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We present an analytical calculation of the complete α6 correction to energies of nP -levels of
two-body systems consisting of the spin-0 or 1/2 extended-size particles with arbitrary masses and
magnetic moments. The obtained results apply to a wide class of two-body systems such as hydrogen,
positronium, muonium, and pionic or aniprotonic helium ion. We found an additional α6 correction
for nP -levels of positronium, which was previously overlooked. Our results are also relevant for light
muonic atoms, whose accurate theoretical predictions are required for extracting the nuclear charge
radii.

I. INTRODUCTION

Two-body systems, such as hydrogen and hydrogen-
like ions [1], muonic hydrogen [2], muonic helium ion
[3], positronium [4], and muonium [5], play a crucial role
in testing quantum electrodynamics (QED), determining
fundamental constants, and searching for physics beyond
the Standard Model. All these tasks require accurate
theoretical predictions for energy levels of these systems.
If the mass ratio of the two constituent particles is small,
as, e.g., in hydrogen, one can use the Dirac equation as
a starting point and use the QED perturbation theory
to account for the recoil and QED corrections. For sys-
tems like positronium and light muonic or antiprotonic
atoms, however, the masses of the particles are equal or
comparable, and the Dirac equation is no longer a good
approximation. Thus, one has to rely on the QED for-
malism from the very beginning in their description.

The QED theory of light atomic systems is based on an
expansion in the fine structure constant α and the deriva-
tion of the expansion coefficients as expectation values
of various effective Hamiltonians with the nonrelativistic
wave function. Specifically, the energy of a bound sys-
tem of two particles with masses m1,m2, charges e1, e2,
spins s1, s2, and g-factors g1, g2 can be expressed as an
expansion

E(α) = E(0) + E(2) + E(4) + E(5) + E(6) +O(α7) , (1)

where the individual terms E(j) ≡ (Z α)j E(j) are of the
order αj . Here we assume that E(i) are real and neglect
the radiative decay, which induces imaginary corrections
to energies. This effect should be taken into account sep-
arately if needed. Furthermore, we will exclude from our
consideration the vacuum polarization, which is either
negligible or needs to be taken into account separately,
depending on the masses of particles 1 and 2. If one of
the particles is electron, then the electron vacuum po-
larization starts at order α7 for P -states and thus is not
relevant for the present study. If both particles are heav-

ier than the electron, then the electron vacuum polariza-
tion starts at order α (Z α)2 for P -states and needs to be
accounted for separately, as was done for muonic atoms
in Ref. [6]. The vacuum polarization with heavier parti-
cles in the loop (muons, hadrons) starts at order α7 for
P -states and is negligible for the present study.
Regarding expansion in α, the g-factor of a particle a

defined as

µ⃗a =
ea ga
2ma

s⃗a , (2)

where µ⃗ is the magnetic moment, is obtained from exper-
iments. In consequence, the ga factors are not expanded
in α. As a digression we note that this definition in Eq.
(2) differs from the convention sometimes used in the
literature. Specifically, the electron g-factor is positive,
g = 2+O(α), and differs by the sign from the definition
of Ref. [1]. Returning to Eq. (1), the first term of the
expansion in α is just

E(0) = m1 +m2 . (3)

The next term E(2) is the eigenvalue of the nonrelativistic
two-body Hamiltonian H0 ≡ H(2) in the center-of-mass
frame,

H0 =
p2

2µ
+

e1 e2
4π

1

r
, (4)

where p⃗ = p⃗1 = −p⃗2, r⃗ = r⃗1 − r⃗2, and µ = m1 m2/(m1 +
m2) is the reduced mass. If we set e1 = −e, e2 = Z e, the
nonrelativistic binding energy becomes

E(2) ≡ E0 = − (Z α)2 µ

2n2
, (5)

where n is the principal quantum number of the refer-
ence state. The next expansion coefficient, E(4), is the
leading relativistic correction. It is given by the expec-
tation value of the Breit Hamiltonian H(4) [7] with the
nonrelativistic wave function, E(4) = ⟨H(4)⟩,
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H(4) = − p⃗ 4

8m3
1

− p⃗ 4

8m3
2

+
e1 e2
4π

{
1

2m1 m2
pi

(
δij

r
+

ri rj

r3

)
pj +

g1 g2
4m1 m2

si1 s
j
2

r3

(
δij − 3

ri rj

r2

)
− r⃗ × p⃗

2 r3
·
[

g1
m1 m2

s⃗1 +
g2

m1 m2
s⃗2 +

(g2 − 1)

m2
2

s⃗2 +
(g1 − 1)

m2
1

s⃗1

]}
, (6)

where we assume that the orbital angular-momentum
quantum number l of the reference state is positive, l > 0,
and the spin s of the constituent particles is 0 or 1/2. Let
us note that Hamiltonian (6) does not account for any an-
nihilation effects, which are present, e.g., in positronium.

It also does not include any strong-interaction effects,
which are present for hadronic particles. Such effects,
if present, should be evaluated and accounted for sepa-
rately. The result for the leading relativistic correction
E(4) for a state with the principal quantum number n
and the orbital angular momentum l = 1 is

E(4) = µ3(Zα)4
{

1

8n4

(
3

µ2
− 1

m1 m2

)
+

1

6n3

[
− 2

µ2
+ L⃗ · s⃗1

(
g1 − 1

m2
1

+
g1

m1 m2

)
+ L⃗ · s⃗2

(
g2 − 1

m2
2

+
g2

m1 m2

)
− 3 g1 g2

5m1m2
si1s

j
2(L

iLj)(2)
]}

, (7)

where the symmetric traceless tensor (LiLj)(2) is defined
as

(LiLj)(2) =
1

2

(
LiLj + LjLi)− δij

3
L⃗2 . (8)

The QED correction of order α5 is denoted by E(5) and
given by (for states with l > 0) [8]

E(5) = − 14 (Z α)2

3m1 m2

〈
1

4π

1

r3

〉
− 2α

3π

(
1

m1
+

Z

m2

)2

×
〈
p⃗ (H0 − E0) ln

[
2 (H0 − E0)

µ(Z α)2

]
p⃗

〉
. (9)

The matrix element in the second term is related to the
so-called Bethe logarithm ln[k0(n, l)] by

ln[k0(n, l)] ≡
n3

2µ3(Zα)4

×
〈
ϕ

∣∣∣∣p⃗ (H0 − E0) ln

[
2(H0 − E0)

µ(Zα)2

]
p⃗

∣∣∣∣ϕ〉 ,

(10)

which is tabulated for many hydrogenic states in Ref. [9].

The final result for E(5) for states with l > 0 is [10]

E(5) = − 7

3π

(Zα)5µ3

m1m2

1

l(l + 1)(2l + 1)n3

− 4

3π

(
1

m1
+

Z

m2

)2
α(Zα)4µ3

n3
ln[k0(n, l)] .

(11)

E(5) is the complete α5 QED correction, provided that
the previous-order correction E(4) is calculated with the
physical values of g-factors.

II. NRQED HAMILTONIAN FOR THE α6

CORRECTION

The correction to energy of order α6 can be represented
as

E(6) = ⟨H(6)⟩+ ⟨H(4) 1

(E0 −H0)′
H(4)⟩ , (12)

where the prime in 1/(E0 −H0)
′ means the exclusion of

the reference state from the resolvent, and H(4) is the
Breit-Pauli Hamiltonian given by Eq. (6). The effec-
tive Hamiltonian H(6) can be derived within the frame-
work of nonrelativistic QED (NRQED) [11]. The starting
point of the derivation is the NRQED Hamiltonian for an
arbitrary-spin (s = 0, 1/2) particle, given by [12]

H = eA0 +
π⃗ 2

2m
− e g

2m
s⃗ · B⃗ − e (g − 1)

4m2
s⃗ · (E⃗ × π⃗ − π⃗ × E⃗)− e

6

(
r2E +

s (s+ 1)

m2

)
∇⃗E⃗ − e

120
r4EE∇2∇⃗E⃗



3

− π⃗ 4

8m3
+

e

8m3

(
2
{
π⃗ 2, s⃗ · B⃗

}
+ (g − 2)

{
π⃗ · B⃗, π⃗ · s⃗

})
− e

12m

(
g r2M +

3 (g − 2)

4m2

)
s⃗ · ∇2B⃗

+
π⃗ 6

16m5
+

e (g − 1/2)

24m4
s(s+ 1)

{
π⃗ 2, ∇⃗E⃗

}
+

ie

32m4

(
1 +

s(s+ 1)

3

)[
π⃗ 2, π⃗ E⃗ + E⃗ π⃗

]
− e

12m

(
r2E − g − 2

2m2
s (s+ 1)

){
π⃗, ∂tE⃗ − ∇⃗ × B⃗

}
+

e (g − 1/2)

16m4
s⃗
{
π⃗ 2, E⃗ × π⃗ − π⃗ × E⃗

}
− e

24m2

(
g r2M − r2E +

3 (g − 2)

4m2

)
s⃗
(
∇2E⃗ × π⃗ − π⃗ ×∇2E⃗

)
− e2

2

(
αE − s (s+ 1)

3m2

)
E⃗ 2 , (13)

where [X ,Y ] ≡ X Y − Y X denotes the commutator of
two operators, and {X , Y } ≡ X Y +Y X is the anticom-

mutator, π⃗ = p⃗−e A⃗. In comparison to the original work
[12] we have redefined the following constants,

αE

∣∣
old

= αE − s (s+ 1)

3m2
, (14)

r2E
∣∣
old

= r2E +
s (s+ 1)

m2
, (15)

r2M
∣∣
old

=
g

2

(
r2M +

3

4m2

)
, (16)

to bring them in accordance with the standard defini-
tions of the electric dipole polarizability e2 αE , the mean
square charge radius r2E ≡ ⟨r2⟩, and the mean square
magnetic radius r2M . Furthermore, r4EE ≡ ⟨r4⟩ is the
mean fourth power of the charge radius. For the point
(scalar or Dirac) particle the parameters are given by

r2E = r4EE = r2M = αE = g − 2 = 0 , (17)

whereas for a Dirac particle with the magnetic moment
anomaly κ, they are

g = 2 (1 + κ), r2E =
3κ

2m2
, (18)

r2M = r4EE = 0, αE = −κ (1 + κ)

4m3
. (19)

For extended-size particles, the parameters rE , rM , and
αE can be in general arbitrary, but we will assume that
rE and rM are significantly smaller than the electron
Compton wavelength.

III. DERIVATION OF H(6)

Using the NRQED Hamiltonian in Eq. (13), one can
derive the effective operator H(6) for the bound system
of two spinless particles, one spinless and one spin-1/2
particle, and two spin-1/2 particles. The derivation fol-
lows Ref. [10], which in turn is based on two former works
[11, 13] and extends the previous calculations of H(6) to
states with l = 1, where contact terms contribute. As we
will show below, the contact terms have previously been
accounted for incorrectly for the positronium P -states
[13–15].

The typical one-photon exchange contribution between
particles a and b is given by

⟨ϕ|Σ(E0)|ϕ⟩ = ea eb

∫
d4k

(2π)4 i
Gµν(k)

{〈
ϕ

∣∣∣∣ȷµa(k) ei k⃗·r⃗a 1

E0 −H0 − k0 + i ϵ
ȷνb (−k) e−i k⃗·r⃗b

∣∣∣∣ϕ〉
+

〈
ϕ

∣∣∣∣ȷµb (k) ei k⃗·r⃗b 1

E0 −H0 − k0 + i ϵ
ȷνa(−k) e−i k⃗·r⃗a

∣∣∣∣ϕ〉}
, (20)

where Gµν(k) is the photon propagator, which is in Feyn-
man gauge GF

µν = gµν/k
2, in Coulomb gauge

GC
µν(k) =

{
− 1

k⃗2
µ = ν = 0 ,

−1

k2
0−k⃗2+i ϵ

(
δij − kikj

k⃗2

)
µ = i, ν = j ,

(21)

and in temporal gauge

GA
µν(k) =

{
0 µ = ν = 0 ,

−1

k2
0−k⃗2+i ϵ

(
δij − kikj

k2
0

)
µ = i, ν = j .

(22)

The state ϕ in Eq. (20) is an eigenstate of H0, and ȷµa is
the electromagnetic current operator for particle a. The
explicit expression for ȷµ(k) is obtained from the NRQED
Hamiltonian in Eq. (13) as the coefficient multiplying the
polarization vector ϵµ of the electromagnetic potential

Aµ(r⃗, t) ∼ ϵµλ e
i k⃗·r⃗−i k0 t . (23)

The first terms of the nonrelativistic expansion of the ȷ0
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component are

ȷ0(k) = 1 +
i (g − 1)

2m
s⃗ · k⃗ × p⃗

− 1

6

(
r2E +

s (s+ 1)

m2

)
k⃗ 2 + . . . (24)

and those of the ȷ⃗ component are

ȷ⃗(k) =
p⃗

m
+

i g

2m
s⃗× k⃗ + . . . . (25)

Most of the calculation is performed in the Coulomb
gauge in the so-called nonretardation approximation, in
which one sets k0 = 0 in the photon propagator Gµν(k)
and in ȷ(k). The retardation corrections are considered
separately. Applying the nonretardation approximation
and symmetrizing k0 ↔ −k0, the k0 integral in Eq. (20)
is evaluated as

1

2

∫
d k0
2π i

[
1

−∆E − k0 + i ϵ
+

1

−∆E + k0 + i ϵ

]
= −1

2
,

(26)
where we have assumed that ∆E is positive, which is
the case when ϕ is the ground state. For excited states,
the integration contour is deformed in such a way that
all poles from the electron propagator lie on the same
side. Therefore, the result of the k0 integration for ex-
cited states is the same as for the ground state, yielding

⟨ϕ|Σ(E0)|ϕ⟩ = − e2
∫

d3k

(2π)3
Gµν(k⃗)

×
〈
ϕ

∣∣∣∣ȷµa(k⃗) ei k⃗·(r⃗a−r⃗b) ȷνb (−k⃗)

∣∣∣∣ϕ〉 . (27)

The k⃗ integral is the Fourier transform of the photon
propagator in the nonretardation approximation

Gµν(r⃗) =

∫
d3k

(2π)3
Gµν(k⃗) e

i k⃗·r⃗

=
1

4π

{
− 1

r µ = ν = 0 ,
1
2 r

(
δij +

rirj
r⃗ 2

)
µ = i, ν = j .

(28)

One easily recognizes that G00 is the Coulomb interac-
tion. Next-order terms resulting from ȷ0 and ȷ⃗ lead to
the Breit Pauli-Hamiltonian, Eq. (6). Below we derive
the higher-order terms in the nonrelativistic expansion,
namely the effective Hamiltonian H(6). It is expressed as
a sum of various contributions

H(6) =
∑
i=0,9

δHi . (29)

We will follow a similar derivation presented in Refs.
[10, 11, 13] for point particles, and use similar notations,
namely r⃗ = r⃗1 − r⃗2, e1 = −e, e2 = Z e, and the static

fields A0, A⃗, and E⃗ defined as

e1 A0
1 = e2 A0

2 = −Z α

r
, (30)

e1Ai
1 =− Zα

2 r

(
δij +

rirj

r2

)
pj2
m2

− Z α g2
2m2

(s⃗2 × r⃗)
i

r3
,

(31)

e2Ai
2 =− Zα

2 r

(
δij +

rirj

r2

)
pj1
m1

+
Z α g1
2m1

(s⃗1 × r⃗)
i

r3
,

(32)

e1 E⃗1 =− Z α
r⃗

r3
, e2 E⃗2 = Z α

r⃗

r3
. (33)

We now examine the individual contributions δEi ≡
⟨δHi⟩. δE0 is a correction to the kinetic energy,

δE0 =

〈
p6

16m5
1

+
p6

16m5
2

〉
. (34)

δE1 is a correction to the Coulomb interaction, where
one of the particles interacts by δH

δH = − e

120
r4EE ∇2∇⃗E⃗ +

e (g − 1/2)

24m4
s(s+ 1)

{
π⃗ 2, ∇⃗E⃗

}
+

ie

32m4

(
1 +

s(s+ 1)

3

)[
π⃗ 2, π⃗ E⃗ + E⃗ π⃗

]
+

e (g − 1/2)

16m4
s⃗
{
π⃗ 2, E⃗ × π⃗ − π⃗ × E⃗

}
− e

24m2

(
g r2M − r2E +

3 (g − 2)

4m2

)
s⃗
(
∇2E⃗ × π⃗ − π⃗ ×∇2E⃗

)
, (35)

and the other one by eA0. Here we can use the static Coulomb approximation, obtaining

δE1 =
∑
a

〈
− Z α

8m4
a

(
ga −

1

2

)
L⃗ · s⃗a

{
p2,

1

r3

}
+

1

32m4
a

(
1 +

sa(sa + 1)

3

)[
p2,

[
p2,−Z α

r

]]
+

Zα

120
r4EEa 4π∇2δ3(r) + i

Zα

12m2
a

(
ga r

2
Ma − r2Ea +

3 (ga − 2)

4m2
a

)
s⃗a · p⃗× 4π δ3(r) p⃗

〉
, (36)

where the second term in Eq. (35) vanishes for l = 1 state. δE2 is a correction to Coulomb interaction when both
vertices are

δH = − e (g − 1)

4m2
s⃗ · (E⃗ × π⃗ − π⃗ × E⃗)− e

6

(
r2E +

s (s+ 1)

m2

)
∇⃗E⃗ . (37)
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It can also be evaluated in the nonretardation approximation, with the result

δE2 =

〈
Zα

4m2
1m

2
2

(g1 − 1)(g2 − 1) (s⃗2 × p⃗)i
(
δij

r3
− 3

rirj

r5
+

δij

3
4π δ3(r)

)
(s⃗1 × p⃗)j

+
Zα

36

(
r2E1 +

s1 (s1 + 1)

m2
1

)(
r2E2 +

s2 (s2 + 1)

m2
2

)
4π∇2 δ3(r)

+ i
Zα

12

[(
r2E1 +

s1 (s1 + 1)

m2
1

) (g2 − 1)

m2
2

s⃗2 +
(
r2E2 +

s2 (s2 + 1)

m2
2

) (g1 − 1)

m2
1

s⃗1

]
· p⃗× 4πδ3(r) p⃗

〉
. (38)

δE3 is the relativistic correction to the transverse photon exchange. The first particle is coupled to A⃗ by the nonrel-
ativistic term

δH = − e

m
p⃗ · A⃗− e g

2m
s⃗ · B⃗ , (39)

and the second one by the relativistic correction

δH =
e

8m3

(
(g − 2)

{
π⃗ · B⃗, π⃗ · s⃗

}
+ 2

{
π⃗ 2, s⃗ · B⃗

})
− e

12m

(
g r2M +

3 (g − 2)

4m2

)
s⃗ · ∇2B⃗ − π⃗ 4

8m3
. (40)

It is sufficient to calculate it in the nonretardation approximation, which yields

δE3 =
∑
a

〈
1

4m3
a

(
{p2, s⃗a · ∇⃗a × eaA⃗a}+ {p2, p⃗a · eaA⃗a}

)
+

ea (ga − 2)

8m3
a

{p⃗a · ∇⃗a × A⃗a, p⃗a · s⃗a}
〉

+

〈
Zα

12m1 m2

(
g1 r

2
M1 +

3 (g1 − 2)

4m2
1

)(
i s⃗1 · p⃗× 4π δ3(r) p⃗+ g2 s⃗2 × p⃗ 4π δ3(r) s⃗1 × p⃗

)
+ (1 ↔ 2)

〉
. (41)

δE4 comes from the seagull-like coupling

δH =
e2

2m
A⃗ 2 . (42)

Again, the nonretardation approximation yields

δE4 =
∑
a

〈
e2a

2ma
A⃗2

a

〉
. (43)

δE5 is a seagull-like term that comes from the coupling

δH = − e2

2

(
αE − s (s+ 1)

3m2

)
E⃗ 2 , (44)

while the second particle is coupled through eA0. It can

be obtained in the nonretardation approximation as

δE5 = − 1

2

∑
a

(
αEa −

sa(sa + 1)

3m3
a

)〈
Z2α2

r4

〉
. (45)

δE6 is a seagull-like term that comes from

δH = −e (g − 1)

4m2
s⃗ · (E⃗ × π⃗ − π⃗ × E⃗) . (46)

Once more the nonretardation approximation can be
used, yielding

δE6 =
∑
a

e2a (ga − 1)

2m2
a

〈
s⃗a · E⃗a × A⃗a

〉
. (47)

δE7 is a retardation correction to the single transverse
exchange

δE7 = δEA
7 + δEB

7 + δEC
7 , (48)

where

δEA
7 =

Zα

16m1 m2

〈
2Z2α2

r3
+

iZαri

r3

[
p2

2m2
,
rirj − 3δij r2

r

]
pj

− pi
[
rirj − 3δij r2

r
,

p2

2m1

]
iZαrj

r3
− pi

[
p2

2m2
,

[
rirj − 3δij r2

r
,

p2

2m1

]]
pj
〉
+ (1 ↔ 2) , (49)

δEB
7 =

Zα

8m1 m2

〈
g1

[(
s⃗1 ×

r⃗

r

)i

,
p2

2m1

]
iZαri

r3
− g2

iZαri

r3

[
p2

2m2
,

(
s⃗2 ×

r⃗

r

)i]
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+ g1

[
p2

2m2
,

[(
s⃗1 ×

r⃗

r

)i

,
p2

2m1

]]
pi + g2 p

i

[
p2

2m2
,

[(
s⃗2 ×

r⃗

r

)i

,
p2

2m1

]]〉
+ (1 ↔ 2) , (50)

δEC
7 =− Z α g1 g2

16m2
1 m

2
2

〈[
p2,

[
p2, s⃗1s⃗2

2

3 r
+ si1 s

j
2

1

2 r

(
rirj

r2
− δij

3

)]]〉
. (51)

δE8 is a retardation correction in a single transverse
photon exchange, where one vertex is nonrelativistic,
Eq. (39), and the second one is

δH = −e (g − 1)

4m2
s⃗ · (E⃗ × p⃗− p⃗× E⃗) . (52)

The result is

δE8 =
∑
a

〈
e2a (ga − 1)

2m2
a

s⃗a · E⃗a × A⃗a +
iea (ga − 1)

8m3
a

×
[
A⃗a · (p⃗a × s⃗a) + (p⃗a × s⃗a) · A⃗a, p

2
a

]〉
. (53)

The δE9 contribution arises when one vertex is

δH = − e

12m

(
r2E − g − 2

2m2
s (s+ 1)

){
π⃗, ∂tE⃗ − ∇⃗ × B⃗

}
,

(54)

and the second vertex is nonrelativistic, Eq. (39). The

corresponding current operators are

j⃗(k) =
p⃗

m
+

g

2m
i s⃗× k⃗ , (55)

δjj(k) =
1

6m

(
r2E − g − 2

2m2
s (s+ 1)

)
pi

[
(ω2 − k⃗2)δij

+ ki kj
]
. (56)

For this term we employ the temporal gauge, rather than
the Coulomb gauge, and obtain

δE9 =− e1e2

∫
d3k

(2π)3

〈
1

4

{
ji1(k) ,

{
Gij

A δjj2(−k) , ei k⃗·r⃗
}}〉

+ (1 ↔ 2) (57)

where

Gij
A δjj(k) = − 1

6m

(
r2E − g − 2

2m2
s (s+ 1)

)
pi . (58)

The result is

δE9 =
e1 e2
6m

(
r2E2 −

g2 − 2

2m2
2

s2 (s2 + 1)
)〈

1

4

{
pi1
m1

,

{
pi2
m2

, δ3(r)

}}
+

g1
4m1

(s⃗1 × ∇⃗1)
i

{
pi2
m2

, δ3(r)

}〉
+ (1 ↔ 2)

=
Z α

12m1 m2

(
r2E2 −

g2 − 2

2m2
2

s2 (s2 + 1)
) 〈

2π ∇⃗2δ3(r) + i g1 s⃗1 · p⃗× 4π δ3(r) p⃗

〉
+ (1 ↔ 2) . (59)

This concludes our derivation of all effective operators to
order α6 for P -states. Explicit formulas for matrix ele-
ments of elementary and contact operators are presented
in Appendix A. Matrix elements of other operators can
be found in Ref. [10]. We mention here that the original
work of Khriplovich [16, 17] contained a computational
mistake related to a matrix element in δE2, which was
not corrected in subsequent works [14, 15]. This will be
described in more detail in Sec. VI.

The last part of E(6) to be evaluated is the second-
order iteration of the Breit Hamiltonian H(4) in Eq. (12).
It has already been derived for arbitrary l > 0 in Ref. [10]
by the method developed in Ref. [13], and the result is
valid also for the case l = 1 investigated here. Since
the derivation and the final expressions are quite long,
we refer the reader to Ref. [10] for the corresponding
formulas.

Adding together all contributions, we arrive at our final
result for the α6 correction for nP states. It is written
as E(6) = (Z α)6 E(6),

E(6) = ENS + s⃗1 · s⃗2 ESS + L⃗ · s⃗1 EL1 + L⃗ · s⃗2 EL2

+ (Li Lj)(2) si1 s
j
2 ELL , (60)

where

ENS = ES0 +
4

3
s1 (s1 + 1) ES1 +

4

3
s2 (s2 + 1) ES2

+
16

9
s1 (s1 + 1) s2 (s2 + 2) ES12 , (61)

EL1 = ELN1 +
4

3
s2(s2 + 1) ELS1 , (62)

EL2 = ELN2 +
4

3
s1 (s1 + 1) ELS2 , (63)

with the individual terms given by
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ES0 = µ

(
− 5

16n6
+

1

2n5
− 1

6n4
− 1

27n3

)
+

µ3

m1 m2

(
3

16n6
− 13

30n5
+

2

5n3

)
− µ5

m2
1 m

2
2

1

16n6

+ µ5

(
1

n3
− 1

n5

)(
2

27
r2E1 r

2
E2 +

r2E1 + r2E2

9m1 m2
+

r4EE1 + r4EE2

45

)
− µ4 αE1 + αE2

5

(
1

n3
− 2

3n5

)
, (64)

ES2 =
µ3

m2
2

g22
24

(
1

5n5
− 1

2n4
− 119

180n3

)
+

µ5

m4
2

[
g2
24

(
1

n3
− 1

n5

)
+

7

60n5
− 1

48n4
− 641

4320n3

]
+

µ4

m3
2

[
−g22
40

(
1

n3
− 2

3n5

)
+

g2
24

(
− 1

5n5
+

1

n4
+

137

90n3

)
− 7

60n5
+

2

15n3

]
+

µ5

m2
2

r2E1

18

(
1

n3
− 1

n5

)
, (65)

ES12 =
µ5

m2
1 m

2
2

[
−
(

1

n4
+

137

90n3

)
g21 g

2
2

640
+

1

24

(
1

n3
− 1

n5

)]
, (66)

ELN2 =
µ2

m2
g2

(
− 1

3n5
+

1

6n4
+

13

108n3

)
+

µ3

m2
2

[
g22

(
− 1

40n5
+

1

48n4
+

227

4320n3

)
+ g2

(
3

10n5
− 1

5n3

)
+

5

12n5
− 1

6n4
− 13

108n3

]
+

µ4

m3
2

[
g2

(
− 1

6n5
− 1

24n4
+

5

432n3

)
− 5

12n5
+

1

6n3

]
+

µ5

m4
2

[
1

4n5
+

1

48n4
− 41

864n3

]
+

1

9

(
1

n3
− 1

n5

)[(
− µ4

m2
g2 +

µ5

m2
2

)
r2E1 +

µ5

m2
2

r2E2 −
µ4

m2
g2 r

2
M2

]
, (67)

ELS2 =
µ4

m2
1 m2

g2
12

[
1

n5
− 1

n3
− g1

(
7

20n5
+

1

8n4
− 133

720n3

)
+ g21

(
− 3

20n5
+

1

8n4
+

227

720n3

)]
+

µ5

m2
1 m

2
2

1

12

[
1

n3
− 1

n5
+ g1 g2

(
7

20n5
+

1

8n4
− 133

720n3

)
+ g21 g

2
2

(
3

80n5
+

9

320n4
− 13

3200n3

)]
, (68)

ESS = − µ3

m1 m2
g1 g2

(
1

60n5
+

1

18n4
+

47

1620n3

)
+

µ4

m1 m2

(
g1
m2

+
g2
m1

)(
1

18n5
+

1

18n4
− 5

324n3

)
+

µ5

m2
1 m

2
2

[
−g21 g

2
2

480

(
1

n4
+

137

90n3

)
+

1

30n5
− 1

18n4
− 191

1620n3

]
+

2

27

(
1

n3
− 1

n5

)
µ5

m1 m2
g1 g2 (r

2
M1 + r2M2) ,

(69)

ELL =
µ3

m1 m2

g1 g2
4

(
51

50n5
− 7

12n4
− 3697

5400n3

)
+

µ4

m1 m2

[(
g1
m1

+
g2
m2

)
g1 g2

(
9

200n5
− 3

80n4
− 227

2400n3

)
+

(
g1
m2

+
g2
m1

)(
− 19

150n5
+

1

12n4
+

1171

5400n3

)]
+

µ5

m2
1 m

2
2

[
g21 g

2
2

200

(
− 3

n5
− 7

8n4
+

1291

720n3

)
+ g1 g2

(
− 6

25n5
− 3

40n4
+

37

1200n3

)
− g1 + g2

10

(
1

n3
− 1

n5

)
+

2

25n5
− 1

12n4
− 1063

5400n3

]
+

µ5

m1 m2

g1 g2
9

(
1

n3
− 1

n5

)
(r2M1 + r2M2) . (70)

We remind the reader that E(6) is the complete α6 QED
correction, provided that the lower-order correction E(4)

is calculated with the physical values of g-factors.

We now turn to the comparison of the obtained formu-
las for the l = 1 states with the general l > 0 result of
Ref. [10] derived with the omission of contact terms. The
contact terms vanish in the l > 1 case but are present for
l = 1 (even for the point particles). We will consider sep-
arately the cases of two spinless particles, of one spinless
and one spin-1/2 particle, and of two spin-1/2 particles.

IV. SPIN s1 = s2 = 0

For a system consisting of two spinless particles, s1 =
s2 = 0, E(6) = ES0. This result differs from the general

result E(6)
G from Ref. [10] by the finite-size terms only, as

it should,

E(6) − E(6)
G

∣∣
l=1

=
µ5

9

(
1

n3
− 1

n5

)(
2

3
r2E1 r

2
E2
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+
r2E1 + r2E2

m1 m2
+

r4EE1 + r4EE2

5

)
. (71)

In the infinite-mass limit of one of the particles (and only
in this limit), E(6) corresponds to a solution of the Klein-
Gordon equation. For an arbitrary mass ratio there is no
fundamental equation and energy levels can be obtained
only from the QED theory.

An example of a bound system of two scalar particles is
the pionic helium atom investigated by Masaki Hori [18,
19]. However, in this case the short-range interactions
are dominated by strong forces, and the above formula
thus has limited applicability.

V. SPIN s1 = 0, s2 = 1/2

For a system consisting of particles with s1 = 0 and
s2 = 1/2, the binding energy at the order α6 is

E(6) = ES0 + ES2 + L⃗ · s⃗2 ELN2 . (72)

The difference of E(6) and the general result EG from Ref.
[10] is

E(6) − E(6)
G

∣∣
l=1

=

[
r2E1 + r̃2E2

m1 m2
+

2

3
r2E1

(
r2E2 +

3

4m2
2

)

+
r4EE1 + r4EE2

5
+ L⃗ · s⃗2

(
−g2 (r̃

2
M2 + r2E1)

m1 m2

+
r2E2 − g2 r̃

2
M2 − (g2 − 1) r2E1

m2
2

)]
µ5

9

(
1

n3
− 1

n5

)
,

(73)

where

g r̃2M = g r2M +
3 (g − 2)

4m2
, (74)

r̃2E = r2E − 3 (g − 2)

8m2
. (75)

With the rotational angular momentum l = 1 coupled to
the spin s2 = 1/2, the total angular momentum J can be
either J = 1/2 or 3/2. The corresponding energies are

E(6)
∣∣
J=1/2

= ES0 + ES2 − ELN2 , (76)

E(6)
∣∣
J=3/2

= ES0 + ES2 +
1

2
ELN2 . (77)

The explicit formulas for E(6) are quite long. How-
ever, their expansion for a small mass ratio m2/m1 is
quite compact. Specifically, assuming that particle 2 is
point-like (κ2 = r2E2 = r2M2 = r4EE2 = 0) and neglect-
ing the polarizabilities (αE1 = αE2 = 0), we obtain,
E(6) = E(6,0) + E(6,1) + . . . ,

E(6,0)
∣∣
J=1/2

= m2

[(
− 5

16n6
+

3

4n5
− 3

8n4
− 1

8n3

)
+

1

6

(
1

n3
− 1

n5

)
m2

2 r
2
E1 +

1

45

(
1

n3
− 1

n5

)
m4

2 r
4
EE1

]
, (78)

E(6,1)
∣∣
J=1/2

=
m2

2

m1

[(
1

2n6
− 19

15n5
+

3

8n4
+

21

40n3

)
− 1

2

(
1

n3
− 1

n5

)
m2

2 r
2
E1 −

1

9

(
1

n3
− 1

n5

)
m4

2 r
4
EE1

]
, (79)

E(6,0)
∣∣
J=3/2

= m2

[(
− 5

16n6
+

3

8n5
− 3

32n4
− 1

64n3

)
+

1

45

(
1

n3
− 1

n5

)
m4

2 r
4
EE1

]
, (80)

E(6,1)
∣∣
J=3/2

=
m2

2

m1

[(
1

2n6
− 23

30n5
+

3

32n4
+

133

320n3

)
− 1

9

(
1

n3
− 1

n5

)
m4

2 r
4
EE1

]
. (81)

In the point-nucleus limit, these formulas are in agree-
ment with the literature results [1]. Furthermore, the
finite-size corrections in the nonrecoil limit agree with
those derived in Ref. [20]. The finite-size recoil correc-
tions are a new result obtained here. We have verified it
by comparing with numerical calculations performed to

all orders in Zα in Sec. VIII.

VI. SPIN s1 = s2 = 1/2

The most complicated case considered here is when
both particles have spin s = 1/2. The binding energy
E(6) can then be expressed as

E(6) = ES0 + ES1 + ES2 + ES12 + s⃗1 · s⃗2 ESS + L⃗ · s⃗1 (ELN1 + ELS1) + L⃗ · s⃗2 (ELN2 + ELS2) + (Li Lj)(2) si1 s
j
2 ELL .

(82)
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It differs from the general result EG from Ref. [10] by

E(6) − E(6)
G

∣∣
l=1

=
µ5

9

(
1

n3
− 1

n5

){
r̃2E1 + r̃2E2

m1 m2
+

2

3

(
r2E1 +

3

4m2
1

)(
r2E2 +

3

4m2
2

)
+

r4EE1 + r4EE2

5

+ L⃗ · s⃗1
[
−
g1

(
r̃2M1 + r̃2E2

)
m1 m2

− g1 r̃
2
M1

m2
1

+
r2E1

m2
1

− g1 − 1

m2
1

(
r2E2 +

3

4m2
2

)]
+ L⃗ · s⃗2

[
−
g2

(
r̃2M2 + r̃2E1

)
m1 m2

− g2 r̃
2
M2

m2
2

+
r2E2

m2
2

− g2 − 1

m2
2

(
r2E1 +

3

4m2
1

)]
+ s⃗1 · s⃗2

[
2

3

g1 g2
m1 m2

(r̃2M1 + r̃2M2)−
1

4m1 m2

(
g2

g1 − 2

m2
1

+ g1
g2 − 2

m2
2

)
+

(g1 − 1) (g2 − 1)

2m2
1 m

2
2

]
+ (Li Lj)(2) si1 s

j
2

[
g1 g2
m1 m2

(
r̃2M1 + r̃2M2

)
+

3

10m1 m2

(
g2

g1 − 2

m2
1

+ g1
g2 − 2

m2
2

)
+

3 (g1 − 1) (g2 − 1)

m2
1 m

2
2

]}
.

(83)

The above difference does not vanish in the point-particle
limit, which indicates a disagreement not only with
Ref. [10] but also with previous calculations [13–15] since
Ref. [10] was claimed to agree with them in the limit
m1 = m2.

We now examine this discrepancy in detail. For the
positronium atom, the difference (83) becomes

δEpos = E(6) − E(6)
G

∣∣
l=1,m1=m2

=
m (Zα)6

32

(
1

n3
− 1

n5

)(
1

24
− L⃗ · (s⃗1 + s⃗2)

12

+
s⃗1 · s⃗2
18

+
(LiLj)(2) si1s

j
2

3

)
. (84)

Evaluating explicitly the spin-angular dependence in the
above formula we obtain

δEpos(s = 0, j = 1) = 0 , (85)

δEpos(s = 1, j = 0) =
m (Zα)6

64

(
1

n3
− 1

n5

)
, (86)

δEpos(s = 1, j = 1) = 0 , (87)

δEpos(s = 1, j = 2) = 0 . (88)

We thus find an additional α6 correction for the or-
thopositronium j = 0 state, given by Eq. (86).

On closer inspection, we relate this discrepancy to the
δE2 = ⟨δH2⟩ contribution. Zatorski calculates it for
point particles [13, Eq. (94)], separately for the l = 1

case [13, Eq. (99)] and for the l > 1 case [13, Eq. (103)],
closely following the original calculation of Khriplovich
[16, 17]. Later he writes that “. . . the correction δE2 for
l = 1 still can be obtained from Eq. (103)”, which we
find to be incorrect. The difference between Eqs. (103)
and (99) of Ref. [13] is exactly equal to Eq. (86) in the
above. Moreover, our calculation of δE2 is in agreement
with [13, Eq. (99)] in the point particle limit. This means
that the original approach of Khriplovich [16, 17] is valid
for l > 1 but not for l = 1. The subsequent works [14, 15]
followed the original Khriplovich calculations and thus
reproduced the incorrect result for the l = 1 levels, al-
though they agreed between themselves. Furthermore,
Zatorski in [13, Eq. (204)] presented the result for the
positronium l = 1 levels employing [13, Eq. (103)] in-
stead of [13, Eq. (99)] and claimed agreement with the
previous result of Ref. [15].
We thus conclude that the previous result for the

positronium P -levels repeatedly reported in the litera-
ture [13–15] was incorrect. The corrected formula for the
positronium P -levels is presented in Appendix B. The
additional correction found in this work shifts the previ-
ous theoretical predictions of the j = 0 level of positron-
ium, but the corresponding numerical value is too small
to affect the comparison with the (much less accurate)
experimental result [21].
Returning to Eq. (82), we present formulas for its ex-

pansion in the small mass ratiom2/m1, for the case of the
point-like second particle (κ2 = r2E2 = r2M2 = r4EE2 = 0)
and negligible polarizabilities (αE1 = αE2 = 0). The
results are

E(6,0) = m2

{(
− 5

16n6
+

1

2n5
− 3

16n4
− 5

96n3

)
+ L⃗ · s⃗2

(
− 1

4n5
+

3

16n4
+

7

96n3

)
+

1

9

(
1

n3
− 1

n5

)[(
1

2
− L⃗ · s⃗2

)
m2

2 r
2
E1 +

1

5
m4

2 r
4
EE1

]}
, (89)

E(6,1) =
m2

2

m1

{(
1

2n6
− 14

15n5
+

3

16n4
+

217

480n3

)
+ L⃗ · s⃗2

(
1

3n5
− 3

16n4
− 7

96n3

)
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+ g1 L⃗ · s⃗1
(
− 43

120n5
+

3

16n4
+

83

480n3

)
+ g1 s⃗1 · s⃗2

(
1

45n5
− 1

18n4
− 119

1620n3

)
+ g1 (L

i Lj)(2) si1 s
j
2

(
169

300n5
− 43

120n4
− 5441

10800n3

)
+

1

9

(
1

n3
− 1

n5

)[
−m4

2 r
4
EE1

− 3

(
1

2
− L⃗ · s⃗2

)
m2

2 r
2
E1 +

(
4

3
s⃗1 · s⃗2 − L⃗ · s⃗1 + 2 (Li Lj)(2) si1 s

j
2

)
m2

2 g1 r
2
M1

]}
. (90)

TABLE I. 2P fine structure of µHe ions, in meV. The root-
mean-square nuclear-charge radii are [3, 6] rE(h) = 1.970 fm,
rE(α) = 1.679 fm. Our uncertainty is due to higher-order in
α terms, mainly due to the two-loop electron vacuum polar-
ization. From the previous results in Ref. [22, 24] we have
subtracted BP(tot) = 0.1947 meV due to a different definition
of the fine structure of µ3He used in these works.

contribution µ3He+ µ4He+

E
(4)
fs 144.510 95 145.898 24

E
(4)
fs,vp 0.269 81 0.275 65

E
(6)
fs 0.004 05 0.007 64

Efs 144.785(3) 146.182(3)
Refs. [22, 23] 144.785(5) 146.181(5)
exp. [3, 24] 144.763(114) 146.047(96)

The above expression for E(6,0) agrees with that for the
s1 = 0, s2 = 1/2 case, as it should. Similarly, E(6,1)

agrees with the s1 = 0, s2 = 1/2 case up to the terms
with s⃗1. The s⃗1-dependent terms are responsible for the
hyperfine structure at the α6 order and for mixing of the
P1/2,F=1 and P3/2,F=1 states.

VII. 2P FINE STRUCTURE IN LIGHT
MUONIC ATOMS

Accurate theoretical predictions of the fine and hyper-
fine structure of the 2P levels in muonic atoms are re-
quired for the determination of the nuclear charge radii
from experimental 2P -2S transition energies. QED cal-
culations of the 2P fine structure of µHe ions have been
performed in Refs. [22, 23], neglecting higher-order terms
in the mass ratio, namely (Z α)6 mµ (mµ/mN )(2+), where
the subscripts µ andN refer to the muon and the nucleus,
respectively. In the present work we obtain the result for
the α6 contribution with full dependence on the mass
ratio mµ/mN .
The binding energy of a muonic atom can be decom-

posed in terms of basic angular-momentum operators,
similarly to Eq. (60),

E = ENS + L⃗ · s⃗µ ELµ + L⃗ · s⃗N ELN

+ (Li Lj)(2) siN sjµ ELL + s⃗N · s⃗µ ESS . (91)

Here, the spin-independent term ENS corresponds to
the energy centroid, the second term is responsible for
the fine splitting, Efs ≡ 3/2ELµ, whereas the remaining
terms induce the hyperfine splitting and mixing between
the fine and hyperfine structure.
We are now interested in the fine structure of the 2P

state. The leading fine structure of order (Z α)4 is ob-
tained from Eq. (7), with the result

E
(4)
fs =

µ3(Zα)4

32

(
gµ − 1

m2
µ

+
gµ

mN mµ

)
. (92)

For the α6 correction, we set gµ = 2 because the
magnetic-moment anomaly is only a part of the α7 cor-
rection. Similarly, we neglect QED corrections to r2E and
r2M of the muon. We obtain for the sN = 0 nucleus

E
(6)
fs =

3

2
ELµ(n = 2, gµ = 2, sN = 0)

= µ
(Z α)6

64

[
5

4
+

1

4

µ

mN
− 19

18

( µ

mN

)2

− 3

4

( µ

mN

)3

+
11

36

( µ

mN

)4

− µ2 r2E

(
1− µ2

m2
N

)]
, (93)

whereas for sN = 1/2

E
(6)
fs =

3

2
ELµ(n = 2, gµ = 2, sN = 1/2)
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= µ
(Z α)6

64

[
5

4
+

1

4

µ

mN
+

(
− 19

18
+

2729

3600
g2N

)( µ

mN

)2

+

(
− 3

4
+

5

72
gN − 188

225
g2N

)( µ

mN

)3

+

(
11

36
− 5

72
gN +

31

400
g2N

) ( µ

mN

)4

− µ2
(
r2E +

3

4m2
N

)(
1− µ2

m2
N

)]
. (94)

It is worth mentioning that the spin-0 case can be ob-
tained from the spin-1/2 one by setting gN = 0 and re-
defining the charge radius. We also note that the first
two terms in powers of µ/mN are universal and do not
depend on the nuclear spin.

In addition to E
(4)
fs and E

(6)
fs , one needs to account for

the one-loop electron vacuum polarization correction to
the leading fine structure, which can be calculated as de-
scribed in Ref. [25]. Our numerical results for the 2P
fine structure of µHe+ are listed in Table I. They are in
agreement with the previous calculation of Karshenboim
et al. [22, 23] and with available experimental results
[3, 24]. The observed agreement supports the determina-
tion of the nuclear charge radii reported in these works.
This confirmation is important in view of a significant
discrepancy in the charge radii difference r2E(h)− r2E(α)
between the electronic- and muonic-spectroscopy deter-
minations [3, 6, 26].

VIII. NUCLEAR RECOIL IN LIGHT MUONIC
ATOMS

In this section we examine the nuclear recoil correc-
tion for muonic atoms, as obtained within two different
approaches, namely, the leading-order Zα expansion re-
sult given by Eqs. (79) and (81), and the all-order (in
Zα) approach. The comparison of results of the two dif-
ferent methods will, first, validate the formulas derived
in the present work and, second, give us an idea about
the higher-order (in Zα) effects.

The general expression for the nuclear recoil correction
in electronic and muonic atoms valid to all orders in Zα
was derived in Refs. [27–29]. For a muonic atom, it reads

Erec =
m2

µ

mN

i

2π

∫ ∞

−∞
dω

∑
n

1

εa + ω − εn(1− i0)

× ⟨a| p⃗− D⃗(ω) |n⟩ ⟨n| p⃗− D⃗(ω) |a⟩ , (95)

where p⃗ is the momentum operator, Dj(ω) =

−4πZααi Dij
C (ω, r⃗) , αi are the Dirac matrices, Dij

C is the
transverse part of the photon propagator in the Coulomb
gauge, and the summation over n is performed over the
complete Dirac spectrum of a bound muon. The pho-
ton propagator Dij

C describing the interaction between a
point-like and an extended-size particle was derived in
Ref. [30].

To separate out the contribution of order α6 and higher
from Erec, we subtract the contribution of previous or-
ders. Specifically, we introduce the higher-order remain-

der function E
(6+)
rec , as follows

E(6+)
rec = Erec −

m2
µ

mN

[
(Zα)2

2n2
+

(Zα)4

2n3

( 1

j + 1/2
− 1

n

)
+

(Zα)5

πn3
D50

]
, (96)

where D50 is defined by Eq. (11),

D50(2p) = −8

3
ln[k0(2p)]−

7

18
= −0.308 844 332 . . . .

(97)

We perform our numerical calculations of Erec by the
approach described in detail in Ref. [31], for the expo-
nential model of the nuclear charge distribution. The
total correction is conveniently separated into the point-
nucleus (pnt) and the finite-nuclear-size (fns) parts. The
results are presented in Table II and Fig. 1. The numer-
ical all-order results are labeled as “All-order”, whereas
the leading-order contributions obtained with Eqs. (79)
and (81) are labeled as “Zα-exp”. We observe that the
numerical all-order results rapidly converge to the lowest-
order analytical prediction as Z is decreased. The higher-
order in Zα corrections are quite small for the point-
nucleus contribution but become prominent for the fns
correction already for medium-Z ions; e.g., for Z = 40,
the lowest-order fns formula overestimates the corre-
sponding all-order result by a factor of about two. It
is also interesting that the fns part of Erec rapidly grows
with the nuclear charge and dominates over the point-
nucleus contribution for Z > 10 for the 2p1/2 state and
Z > 20 for the 2p3/2 state.

IX. SUMMARY

We have derived the complete QED correction of order
α6 to the binding energies of the nP states of two-body
systems consisting of the spin-0 or 1/2 extended-size par-
ticles of arbitrary masses and magnetic moments. The
derivation has been verified by an all-order in Zα nu-
merical calculation of the first-order in m/M recoil con-
tribution. We have corrected the literature result for the
positronium l = 1 energies [13–15] and verified previous
calculations of the 2P fine splitting in light muonic atoms
[22, 23].
The obtained formulas for the l = 1 states extend the

previous l > 1 results of Ref. [10] and can be applied
to a wide class of two-body systems of immediate exper-
imental interest, such as hydrogen, hydrogen-like ions,
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TABLE II. Nuclear-recoil point-nucleus and fns corrections E
(6+)
rec for the 2p1/2 and 2p3/2 states of muonic atoms. Units are

m2
µ/mN (Zα)6.

point fns

2p1/2 2p3/2 2p1/2 2p3/2

Z rE [fm] All-order Zα-exp. All-order Zα-exp. All-order Zα-exp. All-order Zα-exp.

1 0.8409 0.05766 0.05729 0.04098 0.04167 −0.01046 −0.01057 −0.00094 −0.00107
2 1.6755 0.05801 0.05729 0.04060 0.04167 −0.05327 −0.05460 −0.01570 −0.01687
3 2.4440 0.05831 0.05729 0.04028 0.04167 −0.14986 −0.15665 −0.07078 −0.07637
5 2.4060 0.05882 0.05729 0.03971 0.04167 −0.13989 −0.14953 −0.06372 −0.07173
7 2.5582 0.05928 0.05729 0.03925 0.04167 −0.16372 −0.17963 −0.07837 −0.09168
10 3.0055 0.05992 0.05729 0.03866 0.04167 −0.25504 −0.29606 −0.13981 −0.17466
14 3.1224 0.06075 0.05729 0.03799 0.04167 −0.27241 −0.33449 −0.15007 −0.20346
20 3.4776 0.06205 0.05729 0.03715 0.04167 −0.34584 −0.47560 −0.19983 −0.31307
26 3.7377 0.06350 0.05729 0.03643 0.04167 −0.39010 −0.60553 −0.22868 −0.41778
32 4.0742 0.06519 0.05729 0.03580 0.04167 −0.44758 −0.81287 −0.26846 −0.58979
40 4.2694 0.06795 0.05729 0.03505 0.04167 −0.44082 −0.95617 −0.25970 −0.71121

0 10 20 30 40

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0 10 20 30 40

0.00
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0.12

0.14

pnt, all-order

pnt, Zα
fns, all-order

fns, Zα

E
re

c

(6
+

)

Z

2p
1/2 

pnt, all-order

pnt, Zα
fns, all-order

fns, Zα

Z

2p
3/2 

FIG. 1. Nuclear-recoil point-nucleus and fns corrections E
(6+)
rec for the 2p1/2 and 2p3/2 states of muonic atoms, as a function of

the nuclear charge number Z. Units are m2
µ/mN (Zα)6. The nonsmoothness of the fns plots is due to the irregular dependence

of the nuclear charge radius on Z.

muonic hydrogen, muonic helium ion, positronium, muo-
nium, etc. In the future, even more exotic two-body
atomic systems may become accessible for experimen-
tal studies, such as protonium and other hydrogen-like
hadronic atoms [32]. Comparisons of theoretical predic-
tions of these systems in highly rotational states with ac-
curate spectroscopic measurements would serve as tests
of yet unexplored region of long-range interactions be-
tween hadronic particles.

The current theoretical predictions of energies of the

l > 0 levels of two-body systems can be improved further
by a calculation of the α7 correction, which is presently
known in the nonrecoil limit only [33], and by inclusion
of the electron vacuum polarization in a nonperturbative
manner as was done for muonic atoms [25].

ACKNOWLEDGMENTS

We are grateful to Jacek Zatorski for interesting dis-
cussions and comments.

[1] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor,
Rev. Mod. Phys. 93, 025010 (2021).

[2] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben,
J. a. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L.



13

M. P. Fernandes et al., Nature (London) 466, 213 (2010).
[3] K. Schuhmann, L. M. P. Fernandes, F. Nez, M. A.

Ahmed, F. D. Amaro, P. Amaro, F. Biraben, T.-L. Chen,
D. S. Covita, A. J. Dax et al. (CREMA, arXiv:2305.11679
[physics.atom-ph] ) (2023).

[4] G. S. Adkins, D. B. Cassidy, and J. Pérez-Ŕıos, Physics
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[10] J. Zatorski, V. Patkóš, and K. Pachucki, Phys. Rev. A

106, 042804 (2022).
[11] K. Pachucki, Phys. Rev. A 71, 012503 (2005).
[12] J. Zatorski and K. Pachucki, Phys. Rev. A 82, 052520

(2010).
[13] J. Zatorski, Phys. Rev. A 78, 032103 (2008).
[14] G. S. Adkins, B. Akers, M. F. Alam, L. M. Tram, X.

Zhang, Proc. Sci. 353, 004 (2019).
[15] A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys.

Rev. A 59, 4316 91999).
[16] I. B. Khriplovich, A. I. Milstein, and A. S. Yelkhovsky,

Phys. Rev. Lett. 71, 4323 (1993).
[17] E. A. Golosov, I. B. Khriplovich, A. I. Milstein and A.

S. Yelkhovsky, Zh. Eksp. Teor. Fiz. 107, 393 (1995) [Sov.
Phys. JETP 80, 208 (1995)].

[18] M. Hori, H. Aghai-Khozani, A. Sótér, A. Dax, D. Barna,
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Appendix A: Matrix elements of various operators
for P -states

Here we list results for matrix elements of various op-
erators needed for our evaluation of E(6) for nP -states,〈

1

r

〉
=

µZα

n2
, (A1)〈

1

r2

〉
=

2 (µZα)2

3n3
, (A2)〈

1

r3

〉
=

(µZα)3

3n3
, (A3)〈

1

r4

〉
= 2 (µZα)4

(
1

5n3
− 2

15n5

)
, (A4)

〈
p⃗ 4π δ3(r) p⃗

〉
=

4 (µZα)5

3

(
1

n3
− 1

n5

)
, (A5)〈

p⃗× 4π δ3(r) p⃗
〉
= i

4 (µZα)5

3

(
1

n3
− 1

n5

)
L⃗ , (A6)〈(

pi4π δ3(r)pj
)(2)〉

=− 4 (µZα)5

3

(
1

n3
− 1

n5

)(
LiLj

)(2)
.

(A7)

Appendix B: Positronium P -levels at the α6 order

The complete α6 correction to the energy levels of the nP -states of positronium is given by

E(6)
pos(n

1P1) = mα6

(
− 69

512n6
+

23

120n5
− 1

12n4
+

163

4320n3

)
, (B1)

E(6)
pos(n

3P0) = mα6

(
− 69

512n6
+

461

960n5
− 1

3n4
− 1531

8640n3
− a21 + 6 a2

24π2 n3

)
, (B2)

E(6)
pos(n

3P1) = mα6

(
− 69

512n6
+

77

320n5
− 25

192n4
+

553

17 280n3
+

a21 − 2 a2
48π2 n3

)
, (B3)
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E(6)
pos(n

3P2) = mα6

(
− 69

512n6
+

559

4800n5
− 169

4800n4
+

17 977

432 000n3
+

−a21 + 18 a2
240π2 n3

)
. (B4)

where a1 and a2 are the expansion coefficients of the electron magnetic-moment anomaly a,

a =
α

π
a1 +

(
α

π

)2

a2 + . . . , (B5)

a1 =
1

2
, (B6)

a2 =
3

4
ζ(3)− π2

2
ln 2 +

π2

12
+

197

144
. (B7)

The presented formulas agree with [13, Eq. (204)] for all states except the n3P0 one. Note that in this section we

switched to the literature definition of E
(6)
pos and included contributions from the expansion of g-factors in α, originating

from E(4) in Eq. (7).


