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Systematic atomic structure datasets for machine learning potentials:
Application to defects in magnesium
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We present a physically motivated strategy for the construction of training sets for transferable machine
learning interatomic potentials. It is based on a systematic exploration of all possible space groups in random
crystal structures, together with deformations of cell shape, size, and atomic positions. The resulting potentials
turn out to be unbiased and generically applicable to studies of bulk defects without including any defect
structures in the training set or employing any additional active learning. Using this approach we construct
transferable potentials for pure magnesium that reproduce the properties of hexagonal closed packed (hcp) and
body centered cubic (bcc) polymorphs very well. In the process we investigate how different types of training
structures impact the properties and the predictive power of the resulting potential.
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I. INTRODUCTION

A key concept in materials science to design materials with
tailored properties is defect engineering. In order to success-
fully employ this concept, one needs a detailed understanding
of the relationship between crystal defects on the atomistic
scale and their influence on macroscopic materials properties.
Until now this understanding has been provided to a large
extent by density functional theory (DFT) calculations espe-
cially when investigating, e. g., the thermodynamic stability
of materials phases and simple, isolated defects such as va-
cancies [1], dislocation arrays [2], or high-symmetry planar
defects [3,4]. However, successful defect engineering must
include most of the macroscopic and microscopic degrees of
freedom of the defects—or risk missing potential candidate
states. Especially in extended defects such as grain boundaries
this defect phase space is very large, making it unfeasible to
scan with DFT due to its high computational cost and system
size restrictions. Together with recent interest in defect phase
diagrams [5,6] this motivates us to develop a machine learning
potential specifically aimed at a transferable description of
defects. To this end, we will apply the moment tensor po-
tential (MTP) methodology [7], and rigorously examine the
impact of training data on the quality and performance of the
resulting potentials. The approach and the detailed analysis
and discussion are however general and can be applied to any
machine learning (ML) potential methodology.
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Classical potentials are often trained on a set of properties
that they ought to reproduce, e.g., relative phase stabilities,
surface energies, and elastic properties. The more data hungry
machine learning potentials instead use large sets of refer-
ence structure with energies, forces, and potentially stresses
calculated with quantum mechanical models like DFT. These
reference structures are generally constructed starting from
equilibrium structures of interest, which are then perturbed in
various ways to sample the energy landscape. This approach
can work very well, but can lead to failure of the potential
when relevant structures are missing. Another approach re-
cently presented is to combine active learning and some form
for structure generation (randomly, by molecular dynamics or
Monte Carlo simulations) [8—11]. By starting from random
environments, bias is removed from the training data and then
a given active learning algorithm is in control of selecting
structures to add to the training set. For example Smith et al.
[9] demonstrates that this works very well for aluminum and
it allowed them to obtain a robust potential that predicted
the correct relative phase stabilities in a wide temperature
and pressure window without any human guidance. Of these
approaches Bernstein ef al. [10] appears to be most closely
related to our approach. The major difference is the start-
ing point of the generation procedure. Where they start with
completely random distribution of atoms and enforce only
a few symmetry operations, we will systematically include
most space groups. Additionally they use an on the fly fitted
potential in an iterative scheme to minimize cells whereas we
will rely on DFT.

There are also parallels to the paper of Podryabinkin et al.
[11]. The authors’ objective there is to predict the stable
crystal structures of elements and employ active learning to
provide candidate structures that can be investigated with
DFT in a reasonable time. For the explicit purpose of pre-
dicting crystal structures they show that this approach works
very well.

A challenge in constructing potentials that accurately de-
scribe defects is that atoms at or near the defect can have
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structures that are far away from any low-energy bulk struc-
tures. These atoms represent spatially highly localized regions
of high energy that are not captured when including only
low-energy structures. We will discuss in this paper how to
construct and utilize structures that are not energetically near
the equilibrium structure. An approach in that direction is the
recent paper from M. Karabin ef al. [12] and Montes de Oca
Zapiain et al. [13]. Their paper aims to sample the descriptor
space of the targeted potential model as widely and unbiased
as possible. For this they define a descriptor entropy that
favors structures with different local environments in the same
cell and then maximize or minimize this entropy in a simple
annealing procedure. They show that this yields significantly
wider coverage of descriptor space than sets drawn from
high temperature MD with a simple size exclusion potential
or traditionally constructed training sets, but still includes
crystallographic relevant bulk phases and phases. Since this
scheme makes no reference to structure prototypes or crystal-
lography it is a completely unbiased procedure in this sense.
Instead it relies on the quality of the underlying descriptor set.
This means that changing the descriptor set will produce a
different training set. A potential drawback of their method
is also the large number of structures that are generated: up
to 200 000 structures with 32—40 atoms each. In contrast to
this we aim here to provide a method for a smaller, descrip-
tor, or potential agnostic training set, generated purely based
on the constraints placed on atomic positions by the space
group symmetries that still accurately captures the necessary
structures.

We structure the paper as follows: First the construction of
the data set in Sec. IT A, which is a key concept in this study.
Then a brief review of moment tensor potentials in Sec. IID.
In Secs. IIE and III A we discuss choosing cutoffs and the
fitting of the potentials. Afterwards we verify the potentials
on defects and analyze in detail the influence of training data
in Secs. IIIC and IIIE. This analysis demonstrates the per-
formance of our main idea. We close with a brief comparison
with active learning in Sec. IIIF before we summarize our
findings in Sec. I'V.

II. METHODS
A. Training set construction

We construct several different training subsets, each of
which explores slightly different regions of phase space that
have clear physical interpretation. We generate these sets in
an iterative, multistage process. The foundational dataset for
this process, which feeds into all further subsets, consists of
random (periodic) crystal structures obtained from RANDSPG
[14]. We generate these structures with one to ten magne-
sium atoms per cell, asking for all possible space groups,
1-230, and allowing volumes +10% around the equilibrium
atomic volume of hcp Mg of Qo = 22.87 A3 /atom, obtained
from DFT at T = 0 K. We label this the RANDSPG set. Note
that this approach requires as only input parameters the vol-
ume range and number of atoms considered in super cells
for training. An automation and extension to other materials
is therefore straightforward. Applying this approach, not all
space groups are present, because some symmetries are not
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FIG. 1. Frequency of crystal systems in the RANDSPG set
(see text).

consistent with the allowed volume range or lead to structures
with very inhomogeneous particle distribution. As a check
the space groups have been determined with SPGLIB [15].
Figure 1 shows the frequency of each space group and crystal
system in our initial data set. While not all systems are equally
present, there is a sizable number of structures available for
each.

From this starting point, we then successively minimized
the volume, cell shape, and the internal coordinates indepen-
dently using VASP [16,17]. These calculations are done at
low convergence parameters, since they only serve to bring
the structures near the equilibrium structures and the energies
from these runs do not enter the fitting routines. We call these
sets VOLMIN, CELLMIN, and INTMIN, respectively.

Naturally the minimization generally leads to higher sym-
metry structures exploring a reduced phase space. In fact,
in the fully internally relaxed set some space groups are no
longer present. This reduces the inherent dimensionality of
the minimized training sets, but we have not attempted to
filter structures that relaxed into the same minima. It is also
noteworthy that volume minimization—particularly for the
structures with more atoms per unit cell—can lead to quasi
1D and 2D structures. This gives the potentials the opportunity
to see structures resembling surfaces and isolated atoms even
though in the construction setup we do not explicitly enforce
such structures [18].

As a final step in our process for creating training data,
the structures from INTMIN are disturbed by either a random
triaxial (TRIAX, up to 80%) strain, a combination of random
shear strains (SHEAR, up to 80%), or by random displace-
ments of atoms combined with a small random strain tensor
(RATTLE, 0.5 A mean displacement and up to 5% strain) [19].
For each structure in INTMIN these modifications are applied
five times, resulting in five times more structures for the re-
spective derived training sets, TRIAX, SHEAR and RATTLE than
in the INTMIN set.

Figure 2 gives a conceptual overview of this procedure.
During each step some structures resist DFT calculations due
to excessively close atoms or deformed cells, which we then
discard. Also shown in Fig. 2 are the number of structures (top
number) and atoms (i. e., atomic environments, bottom num-
ber) in each structure set. We will examine the performance
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FIG. 2. Schematic procedure to generate the training sets. First
number gives the number of structures in each set, the second the
total number of atoms.

of potentials fitted to each of these sets compared to potentials
fitted to the set of all structures, EVERYTHING.

Training sets for multi component potentials

The procedure can be extended to binary or ternary com-
pounds by using RANDSPG [14] to generate structures with
various concentrations. This would naturally increase the
number of structures substantially. It is not clear at this point
how dense in concentration space such training sets would
need to be or how well potentials would be able to inter-
polate or extrapolate between concentrations. In this case it
might be necessary to combine the data generation procedure
shown here with data selection strategies from active learning
schemes. However, for now we focus on unaries and leave the
exploration of alloys to future work.

B. Test Data

In general in machine learning it is custom to reserve
some percentage of the reference data in a hold-out set on
which to test the final model. We explicitly decide against
doing this and will use the full data set for fitting and report
only the errors on this (training errors). The reason is that to
test the potentials we construct completely fresh data closer
to the application domain of the potential, such as defect
structures, phonon, and elastically strained calculations. The
results of this testing are discussed in Sec. III C. We chose
to do this because the meaningfulness of test errors depends
to a large extent on the sampling of reference structures. If
the reference structures are not drawn evenly from the full
space that the potential will be applied on, the train-test errors
can give the impression that the potential is fitted well, even
though there are gaps in the potential, simply because the rel-
evant structures never entered the reference structure set. This
is discussed in more detail, e. g., in a review from J. Behler
[[8], Fig. 10 and the discussion Sec. 4]. Since we now rely
on these separate completely out-of-fold structures for testing
we opt to include the full reference data set in the fitting to
provide more learning opportunities to the potential.

C. DFT data generation

All training data is generated using VASP [16,17] using
the projector augmented wave (PAW) method [20,21]
and the PBE [22] functional with the standard s-valent

pseudopotential from the VASP [16,17] distribution.
I"-centered k& meshes with 27x27x27 k points and plane
wave energy cutoff of 550 eV are used. While the structures
vary in volume, we keep the k points constant to avoid
discontinuities in the potential energy surface. The chosen
k-point setting corresponds to a k-mesh spacing of 0.06 A~
[23]. All calculations used the Methfessel-Paxton occupation
smearing scheme of order 1 with a smearing parameter of
0.2 eV [24]. By convergence testing we find the energies to be
converged to 0.6 meV and the forces to 7x10~° eV /A. These
values represent the mean error of the training calculations
with respect to a sample of 50 structures of each training set
(350 in total) calculated at a 37x37x37 k-point mesh and a
plane wave cutoff of 687.5 eV. DFT data for the verification
calculations is generated with the same parameters except for
large grain boundary and surface structures where we use a
k-mesh spacing of 0.05 A=,

A small number of calculations fail during the mini-
mizations and the final training set generation. They are
automatically discarded and do not enter subsequent steps.
Figure 2 shows that their total number is small, however.

D. Moment tensor potentials

Moment tensor potentials (MTP) are machine learning
interatomic potentials originally introduced by A. Shapeev
[25]. We will briefly review this formalism here, but leave the
details to to the original authors [7].

The total energy EM™ of any atomic structure is con-
structed from contributions of neighbors around each atom,
which are expanded in linear basis functions

N N
EMP =3 V) =) ) &uBa(ny), (M)

where n; is the atomic environment around atom i, N is the to-
tal number atoms, B,, are the descriptor basis functions, and &,
the linear expansion coefficients, which are determined during
the fitting procedure, and « runs over all basis functions [26].
The descriptor basis functions are defined as contractions of
the moment tensors M, , defined in the single-component
case as
v times
M) =Y fullrir @ - @ ©))
Jen;

where r;; is the vector connecting the i th and j th atoms
and ® is the outer product on vectors and tensors. The radial
functions f, are expanded in an orthogonal polynomial basis
and contain an outer cutoff R., such that their derivatives
go smoothly to zero. This encodes the locality assumption
generally made in interatomic potentials. The polynomial ex-
pansion coefficients of the radial functions are also additional
fitting parameters. The authors then define the level of an
MTP as

levM,, =2+4u+v . 3)

The level of the basis functions B, are then the sum of the
levels of the tensors out of which they are contracted. Finally
the potentials are constructed by including all basis functions
below a given level I,x. This implicitly defines up to what
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FIG. 3. Histogram of neighbor distances in RANDSPG and
INTMIN training sets. Black lines are the considered cutoffs; red-
dashed lines the shells of hcp Mg at equilibrium volume of €2,.

values of y and v the moment tensors M, ,, are included in the
final potential. The number of fitting parameters in a potential
goes exponentially with its level.

E. Cutoff radius determination

MTPs are local potentials, i. e., they separate the total
energy of a structure into individual contributions of each
atom or, more specifically, to spatially localized environments
that are atom centered. This environment is defined by a
lower and upper cutoff radius R, such that all the individual
regions of space considered are shell shaped. The first task
in fitting potentials then is to determine appropriate cutoffs.
To this end, we first calculate nearest neighbor vectors for all
structures in the training sets. This task requires a detailed
and explicit analysis. As the lower cutoff we pick 1.8 A
for all potentials, which is the pseudopotential cutoff used
in our VASP [16,17] calculations. We select a set of upper
cutoffs, which we thoroughly investigate to determine their
impact on the potential’s accuracy. Figure 3 shows the distri-
bution of neighbor distances in the RANDSPG and INTMIN
training sets. Also drawn are the hcp Mg shell distances
at Qq (dashed-red lines) and the three considered cutoffs
(black-solid lines). Between 2 A to 3 A only very few struc-
tures are present due to the constraints we have put on the
structure generation. While the nearest-neighbor distances of
the RANDSPG structures are mostly evenly distributed, the
INTMIN distributions shows distinct peaks. This is expected
after energy minimization and gives important clues what
cutoffs are physically meaningful. The peaks tend to align
with the hcp shell distances (red-dashed lines), but additional
peaks from other structures are also present. It can be seen that
R. =52 A includes the first three shells, R.=6.5 A the first
six, and 8.2 A the first ten shells. We will pick these cutoffs
for the rest of the paper. The choice of the cutoff has important
consequences on the quality of the potentials as will be seen
in Sec. II C 1 and it is therefore important to explicitly check
what cutoffs may reasonably be considered without depriving
the model of physically relevant information. Finally the fact
that RANDSPG has a fairly smeared out distribution is also
important as it gives the potentials critical information on
out-of-equilibrium configurations.

F. Fitting procedure

We fit MTP models for each of the data sets at different
model complexities, choosing levels from 8 to 24 with the
MLIP [7] program, which performs energy, force, and stress
matching in a least-squares optimization. All potentials are
fitted with respect to energies, forces, and stresses from DFT,
with weights of 1, 0.01, and 0.001 respectively.

III. RESULTS AND DISCUSSION

A. Fitting results

We obtain energy, force, and stress root mean square errors
(RMSE) values after each fit. Energy RMSE are plotted in
Fig. 4(a) as a function of potential level for the three cut-
offs. They follow a systematic improvement, but interestingly
the different structure sets follow a different convergence.
Since the training sets contain progressively minimized struc-
tures their structural complexity decreases and they appear
to become easier to capture for the potentials. The trend
only reverses with the strained and displaced sets, which
add complexity again. The lowest RMSE at the highest level
also follow this trend, from which we conclude that poten-
tials fitted to larger, more diverse, structure sets naturally
have a higher interpolation error than potentials with smaller
training sets.

In Fig. 4(b) the same energy RMSE is plotted as a function
of cutoff for three selected levels. It can be seen that the levels
below 24 quickly saturate with respect to the cutoff, i. e., to
the low level descriptors higher cutoffs do not necessarily in-
clude more information. Since the level characterizes both the
body-order and the number of radial basis functions included
in the potential, it is not clear which of them is the limiting
factor [27]. Thus, to optimize the numerical performance of
a potential one should carefully check whether for the given
descriptor level the cutoff is appropriately chosen [28].

B. Error-Cost tradeoff

Once sets of potentials are obtained, practitioners must
pick which to use for certain applications. One way of making
that choice is to look at the trade-off between computational
cost and their accuracy. Here we use the training RMSE
as measure for the accuracy of the potentials fit to the
EVERYTHING set. To provide a measure for the computational
cost we run NVT-MD on 6x6x6 primitive hcp Mg unit cells
for 10000 steps, or 10ps, at SOK. Additionally we calcu-
lated the RMSE for four classical potentials [29-32] on the
EVERYTHING set and their runtime in the same MD setup.
Figure 5 shows the Pareto front for these potentials where we
compare the runtime to the fitting error. Drawn as horizontal
lines are the aforementioned DFT convergence errors; once
the mean error (0.6 meV /atom, solid line) and the maximum
error (6.4 meV /atom, dashed line). Generally the MTPs are
1-2 orders of magnitude more accurate, while being 1-3
orders slower than the classical potentials. None of the classi-
cal potential achieve lower errors than 100 meV. At low cost
and low accuracy, the Pareto front follows the potential fit with
a cutoff R. = 5.2 A before switching over to R, = 6.5A at
around 10 meV/atom error. While the R, = 8.2 A potential
is behind the Pareto front (with the exception of the highest
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FIG. 4. Energy training RMSE of the potentials fitted to different training sets over potential level and cutoff. Subplots show potential
level and cutoff radii. Higher cutoffs clearly show improved convergence rates at high level: (a) Energy RMSE over the level of the potentials.

(b) Energy RMSE over the cutoff radius of the potentials.

level, where it is marginally more accurate than R, = 6.5 A),
we will later see in Secs. IIIC4 and IIC 1 that it is still
useful due to superior performance when treating defects and
different closed packed structures. The plain computational
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FIG. 5. Time per force call per atom versus root mean square
error of the energy on the EVERYTHING set. Colors symbolize the
cutoff radius. Each line is constructed by using potentials of in-
creasing level, from 8 to 24. The dotted line marks the Pareto front.
The horizontal-black lines indicate the mean (solid) and maximum
(dashed) errors in the DFT training set from convergence testing. The
classical potentials (ADP [31], EAM [29], MEAM1 [30], MEAM2
[32]) for comparison are shown with black triangles.

cost of each potential as a function of level and cutoff are
shown in Appendix A for all potentials fit to EVERYTHING.

C. Verification

As mentioned in the methods, we do not split the fitting
data into traditional train and test sets. Instead we perform
calculations of various quantities that we can compare to in-
dependent (i. e., not entering the fitting) DFT calculations. In
this section we will focus on results for the potentials fitted to
EVERYTHING unless otherwise noted, deferring the discussion
of the performance of the various data sets to Sec. IIIE. In
total more than 1000 additional structures have been calcu-
lated with DFT for the verification calculations below. These
structures are part of volumetric and uniaxial strain, phonon,
and defect calculations are explained in more detail below.

1. Strain calculations

An important part of verifying machine learning potentials
is checking that the stability of the bulk phases is correctly
predicted over the volume range of interest. To this end
we calculate the E-V curves of hcp-, fcc-, dhep-, and bece-
Mg. First we strain the reference structures hydrostatically
within £80% and +10% of the hcp equilibrium volume.
Figure 6 shows the RMSE on these ranges as a function of
potential level and cutoff. We compare here potentials fit-
ted to RANDSPG and EVERYTHING. Not shown is the error
of the RANDSPG set on the 80% range because this po-
tential clearly failed, as the error exceeds 1 eV/atom. The
EVERYTHING set achieves ~5 meV/atom in the 10% range
and <10 meV/atom in 80% range.
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FIG. 6. Energy RMSE of potentials fitted to RANDSPG and
EVERYTHING with R, = 8.2 A averaged over the volume ranges (10%
and 80% respectively) and hcp, fcc, dhep, and bee as a function of po-
tential level. While the simpler RANDSPG set achieves lower errors
on the narrower range, it completely fails at the larger range, where as
potentials trained on EVERYTHING still achieve less than 10 meV over
the wide range. The RMSE on the 80% volume range for potentials
fitted to RANDSPG is not shown as it exceeds 1 eV /atom indicating
clear failure of these potentials on larger volume ranges. Potentials
with R, = 5.2 A and R, = 6.5 A show the same qualitative behavior.

Figure 7 shows the energy of dhcp and fcc relative to the
predicted hcp energy for potentials of level 8, 16, and 24
with cutoff 5.2 A and 8.2 A, and training sets RANDSPG and
EVERYTHING. All potentials eventually converge close to the
DFT values, but note the pronounced failure of level 8 poten-
tials at the lower cutoff. Even more interestingly, for the larger
training set also the level 16 potential fails to distinguish the
three structures. At higher cutoffs all levels are able again to
differentiate the structures, though again the larger training set
has a harder time correctly describing all structures. The first
observation implies that interpolation errors become relevant.
Since the EVERYTHING set is much broader in phase space,
we interpret the failure of the level 16 potential as still having
too few basis functions to span the large configurations space
covered by EVERYTHING. We will return to this in the context
of active learning in Sec. III F. This additional interpolation
error for larger training sets comes at the advantage of a larger
applicability as can be seen referring back to Fig. 6. While
the smaller RANDSPG set outperforms EVERYTHING in the
smaller volume range, it is not at all usable on the larger range.

The bottom row in Fig. 7 shows the value of larger cutoffs,
even though Fig. 5 did not seem to indicate that earlier. Here
potentials with larger cutoff do no fail at differentiating the
close packed structures (although quantitative agreement is
achieved only at higher levels). The larger cutoff appears to
make lower basis functions more efficient at differentiating
closed packed structures. This also helps in the computational
efficiency in a round-about way, as e.g., a level 12 potential
with cutoff 8.2 A takes as much time per force call as a
level 20 potential with cutoff 5.2 A while being less prone
to overfitting, see Fig. 15. Thus, to construct potentials with
an optimal balance between computational efficiency and
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FIG. 7. Energy difference to HCP per atom vs atomic volume
for FCC and DHCP (columns); thick-gray lines are DFT reference
energies; figures in the top row correspond to potentials with R, =
5.2 A and in the bottom row R. =82 A. The potentials are fit to the
RANDSPG (solid) and EVERYTHING (dashed). While both sets and
cutoffs eventually converge to the DFT phase stabilities, low cutoffs
and low ranks clearly fail in differentiating close packed structures.

accuracy the two parameters—Ievels and cutoff—should be
simultaneously optimized.

Additionally we strained the prototype structures along
each of the six possible axes (three strain, three shear) also
within £60% and compared again DFT and MTP. For space
reasons we do not show the results here and defer to Sec. III E

2. Phonons and force constants

After checking static properties we now turn to dynamical
properties. We have calculated phonon spectra and band struc-
tures for hep and bece cells at the minimum energy volume,
as well as bee cells compressed to 12 A3/atom where it
is dynamically stable. All calculations were performed with
LammPps [33] and PHONOPY [15] using an interaction cutoff
of 10 A, which corresponds to a 4 x4 x4 supercell for hep and
a 5x5x5 supercell for bec.

Figure 8 shows the phonon band structure and density
of states calculated with DFT and three MTPs fitted on
EVERYTHING with cutoff 8.2 A at three levels: 8, 16, and 24.
The potentials fitted on EVERYTHING show very good agree-
ment with the DFT results. Our validation results also indicate
a significantly better description of bcc Mg, both in the
compressed high pressure state as well as at the equilibrium
volume, as compared to other recently reviewed Mg poten-
tials. The band structure and density of states for bcc Mg
are shown in Appendix F. Troncoso et al. [34] review this
topic and find MEAM potentials are the best so far to study
the dynamical behavior of bcc Mg, but also report that the
same potentials are deficient in their elastic properties [35].
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FIG. 8. Phonon band structure and density of states calculated with DFT (black line and dots) and three MTPs at levels 8, 16, and 24
(colored lines). The MTPs show very good agreement with DFT, increasing in accuracy with level.

Neural network potentials [36,37] reviewed in the same paper
are found to be better for this application, but still predict
wrong dynamical instabilities or predict them in the wrong
part of the band structure. Based on these findings the authors
concluded that these properties could be improved by specifi-
cally targeting bcc structures in the training set [34]. The fact
that our pot