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Abstract: This paper investigates the interaction of edge dislocations with voids in concentrated solid
solution alloys (CSAs) using atomistic simulations. The simulation setup consists of edge dislocations
with different periodicity lengths and a periodic array of voids as obstacles to dislocation motion.
The critical resolved shear stress (CRSS) for dislocation motion is determined by static simulations
bracketing the applied shear stress. The results show that shorter dislocation lengths and the presence
of voids increase the CRSS for dislocation motion. The dislocation–void interaction is found to
follow an Orowan-like mechanism, where partial dislocation arms mutually annihilate each other to
overcome the void. Solute strengthening produces a ‘friction stress’ that adds to the Orowan stress.
At variance with classical theories of solute pinning, this stress must be considered a function of
the dislocation line length, in line with the idea that geometrical constraints synergetically enhance
the pinning action of solutes. Modifying the equation by Bacon, Kocks and Scattergood for void
strengthening to account for the solute hardening in CSAs allows one to quantitatively predict the
CRSS in the presence of voids and its dependency on void spacing. The predictions show good
agreement with the simulation data without invoking any fit parameters.

Keywords: atomistic simulations; concentrated solid solution alloys (CSA); high-entropy alloys
(HEA); dislocations; dislocation–void interaction; void strengthening; superposition of strengthening

1. Introduction

Traditional alloys are based on a single metallic element which dominates the chemical
composition space, while other elements act as additives. However, recent developments in
metallurgy have shifted attention towards single-phase concentrated solid solution alloys
(CSAs) which contain three or more elements in comparable atomic fractions with no
principal component. CSAs are a class of materials that exhibit high strength, ductility,
corrosion resistance and radiation tolerance [1–8]. These properties are attributed to the
complex interactions of solute atoms with other material defects such as dislocations, which
govern the plastic deformation and fracture behavior of CSAs. The interplay between these
defects and solute atoms creates a multifaceted mechanical response that defines the unique
characteristics of CSAs. However, the fundamental mechanisms of dislocation–obstacle
interactions in CSAs are still not well understood. In particular, the effect of voids as
obstacles for dislocation motion in CSAs has not been extensively studied [9,10].

Voids are common microstructural features in metals and alloys that can arise from
various sources such as irradiation damage, hydrogen exposure, or fatigue loading [11–14].
Voids are known to impede the motion of dislocations and thereby strengthen metals
and alloys while reducing their fracture toughness. They can, in addition, act as stress
concentrators and facilitate damage nucleation and/or crack propagation, which further
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reduces the ductility of materials. Therefore, understanding how dislocations interact with
voids is crucial for predicting and improving the mechanical performance of CSAs under
various loading conditions.

In fcc metals and dilute solid solutions, dislocations are attracted to voids because
dislocation–void intersections lead to an effective local “healing” of the dislocation which
is replaced by a void surface step, thus reducing the overall energy. Voids therefore act as
attractive obstacles, while the generation of surface steps may be considered a variant of
Orowan looping [15]. In dilute solid solutions, the presence of solute atoms may create
additional metastable configurations of the dislocation, which give rise to a complex energy
landscape whose energy minima are dependent on the configuration and spacing of voids,
but also on the concentration and lattice misfit of the solute atoms and their elastic and
chemical interactions with the dislocation core. Understanding the ensuing complex multi-
scale energy landscape is of the utmost importance for the design of high-performance
materials. Therefore, this article aims to delve deeper into the interaction mechanisms
between dislocations and voids, exploring how these mechanisms manifest in concentrated
solid solution alloys where solute effects are enhanced in comparison with conventional
solid solutions.

We note that the combined interactions of dislocations with solutes and larger-scale
obstacles such as voids are difficult to observe directly by in situ TEM experiments due to
time and resolution limits. Simulation techniques, notably molecular dynamics (MD), offer
a lens through which we can explore the atomic-level mechanisms affecting void hardening
as well as its modulation by the presence of concentrated solutes [16–21]. MD studies
show that the attraction between a dislocation and a void can slow down the dislocations
movement, thereby contributing to material strength [22]. Previous studies on dislocation–
void interactions have mainly focused on pure metals or dilute alloys, where the solute
atoms have a negligible effect on the dislocation behavior. In contrast, in CSAs, the solute
atoms can strongly influence the dislocation motion by inducing solute hardening, solute
drag or dynamic strain aging [1–3,7,23,24]. These effects provide additional strengthening
contributions which add to the strengthening effect of voids, leading to a more complex
mechanical response. In particular, it was recently shown that the critical resolved shear
stress (CRSS) for the dislocation motion in CSAs critically depends on the length over
which the dislocation line can adjust to the solute field [25]. As a result, existing models
and equations for dislocation–void interactions may not adequately describe the behavior
of CSAs.

In this paper, we investigate the interaction of edge dislocations with voids in CSAs
using atomistic simulation. We consider edge dislocations interacting with a periodic
array of voids to study dislocation–void interactions in a shear stress field. The voids
are modeled as square-shaped empty pillars, which facilitates the analysis because the
intersected void space is of constant width D (considering spheres instead would introduce
an effective spectrum of void sizes depending on which of the intersecting slip planes
the dislocation is placed.) Utilizing both quasistatic and molecular dynamics simulations,
we determine the critical resolved shear stress (CRSS) for dislocation motion by applying
different external shear stresses, thus contributing to the deeper understanding of the
superposition of different hardening mechanisms in CSAs.

2. Materials and Methods

The atomistic simulations were performed with the classical molecular dynamics code
LAMMPS [26]. The embedded atom method (EAM) potential by Bonny et. al. [27] was used
to model the interactions between the atoms in an equiatomic FeNiCr alloy. The potential
was fitted to reproduce the properties of individual elements, as well as the stacking fault
energy (SFE) and elastic properties of different alloy compositions. This potential has
previously been used to study dislocations in concentrated solid solution alloys (CSAs),
for instance in [9,28,29].
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A typical simulation setup used in the current work is shown in Figure 1. To create an
equiatomic FeNiCr sample, equal amounts of Fe, Ni, and Cr atoms were randomly placed
on the sites of an fcc lattice. The crystallographic orientation of the lattice was chosen
such that the (1 1 1) plane normal is parallel to the Z axis, the (average) line direction
ξ = [1 1 2] to the Y axis, and the dislocation Burgers vector points in X direction. Simula-
tion boxes of different sizes were used, with standard box dimensions of approximately
1000× LY × 500 Å3, where LY = 75, 100, 150, 250, 550 Å.

Edge dislocations with Burgers vector b = a0/2[1 1 0], where a0 is the lattice constant of
FeNiCr at 0 K, were introduced using displacement fields following the method detailed by
Rodney [30]. The method allows the creation of partial dislocations with a desired initial
splitting distance, which was set to be 55.5 Å, while also ensuring periodicity along the
direction of dislocation motion, i.e., X direction. Invariance of the displacement field in
the Y direction ensures periodicity in this direction. Once the dislocation was introduced,
a columnar void of a square cross-section and with edge length D = 50 Å was created
parallel to the Z axis by removing atoms in the matrix, as seen in Figure 1. The center of
the void is placed 250 Å away from the center of the edge dislocation to avoid a strong
interaction between the two before the onset of dislocation glide. We note that changes in
void shape do not strongly impact the results, e.g., a cylindrical void whose diameter is the
same as the side length of the square void has almost the same CRSS.

Figure 1. (a) A typical simulation setup and (b) top view of the dislocation glide plane. An edge
dislocation and a square void with side length D = 50 Å can be seen here. The simulation box is
periodic along the X and Y axes. The atoms in the upper and lower boundary layers are free to move
only parallel to the XY plane. The periodicity length LY , which also defines the periodic void spacing,
S, is a simulation parameter. The crystallographic axes are as shown in the individual sub-figures.
Color coding: Fe-dark blue, Ni-green, Cr-brown, atoms in dislocation stacking fault–red.

Periodic boundary conditions (PBCs) were used along the dislocation line direction
and along the direction of dislocation motion, i.e., along the X and Y axis. This setup
therefore corresponds to an infinite dislocation interacting with an array of voids of period-
icity LY. The distance between voids, i.e., the inter-void spacing, is denoted by S, where
S = LY − D. LY, and consequently S are simulation parameters in the present work: by
changing the periodicity length, one effectively changes the void spacing, since there is
only one void in the system. This allows an investigation into the influence of void spacing
on the stresses required to overcome voids as obstacles, which is a main purpose of this
study. Atoms in the top and bottom layers are constrained to move only in the XY plane,
so their Z position is fixed.

The color coding of these atoms is as follows: Fe—dark blue, Ni—green, Cr—brown,
atoms in dislocation stacking fault—red, as described in Figure 1. This initial setup was
then relaxed using an optimized version of the FIRE algorithm [31] to reach mechanical
equilibrium. In all static and quasistatic simulations in this study, a simulation setup
was considered to be energy minimized when the force norm, i.e., the norm of the 3N
dimensional force vector, for each atom fell below a threshold value of 10−4 eV/Å.

To study dislocations under an externally applied shear stress, forces corresponding
to this desired resolved shear stress were applied to the top- and bottom-most atomic
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layers parallel to the glide plane. The simulation box was then relaxed again until an
energy minimized state was found at the given stress. This setup was then used for the
next relaxation step at a higher stress. The shear stress was increased until the dislocation
moved across the simulation box and overcame the void. The externally applied shear
stress is τZX , and, in the following, is denoted by τ.

The lower bound of the critical resolved shear stress (CRSS) was defined as the
highest applied shear stress at which the dislocation remained stuck at the obstacle, while
the upper bound was provided by the lowest applied shear stress that resulted in the
dislocation moving past the obstacle without reaching another metastable configuration.
We evaluate the CRSS as the average of these two values and the CRSS error as the difference
between them.

In addition to the outlined sequential quasistatic relaxation scheme, dislocation–void
interactions were also studied using molecular dynamics (MD) simulations using the NVE
ensemble with an initial temperature of T0 = 0 K. The time step for all MD simulations was
set to δt = 1 fs.

The Open Visualization Tool (OVITO) [32] was used to visualize and analyze the
atomistic configurations. Partial dislocation cores and the stacking faults were identified
using adaptive common neighbor analysis (a-CNA) [33,34] as implemented in OVITO.

To identify the respective effects of solute–dislocation interactions and void–dislocation
interactions, a previously published study [25] of dislocation–solute interactions in void-
free FeNiCr was used as a reference for comparison with the present investigation of
FeNiCr with voids.

3. Results and Discussion

Figure 2 shows the energy minimized states of the edge dislocation at varying but
increasing externally applied shear stress for the simulation setup with LY = 550 Å in
Figure 2a–e and LY = 100 Å in Figure 2f–j. Let us focus on the simulation setup with
LY = 550 Å initially. Upon energy minimization from the initial setup, the initially straight
dislocations find a local energy minimum by adjusting to the local, random energy land-
scape arising from the disordered arrangement of the three types of alloy atoms. As seen
from the dislocation structures in Figures 1b and 2a, this results in an irregular shape of the
partial dislocation lines.

External shear stress is required to move the dislocation from this pinned position.
At low shear stress, only parts of the partial dislocations respond to the externally applied
stress by finding new local energy minima. This can be seen by comparing Figure 2a,b where
the external shear stress increases from τ = 0 MPa to τ = 200 MPa, while the dislocation
remains pinned on average. The complex picture of the pinning of extended dislocations,
i.e., their ability to adjust the stacking fault width between the weakly coupled partial
dislocations to explore a multitude of local energy minima, can be seen here. The same
behavior has been previously demonstrated in other studies [5,9,25]. When a higher shear
stress is applied, the dislocation is partly displaced and moves onto the glide plane until it
reaches a new metastable configuration. Note that the dislocation splitting width is not a
constant in Figure 2a–c, but changes as the dislocation adjusts to the local energy landscape.

We note that the metastable energy minima in which the dislocation is pinned before
it reaches the void represent frustrated configurations whose energy is well above the global
energy minimum configuration. This global energy minimum corresponds to a dislocation
which is threading the void, and thus reduces its energy because the line energy of the
threading piece disappears (as can be seen in, e.g., [18,35]). Only once the shear stress
reaches the critical resolved shear stress of the void-free alloy, which for the present alloy is
about 480 MPa [25], the frustrated configurations are eliminated and the dislocation moves
forward until it intersects the void and thus gets pinned in a new configuration of reduced
energy, Figure 2d.

Further deformation is controlled by the bowing-out of the dislocation from the void
which acts as an anchoring volume. At τ = 550 MPa, the dislocation reaches the lower
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bound of the CRSS, i.e., the highest shear stress where the dislocation remains stuck at the
obstacle. Upon applying a higher shear stress of 600 MPa, no stable configurations could
be found. The qualitative picture of the dislocation–obstacle interaction described above is
consistently found in all simulations that were performed in the present study, and can be
seen for LY = 100 Å in Figure 2f–j.

Figure 2. Energy-minimized states of an infinite edge dislocation with a periodic array of voids under
externally applied shear stress τ ∈ (0, τC), as simulated using quasistatic simulation. See Figure 1 for
the color coding of atoms. The simulation box size is approximately (a–e) 1000× 550× 500 Å3 and
(f–j) 1000× 100× 500 Å3. The square void has a side length of 50 Å.

For pure edge or screw dislocations, both types of partial dislocations exhibit identical
characteristics (30-degree dislocations for screw types and 60-degree ones for edge types).
Consequently, they also have the same resistance to movement, known as pinning stress.
However, this uniformity in pinning stress found in pure edge or screw dislocations does
not apply to mixed dislocations of a more general orientation, i.e., the pinning stresses for
different partial dislocations may not be the same. As a result, the partial dislocation with
the lesser pinning stress may begin to move under a lower level of applied stress, leading
to a change in stacking fault width. The dislocation keeps moving until the width of the
stacking fault changes enough to balance the stresses on each partial dislocation. This
makes them match their own pinning stresses, allowing the dislocation to move coherently
as a unit.
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To investigate the mechanism whereby the dislocation detaches from the void, MD
simulations were performed using the NVE ensemble (T0 = 0 K). Results are shown in
Figure 3 for LY = 550 Å. The relaxed configuration in Figure 2e, i.e., the relaxed con-
figuration at the lower bound CRSS, was used as the starting configuration for the MD
simulations. At the onset of the simulation, the stress applied to the top and bottom layers
of the simulation box was set to the upper CRSS bound (here τ = 600 MPa for LY = 550 Å)
and then kept fixed. During an initial transient of t = 2 ps, which is needed for the stress
wave caused by the load step to reach the dislocation, the dislocation remains stationary,
Figure 3a–c. At t = 3 ps, the dislocation arms are moving towards each other and first the
leading then the trailing partials annihilate. In the next snapshot at t = 4 ps, the dislocation
detached from the void, Figure 3d,e. In Figure 3f, the dislocation, no longer pinned by
the void, can be seen to move freely across the FeNiCr matrix. The mechanism by which
the dislocation detaches from the void is reminiscent of an Orowan process, with partial
dislocation arms annihilating each other to overcome the obstacle [36,37], even though the
left-behind debris correspond to a void surface step rather than an Orowan loop. Literature
studies of dislocation–void interactions in Cu indicate that, at low temperatures (below
300 K in Cu), the depinning mechanisms are similar for edge and screw dislocations [38]
whereas at an elevated temperature, the detachment of screw dislocations may involve
cross slip processes.

Figure 3. Snapshots of a time sequence showing an infinite edge dislocation overcoming an array
of voids, as simulated by molecular dynamics (NVE at T0 = 0 K, τ = 600 MPa); the initial con-
figuration (a) corresponds to Figure 2e. See Figure 1 for color coding. The simulation box size is
1000× 550× 500 Å3. The square void has a side length of 50 Å.
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The CRSS required to overcome obstacles depends on the obstacle spacing which, in
our simulations, is given by the periodicity length LY. Figure 4 shows the influence of LY
on the CRSS required to overcome the periodic array of voids. The results are compared to
atomistic simulations previously performed by Vaid et al. [25] for systems without voids.
Interestingly, even in the absence of voids, the constraint defined by the periodicity length
LY leads to enhanced strength for small LY. The theoretical reasons for this behavior were
explained by Vaid et al. [25]. Adding another obstacle, such as a void, can be seen to further
significantly increase the CRSS for dislocation motion. This enhancement becomes more
pronounced as the constraint length (the void spacing) decreases.

Figure 4. The critical resolved shear stress (CRSS) needed to overcome obstacles is shown as a
function of the periodic void spacing. The first graph (a) displays the CRSS values from this study
and compares them to reference values without a void from Vaid et al. (2022) [25]. The second
graph (b) shows the data fitted using the BKS equation, with the green curve using an additive
superposition, i.e., best-fit constant C value, while the red curve uses a synergistic superposition of C
from Vaid et al. (2022) [25].

Given the Orowan-like mechanism for the edge dislocation to overcome the void, we
applied the BKS equation as derived by Bacon, Kocks and Scattergood [37] to our data:

τCRSS = (
µb

2πS
) ln(D) + C. (1)

Here, τCRSS is the critical resolved shear stress to overcome an array of obstacles of diameter
D and inter-obstacle spacing S; µ is the effective shear modulus; b is the Burgers vector;
and D is the harmonic mean of S and D, i.e., 1/D = b/S + b/D; and C is a constant offset.
We identify D = 5 nm with the void size and evaluate S as S = LY − D. The effective shear
modulus, which in the BKS theory depends on dislocation orientation, was evaluated from
the cubic elastic constants of the material given in Table A1 (Appendix A) as µ = 76.2 GPa,
using relations derived by Foreman [39].

Using the above values while fitting C to the data gives us the green curve in Figure 4b,
where C = 480 MPa matches well the flow stress caused by solute hardening in void-free
bulk FeNiCr as determined by Vaid et al. [25]. At small constraint lengths, however, this
curve systematically falls below the simulation data.

Instead of assuming a constant value of C, it may be more appropriate to account for
the fact that the strength of solute hardening in CSA, which here is the physical origin of the
’friction stress’ described by C, depends on the length over which the dislocation adjusts
its shape to the atomic energy landscape. For an unconstrained dislocation, this length
Lrmp (’pinning length’) can be self-consistently evaluated from the elastic properties of the
material and the magnitude and correlations of the atomic-scale energy fluctuations [40–42].
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If, instead, external constraints impose an adjustment length L < Lp, this leads to enhanced
pinning and an increased flow stress as shown by Vaid et al. [25] in simulations, where
the constraint length was simply the periodicity length LY of the simulation box, and by
theoretical arguments. Setting the constraint length L = S equal to the inter-void spacing S,
and using this length to compute a length-dependent solute pinning stress τL(S) using the
theoretical relations derived by Vaid et al. (see Equations (26) and (27) in their study [25]),
we arrive at a modified BKS equation:

τCRSS = (
µb

2πS
) ln(D) + τL(S). (2)

This equation can accurately reproduce the data for combined void and solute hardening,
without invoking additional fit parameters, as shown by the red curve in Figure 4.

Dou et al. [9] have also studied the interactions of an edge dislocation with a void
in FeNiCr-concentrated solid solution alloy, albeit without varying the periodicity length
along the dislocation line. They observed a two-stage process with the leading partial
dislocation first detaching from the void, followed by the detachment of the trailing partial
without discernable annihilation. A possible reason for the differences in the observed
mechanism between the two studies relates to the fact that, in their study, the void size was
a factor of about 4 smaller than the stacking fault width between the partial dislocations
of the edge dislocation after energy minimization in the initial setup. In the present work,
on the other hand, the ratio is close to 1.

Qi et al. [10] studied tensile deformation in single-crystal CoCrFeMnNi HEA contain-
ing voids of different sizes but no initial dislocations. As typical for this kind of simulation,
the stress–strain curves are dominated by a giant yield drop due to the high stress needed
for dislocation nucleation, whereas the presence or absence of voids is nearly irrelevant
for the deformation behavior. This type of simulation set-up is unsuitable for determining
the influence of voids on the flow stress of bulk samples with typical dislocation densities,
and we therefore refrain from a detailed comparison.

4. Conclusions

In this paper, we studied the interaction of an a0/2〈1 1 0〉{1 1 1} edge dislocation with
a periodic array of voids in the equiatomic FeNiCr CSA using atomistic simulations. We
found the strengthening contributions of solute hardening and obstacle hardening to be
additive, i.e., τCRSS = τCRSS

solute + τCRSS
void . However, a naive estimate of τCRSS

solute as the stress
needed to move a dislocation in the bulk CSA without voids badly represents the simulation
data. Instead, the solute hardening contribution is enhanced by the constraint imposed on
the dislocation shape fluctuations in the solute field by the presence of the voids. The latter
act as strong anchoring points and their spacing S replaces the pinning length Lp of the
void-free bulk material when S < Lp. This condition defines a regime of synergetic pinning,
where the solute action is enhanced by the presence of voids. Accordingly, τCRSS

solute , while
remaining additive to the Orowan stress needed to overcome the voids, itself becomes
dependent on the void spacing S. Our model builds upon a generic theory of solute
pinning which is not material or composition-specific and for which our results for the
void-free case are in excellent agreement with the theoretical predictions [25]. This gives us
confidence that our findings may carry over to a wide range of CSAs where the synergetic
superposition of void and solute pinning might be relevant.

Our findings could help improve the modeling and design of CSAs with enhanced
mechanical properties. For future work, we suggest performing more simulations with
different CSA compositions, temperatures, void shapes, dislocation character, etc. to
validate and generalize our findings using experimental tests or multiscale simulations.
In particular, the case of CSA with the bcc lattice structure may be of interest because there,
the easy cross slip of screw dislocations may lead to different depinning scenarios. Also,
the observed synergetic hardening mechanism where geometrical constraints enhance the
pinning action of solutes may also apply to the superposition of precipitate and solute
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hardening in CSAs and other materials where precipitate spacings are on the nanometer
scale—for instance, in the case of dislocation motion in narrow slip channels consisting
of a solute hardened matrix material and confined by stronger precipitates, as typical of
superalloy microstructures.
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Appendix A

A cubic sample (≈140× 140× 140 Å3), with [1 0 0], [0 1 0], [0 0 1] was used to find the
bulk properties, such as the lattice parameter, a0, and elastic constants, Cij. The sample
was relaxed using an optimized implementation of the FIRE algorithm [31] under periodic
boundary conditions along all crystallographic axes, and the simulation box size was
adjusted. The average stacking fault energy was found using another cuboidal setup
(≈100× 100× 200 Å3) with [1 1 2], [1 10], and [1 1 1] axes, by relaxing only along [1 1 1],
and keeping the atoms fixed along the other directions. The bulk properties are shown in
Table A1.

Table A1. Material parameters for FeNiCr at 0 K.

Parameter Value

Lattice parameter, a0 (Å) 3.52
C11 (GPa) 242.9
C12 (GPa) 157.1
C44 (GPa) 135.0
(Average) stacking fault energy (mJ/m2) 60.5
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