in the appendix) provides a bound of max
{
O(ε), ε2/

∥∥∥θ⋆ − θ̂
∥∥∥
2

}
on the constant γ. With

this guarantee, we are now ready to provide a bound on the sub-optimality of the policy π̃ returned by

algorithm (1). We will make the following assumption regarding the pair of policies µ0, µ1 that generate the

offline data.

Assumption 3.1 (Uniform Coverage). Suppose ‖φ(τ)‖2 ≤ L for any trajectory τ . Then there exists a

constant ξ > 0 such that

Σdiff
µ0,µ1 < ξL · Idd.

Since the feature norm of a trajectory is bounded by L(=
√
H), compared to [Zha+22] we use ξL as

the lower bound constant, instead of just ξ. The next lemma shows that under uniform coverage, the reward

estimate returned by algorithm (4) is O(ε1−o(1)) close to the true reward parameter in terms of L2-norm.

Lemma 3.2. Suppose assumption (3.1) holds with ξ ≥ 5ε and N ≥ Ω
(
H3/2

ε2
(d+ log(1/δ))

)
. Then

algorithm (4) returns θ̂, so that with probability at least 1− δ, we have

‖θ̂ − θ⋆‖2 ≤ C1
ε

ξ
exp

(√
log (1/2δε)

)

The proof of the result above is given in the appendix. The main idea is that 1
N

∑
n∈Ŝ∩T ∇θ log Pθ̂(on |

xn) is a strongly concave function of θ under assumption (3.1). The next theorem provides a bound on the

sub-optimality gap of algorithm (1), assuming access to a f(ε)-robust offline RL method.

Theorem 3.3. Suppose RobRL returns a f(ε)-robust estimate of the optimal value function, and assump-

tion (3.1) holds with ξ ≥ 5ε and N ≥ Ω
(
H3/2

ε2
(d+ log(1/δ))

)
. Then the policy π̃ returned by algo-

rithm (1) satisfies,

V ⋆(θ⋆)− V π̃(θ⋆) ≤ f(ε) + 2
√
HdC1

ε

ξ
· e

√
log( 1

2δε )

with probability at least 1− δ.

We now instantiate theorem (3.3) for the setting of linear MDP. For corruption robust offline RL, we

use algorithm R-LSVI from [Zha+22] as an oracle. It requires a coverage assumption similar to assump-

tion (3.1).

Assumption 3.4 (Uniform Coverage: V2). Suppose, ‖φ(τ)‖2 ≤ L for any trajectory τ . Then there exists a

constant ξ > 0 such that

Σavg
µ0,µ1 < ξL · Idd.

Under assumption (3.4) R-LSVI returns a policy π̃ so that

V π̃(s0) ≥ V ⋆(s0)− Õ

(
H5/2

ξ
√
N

poly(d) +
H3

ξ
ε

)

︸ ︷︷ ︸
:=f(ε)

.
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Note that if N ≥ Ω̃
(

poly(d)
ε2

)
, we have f(ε) = H3

ξ ε. Substituting this value of f(ε) in the bound of

theorem (3.3) gives us the following bound on the suboptimality gap.

Proposition 3.5. Suppose assumptions (3.1) and (3.4) hold. Then for the setting of linear MDP and N ≥
Ω̃
(

poly(d) log(1/δ)
ε2

)
, algorithm (1) returns a policy π̃ so that,

V ⋆(θ⋆)− V π̃(θ⋆) ≤ O

(
H3 +

√
Hd

ξ
ε · e

√
log( 1

2δε )
)

with probability at least 1− δ.

4 Low Relative Condition Number

Although the assumption of uniform coverage allows us to design O(ε1−o(1))-optimal policy, it is a strong

assumption since the features generated by the offline policy might not cover the entire d-dimensional space.

In this section, we relax this assumption to a new assumption named Low Relative Condition number, which

is significantly weaker.

Assumption 4.1 (Relative Condition Number). Given a pairwise target distributions π0, π1, there exists a

constant α > 0 such that the following holds.

sup
w

w⊤Σdiff
π0,π1w

w⊤Σdiff
µ0,µ1w

= α <∞

Although the above assumption is stated for a pair of distributions π0, π1, given a target distribution π†

one can choose π0 = π† and π1 = µ1.

Algorithm (2) provides our new corruption robust RLHF method under the assumption of low relative

condition number. The algorithm begins similarly to algorithm (1) by solving the trimmed maximum like-

lihood estimation to obtain a robust estimate θ̂ of the reward parameter θ⋆. However, in the absence of

uniform coverage, θ̂ might not be close to θ⋆ in terms of L2 distance. So the following lemma provides a

bound in terms of the likelihood at θ̂ and θ⋆.

Lemma 4.2. Let Pθ(y | x) = 1

1+e−y·θ⊤x
and for any n ∈ [N ] define xn = φ(τ1,n) − φ(τ0,n). Then with

probability at least 1− δ, we have

1

N

N∑

n=1

log

(
P
θ̂
(on | xn)

Pθ⋆(on | xn)

)
≤ 6εH

√
d+ c · d

N
log

(
HN

δ

)

The above result is a generalization of Lemma 1 from [Zha+23], and allows us to build a confidence set

around the estimate θ̂ even when a ε-fraction of the data has been corrupted (line 3 of algorithm (2)). Now

we leverage two important observations.

1. The above approach requires the set Θ(D1) is a convex set. It can be easily checked this is true if the

function logPθ(·) is concave. Moreover, for the case of sigmoid link function ∇2
θ log σ(θ

⊤x) 4 0 i.e.

Θ(D1) is a convex set.
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Algorithm 2 Robust RLHF with Condition Number)

Require: (a) Corrupted dataset D, (b) corruption parameter ǫ, (c) corruption robust offline RL algorithm

RobRL, (d) reference distribution µref.

1: Partition dataset D uniformly at random into D1 and D2 of equal size.

2: ⊲ Estimate an estimate θ̂ of the reward parameter, as in Algorithm (1).

3: Set ζ = 6εH
√
d+ 2 d

N log
(
HN
δ

)
and construct confidence set

Θ(D1) =
{
θ : ‖θ‖2 ≤

√
Hd and

2

N

N/2∑

n=1

log σ
(
θ⊤xn

)
− log σ

(
θ̂⊤xn

)
≥ −ζ





4: ⊲ Run Projected Sub-gradient Descent with Biased Oracle

5: Initialize θ0 ∈ Θ(D1).
6: for t = 0, . . . , T − 1 do

7: ⊲ Sub-Gradient Construction

8: Generate u1, . . . , uK uniformly at random from the standard normal distribution (restricted to

Θ(D1)).
9: Let gt be the approximate subgradient,

1

K

K∑

k=1

V̂ (θt + µuk)− V̂ (θ)− µ · Eτ∼µref

[
φ(τ)⊤uk

]

µ
uk

where V̂ (θ) is the value estimate returned by RobRL with reward function rh(s, a) = φ(s, a)⊤θt,h
and dataset D2.

10: θt+1 = ProjΘ(D1) (θt − ηgt)
11: end for

12: Set θ = 1
T

∑T
k=1 θk and let π̃ be the policy returned by running RobRLwith reward function rh(s, a) =

φ(s, a)⊤θh.

13: Return π̃.

2. For the setting of linear MDP, the optimal value function V ⋆(θ) = maxπ V
π(θ) is a convex function

in the reward parameter θ. This follows from the occupancy measure based representation of MDP.

Indeed, V ⋆(θ) = maxq1,...,qH∈C
∑H

h=1 q
⊤
h Φθ, where C is the set of valid occupancy measures, and Φ

is the feature matrix. Since for any θ, V ⋆(θ) is a maximum over linear functions, V ⋆(·) is convex.

Therefore, we run a projected subgradient descent over the set Θ(D1). At each iteration t, algorithm (2)

selects a reward parameter θt. Although the corruption robust offline RL method RobRL can return an

approximately optimal policy with reward parameter θ, we need a subgradient i.e. gt ∈ δθV
⋆(θt) ={

v : V ⋆(θ′) ≥ V ⋆(θt) + v⊤(θ′ − θt) ∀θ′
}

. So we treat RobRL as a biased, zero-order oracle and explic-

itly build an estimator of a subgradient (lines 8-9) [NS17; Duc+15; FKM04]. In particular, we use the

gaussian approximation technique introduced by [NS17]. Given a convex function f : E → R
d, let fµ be

9



its smoothed Gaussian approximation, defined as

fµ(θ) =
1

κ

∫

E
f(θ + µ · u)e−1/2‖u‖22du,

where κ =
∫
E e−1/2‖u‖22du. The Gaussian approximation method performs a gradient descent of the

smoothed function fµ, with the gradient

∇fµ(θ) =
1

κ

∫

E

f(θ + µ · u)− f(θ)

µ
e−1/2‖u‖22du.

It can be easily verified that the estimator constructed in lines 8-9 of algorithm (2) is an estimator of∇fµ(θ)
for f(θ) = V ⋆(θ) − Eτ∼µref

[
φ(τ)⊤θ

]
2. The algorithm finally computes the average reward parameter

θ = 1/T ·∑T
k=1 θk and returns a robust policy π̃ with respect to the parameter θ. Algorithm (2) provides

our full implementation of the reduction to corruption robust RL. The next theorem provides a bound on the

sub-optimality gap of algorithm (2), assuming access to a f(ε)-robust offline RL method.

Theorem 4.3. Suppose assumption (4.1) holds, supp∈[0,1]

∣∣∣dσ
−1(p)
dp

∣∣∣ ≤ κ, and RobRL returns a f(ε)-robust

estimate of the optimal value function. If N ≥ Ω̃
(
H3/2d5

ε3

)
, then for a target policy π†, the policy π̃ output

by algorithm (2) satisfies the following w.p. at least 1− δ.

V π†

(θ⋆)− V π̃(θ⋆) ≤ f(ε) + 8
√

f(ε)(Hd)1/4

+ cκ
√
α
(√

εHd1/4 +
√

d/N · log (HdN/δ)
)

We now instantiate Theorem (4.3) for the setting of linear MDP. For corruption robust offline RL, we

use algorithm (R-LSVI from [Zha+22]) as an oracle. It requires a coverage assumption similar to assump-

tion (4.1).

Assumption 4.4 (Relative Condition Number: V2). For a target distribution π, there exists a constant α > 0
such that the following condition holds.

sup
w

w⊤Σπw

w⊤Σavg
µ0,µ1w

= α <∞

Under assumption (4.4), R-LSVI returns a policy π̃ so that

V π̃(s0) ≥ V ⋆(s0)− Õ

(
H5/2

√
N

√
αpoly(d) +H2d

√
αε

)

︸ ︷︷ ︸
:=f(ε)

.

Proposition 4.5. Suppose assumptions (4.1) and (4.4) hold. Moreover, suppose supp∈[0,1]

∣∣∣dσ
−1(p)
dp

∣∣∣ ≤ κ.

Then for the setting of linear MDP and N ≥ Ω̃
(
H3/2

ε3
· poly(d, 1/δ)

)
, algorithm (2) returns a policy π̃ so

that,

V ⋆(θ⋆)− V π̃(θ⋆) ≤ Õ(H2dκ
√
αε) + Õ

(
H5/4d3/4(αε)1/4

)

with probability at least 1− δ.

2We subtract rewards according to a reference policy µref since we only have preference data over rewards.
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Note that proposition (4.5) provides an upper bound of O(ε1/4) when other parameters are constant.

The reason we obtain sub-optimal dependence on ε is because we assume a zero-order access to the offline

robust RL oracle. We next show that we can improve the dependence on ε if we have access to a first-order

oracle.

5 Bounded Generalized Coverage Ratio

Algorithm 3 Robust FreeHand with First-Order Oracle

Require: (a) Corrupted dataset D, (b) corruption parameter ǫ, (c) corruption robust offline RL algorithm

RobRL, (d) reference distribution µref.

1: ⊲ Estimate reward parameter θ̂ and build confidence interval Θ(D1) as in

algorithm (2).

2: Initialize θ0 ∈ Θ(D1).
3: for t = 0, . . . , T − 1 do

4: Let gt be the sub-gradient returned by running RobRLwith reward parameter rh(s, a) = φ(s, a)⊤θt,h
and dataset D2.

5: θt+1 = ProjΘ(D1) (θt − η (gt + Eτ∼µref
[φ(τ)]))

6: end for

7: Set θ = 1
T

∑T
k=1 θk and let π̃ be the policy returned by running RobRLwith reward function rh(s, a) =

φ(s, a)⊤θh and dataset D2.

8: Return π̃.

Algorithm (3) assumes access to a robust offline RL oracle RobRL, that given any reward parameter θ,

returns an approximate sub-gradient of the optimal value function V ⋆(θ) = maxπ V
π(θ). Given such a first

order oracle, it essentially performs a projected subgradient descent to determine an approximately optimal

reward parameter θ, and the corresponding policy π̃.

Theorem 5.1. Suppose assumption (4.1) holds, supp∈[0,1]

∣∣∣dσ
−1(p)
dp

∣∣∣ ≤ κ, and RobRL returns a f(ε)-robust

estimate of the optimal value function, and f(ε)-approximate subgradient with norm at most G. If N ≥
Ω
(
H3/2dG
f(ε)2

)
, then for any target policy π†, the policy π̃ output by algorithm (2) satisfies the following with

probability at least 1− δ.

V π†

(θ⋆)− V π̃(θ⋆) ≤ 2f(ε)

+ cκ
√
α
(√

εHd1/4 +
√

d/N · log (HdN/δ)
)

We now construct a corruption robust sub-gradient estimator of the function V ⋆(θ) = maxπ V
π(θ).

Given a reward parameter θ = (θ1, . . . , θH), the optimal value function can be expressed as follows.

V ⋆(θ) = max
q=(q1,...,qH)∈C

H∑

h=1

q⊤h Φθh.

Here qh is the state, action occupancy measure at time step h, and the constraint set C ensures the Bellman

flow constraints. Now from the definition of sub-gradient of a convex function which is expressed as a
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maximum of affine function ( [Nes18], chapter 3) we can write down the following expression of the sub-

differential.

δθV
⋆(θ) = co

{
(Φ⊤q1, . . . ,Φ

⊤qH) :

(q1, . . . , qH) ∈ argmax
q=(q1,...,qH)∈C

H∑

h=1

q⊤h Φθh
}

Here co(S) is the convex-hull of a set S. Since qh is the state, action occupancy measure at time-step h,

Φ⊤qh is the average feature observed at time-step h, and the above result states that the subdifferential set

is the convex hull of reward-maximizing average features. Therefore, we will construct a corruption robust

offline RL method, that not only returns an approximately optimal policy but also the average feature under

that policy. We will make the following assumption regarding the data generating policy.

Assumption 5.2 (Bounded Generalized Coverage Ratio). Given a target distribution π⋆, there exists a con-

stant ν > 0 such that the following holds.

Eτ∼π⋆[φ(τ)]⊤
(
Σavg
µ0,µ1

)−2
Eτ∼π⋆ [φ(τ)] < ν

We have stated the above assumption assuming Σµ0,µ1 is invertible, but this is only for simplicity and

consistency with prior literature. An alternate way to state this assumption would be that there exists a vector

y ∈ R
d such that E(s,a)∼π⋆ [φ(s, a)] = Σµ0,µ1y and ‖y‖22 < ν.

Our method is based on the primal-dual framework of linear MDP and builds upon the recent work by

[Gab+23], who considered a similar assumption for discounted MDP. The dual linear program for a finite

horizon linear MDP is the following.

max
{qh}Hh=1,{λh}Hh=1

H∑

h=1

λ⊤
h θh

s.t. Eq1 = ρ

Eqh+1 = µhλh ∀h ∈ [H − 1]

qh ≥ 0 ∀h ∈ [H]

λh = Φ⊤qh ∀h ∈ [H]

(4)

Here we have added the constraint λh = Φ⊤qh to the standard LP formulation, and λh denotes the expected

feature at time step h. Note that this substitution doesn’t change the optimal value of the LP. The Lagrangian

corresponding to the optimization problem above is given as follows.

L(q,λ;v,w) = ρ⊤v1 +
H∑

h=1

〈
qh,−E⊤vh +Φwh

〉

+

H−1∑

h=1

〈
θh + µ⊤

h vh+1 − wh, λh

〉
+ 〈θH − wH , λH〉

The main idea is to solve a saddle point of the above optimization problem i.e. maxq,λminv,w L(q,λ;v,w)
through a gradient descent-ascent based algorithm. However, q and v are infinite dimensional parameters.
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So we represent them symbolically in terms of λ and w, and perform gradient descent-ascent steps over the

H · d dimensional parameters λ = (λ1, . . . , λH) and w = (w1, . . . , wH).
Note that, we don’t exactly know the Lagrangian, and hence can only estimate the gradients through

samples collected from the offline behavioral policy. As noted by [Gab+23], computing estimates of the

gradients require explicit knowledge of the feature covariance matrix Λh = E(s,a)∼µh
ref

[
φ(s, a)φ(s, a)⊤

]
.

It turns out that a substitution λh = Λhβh lets us compute an estimate of the gradient without knowledge

of the covariance matrix Λh. Hence we compute the saddle point of the Lagrangian LR(q,β;v,w) =
L(q,λ;v,w) |{λh=Λhβh}h∈[H]

.

Once we obtain a solution (β,w), we choose policy πh(a | s) ∝ exp
(
φ(s, a)⊤wh

)
and the feature co-

variance matrix as Λ̂hβh. Finally, recall that a ε-fraction of our data is corrupted. Hence we use robust mean

to estimate the gradients from the data, and also use robust covariance estimation to obtain an approximate

average features under π. The full details of the algorithm is provided in the appendix (algorithm (7)), and

here we state the guarantees provided by the new corruption robust offline RL algorithm.

Theorem 5.3. Suppose assumption (5.2) holds, and N ≥ Ω
(
H2d4ν4

ε2
(log2 d+ log2 A)

)
. Then there exists

an algorithm that runs in time poly(H, d) and returns policy π s.t.

maxπ V
π(θ)− E

[
V π(θ)

]
≤ O

(
ν
√
εH2d3/2

)
,

and a vector v̂ = (v̂1, . . . , v̂H) (with ‖v̂‖2 ≤
√
Hdν) s.t.

V ⋆(θ′) ≥ V ⋆(θ) +
∑H

h=1 〈v̂h, θh〉 −O
(
ν
√
εH2d3/2

)
∀θ′.

With such a first-order oracle, the next result states the improved guarantees given by algorithm (3).

Proposition 5.4. Suppose assumptions (4.1) and (5.2) hold, and supp∈[0,1]

∣∣∣dσ
−1(p)
dp

∣∣∣ ≤ κ. IfN ≥ Ω̃
(
H2d4ν4

ε2

)
,

algorithm (3) returns a policy π̃ so that the following holds with constant probability.

V ⋆(θ⋆)− V π̃(θ⋆) ≤ O
(
ν
√
εH2d3/2

)

6 Discussion and Future Work

We have designed corruption robust offline RLHF algorithms under different types of coverage assumptions.

Algorithm (1) provides an upper bound of O(H3
√
dε1−o(1)) which is almost optimal in terms of ε since

there exists a lower bound of Ω(Hdε) even for standard corruption robust offline RL [Zha+22]. We have

seen that it is possible to obtain an upper bound of O(
√
εH2d3/2) under a substantially weaker assumption

of bounded general coverage ratio. In the standard offline RL, the assumption of low relative condition

number is sufficient to obtain a dependence of O(
√
ε). As pointed out by [Gab+23], these two assumptions

are not directly comparable. However, one can consider a slightly different assumption where the exponent

2 in 5.2 is replaced by 1 i.e. Eτ∼π⋆ [φ(τ)]⊤Σavg−1

µ0,µ1Eτ∼π⋆[φ(τ)] < ν. This assumption is similar to the

feature coverage ratio considered in the literature [Jin+20], and can be bounded in terms of low relative

condition number. We believe our offline primal-dual method can be adapted for this assumption by carefully

integrating a robust estimation of the covariance matrix, but we leave this exercise as a future work.

There are also other interesting directions for future work. First, it would be interesting to generalize

our results for RL with general function approximation. Our results (e.g. algorithm (7)) crucially depend
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on min-max theorem which holds for linear MDPs, and doesn’t hold in general. Therefore, we will have to

consider new approaches for reduction to offline RL [Ye+23b]. Another interesting direction is to consider

trajectory based rewards [Zha+23], which requires non-Markovian RL policies. In this case, the computation

of optimal policy itself is a hard problem, and the design of corruption robust RLHF will require different

approaches.
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‖θ⋆−θ̂‖
2

}
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stationary point of the trimmed maximum likelihood estimation problem (1).

Proof. Let us write H = 1

N‖θ⋆−θ̂‖2
2

(θ⋆ − θ̂)⊤
∑

n∈Ŝ ∇2
θ log Pθ(o

n | xn)(θ⋆ − θ̂) be the second order
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derivative in the direction of θ⋆ − θ̂.

|H| ≤ 1

N
∥∥∥θ⋆ − θ̂

∥∥∥
2

2

∑

n∈Ŝ

∣∣∣∣∣(θ
⋆ − θ̂)⊤

exp(−on · θ⊤xn)
(1 + exp(−on · θ⊤xn))2

xnx
⊤
n (θ

⋆ − θ̂)
∣∣∣

≤ 1

N
∥∥∥θ⋆ − θ̂

∥∥∥
2

2

∑

n∈Ŝ

∣∣∣x⊤n (θ⋆ − θ̂)
∣∣∣

≤ 1

N

∑

n∈Ŝ

‖xn‖22 ≤ L2

The rest of the proof is very similar to the proof of Lemma A.12 of [Awa+22]. Let ∆ = 1
N

∑
n∈Ŝ∇θ log Pθ̂(on |

xn)
⊤ (θ⋆−θ̂)
‖θ⋆−θ̂‖

2

. Writing F (θ) = 1
N

∑
n∈Ŝ log Pθ(o

n | xn), we get that there exists θ′ such that

F (θ′) ≤ F (θ̂)− ∆2

4L2

Suppose ‖θ′‖ is feasible. Then it must be that η ≥ ∆2

4L2 as it is impossible to make improvement more than

η. This implies that ∆ ≤ 2L
√
η. On the other hand, if θ′ is not a feasible solution, then we use the fact that

F (·) is a concave function and obtain the following bound.

F (θ⋆) ≤ F (θ̂) +∇θF (θ̂)⊤(θ⋆ − θ̂) = F (θ̂) + ∆
∥∥∥θ⋆ − θ̂

∥∥∥
2

Then it must be that η ≥ ∆
∥∥∥θ⋆ − θ̂

∥∥∥
2

or ∆ ≤ η

‖θ⋆−θ̂‖
2

. Combining the two results and after substituting

η = ε2 we get ∆ ≤ max

{
2Lε, ε2

‖θ⋆−θ̂‖
2

}
.

Algorithm 4 Alternating Optimization

Require: Corrupted dataset D, corruption parameter ǫ, slackness parameter η, transition model P ⋆.

1: Let xn = φ(τn,1)− φ(τn,0).
2: Set θ̂1 = 0.

3: for t = 1, 2, . . . do

4: Ŝt ← argmax S⊆[N]

|S|=(1−ε)N

∑
n∈Ŝ logPθ̂t(o

n | xn).

5: θ̂t+1 ← argmaxθ:‖θ‖2≤
√
Hd

∑
n∈Ŝt

log Pθ(o
n | xn).

6: ⊲ Check Progress

7: if
∑

n∈Ŝ log Pθ̂t+1
(on | xn) ≤∑

n∈Ŝ log Pθ̂t(o
n | xn) + η then

8: Return θ̂t.
9: end if

10: end for

18



A.2 Proof of Lemma (3.2)

Proof. From Lemma A.1 we know that algorithm (4) computes a γ = max

{
2Lε, ε2

‖θ⋆−θ̂‖
2

}
stationary

point. We can assume that 2Lε ≥ ε2

‖θ⋆−θ̂‖
2

. Otherwise,

∥∥∥θ⋆ − θ̂
∥∥∥
2
≤ ε/2L and we are done.

Let T be the set of uncorrupted samples and E be the set of corrupted samples. Then we can write down

the stationarity condition (3) as follows.

1

N

∑

i∈Ŝ∩E

∇θ log Pθ̂(o
n | xn)⊤

(
θ̂ − θ⋆

)
≤ 2Lε ·

∥∥∥θ̂ − θ⋆
∥∥∥
2
− 1

N

∑

i∈Ŝ∩T

∇θ logPθ̂(o
n | xn)⊤

(
θ̂ − θ⋆

)

(5)

We first upper bound the term on the right.

− 1

N

∑

i∈Ŝ∩T

∇θ log Pθ̂(o
n | xn)⊤

(
θ̂ − θ⋆

)
= − 1

N

∑

i∈Ŝ∩T

∇θ log Pθ⋆(on | xn)⊤
(
θ̂ − θ⋆

)

︸ ︷︷ ︸
:=T1

+
1

N

∑

i∈Ŝ∩T

(
∇θ log Pθ⋆(on | xn)−∇θ log Pθ̂(o

n | xn)
)⊤ (

θ̂ − θ⋆
)

︸ ︷︷ ︸
:=T2

(6)

Using the functional form of sigmoid link function i.e. Pθ(o | x) = 1
1+exp(−o·θ⊤x)

, we get the following

expression for the term T1.

T1 = −
1

N

∑

i∈Ŝ∩T

on

1 + exp(on · 〈θ⋆, xn〉)
x⊤n (θ̂ − θ⋆)

In order to provide a high probability bound on T1, we first provide a bound on the k-th moment of the

random vector X = o
1+exp(o·〈θ⋆,x〉)x. For any unit vector v ∈ R

d with ‖v‖2 = 1 we have,

E

[(
o

1 + exp(o · 〈θ⋆, x〉)

)k (
x⊤v

)k
]
≤

√√√√E

[
o2k

(1 + exp(o · 〈θ⋆, x〉))2k

]√
E [(x⊤v)2k]

≤

√√√√E

[
1

(1 + exp(o · 〈θ⋆, x〉))2k

]
Lk ≤ Lk

The second inequality uses the fact that o ∈ {−1, 1} and ‖x‖2 ≤ L. Since Ŝ ∩ T contains uncorrupted

samples, and

∣∣∣Ŝ ∩ T
∣∣∣ ≥ (1 − 2ε)N we can use Corollary G.1 from [ZJS22] to obtain the following result

with probability at least 1− δ.

∥∥∥∥∥∥
E

[
o

1 + exp(o · 〈θ⋆, x〉)x
]
− 1∣∣∣Ŝ ∩ T

∣∣∣

∑

i∈Ŝ∩T

on

1 + exp(on · 〈θ⋆, xn〉)
xn

∥∥∥∥∥∥
2

≤ CkL

1− 2ε

(
(2ε)1−1/k

δ1/k
+

1

δ

√
d

N

)
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Now substituting k =
√

log( 1
2δε ) and assuming N ≥ d/ε2 we obtain the following result.

1∣∣∣Ŝ ∩ T
∣∣∣

∑

i∈Ŝ∩T

on

1 + exp(on · 〈θ⋆, xn〉)
xn = E

[
o

1 + exp(o · 〈θ⋆, x〉)x
]
+∆

where

‖∆‖2 ≤
4εCL

1− 2ε

√
log

(
1

2δε

)(
1

2δε

)1/
√

log( 1
2δε)
≤ C1εL

1− 2ε
e

√
log( 1

2δε)

for some constant C1 > 0. This lets us derive the following upper bound on T1.

T1 = −

∣∣∣Ŝ ∩ T
∣∣∣

N

(
E

[
o

1 + exp(o · 〈θ⋆, x〉)x
]
+∆

)⊤ (
θ̂ − θ⋆

)

= −

∣∣∣Ŝ ∩ T
∣∣∣

N
(Ex,o [∇θ logPθ⋆(o | x)] + ∆)⊤

(
θ̂ − θ⋆

)

= −

∣∣∣Ŝ ∩ T
∣∣∣

N
∆⊤

(
θ̂ − θ⋆

)

≤ C1εL exp

(√
log

(
1

2δε

))∥∥∥θ̂ − θ⋆
∥∥∥
2

The second equality uses that the fact θ⋆ optimizes the population logistic loss and hence the derivative is

zero. The last inequality uses that

∣∣∣Ŝ ∩ T
∣∣∣ ≥ (1− 2ε)N .

We now bound the term T2 defined in eq. (6). We use assumption (3.1) to show that the function
1
N

∑
i∈Ŝ∩T ∇θ log Pθ(on | xn) is strongly concave in θ. Indeed from the definition of Pθ(o | x) we have the

following result.

1

N

∑

i∈Ŝ∩T

∇2
θ log Pθ(o

n | xn) =
1

N

∑

n∈Ŝ∩T

− exp(on 〈θ, x〉)
(1 + exp(on 〈θ, x〉))2 xnx

⊤
n

= − 1

N

∑

n∈Ŝ∩T

1

(exp(−on 〈θ, x〉 /2) + exp(on 〈θ, x〉 /2))2
xnx

⊤
n

4 − 1

4N

∑

n∈Ŝ∩T

xnx
⊤
n

= − 1

4N




N∑

n=1

xnx
⊤
n −

∑

n/∈Ŝ∩T

xnx
⊤
n




4 −1

4
E

[
xx⊤

]
+ c1L

2

√
d+ log(1/δ)

N
· Idd +

1

2N

∑

n/∈Ŝ∩T

xnx
⊤
n

The first inequality follows from the observation that eu+e−u ≥ 2. The last inequality uses the concentration

bound of a sample covariance matrix (lemma B.4). For the third term in the last upper bound, note that
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∣∣∣Ŝ ∩ T
∣∣∣ ≤ εN and the L2-norm of a feature is bounded by L. This implies that the last term is at most

εL/2. Now using assumption (3.1) and choosing N ≥ 4c21L
3

ε2
(d+ log(1/δ)) we obtain the following upper

bound.

1

N

∑

i∈Ŝ∩T

∇2
θ log Pθ(o

n | xn) 4 −
(
ξ

4
− ε

)
L

Therefore, we get the following upper bound.

T2 :=
1

N

∑

i∈Ŝ∩T

(
∇θ log Pθ⋆(on | xn)−∇θ logPθ̂(o

n | xn)
)⊤ (

θ̂ − θ⋆
)
≤ −

(
ξ

4
− ε

)
L
∥∥∥θ̂ − θ⋆

∥∥∥
2

2

This gives us the following upper bound on the right hand side of eq. (5).

−
(
ξ

4
− ε

)
L
∥∥∥θ̂ − θ⋆

∥∥∥
2

2
+

(
2 + C1 exp

(√
log

(
1

2δε

)))
εL
∥∥∥θ̂ − θ⋆

∥∥∥
2

(7)

We now provide a lower bound on the left hand side of eq. (5). From the definition of Pθ(o | x) we obtain

the following identity.

1

N

∑

i∈Ŝ∩E

∇θ log Pθ̂(o
n | xn)⊤

(
θ̂ − θ⋆

)
=

1

N

∑

i∈Ŝ∩E

on

1 + exp
(
on ·

〈
θ̂, xn

〉)x⊤n
(
θ̂ − θ⋆

)

=
1

N

∑

i∈Ŝ∩E


1− 1

1 + exp
(
−on ·

〈
θ̂, xn

〉)


 on · x⊤n

(
θ̂ − θ⋆

)

=
1

N

∑

i∈Ŝ∩E

(
1− P

θ̂
(on | xn)

)
on · x⊤n

(
θ̂ − θ⋆

)

≥ − 1

N

∑

i∈Ŝ∩E

‖xn‖2
∥∥∥θ̂ − θ⋆

∥∥∥
2
≥ −εL

∥∥∥θ̂ − θ⋆
∥∥∥
2

The last inequality uses

∣∣∣Ŝ ∩ E
∣∣∣ ≤ εN . Now combining this lower bound with the upper bound established

in eq. (7) we can obtain a bound on

∥∥∥θ̂ − θ⋆
∥∥∥
2
.

− εL
∥∥∥θ̂ − θ⋆

∥∥∥
2
≤ −

(
ξ

4
− ε

)
L
∥∥∥θ̂ − θ⋆

∥∥∥
2

2
+

(
2 + C1 exp

(√
log

(
1

2δε

)))
εL
∥∥∥θ̂ − θ⋆

∥∥∥
2

⇒
∥∥∥θ̂ − θ⋆

∥∥∥
2
≤

3 + C1 exp
(√

log
(

1
2δε

))

ξ/4− ε
· ε
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A.3 Proof of Theorem (3.3)

Proof. By Lemma 3.2 the reward estimate θ̂ is C1
ε
ζ e

√
log( 1

2δε) close to the true parameter θ⋆. Since al-

gorithm RobRL returns at least f(ε) optimal policy in terms of value function we are guaranteed that

V ⋆(θ̂) ≥ V π̃(θ̂) ≥ V ⋆(θ̂)− f(ε) for any θ. Using this result we can lower bound V π̃(θ⋆).

V ⋆(θ⋆)− V π̃(θ⋆) = V ⋆(θ⋆)− V π̃(θ) + V π̃(θ)− V π̃(θ⋆)

≤ f(ε) + V ⋆(θ⋆)− V ⋆(θ̂) + V π̃(θ)− V π̃(θ⋆)

For the first difference, we use the fact that the optimal value function V ⋆(·) is
√
Hd-Lipschitz in the reward

parameter (lemma (B.3)) and obtain the following bound.

V ⋆(θ⋆)− V ⋆(θ̂) ≤
√
Hd

∥∥∥θ⋆ − θ̂
∥∥∥
2
≤
√
HdC1

ε

ζ
exp

(√
log

(
1

2δε

))

Using lemma (3.2) the second difference can be bounded as follows.

V π̃(θ)− V π̃(θ⋆) =
H∑

h=1

∑

s,a

Pπ̃(sh = s, ah = a)φ(s, a)⊤
(
θh − θ⋆h

)

≤
H∑

h=1

∑

s,a

Pπ̃(sh = s, ah = a) ‖φ(s, a)‖2
∥∥θh − θ⋆h

∥∥
2

≤
H∑

h=1

∥∥θh − θ⋆h
∥∥
2

≤
√
H

√√√√
H∑

h=1

∥∥θh − θ⋆h
∥∥2
2

=
√
H
∥∥θ − θ⋆

∥∥2
2

≤
√
HC1

ε

ξ
· exp

(√
log

(
1

2δε

))

B Missing Proofs from Section (4)

Here we state a more general version of Lemma 4.2. Let us write Pθ(o | x) = 1
1+exp(−o·x⊤θ) . We will also

write θ⋆N to denote the parameter that maximizes empirical log-likelihood i.e.

θ⋆N ∈ argmax
θ:‖θ‖2≤1

1

N

∑

n

logPθ(o
n | xn)

22



Lemma B.1. Suppose that ‖θ‖2 ≤ B for any θ ∈ ΘB , ‖φ(τ)‖2 ≤ L for any trajectory τ ∈ T , and logPθ(·)
is a concave function of θ. Then with probability at least 1− δ, we have

1

N

N∑

n=1

log

(
P
θ̃
(on | xn)

Pθ⋆(on | xn)

)
≤ 6εLB + c · d

N
log

(
LN

δ

)

for θ̃ = θ̂ or θ⋆N . Here c > 0 is a universal constant.

Proof. First note that we can express the difference in log-likelihood as follows.

1

N

N∑

n=1

logPθ̂(o
n | xn)− log Pθ⋆(o

n | xn)

=
1

N

N∑

n=1

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)
+

1

N

N∑

n=1

log

(
Pθ⋆N

(on | xn)
Pθ⋆(on | xn)

)
(8)

For linear reward functions, we can use Lemma 1 of [Zha+23] to bound the second term. Let T ⊆ [N ] be

the set of corrupted data points. Then we have,

1

N

N∑

n=1

log

(
Pθ⋆N

(on | xn)
Pθ⋆(on | xn)

)

=
1

N

∑

n∈T
log

(
Pθ⋆N

(on | xn)
Pθ⋆(on | xn)

)
+

1

N

∑

n/∈T
log

(
Pθ⋆N

(on | xn)
Pθ⋆(on | xn)

)

≤ ε · log
(

1 + eLB

1− e−LB

)
+O

(
d

(1− ε)N
log

(
LN

δ

))

≤ 2εLB +O

(
d

N
log

(
LN

δ

))

The first inequality uses Lemma 1 of [Zha+23] and |T | ≤ εN . Now, we consider bounding the first term in

eq. (8).

1

N

N∑

n=1

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)
(9)

=
1

N

∑

n/∈Ŝ

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)
+

1

N

∑

n∈Ŝ

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)

≤ ε · log
(

1 + eLB

1− e−LB

)
+

1

N

∑

n∈Ŝ

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)

≤ 2εLB +
1

N

∑

n∈Ŝ

log

(
Pθ̂(o

n | xn)
Pθ⋆N

(on | xn)

)

≤ 2εLB +
1

N

∑

n∈Ŝ

∇θ log Pθ̂(on | xn)⊤(θ⋆ − θ̂)

≤ 2εLB + γ
∥∥∥θ⋆N − θ̂

∥∥∥
2

(10)
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The first inequality uses that the size of Ŝ is (1− ε)N and the inner product between the parameter and the

feature is bounded by LB. The second inequality uses that log Pθ(o
n | xn) is a concave function in θ.

Lemma A.1 shows that γ ≤ max

{
2Lε, ε2

‖θ⋆N−θ̂‖
2

}
. Substituting this upper bound in eq. (10) and using

‖θ⋆N‖2 ,
∥∥∥θ̂
∥∥∥
2
≤ B we get the following result: 1

N

∑N
n=1 log

(
P
θ̂
(on|xn)

Pθ⋆
N
(on|xn)

)
≤ max

{
4εLB, 2εLB + ε2

}
≤

4εLB.

B.1 Proof of Theorem (4.3)

Proof. Given a reward parameter θ let V ⋆(θ) = maxπ V
π(θ) be the optimal value function with reward

parameter θ. We claim that V ⋆(·) is a convex function. In order to see this, given a policy π let d be the cor-

responding occupancy measure i.e. dh(s, a) = Pπ(sh = s, ah = a). Then we can write the value function

as V π(θ) =
∑

h,s,a = dh(s, a)φ(s, a)
⊤θ = d⊤Φθ. This observation implies the following inequality.

max
π

V π(θ) ≤ max
d

d⊤Φθ (11)

On the other hand, given an occupancy measure d one can consider the following policy.

πdh(s, a) =

{
dh(s,a)∑
b dh(s,b)

if
∑

b dh(s, b) > 0
1
A o.w.

Moreover, it is known that occupancy measure induced by πd = (πd1 , . . . , π
d
H) is d. This implies the

following inequality.

max
π

V π(θ) ≥ max
d

d⊤Φθ (12)

Therefore, from equations (12) and (11) we conclude that

V ⋆(θ) = max
π

V π(θ) = max
d

d⊤Φθ

Since V ⋆(·) is a maximum of linear functions, it is a convex function. Moreover, by lemma (B.3) V ⋆(·)
is
√
Hd-Lipschitz. By a similar argument the function R(θ) = Eτ∼µref

[
φ(τ)⊤θ

]
is
√
Hd-Lipshitz in θ.

Therefore, V ⋆(·) −R(·) is 2
√
Hd-Lipschitz function.

Now observe that, algorithm (2) performs a projected sub-gradient descent of the function V ⋆(·)−R(·)
with biased zero oracle calls. In particular, since RobRL returns a f(ε)-robust estimate of the optimal value

function, we are guaranteed that

∣∣∣V̂ (θ)− V ⋆(θ)
∣∣∣ ≤ f(ε). Therefore, we can apply the result of Theorem D.1

to obtain the following bound.

V ⋆(θ)−R(θ)−min
θ

(V ⋆(θ)−R(θ)) ≤ 5
√

2f(ε)(Hd)1/4

Note that in order to apply theorem Theorem D.1, we need a lower bound on the number of iterations (T )

and the number of calls to zero-order oracle (K) per iteration. For linear MDP we have the maximum norm

of the parameter, D ≤
√
Hd and maximum value of the function M ≤ H

√
d. This implies the following

lower bound on the number of samples.

N ≥ T ·K ≥ Ω̃

(
MD

ε

M2d3

ε2

)
= Ω̃

(
H3/2d5

ε3

)
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Since π̃ is f(ε)-approximately optimal with respect to the reward parameter θ we are guaranteed that,

V ⋆(θ)−R(θ)− f(ε) ≤ V π̃(θ)−R(θ) ≤ V ⋆(θ)−R(θ) + 8
√

f(ε)(Hd)1/4. (13)

Now using lemma (B.5) (i.e. minθmaxπ V
π(θ) − R(θ) = maxπminθ V

π(θ) − R(θ) for linear reward

models) we obtain the following inequality.

max
π

min
θ

(V π(θ)−R(θ))− f(ε) = min
θ

max
π

(V π(θ)−R(θ)) ≤ V π̃(θ) ≤ V ⋆(θ)−R(θ)− f(ε)

≤ V π̃(θ)−R(θ)− f(ε)

≤ max
π

min
θ

(V π(θ)−R(θ)) + 8
√

f(ε)(Hd)1/4 (14)

We claim that this implies that π̃ approximately optimizes the objective maxπminθ V
π(θ)−R(θ) i.e.

min
θ

(
V π̃(θ)−R(θ)

)
≥ max

π
min
θ

(V π(θ)−R(θ))− f(ε)− 8
√

f(ε)(Hd)1/4 (15)

Let (π⋆, θ⋆) be an optimal solution of the optimization problem maxπminθ V
π(θ)−R(θ). Then the obser-

vation above follows from the following set of inequalities.

min
θ

(
V π̃(θ)−R(θ)

)
−max

π
min
θ

(V π(θ)−R(θ))

= min
θ

(
V π̃(θ)−R(θ)

)
−min

θ

(
V π⋆

(θ)−R(θ)
)

≥ −min
θ

∣∣∣V π̃(θ)− V π⋆
(θ)
∣∣∣

= −min
θ

∣∣∣
(
V π̃(θ)−R(θ)

)
−
(
V π⋆

(θ)−R(θ)
)∣∣∣

≥ −min
θ

∣∣∣
(
V π̃(θ)−R(θ)

)
−
(
V π̃(θ)−R(θ)

)∣∣∣
︸ ︷︷ ︸

:=T1

−min
θ

∣∣∣
(
V π̃(θ)−R(θ)

)
−
(
V π⋆

(θ)−R(θ)
)∣∣∣

︸ ︷︷ ︸
:=T2

≥ −
∣∣∣
(
V π̃(θ)−R(θ)

)
−
(
V π⋆

(θ⋆)−R(θ⋆)
)∣∣∣

≥ −f(ε)− 8
√

f(ε)(Hd)1/4

The first inequality follows since minθ V
π⋆
(θ) ≤ minθ

∣∣V π⋆
(θ)− V π̃(θ)

∣∣+V π̃(θ) ≤ minθ
∣∣V π⋆

(θ)− V π̃(θ)
∣∣+

minθ V
π̃(θ). The third inequality follows by substituting θ = θ in the term T1 and θ = θ in the term T2.

Finally, the last inequality uses eq. (14). Now we can apply lemma (4.2) with η = f(ε) + 8
√

f(ε)(Hd)1/4

to complete the proof.

B.2 Proof of Proposition (4.5)

Proof. For linear MDP, the parameter θ = [θ1; θ2; . . . ; θH ] and the feature of a trajectory τ is constructed

by concatenating the features of H state, action pairs. Therefore, ‖θ‖2 ≤
√
Hd and ‖φ(τ)‖2 ≤

√
H for any

trajectory τ . So we substitute L =
√
H ,B =

√
Hd, and M ≤ LB = H

√
d.

We will use R-LSVI from [Zha+22] as the corruption robust offline RL oracle RobRL. Note that if N ≥
Ω(H · poly(d)/ε) we have f(ε) ≤ Õ

(
H2d
√
αε
)
. Now using the upper bound provided in theorem (4.3)

we obtain the following bound.
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V ⋆(θ⋆)− V π̃(θ⋆)

≤ O

(
κ
√
α

(
√
εHd1/4 +

√
d

N
log

(
HdN

δ

)))

+ Õ(H2dκ
√
αε) + Õ

(
H5/4d3/4(αε)1/4

)

Now observe that if N ≥ Ω(H · poly(d)/ε) the term Õ(
√

d/N ) can be bounded by O(
√
ε). Finally, we

need a lower bound of N ≥ Ω̃
(
H3/2d5

ε3

)
in order to apply theorem (4.3).

Lemma B.2. Suppose assumption (4.1) holds, and supp∈[0,1]

∣∣∣dΦ
−1(p)
dp

∣∣∣ ≤ κ. Let π be a policy so that

min
θ∈Θ(D̂1)

(
V π̃(θ)− Eτ∼µref

[
φ(τ)⊤θ

])
≥ max

π
min

θ∈Θ(D̂1)

(
V π(θ)− Eτ∼µref

[
φ(τ)⊤θ

])
− η

then for any target policy π†, with probability at least 1− δ, we have

V π†

(θ⋆)− V π̃(θ⋆) ≤ cκ
√
α

(
√
εHd1/4 +

√
d

N
log

(
HdN

δ

))
+ η.

Proof. The proof follows a similar approach to the proof of theorem 1 in [Zha+23], except for the fact

that we need to account for the approximation error η and corrupted dataset. We will write R(θ) =

Eτ∼µref

[
φ(τ)⊤θ

]
. Moreover, let θ† ∈ argminθ∈Θ(D̂1)

V π†
(θ)−R(θ).

V π†

(θ⋆)− V π̃(θ⋆) =
(
V π†

(θ⋆)−R(θ⋆)
)
−
(
V π̃(θ⋆)−R(θ⋆)

)

≤
(
V π†

(θ⋆)−R(θ⋆)
)
−
(
V π†

(θ†)−R(θ†)
)
+ η

= E
τ∼µπ

†

τ0∼µref

[
(φ(τ) − φ(τ0))

⊤(θ⋆ − θ†)
]

≤ E
τ∼µπ

†

τ0∼µref

[∣∣∣(φ(τ)− φ(τ0))
⊤(θ⋆ − θ†)

∣∣∣
]
+ η

≤
√

E
τ∼µπ

†

τ0∼µref

[(θ⋆ − θ†)⊤(φ(τ)− φ(τ0))(φ(τ) − φ(τ0))⊤(θ⋆ − θ†)] + η

≤ √α
√

Eτ0∼µ0
τ1∼µ1

[(θ⋆ − θ†)⊤(φ(τ0)− φ(τ1))(φ(τ0)− φ(τ1))⊤(θ⋆ − θ†)] + η

=
√
α

√
Eτ0∼µ0
τ1∼µ1

[
|(θ⋆ − θ†)⊤(φ(τ0)− φ(τ1))|2

]
+ η

=
√
α

√
Eτ0∼µ0
τ1∼µ1

[
|Φ−1 (Pθ⋆(o = 1 | τ1, τ0))− Φ−1 (Pθ†(o = 1 | τ1, τ0))|2

]
+ η

≤ √ακ
√

Eτ0∼µ0
τ1∼µ1

[
|Pθ⋆(o = 1 | τ1, τ0)− Pθ†(o = 1 | τ1, τ0)|2

]
+ η

=

√
ακ√
2

√
Eτ0∼µ0
τ1∼µ1

[
‖Pθ⋆(· | τ1, τ0)− Pθ†(· | τ1, τ0)‖2

]
+ η
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The first inequality follows from the following observation – V π̃(θ⋆) − R(θ⋆) ≥ min
θ∈Θ(D̂1)

V π̃(θ) −
R(θ) ≥

(
V π†

(θ†)−R(θ†)
)
− η. The second inequality uses Jensen’s inequality. The third inequality

uses the assumption of finite relative condition number (4.1). Now we can proceed similar to the proof of

proposition 14 in [Liu+22] to establish the following bound (with probability at least 1− δ).

Eτ0∼µ0
τ1∼µ1

[
‖Pθ⋆(· | τ0, τ1)− Pθ†(· | τ0, τ1)‖21

]
≤ c

N

(
N∑

n=1

log

(
Pθ†(o

n | τ̃0,n, τ̃1,n)
Pθ⋆(on | τ̃0,n, τ̃1,n)

)
+ log

(N (Θ, 1/N)

δ

))

Here N (Θ, 1/N) is the number of elements in an ε-net of the set Θ for ε = 1/N . Since ‖θ‖2 ≤ H
√
d for

each θ ∈ Θ we are guaranteed that |N (Θ, 1/N)| ≤ (2H
√
dN)d. Additionally, observe that we are using

the clean data {τ̃0,n, τ̃1,n}Nn=1 in the bound on the ratio of the log-likelihood. Now, let S be the set of clean

trajectories that have been corrupted by the adversary. Then we can bound the difference in log-likelihood

as follows.

1

N

N∑

n=1

log

(
Pθ†(o

n | τ̃0,n, τ̃1,n)
Pθ⋆(on | τ̃0,n, τ̃1,n)

)
=

1

N

∑

n/∈S
log

(
Pθ†(o

n | τ̃0,n, τ̃1,n)
Pθ⋆(on | τ̃0,n, τ̃1,n)

)
+

1

N

∑

n∈S
log

(
Pθ†(o

n | τ̃0,n, τ̃1,n)
Pθ⋆(on | τ̃0,n, τ̃1,n)

)

≤ 1

N

N∑

n=1

log

(
Pθ†(o

n | τ0,n, τ1,n)
Pθ⋆(on | τ0,n, τ1,n)

)
+ ε · log

(
1 + eHd

1 + e−Hd

)

≤ 1

N

N∑

n=1

log

(
Pθ⋆N (o

n | τ0,n, τ1,n)
Pθ⋆(on | τ0,n, τ1,n)

)
+ 2εH

√
d

≤ 8εH
√
d+ c · d

N
log

(
Hd

δ

)

The first inequality uses |S| ≤ εN and
∣∣φ(τ)⊤θ

∣∣ ≤ H
√
d. The second inequality uses the fact that θ⋆N

maximizes the log-likelihood over the corrupted dataset, and the final inequality uses lemma 4.2.

Lemma B.3. For linear MDP, the optimal value function i.e. V ⋆(θ) = maxπ V
π(θ) is

√
Hd-Lipschitz in

the reward parameter θ.

Proof. We use the occupancy measure characterization of Markov decision process. Given a probability

transition function P let C be the set of all feasible occupancy measures with respect to P . Then V ⋆(θ) =
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supd∈C
∑H

h=1 d
⊤
hΦθh.

V ⋆(θ)− V ⋆(θ′) = sup
d∈C

∑

h

d⊤hΦθh − sup
d∈C

∑

h

d⊤hΦθ
′
h

≤ sup
d∈C

∣∣∣∣∣

H∑

h=1

d⊤hΦθh −
H∑

h=1

d⊤hΦθ
′
h

∣∣∣∣∣

≤ sup
d∈C

∣∣∣∣∣

H∑

h=1

∑

s,a

dh(s, a)φ(s, a)
⊤ (θh − θ′h

)
∣∣∣∣∣

≤ sup
d∈C

H∑

h=1

∑

s,a

dh(s, a) ‖φ(s, a)‖2
∥∥θh − θ′h

∥∥
2

≤
√
d

H∑

h=1

∥∥θ − θ′
∥∥
2

The last inequality uses ‖φ(s, a)‖2 ≤
√
d and

∑
s,a dh(s, a) = 1 for any h. Now the claim follows from the

following observation
∑H

h=1 ‖θ − θ′‖2 ≤
√
H
√∑H

h=1 ‖θ − θ′‖22 =
√
H ‖θ − θ′‖2.

Lemma B.4. Suppose X1, . . . ,Xn are drawn i.i.d. from a d-dimensional distribution with covariance Σ
and sub-Gaussian norm at most K . Then with probability at least 1− δ we have,

∥∥∥∥∥
1

n

n∑

i=1

XiX
⊤
i − Σ

∥∥∥∥∥ ≤ c1K
2 ‖Σ‖

(√
d+ log(1/δ)

n
+

d+ log(1/δ)

n

)
.

Proof. See [Ver18] for a proof.

Lemma B.5. For linear models, minθmaxπ V
π(θ)−Eτ∼µref

[
φ(τ)⊤θ

]
= maxπminθ V

π(θ)−Eτ∼µref

[
φ(τ)⊤θ

]
.

Proof. We will write R(θ) = Eτ∼µref

[
φ(τ)⊤θ

]
. There are two cases to consider.

Case 1: First, we consider the linear MDP setting. Given a policy π let d be the corresponding occupancy

measure i.e. dh(s, a) = Pπ(sh = s, ah = a). Then we can write the value function as V π(θ) =
∑

h,s,a =

dh(s, a)φ(s, a)
⊤θ = d⊤Φθ. This observation implies the following inequality.

min
θ

max
π

V π(θ)−R(θ) ≤ min
θ

max
d

d⊤Φθ −R(θ) (16)

On the other hand, given an occupancy measure d one can consider the following policy.

πdh(s, a) =

{
dh(s,a)∑
b dh(s,b)

if
∑

b dh(s, b) > 0
1
A o.w.

Moreover, it is known that occupancy measure induced by πd = (πd1 , . . . , π
d
H) is d. This implies the

following inequality.

min
θ

max
π

V π(θ)−R(θ) ≥ min
θ

max
d

d⊤Φθ −R(θ) (17)

Therefore, from equations (17) and (16) we conclude that

min
θ

max
π

V π(θ)−R(θ) = min
θ

max
d

d⊤Φθ −R(θ)
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Now observe that the objective d⊤Φθ −R(θ) is linear in both d and θ. Therefore, strong duality holds and

we can exchange the order of min and max.

min
θ

max
π

V π(θ)−R(θ) = min
θ

max
d

d⊤Φθ −R(θ) = max
d

min
θ

d⊤Φθ −R(θ)

Finally, by an argument very similar to the first part of the proof (correspondence between policy and

occupancy measure) we can prove the following identity.

max
d

min
θ

d⊤Φθ −R(θ) = max
π

min
θ

V π(θ)−R(θ)

Case 2: We now consider the case of trajectory based linear MDP. Let C be the set of all valid probability

distributions over the trajectories i.e. C = {p :
∑

τ pτ = 1, pτ ≥ 0 ∀τ}. Given any policy π, one can

consider the probability distribution pπ ∈ C induced by π so that V π(θ) =
∑

τ p
π
τφ(τ)

⊤θ = pπ
⊤
Φθ. This

gives us the following inequality.

min
θ

max
π

V π(θ)−R(θ) ≤ min
θ

max
p∈C

p⊤Φθ −R(θ) (18)

On the other hand, given any probability distribution p ∈ C, one can consider the following non-Markovian

policy.

πph(a | h) =
{ ∑

τ ph,a,τ∑
b,τ ph,b,τ

if
∑

b,τ ph,b,τ > 0
1
A o.w.

We will also write PM (τ ′) to denote the marginal probability of a sub-trajectory τ ′ which is defined as

PM (τ ′) =
∑

τ ′′ pτ ′,τ ′′ . Now given any trajectory τ = (s0, a0, s1, a1, s2, . . . , sH−1, aH−1, sH) the proba-

bility that the τ is generated under πp is given as,

P(τ) = µ(s0)π
p
0(a0 | s0)P(s1 | s0, a0)µp1(a1 | s0, a0, s1)

. . . µpH−1(aH−1 | s0, . . . , sH−1)P(sH | sH−1, aH−1)µ
p
H(aH | s0, . . . , sH)

= µ(s0)
PM (s0, a0)

PM (s0)
P(s1 | s0, a0)

PM (s0, a0, s1, a1)

PM (s0, a0, s1)

. . .
PM (s0, . . . , sH−1, aH−1)

PM (s0, . . . , sH−1)
P(sH | sH−1, aH−1)

PM (s0, . . . , sH , aH)

PM (s0, . . . , sH)

= µ(s0)
PM (s0, a0, s1)

PM (s0)

PM (s0, a0, s1, a1, s2)

PM (s0, a0, s1)
. . .

PM (s0, . . . , sH−1, aH−1, sH)

PM (s0, . . . , sH−1)

PM (s0, . . . , sH , aH)

PM (s0, . . . , sH)

= PM (τ)

Therefore, policy πp induces the same probability distribution over the trajectories as p ∈ C. This implies

the following inequality.

min
θ

max
π

V π(θ)−R(θ) ≥ min
θ

max
p∈C

p⊤Φθ −R(θ) (19)

Inequalities (18) and (18) imply the following identity.

min
θ

max
π

V π(θ)−R(θ) = min
θ

max
p∈C

p⊤Φθ −R(θ)

The rest of the proof is very similar to case 1 as we can again use strong duality to exchange the order of

min and max.
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C Missing Proofs from Section (5)

C.1 Proof of Theorem (5.1)

Proof. As shown in the proof of Theorem 4.3, V ⋆(θ) = maxπ V
π(θ) is a convex function in θ. LetR(θ) =

Eτ∼µref

[
φ(τ)⊤θ

]
. Then V ⋆(θ)−R(θ) is convex in θ.

Now observe that, algorithm (3) performs a projected sub-gradient descent of the function V ⋆(·)−R(·)
with first order oracle calls. Since, RobRL returns a f(ε) approximate subgradient of the optimal value

function V ⋆(·), gt + Eτ∼µref
[φ(τ)] is also an f(ε) approximate sub-gradient of V ⋆(θt)−R(θt). Moreover,

‖gt + Eτ∼µref
[φ(τ)]‖2 ≤ ‖gt‖2 + ‖Eτ∼µref

[φ(τ)]‖2 ≤ G +
√
H , and for any θ = (θ1, . . . , θH) we have

‖θ‖2 ≤
√
Hd. Therefore, we can apply theorem C.1 to obtain the following bound.

V ⋆(θ)−R(θ)−min
θ

(V ⋆(θ)−R(θ)) ≤

√
Hd(G+

√
H)

√
T

+ f(ε)

If T ≥ Hd(G+
√
H)

f(ε)2 , we have

V ⋆(θ)−R(θ)−min
θ

(V ⋆(θ)−R(θ)) ≤ 2 · f(ε).

Since π̃ is approximately optimal with respect to the reward parameter θ we are guaranteed that,

V ⋆(θ)−R(θ)− f(ε) ≤ V π̃(θ)−R(θ) ≤ V ⋆(θ)−R(θ) + 2f(ε)

We can now proceed similar to the proof of Theorem 4.3, and establish that π̃ approximately optimizes the

objective maxπminθ V
π(θ)−R(θ) i.e.

min
θ

(
V π̃(θ)−R(θ)

)
≥ max

π
min
θ

(V π(θ)−R(θ))− 2f(ε)

Now we can apply Lemma B.2 to complete the proof.

C.2 Subgradient Descent with Biased First-Order Oracle

Setting: Our goal is to minimize a L-Lipschitz convex function f : S → [−M,M ] where S is a convex and

bounded set. The function f might not be differentiable, and we have access to a (first-order) noisy oracle,

that given a point x ∈ S returns a sub-gradient vector g such that

f(y) ≥ f(x)− β + 〈g, y − x〉 ∀y ∈ E.

We will also write g ∈ δβf(x) to denote such a noisy subgradient vector. The next theorem is well-known,

but we provide a short proof for completeness.

Theorem C.1. Consider the iterates of projected subgradient descent i.e. θt+1 = ProjS (θt − ηgt) for

t = 0, 1, . . . , T − 1. Suppose gt ∈ δβf(θt) for all t, ‖gt‖2 ≤ G for all t, and supθ∈S ‖θ‖2 ≤ D. Then

f(θ)− f(θ⋆) ≤ D
√
G√
T

+ β
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Proof.

‖θt+1 − θ⋆‖22 ≤ ‖θt − ηgt − θ⋆‖22 = ‖θt − θ⋆‖22 + η2 ‖gt‖22 − 2η 〈gt, θt − θ⋆〉
After rearranging and dividing by 2η, we obtain the following inequality.

〈gt, θt − θ⋆〉 ≤ 1

2η

(
‖θt − θ⋆‖22 − ‖θt+1 − θ⋆‖22

)
+

η

2
‖gt‖22

Since gt ∈ δβf(θt) is a noisy subgradient, using convexity we obtain,

f(θt)− f(θ⋆) ≤ 〈θt − θ⋆, gt〉+ β.

Now using θ = 1
T

∑T
t=1 θt and convexity of the function f(·) we obtain the following upper bound.

f(θ)− f(θ⋆) ≤ 1

T

T∑

t=1

f(θt)− f(θ⋆) ≤ 1

T

T∑

t=1

〈θt − θ⋆, gt〉+ β

≤ 1

T

T∑

t=1

1

2η

(
‖θt − θ⋆‖22 − ‖θt+1 − θ⋆‖22

)
+

η

2T

T∑

t=1

‖gt‖22 + β

≤ D2

2ηT
+

ηG

2
+ β

Now choosing η = D√
GT

we obtain the desired bound.

C.3 Proof of Proposition (5.4)

Proof. For linear MDP, the parameter θ = [θ1; θ2; . . . ; θH ] and the feature of a trajectory τ is constructed

by concatenating the features of H state, action pairs. Therefore, ‖θ‖2 ≤
√
Hd and ‖φ(τ)‖2 ≤

√
H for any

trajectory τ .

We will use robust offline RL oracle provided by theorem 5.3. Note that if N ≥ Ω̃(H2d4ν4/ε2) we have

f(ε) ≤ O
(
ν
√
εH2d3/2

)
. Now using the upper bound provided in theorem (5.1) we obtain the following

bound.

V ⋆(θ⋆)− V π̃(θ⋆) ≤ O
(
ν
√
εH2d3/2

)

≤ O

(
κ
√
α

(
√
εHd1/4 +

√
d

N
log

(
HdN

δ

)))

Now observe that if N ≥ Ω(H · poly(d)/ε) the term Õ(
√

d/N ) can be bounded by O(
√
ε). Finally, we

need a lower bound of N ≥ Ω
(
H3/2dG
f(ε)2

)
= Ω(d/ε2) in order to apply theorem (5.1).

D Projected Subgradient Descent with Biased Zero-Order Oracle

Setting: Our goal is to minimize a L-Lipschitz convex function f : S → [−M,M ] where S is a convex and

bounded set. The function f might not be differentiable, and we only have access to a noisy oracle f̃ that

guarantees

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε for any x ∈ S. We consider a projected subgradient descent based algorithm

where algorithm 6 is used to construct a biased subgradient.
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Algorithm 5 Biased Subgradient Descent

Require: Stepsize η, θ0 ∈ R
d, number of iterations T .

1: for t = 0, 1, . . . , T − 1 do

2: Construct subgradient gt = ∇̃fµ(θt) using algorithm (6).

3: θt+1 = ProjS (θt − ηgt).
4: end for

5: θ = 1
T

∑T
t=1 θt.

Theorem D.1. Suppose algorithm (5) is run for T ≥ 4DM
ε iterations, and we set K ≥ 256CM2d3

ε2
ln
(
16DM
εδ

)

and µ =
√
ε√
8d

. Then the output θ of algorithm (5) satisfies

f(θ)− f(θ⋆) ≤ 5
√
εL

Proof.

‖θt+1 − θ⋆‖22 ≤ ‖θt − ηgt − θ⋆‖22 = ‖θt − θ⋆‖22 + η2 ‖gt‖22 − 2η 〈gt, θt − θ⋆〉

After rearranging and dividing by 2η, we obtain the following inequality.

〈gt, θt − θ⋆〉 ≤ 1

2η

(
‖θt − θ⋆‖22 − ‖θt+1 − θ⋆‖22

)
+

η

2
‖gt‖22

Since gt = ∇̃fµ(θt) is a noisy subgradient constructed by algorithm (6), using lemma (D.2) we get,

f(θt)− f(θ⋆) ≤ 〈θt − θ⋆, gt〉+ bt

where

bt =

√
C

K

4M

µ

√
2d ln(2/δ) +

2ε

µ
diam(E) + µL

√
d

Summing over t = 0, 1, . . . , T − 1 we obtain the following upper bound.

T−1∑

t=0

f(θt)− f(θ⋆) ≤
T−1∑

t=0

〈θt − θ⋆, gt〉+
T∑

t=1

bt

≤ 1

2η

T−1∑

t=0

(
‖θt − θ⋆‖22 − ‖θt+1 − θ⋆‖22

)
+

η

2

T−1∑

t=0

‖gt‖22 +
T−1∑

t=0

bt

≤ 1

2η

(
‖θ0 − θ⋆‖22 − ‖θT − θ⋆‖22

)
+

η

2

T−1∑

t=0

‖gt‖22 +
T−1∑

t=0

bt

From the construction of subgradient in algorithm (6) it is clear that ‖gt‖2 ≤ 2M
µ diam(E). Moreover,

diameter of S is at most D. This gives us the following result.

f(θ)− f(θ⋆) ≤ 1

T

T−1∑

t=0

f(θt)− f(θ⋆) ≤ 2D2

ηT
+ η

2M2

µ2T
diam2(E) +

√
C

K

4M

µ

√
2d ln(2/δ) +

2ε

µ
diam(E) + µL

√
d
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We now substitute η = Dµ
Mdiam(E) .

f(θ)− f(θ⋆) ≤ 4DM

µT
diam(E) +

√
C

K

4M

µ

√
2d ln(2/δ) +

2ε

µ
diam(E) + µL

√
d

We further substitute µ =
√
ε

diam(E)
√
L

and choose T ≥ 4DM
ε and K ≥ 32CM2diam2(E)

ε2
d ln(2T/δ).

f(θ)− f(θ⋆) ≤ 4
√
εL+

√
εLd

diam(E)
(20)

Now recall that lemma (D.2) requires that the set E be such that
∫
E exp

(
−1

4 ‖u‖
2
2

)
du ≥ 1

2 . We choose a

simple set E = [−ℓ, ℓ]d and show that one can pick ℓ = O(1). Then we have,

∫

E
exp

(
−1

4
‖u‖22

)
du =

{∫ −ℓ

ℓ
exp(−1/4v2)dv

}d
=

{
2

∫ −ℓ/2

ℓ/2
exp(−1/2t2)dt

}d
= {2(2Φ(ℓ/2) − 1)}d .

Here Φ(t) = P(X ≤ t) with X being a standard Gaussian random variable. Substituting Φ(t) ≥ 1− e−t
2/2

we get the following lower bound.

∫

E
exp

(
−1

4
‖u‖22

)
du ≥

{
2(1 − 2e−ℓ

2/8)
}d

It can be checked that picking ℓ >
√
8 ln 4 satisfies

∫
E exp

(
−1

4 ‖u‖
2
2

)
du ≥ 1/2. Therefore, we choose

E = [−4, 4]d. This also implies that diam(E) =
√
8d and substituting this bound in eq. (20) we obtain the

following upper bound.

f(θ)− f(θ⋆) ≤ 4
√
εL+

√
εL√
8

D.1 Gradient Construction

Given a convex function f : E → R
d, let fµ be defined as its Gaussian approximation.

fµ(x) =
1

κ

∫

E
f(x+ µu)e−

1
2
‖u‖22du

where κ =
∫
E e−

1
2
‖u‖22du. Suppose f is L-Lipschitz then the following results are well known [NS17].

1. For any x ∈ E, |fµ(x)− f(x)| ≤ µL
√
d.

2. ∇fµ(x) = 1
κ

∫
E
f(x+µu)−f(x)

µ e−
1
2
‖u‖22udu.

3. ∇fµ(x) ∈ δαf(x) for α = µL
√
d i.e. f(y) ≥ f(x)− µL

√
d+ 〈∇fµ(x), y − x〉 for all y ∈ E.
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Algorithm 6 Gradient Construction

Require: Noisy oracle f̃ , number of iterations K , input x.

1: Generate u1, . . . , uK uniformly at random from the standard normal distribution (restricted to the set

E).

2: Let ∇̃fµ(x) = 1
K

∑K
k=1

f̃(x+µuk)−f̃(x)
µ uk.

3: ∇̃fµ(x).

Lemma D.2. Suppose the set E is chosen so that
∫
E e−

1
4
‖uk‖22 ≥ 1

2 , and

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε for any x. Then

the gradient estimate returned by algorithm (6) satisfies

∇̃fµ(x) ∈ δαf(x) for α =

√
C

K

4M

µ

√
2d ln(2/δ) +

2ε

µ
diam(E) + µL

√
d

with probability at least 1− δ.

Proof. Let ∇̂fµ(x) = 1
K

∑K
k=1

f(x+µuk)−f(x)
µ uk. Then we have,

∥∥∥∇̂fµ(x)− ∇̃fµ(x)
∥∥∥
2
=

1

K

∥∥∥∥∥∥

K∑

k=1

(
f̃(x+ µuk)− f(x+ µuk)

)
−
(
f̃(x)− f(x)

)

µ
uk

∥∥∥∥∥∥
2

≤ 2ε

µK

K∑

k=1

‖uk‖2

≤ 2ε

µ
diam(E) (21)

We now show that ∇̂fµ(x) concentrates around ∇fµ(x). Let Vk = f(x+µuk)−f(x)
µ uk. We claim that the

sub-Gaussian norm of Vk is at most 4M
µ . This follows from two observations. First,

∣∣∣f(x+µuk)−f(x)µ

∣∣∣ ≤ 2M
µ .

Second, we show that the sub-Gaussian norm of the random vector uk is at most 2. Since ‖uk‖ψ2
=

supv∈Sd−1

∥∥u⊤k v
∥∥
ψ2

, consider any v ∈ R
d with ‖v‖2 = 1.

E

[
e

(u⊤k v)2

4

]
=

1

κ

∫

E
e

(u⊤k v)2

4 e−
1
2
‖uk‖22duk ≤

1

κ

∫

E
e−

1
4
‖uk‖22duk =

∫
E e−

1
4
‖uk‖22

∫
E e−

1
2
‖uk‖22

≤ 1
∫
E e−

1
4
‖uk‖22

≤ 2

The first inequality uses ‖v‖2 = 1, and the second inequality uses Jensen’s inequality. We can now use

proposition 2.6.1 from [Ver18] to bound the sub-Gaussian norm of the average vector.

∥∥∥∥∥

K∑

k=1

f(x+ µuk)− f(x)

µ
uk

∥∥∥∥∥
ψ2

≤

√√√√C

K∑

k=1

∥∥∥∥
f(x+ µuk)− f(x)

µ
uk

∥∥∥∥
2

ψ2

≤
√
CK

4M

µ

for some universal constant C > 0. Therefore,

∥∥∥∇̂fµ(x)
∥∥∥
ψ2

≤
√

C
K

4M
µ . This also means that

∥∥∥∇̂fµ(x)
∥∥∥
ψ2

is

√
C
K

4M
µ

√
d norm sub-Gaussian [Jin+19] and from the definition of norm sub-Gaussian random vectors
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(definition 3 from [Jin+19]) we have the following bound.

Pr

(∥∥∥∇̂fµ(x)−∇fµ(x)
∥∥∥
2
≥
√

C

K

4M

µ

√
2d ln(2/δ)

)
≤ δ (22)

Finally, we can combine eq. (21), and eq. (22) and use item 3 to obtain the desired bound.

E A New Corruption Robust Offline RL Method

We adopt the linear programming based formulation of reinforcement learning [Man60]. We will write

Φ ∈ R
SA×d to write the feature matrix, and Ph ∈ R

S×SA to be the transition probability matrix at time-step

h, which is defined as Ph(s, (s
′, b′)) = Ph(s | s′, b′). Note that we can write Ph = ΨhΦ

⊤ where µh ∈ R
S×d

is the µh is the d-dimensional measure matrix.

max
q

H∑

h=1

q⊤h Φθh

s.t.
∑

a

q1(s, a) = ρ(s) ∀s

Eqh+1 = µhΦ
⊤qh ∀h ∈ {1, 2, . . . ,H − 1}

qh ≥ 0 ∀h ∈ [H]

The matrix E ∈ R
S×SA is defined as E(s, (s′, a′)) = 1 {s = s′}. We make the following substitution

λh = Φ⊤qh to obtain the following equivalent LP.

max
{qh}Hh=1,{λh}Hh=1

H∑

h=1

λ⊤
h θh

s.t. Eq1 = ρ

Eqh+1 = µhλh ∀h ∈ {1, 2, . . . ,H − 1}
qh ≥ 0 ∀h ∈ [H]

λh = Φ⊤qh ∀h ∈ [H]

(23)

The dual problem of the above optimization problem is the following optimization problem.

min
{vh}Hh=1,{wh}Hh=1

ρ⊤v1

s.t. E⊤vh ≥ Φwh ∀h ∈ [H]

wh ≥ θh + µ⊤
h vh+1 ∀h ∈ [H − 1]

wH ≥ θH

(24)

35



The corresponding Lagrangian is given as L(q,λ;v,w) where

L(q,λ;v,w) = ρ⊤v1 +
H∑

h=1

〈
qh,−E⊤vh +Φwh

〉
+

H−1∑

h=1

〈
θh + µ⊤

h vh+1 − wh, λh

〉
+ 〈θH − wH , λH〉

=

H∑

h=1

λ⊤
h θh + 〈v1,−Eq1 + ρ〉+

H∑

h=2

〈vh,−Eqh+1 + µhλh〉+
H∑

h=1

〈
wh,Φ

⊤qh − λh

〉

We aim to solve a saddle point of the Lagrangian through gradient descent-ascent method. Note that each of

λh and wh is d-dimensional. So we will only perform gradient steps over these variables, whereas we will

represent high-dimensional (possible infinite) vh and qh implicitly. The gradient with respect to λh is given

through the following expression.

∇λhL(q,λ;v,w) =

{
θh + µ⊤

h vh+1 − wh if h ∈ [H − 1]
θh − wh if h = H

Now we introduce a transformation of variables suggested by [Gab+23]. Let Λh = E(s,a)∼µh
ref

[
φ(s, a)φ(s, a)⊤

]

be the covariance matrix under the reference policy µref at time step h. Then we can rewrite the gradient as

follows.

∇λhL(q,λ;v,w) = Λ−1
h Λh

(
θh + µ⊤

h vh+1 − wh

)
= Λ−1

h E(s,a)∼µh
ref

[
φ(s, a)φ(s, a)⊤

(
θh + µ⊤

h vh+1 −wh

)]

= Λ−1
h E(s,a)∼µh

ref
,s′∼Ph(·|s,a)

[
φ(s, a)

(
rh(s, a) + vh+1(s

′)− w⊤
h φ(s, a)

)]

We can build an estimator of the expectation from samples, however the covariance matrix Λh might be un-

known. Therefore, as proposed by [Gab+23], we substitute βh = Λ−1
h λh for any h ∈ [H] in the Lagrangian.

L(q,β;v,w) = ρ⊤v1 +
H∑

h=1

〈
qh,−E⊤vh +Φwh

〉
+

H−1∑

h=1

〈
Λh

(
θh + µ⊤

h vh+1 − wh

)
, βh

〉
+ 〈ΛH (θH − wH) , βH〉

(25)

Gradient with respect to βh is given as follows.

∇βhL(q,β;v,w) =

{
E(s,a)∼µh

ref
,s′∼Ph(·|s,a)

[
φ(s, a)

(
rh(s, a) + vh+1(s

′)− w⊤
h φ(s, a)

)]
if h ∈ [H − 1]

E(s,a)∼µh
ref

[
φ(s, a)

(
rh(s, a)− w⊤

h φ(s, a)
)]

if h = H

Therefore, given any data point (sh, ah, s
′
h, rh) we can define the following estimate of the gradient.

g̃βh = ∇̂βhL(q,β;v,w) =

{
φ(sh, ah)

(
rh + vh+1(s

′
h)− w⊤

h φ(sh, ah)
)

if h ∈ [H − 1]
φ(sh, ah)

(
rh − w⊤

h φ(sh, ah)
)

if h = H

On the other hand, the gradient with respect to wh is the following.

∇wh
L(q,β;v,w) = Φ⊤qh − Λhβh = Φ⊤qh − E(s,a)∼µref

[
φ(s, a) · β⊤

h φ(s, a)
]

This leads to the following estimate of the gradient with respect to wh.

g̃wh
= ∇̂wh

L(q,β;v,w) = Φ⊤qh − φ(sh, ah) · β⊤
h φ(sh, ah)
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We will also use the following symbolic representation for policy, value, and occupancy measure.

πh(a | s) =
exp(φ(s, a)⊤wh)∑
b exp(φ(s, b)

⊤wh)

vh(s) =
∑

a

πh(a | s)φ(s, a)⊤wh

and

q1(s) = ρ(s) and qh+1(s
′) = µh(s

′)⊤Λhβh = E(s,a)∼µh
ref

[
Ph(s

′ | s, a)φ(s, a)⊤βh
]

Given wh, βh we define policy πh as

πh(a | s) =
exp(φ(s, a)⊤wh)∑
b exp(φ(s, b)

⊤wh)
.

We also define qπ,βh as

qπ,βh (s, a) =

{
πh(a | s) · ρ(s) if h = 1

πh(a | s) · µh(s)⊤Λh−1βh−1 o.w.

After substituting qh = qπ,βh we obtain the following form of the Lagrangian.

L(q,β;v,w) = f(π,β,w) =
H∑

h=1

〈Λhθh, βh〉+
H∑

h=1

〈
wh,Φ

⊤qπ,βh − Λhβh

〉
(26)

This also gives us the following expression for derivative with respect to wh.

∇wh
f(π,β,w) = Φ⊤qπ,βh − Λhβh (27)

Additionally, if we write vπ,wh (s) =
∑

a πh(a | s) · w⊤
h φ(s, a) and dβh = Eqπ,βh then we obtain the

following form of the Lagrangian.

L(q,β;v,w) = f(π,β,w) =
H∑

h=1

〈Λh(θh − wh), βh〉+
H∑

h=1

〈
dβh, v

π,w
h

〉
(28)

And, we can write down the derivative with respect to βh for any h > 1 as

∇βhf(π,β,w) = Λh(θh − wh) +
∑

s′

vπ,wh+1(s
′)∇βhd

β
h+1(s

′) = Λh(θh − wh) +
∑

s′

vπ,wh+1(s
′)Λhµh(s

′).

(29)

And, for h = 1 we have,

∇βhf(π,β,w) = Λh(θh − wh). (30)

Following [Gab+23] we define the following notion of regret.

R(β⋆,π⋆,w⋆
1:T ) =

1

T

T∑

t=1

f(β⋆,π⋆,wt)− f(βt,πt,w
⋆
t ) (31)
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Algorithm 7 Corruption Robust Offline Primal-Dual

Require: (a) Corrupted dataset D, (b) corruption parameter ε, (c) Step sizes ηw, ηb, and α, and (d) Number

of iterations T .

1: Partition dataset D uniformly at random into two datasets Dm and Dc, where Dc = Θ(H ·
d2/ε2 log2(d)).

2: Partition dataset Dm uniformly at random into 2HT groups {Dt,h1 ,Dt,h2 }h∈[H],t∈[T ].
3: Initialize w0 = {w0

h}Hh=1 and β0 = {β0
h}Hh=1.

4: for t = 0, . . . , T − 1 do

5: for h = 1, . . . ,H do

6: ⊲ Take a gradient step for wh

7: Set πth(a | s) ∝ exp
(
αφ(s, a)⊤wth

)
.

8: For each j ∈ [K], set (symbolically)

qth,j(s̃, b̃) =

{
πth(̃b | s̃) · 1

{
s
′

j = s̃
}
φ(sh,j, ah,j)

⊤βth−1 if h > 1

πth(̃b | s̃) · ρ(s̃) if h = 1

9: Set g̃twh
= RobMean

({
Φ⊤qth,j − φ(s2h,j, a

2
h,j) ·

〈
βth, φ(s

2
h,j , a

2
h,j)
〉}K

j=1

)
.

10: wt+1
h ← ProjW(wth − ηw · g̃twh

)
11: end for

12: for h = 1, . . . ,H do

13: ⊲ Take a gradient step for βh

14: Set πth(a | s) ∝ exp
(
αφ(s, a)⊤wth

)
.

15: Set vth(s) =
∑

a π
t
h(a | s) · φ(s, a)⊤wth.

16: Set g̃tβh = ∇̂βhL(q,β;v,w) defined as

g̃tβh =





RobMean

({
φ(sh,j, ah,j)

(
rh,j + vh+1(s

′
h,j)−

〈
wth, φ(sh, ah)

〉)}K
j=1

)
if h ∈ [H − 1]

RobMean
({

φ(sh,j, ah,j)
(
rh,j −

〈
wth, φ(sh,j , ah,j)

〉)}K
j=1

)
if h = H

17: βt+1
h ← ProjB(β

t
h + ηb · g̃tβh)

18: end for

19: end for

20: Partition dataset Dc uniformly at random into H groups {Dhc }h∈[H].

21: for h = 1, . . . ,H do

22: Set wh = 1
T

∑T
t=1 w

t
h and βh = 1

T

∑T
t=1 β

t
h.

23: Set v̂h = RobCovariance(Dhc ) · βh
24: end for

25: Return π = (π1, . . . , πH) and v̂ = (v̂1, . . . , v̂H).

Lemma E.1. Suppose π⋆ = (π⋆1 , . . . , π
⋆
H) be a policy and qπ

⋆
be its state, action occupancy measure. If we

set β⋆h = Λ−1
h Φ⊤q⋆h for each h = 1, . . . ,H , and w⋆t,h = wth for each t ∈ [T ] and h ∈ [H], the the policy π

38



output by algorithm (7) satisfies

E

[
(qπ

⋆ − qπ)⊤r
]
≤ R(β⋆,π⋆,w⋆

1:T )

Proof. The proof is very similar to the proof of lemma 4.1 of [Gab+23].

Lemma E.2. With the choice of the parameters as in Lemma E.1, we have the following regret decomposi-

tion.

R(β⋆,π⋆,w⋆
1:T ) =

1

T

T∑

t=1

H∑

h=1

〈wt,h − w⋆h,∇wh
f(πt,βt,wt)〉+

1

T

T∑

t=1

H∑

h=1

〈
β⋆h − β⋆t,h,∇βhf(πt,βt,wt)

〉

+
1

T

T∑

t=1

H∑

h=1

∑

s

qπ
⋆

h (s)
∑

a

(π⋆h(a | s)− πt,h(a | s)) 〈wt,h, φ(s, a)〉

Proof. The proof is very similar to the proof of lemma 4.2 of [Gab+23].

E.1 Formal Statement and Proof of Theorem (5.3)

Theorem E.3. Suppose assumptions (5.2) holds, and N ≥ Ω
(
H2d4ν4

ε2
(log2 d+ log2 A)

)
. Then the policy

π output by algorithm (7) is approximately optimal i.e.

max
π

V π(θ)− E
[
V π(θ)

]
≤ O

(
ν
√
εH2d3/2

)
,

and the vector v̂ = (v̂1, . . . , v̂H) is an approximate sub-gradient to V ⋆(θ) = maxπ V
π(θ) i.e.

V ⋆(θ′) ≥ V ⋆(θ) +

H∑

h=1

〈v̂h, θh〉 −O
(
ν
√
εH2d3/2

)
∀θ′.

Proof. Let Λh be the feature covariance matrix under the offline policy πref at time step h. Moreover, let

d⋆h = E(s,a)∼π⋆ [φ(s, a)] and β⋆h = d⋆hΛ
−1
h . Then by assumption (5.2), ‖β⋆‖2 ≤ ν. Therefore, it is sufficient

to take diameter of the set B to be ν. We now bound the diameter of the setW from the feasiblity condition

in the optimization problem (24). It can be easily seen that given any optimal solution ({vh}Hh=1, {wh}Hh=1),

we can always choose wh = θh + µ⊤
h vh+1 for any h ∈ [H − 1], and wH = θH . Indeed, if this condition is

not satisfied, then we can define the following new set of variables.

w̃H = θH and w̃h = θh + µ⊤
h ṽh+1, ṽh(s) =

∑

a

φ(s, a)⊤w̃h for h = H − 1, . . . , 1

This new set of variables is feasible to the optimization problem (24) and has objective value bounded above

by ρ⊤v1. For linear MDP, the reward at every step is at most
√
d, and hence the value function vh(s) is

at most H
√
d. This implies that for any h, ‖wh‖2 ≤ ‖θh‖ +

∥∥µ⊤
h ṽh+1

∥∥
2
≤
√
d + H

√
d ‖µh‖2 ≤ 2Hd.

Therefore, ‖w‖22 =
∑H

h=1 ‖wh‖22 ≤ 2H2d, and we can take the diameter of the setW to be at most 2H
√
d.
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By lemma (E.1) and (E.2) we can express the suboptimality of value function as follows.

V π⋆
(θ)− E

[
V π(θ)

]
≤ 1

T

T∑

t=1

H∑

h=1

〈wt,h − w⋆h,∇wh
f(πt,βt,wt)〉

︸ ︷︷ ︸
:=Reg1

+
1

T

T∑

t=1

H∑

h=1

〈
β⋆h − β⋆t,h,∇βhf(πt,βt,wt)

〉

︸ ︷︷ ︸
:=Reg2

+
1

T

T∑

t=1

H∑

h=1

∑

s

qπ
⋆

h (s)
∑

a

(π⋆h(a | s)− πt,h(a | s)) 〈wt,h, φ(s, a)〉
︸ ︷︷ ︸

:=Reg3

We now apply Lemma E.4 with W = 2H
√
d, B = ν, and ηw = W

Bd
1√
T

= H
ν
√
dT

to obtain the following

bound on the term Reg1.

Reg1 ≤ O

(
ν
√
εdH

H∑

h=1

‖Λh‖2 +
νH2d3/2√

T

)
(32)

We apply Lemma E.5 with W = 2H
√
d, B = ν and ηb =

√
HB2

2T · 1√
(d+W 2)Hd2

= ν

d3/2
√

2(H2+1)

1√
T

to

obtain the following bound on the term Reg2.

Reg2 ≤ O

(
√
εdH

H∑

h=1

‖Λh‖2 +
H2νd3/2√

T

)
(33)

For the third term, we apply Lemma E.7 separately for each h ∈ [H]. In particular, we set qht = Φwt,h, and

D =
∥∥qht
∥∥
∞ ≤W .

Reg3 ≤
1

T

H∑

h=1

H(π⋆h‖πh1 )
α

+
HαW 2

2

We now substitute W = H
√
d,H(π⋆h‖πh1 ) ≤ logA and α = 1

H ·
√

2 logA
dT to obtain the following bound.

Reg3 ≤ O

(
H2

√
d logA

T

)
(34)

Using the upper bounds on Reg1, Reg2, and Reg3, we obtain the following upper bound on the suboptimality

gap.

V π⋆
(θ)− E

[
V π(θ)

]
≤ O

(
ν
√
εdH

H∑

h=1

‖Λh‖2 +
νH2d3/2√

T
+H2

√
d logA

T

)

Now we substitute ‖Λh‖2 ≤ Trace(Λh) ≤ d, for any h ∈ [H]. Moreover, we must have K ≥ Θ((d/ε) log d)

and N ≥ KTH . If we use T =
√
N then we need N ≥ Õ

(
H2d2

ε2

)
. This substitution gives us the following

upper bound.

V π⋆
(θ)− E

[
V π(θ)

]
≤ O

(
ν
√
εH2d3/2 +

νH2d3/2 +H2
√
d logA

N1/4

)
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If N ≥ (νd+
√
logA)4

ν4ε2
then the second term dominates the first term and we get the following bound.

V π⋆
(θ)− E

[
V π(θ)

]
≤ O

(
ν
√
εH2d3/2

)

For any h ∈ [H], the average of the feature distribution at time-step h is E(s,a)∼πh
[φ(s, a)] = 1

T

∑T
t=1 E(s,a)∼πt

h
[φ(s, a)] =

1
T

∑T
t=1 Φ

⊤qπ
t

h = 1
T

∑T
t=1 Λhβ

t
h = Λhβh. Algorithm (7) performs a robust covariance estimation of

Λh, and then multiplies this estimator to βh to obtain the average feature distribution. Give any feature

φ = φ(s, a), let X be the flattened vector φφ⊤. Then each entry of the matrix XX⊤ can be expressed as

φiφjφkφℓ where 1 ≤ i, j, k, ℓ ≤ m. This means that
∥∥XX⊤∥∥2

F
=
∑

i,j,k,ℓ φ
2
iφ

2
jφ

2
kφ

2
ℓ = ‖φ‖82 ≤ 1, and

cov(X) ≤ 2 · Id. So we can apply Lemma E.9 and conclude that

∥∥∥Λ̂h − Λh

∥∥∥
2
≤ O(

√
ε) for any h ∈ [H].

Therefore, for any h ∈ [H],
∥∥v̂h − Λhβh

∥∥
2
≤
∥∥∥Λ̂h − Λh

∥∥∥
2

∥∥βh
∥∥
2
≤ O (

√
εν). This bound also implies

that
∥∥(v̂1, . . . , v̂H)−

(
Λ1β1, . . . ,ΛHβH

)∥∥
2
≤ O

(
ν
√
Hε
)

.

Now recall that we can write V π(θ) =
∑H

h=1

〈
Λhβh, θh

〉
≥∑H

h=1 〈v̂h, θh〉−O
(
ν
√
Hε
)
‖(θ1, . . . , θH)‖2 ≥

∑H
h=1 〈v̂h, θh〉 − O

(
νH
√
dε
)

. Since π is an approximate O
(
ν
√
εH2d3/2

)
optimal policy, and v̂ =

(v̂1, . . . , v̂H) is an approximate O
(
ν
√
εHd1/2

)
subgradient of V π(θ), we can apply lemma (E.10) to con-

clude that v̂ = (v̂1, . . . , v̂H) is also an approximate O
(
ν
√
εH2d3/2

)
of the optimal value function with

respect to the reward parameter θ.

We now bound the three terms appearing in lemma (E.2).

Lemma E.4. Assume diam(B) ≤ B, diam(W) ≤W , and K ≥ Θ((d/ε) log d). Then we have,

1

T

T∑

t=1

H∑

h=1

〈
wt,h − w⋆h,∇wh

f(πt,βt,wt)
〉
≤ O

(
√
εWB

H∑

h=1

‖Λh‖2 +
HW 2

ηwT
+ ηwB

2
H∑

h=1

‖Λh‖22

)

with constant probability.

Proof. Let gtwh
= 1

K

∑K
j=1Φ

⊤qth,j − φ(s2h,j, a
2
h,j) ·

〈
βth, φ(s

2
h,j, a

2
h,j)
〉

. From the definition of qth in algo-

rithm (7), we have for any h > 1,

Eµh
ref

[
qth,j(s̃, b̃)

]
= Eµh

ref

[
πth(̃b | s̃) · 1

{
s′h,j = s̃

}
φ(sh,j, ah,j)

⊤βth−1

]

= πth(̃b | s̃) · E(s,a)∼µh
ref

[
Ph−1(s̃ | s, a)φ(s, a)⊤βth−1

]

= πth(̃b | s̃) · µh−1(s̃)
⊤
E(s,a)∼µh−1

ref

[
φ(s, a)φ(s, a)⊤βth−1

]

= πth(̃b | s̃) · µh−1(s̃)
⊤Λh−1β

t
h−1 = qπ

t,βt
h (s̃, b̃)

Additionally Eµh
ref

[
qth,j(s̃, b̃)

]
= πth(̃b | s̃) · ρ(s̃) = qπ

t,βt

h (s̃, b̃). We now bound on the deviation of the
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estimator g̃twh
from ∇wh

f(πt,β
t,wt).

Eµh
ref
,Dt,h

[
gtwh

]
=

1

K

K∑

j=1

·Eµh
ref
,Dt,h

[
Φ⊤qth,j − φ(sh,j, ah,j) ·

〈
βth, φ(sh,j, ah,j)

〉]

= Φ⊤qπ
t,βt

h − E(s,a)∼µh
ref

[
φ(s, a)φ(s, a)⊤βth

]

= Φ⊤qπ
t,βt

h − Λhβ
t
h

= ∇wh
f(πt,β

t,wt) [By eq. (27)]

Let φh,j = φ(sh,j, ah,j). Then we have,

Eµh
ref

[∥∥∥Φ⊤qth,j − φh,j ·
〈
φh,j, β

t
h

〉∥∥∥
2

2

]
≤ 2Eµh

ref

[∥∥∥Φ⊤qth,j

∥∥∥
2

2

]
+ 2Eµh

ref

[∥∥φh,j ·
〈
φh,j, β

t
h

〉∥∥2
2

]

≤ 2 + 2 · Eµh
ref

[
(βth)

⊤φh,jφ
⊤
h,jβ

t
h

]
= 2 + 2 ·

∥∥βth
∥∥2
Λh
≤ 2 ·

(
1 +B2 ‖Λh‖22

)

The second inequality uses the fact that the norm of the features is bounded by one, and exactly one entry

of qth,j is set to one. The above bound also implies that Eµh
ref

[∥∥gtwh

∥∥2
2

]
≤ 2 ·

(
1 +B2 ‖Λh‖22

)
. Now,

observe that ε-fraction of the dataset Dt,h1 is corrupted, and we apply robust mean to obtain the estimator

g̃twh
. Therefore, we can apply lemma E.8 with σ2 = 4 ·

(
1 +B2 ‖Λh‖22

)
to obtain the following bound (as

long as K ≥ Θ((d/ε) log d)).

∥∥q̃twh
−∇wh

f(πt,βt,wt)
∥∥
2
≤ O

(√
εB ‖Λh‖2

)
(35)

The above bound also implies the following upper bound on the L2-norm g̃twh
.

∥∥g̃twh

∥∥
2
≤ O

(√
εB ‖Λh‖2

)
+
∥∥∇wh

f(πt,βt,wt)
∥∥
2

≤ O
(√

εB ‖Λh‖2
)
+
∥∥∥Φ⊤qπ

t,βt

h − Λhβ
t
h

∥∥∥
2

≤ O
(√

εB ‖Λh‖2
)
+
∥∥∥Φ⊤qπ

t,βt

h

∥∥∥
2
+
∥∥Λhβth

∥∥
2

≤ O
(√

εB ‖Λh‖2
)
+
∑

s,a

qπ
t,βt

h (s, a) ‖φ(s, a)‖2 + ‖Λh‖2
∥∥βth

∥∥
2

≤ O
(√

εB ‖Λh‖2
)
+ 1 +B ‖Λh‖2 = O (B ‖Λh‖2)

The penultimate inequality uses the fact that qπ
t,βt

h is a probability distribution over the state, action pairs

and the feature norms are bounded by one.

Let us write g̃t
w

= (g̃tw1
, . . . , g̃twH

). Then
∥∥g̃t

w

∥∥2
2
≤ O

(
B2
∑H

h=1 ‖Λh‖22
)

. Furthermore, for any t and
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h,
∥∥wth

∥∥2
2
≤W 2. Therefore,

∥∥
w
t
∥∥2
2
≤ HW 2. So we can apply lemma (E.6) to obtain the following bound.

1

T

T∑

t=1

H∑

h=1

〈
wt,h − w⋆h,∇wh

f(πt,βt,wt)
〉

≤ 1

T

T∑

t=1

H∑

h=1

〈
wt,h − w⋆h,E

[
g̃twh

]〉
+

1

T

T∑

t=1

H∑

h=1

‖wt,h − w⋆h‖2 ·O
(√

εB ‖Λh‖2
)

≤ O

(
√
εWB

H∑

h=1

‖Λh‖2

)
+

HW 2

2ηwT
+O

(
ηwB

2
H∑

h=1

‖Λh‖22

)

Lemma E.5. Assume diam(B) ≤ B, diam(W) ≤W , and K ≥ Θ((d/ε) log d). Then we have,

1

T

T∑

t=1

H∑

h=1

〈
β⋆h − βt,h,∇βhf(πt,βt,wt)

〉
≤ O

(
√
ε(
√
d+W )

H∑

h=1

‖Λh‖2

)
+
HB2

2ηbT
+O

(
ηb(d+W 2)

H∑

h=1

‖Λh‖22

)

with constant probability.

Proof. Recall that algorithm (7) defines vth(s) =
∑

a π
t
h(a | s) · φ(s, a)⊤wth. Let us define the gradient gtβh

as follows.

gtβh =

{
1
K

∑K
j=1 φ(sh,j, ah,j)

(
rh,j + vh+1(s

′
h,j)−

〈
wth, φ(sh, ah)

〉)
if h ∈ [H − 1]

1
K

∑K
j=1 φ(sh,j, ah,j)

(
rh,j −

〈
wth, φ(sh,j, ah,j)

〉)
if h = H

We will write φh,j = φ(sh,j, ah,j). Then for any h ∈ [H − 1] we have,

Eµh
ref


 1

K

K∑

j=1

φh,j

(
θ⊤h φh,j + vth+1(s

′
h,j)−

〈
wth, φh,j

〉)



= Eµh
ref

[
φh,j

(
θ⊤h φh,j + vth+1(s

′
h,j)−

〈
wth, φh,j

〉)]

= E(s,a)∼µh
ref

[
φ(s, a)φ(s, a)⊤θh

]
+ E(s,a)∼µh

ref

[
∑

s′

Ph(s
′ | s, a)vth+1(s

′)φ(s, a)

]
− E(s,a)∼µh

ref

[
φ(s, a)φ(s, a)⊤wth

]

= Λh(θh − wth) +
∑

s′

Λhµh(s
′)vπ

t,w
h+1 (s

′)

= ∇βhf(βt,πt,w⋆
t ) [By eq. (29)]
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Moreover,

Eµh
ref

[∥∥∥φh,j
(
θ⊤h φh,j + vth+1(s

′
h,j)−

〈
wth, φh,j

〉)∥∥∥
2

2

]

≤ 2Eµh
ref

[∥∥∥φh,j
(
θ⊤h φh,j + vth+1(s

′
h,j)
)∥∥∥

2

2

]
+ 2Eµh

ref

[∥∥φh,j
〈
wth, φh,j

〉∥∥2
2

]

≤ 4Eµh
ref

[∥∥∥φh,j · θ⊤h φh,j
∥∥∥
2

2

]
+ 4Eµh

ref

[∥∥φh,j · vth+1(s
′
h,j)
∥∥2
2

]
+ 2Eµh

ref

[∥∥φh,j
〈
wth, φh,j

〉∥∥2
2

]

≤ 4Eµh
ref

[
‖φ(s, a)‖22 θ⊤h φ(s, a)φ(s, a)⊤θh

]
+ 4Eµh

ref



∥∥∥∥∥
∑

s′

Ph(s
′ | s, a)vth+1(s

′) · φ(s, a)
∥∥∥∥∥

2

2




+ 2Eµh
ref

[
(wth)

⊤φ(s, a)φ(s, a)⊤wth
]

≤ 4
∥∥θth
∥∥2
Λh

+ 2
∥∥wth

∥∥2
Λh

+ 4Eµh
ref

[
(wth)

⊤φ(s, a)φ(s, a)⊤wth
]

≤ 4
∥∥θth
∥∥2
Λh

+ 6
∥∥wth

∥∥2
Λh
≤
(
4d+ 6W 2

)
‖Λh‖22

The fourth inequality uses the definition of vth+1 and ‖φ(s, a)‖2 ≤ 1. The final inequality uses
∥∥θth
∥∥
2
≤
√
d

and
∥∥wth

∥∥
2
≤ W . The above bound implies that for any h ∈ [H], Eµh

ref

[∥∥∥gtβh
∥∥∥
2

2

]
≤
(
4d+ 6W 2

)
‖Λh‖22.

Now, observe that ε-fraction of the dataset Dt,h2 is corrupted, and we apply robust mean to obtain the esti-

mator g̃tβh . Therefore, we can apply Lemma (E.8) with σ2 =
(
4d+ 6W 2

)
‖Λh‖22 to obtain the following

bound (as long as K ≥ Θ((d/ε) log d).

∥∥g̃tβh −∇βhf(π
t,βt,wt)

∥∥
2
≤ O(

√
ε(d+W 2 ‖Λh‖2) (36)

Furthermore, the above bound also implies the following upper bound on the L2-norm of g̃tβh .

∥∥g̃tβh
∥∥
2
≤ O

(√
ε(
√
d+W ) ‖Λh‖2

)
+
∥∥∇βhf(πt,βt,wt)

∥∥
2

≤ O
(√

ε(
√
d+W ) ‖Λh‖2

)
+

∥∥∥∥∥Λh(θh −wh) +
∑

s′

vπ,wh+1(s
′)Λhµh(s

′)

∥∥∥∥∥
2

From the definition of value function we have vπ,wh+1(s
′) ≤

∣∣∑
b′ π

t
h+1(b

′ | s′)φ(s′, b′)⊤wth+1

∣∣ ≤∑b′ π
t
h+1(b

′ |
s′) ‖φ(s′, b′)‖2

∥∥wth+1

∥∥
2
≤W as feature norms are bounded by one. This result gives us the following upper

bound.

∥∥g̃tβh
∥∥
2
≤ O

(√
ε(
√
d+W ) ‖Λh‖2

)
+ ‖Λh(θh − wh)‖2 + ‖µhΛh‖2 ≤ O

(
(
√
d+W ) ‖Λh‖2

)

Let us now write g̃tβ = (g̃tw1
, . . . , g̃twH

). Then

∥∥∥g̃tβ
∥∥∥
2

2
≤ O

(
(d+W 2)

∑H
h=1 ‖Λh‖22

)
. Furthermore, for any
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t and h, ‖βh‖2 ≤ B. Therefore, ‖β‖22 ≤ HB2. So we can apply Lemma E.6 to obtain the following bound.

1

T

T∑

t=1

H∑

h=1

〈
β⋆h − βt,h,∇βhf(πt,βt,wt)

〉

≤ 1

T

T∑

t=1

H∑

h=1

〈
β⋆h − βt,h,E

[
g̃tβh
]〉

+
1

T

T∑

t=1

H∑

h=1

‖βt,h − β⋆h‖2 · O
(√

ε(
√
d+W ) ‖Λh‖2

)

≤ O

(
√
ε(
√
d+W )

H∑

h=1

‖Λh‖2

)
+

HB2

2ηbT
+O

(
ηb(d+W 2)

H∑

h=1

‖Λh‖22

)

Lemma E.6 (Online Stochastic Gradient Descent). Let y1 ∈W , and η > 0. Define the sequence y2, . . . , yn+1

and h1, . . . , hn such that for k = 1, . . . , n

yk+1 = ProjW

(
yk + ηĥk

)

and ĥk satisfies E
[
ĥk | Fk−1

]
= hk and E

[∥∥∥ĥk
∥∥∥
2

2
| Fk−1

]
≤ G2. Then for any y⋆ ∈W ,

E

[
n∑

k=1

〈y⋆ − yk, hk〉
]
≤ ‖y1 − y⋆‖22

2η
+

ηnG2

2
.

Lemma E.7 (Mirror Descent, Lemma D.2 of [Gab+23]). Let q1, q2, . . . , qT be a sequence of functions from

S × A → R so that ‖qt‖∞ ≤ D. Given an initial policy π1, and a learning rate α > 0, define a sequence

of policies

πt+1(a | s) ∝ πt(a | s)eαqt(s,a)

for t = 1, 2, . . . , T − 1. Then for any comparator policy π⋆,

1

T

T∑

t=1

∑

s∈S
qπ

⋆
(s) 〈π⋆(· | s)− πt(· | s), qt(s, ·)〉 ≤

H(π⋆‖π1)
Tα

+
αD2

2

Lemma E.8 ([Dia+17], Theorem 3.2). Let P be a distribution on R
d with unknown mean vector µ and un-

known covariance matrix Σ 4 σ2 ·Id. Let S be an ε-corrupted set of samples from P of size Θ((d/ε) log d).
There exists an efficient algorithm that, on input S and ε > 0, with probability 9/10 outputs µ̂ with

‖µ̂− µ‖2 ≤ O (
√
εσ).

Lemma E.9. Let P be a distribution on R
d with unknown mean vector µ and unknown covariance matrix Σ.

Suppose covX∼P (XX⊤) 4 σ4Id. Let S be an ε-corrupted set of samples from P of size Θ((d2/ε2) log2 d).
There exists an efficient algorithm that, on input S and ε > 0, with probability 9/10 outputs µ̂ with∥∥∥Σ̂− Σ

∥∥∥
2
≤ O

(√
εσ2
)
.

Proof. Apply robust mean estimation on the set of flattened vectors
{
xx⊤ : x ∈ S

}
. See also [DK19],

subsection 3.2.
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Lemma E.10 (Approximate Subgradient). Let f(x) = maxi∈[m] fi(x) where each fi is closed and convex.

Let j ∈ [m] be a β1-approximate optimizer i.e. fj(x) ≥ f(x)− β1. If v is a β2-approximate subgradient of

fj at x, then v is a (β1 + β2)-approximate subgradient of f at x.

Proof. Since v is a β2-approximate subgradient of fj at x, for any y we have,

f(y) = max
i

fi(y) ≥ fj(y) ≥ fj(x)− β2 + 〈v, y − x〉 ≥ f(x)− (β1 + β2) + 〈v, y − x〉 .
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