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A B S T R A C T

Soil moisture is a key factor that influences the productivity and energy balance of ecosystems and biomes.
Global soil moisture measurements have coarse native resolutions of 36km and infrequent revisits of around
three days. However, these limitations are not present for many variables connected to soil moisture such
as land surface temperature and evapotranspiration. For this reason many previous studies have aimed to
discern the relationships between these higher resolution variables and soil moisture to produce downscaled
soil moisture products.
In this study, we test four ensemble machine learning models for this downscaling task. These models use
a dataset of over 1,000 sites across the US to predict soil moisture at sub-km scales. We find that all
models, particularly one with a very simple structure, can outperform Soil Moisture Active Passive (SMAP)
measurements on a cross-fold analysis of the 1,000+ sites. This model has an average ubRMSE of 0.058
vs SMAPs 0.065 and an average R of 0.638 vs SMAPs 0.562. Not all ensembles are beneficial, with some
architectures performing better with different training weights than with ensemble averaging. However, some
ensembles capture more of the land surface characteristics than ensemble members. Lastly, although general
improvements over SMAP are observed, there appears to be difficulty in consistently doing so in cropland
regions with high clay and low sand content.
1. Introduction

Soil water content (SWC) has a strong coupling with ecosystem
stress and production (Liu et al., 2020; Fu et al., 2022; Stocker et al.,
2019). SWC is most commonly measured in-situ by changes in electric
current passing through the soil. Although accurate, these measure-
ments require an investment of resources, must be calibrated for the
soil being measured, and are impractical for observing SWC across
regional areas (Bittelli, 2011). For larger scale SWC measurements, one
can estimate SWC by observing changes in radiation intensities from
absorption by water molecules in the soils surface. Field scale mea-
surements can be made via drones using ground penetrating radar (Wu
et al., 2019). But for truly global scale soil moisture mapping we need
to look for the aid of satellites.

The Soil Moisture Active Passive (SMAP) mission launched by NASA
in 2015 served to be the solution to global SWC measurements. This
satellite combines higher resolution active radar measurements with
lower resolution passive radiometer measurements (Entekhabi, 2014).
The combination of these two would yield native SWC measurements
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at 9 km per pixel and interpolated 1–3 km products for finer resolution.
However, after only three months in orbit, the power supply for the ac-
tive radar component failed leaving just the low resolution radiometer
sensor. The native resolution of the current radiometer sensor is 36 km
per pixel. This resolution can be increased using the Backus–Gilbert
optimal interpolation algorithm to 9 km per pixel with acceptable
accuracy (ONeill et al., 2019). This lack of resolution has lead to
multiple efforts to attempt a downscaling of the SMAP products to
provide SWC predictions on scales ranging from 100 m–3 km. A higher
resolution product is important as even at 1 km resolution, up to 80%
of SWC variability is lost (Vergopolan et al., 2022). At native satellite
resolutions, there is a complete loss of SWC variability (Vergopolan
et al., 2022).

Spatial variability of SWC influences a multitude of factors in-
cluding evapotranspiration, surface temperature, cloud formation, and
convective rainfall to name a few of many. This loss in high resolu-
tion variability and information makes remotely sensed SWC products
limiting as inputs for regional physical models. For this reason, an
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increase in understanding for SWC variability and a higher resolution
SWC data product would have a wide range of applications and benefits
in Earth science modeling (Naz et al., 2019; Koné et al., 2022a,b).
Efforts to increase resolution or ‘‘downscale’’ soil moisture measure-
ments, generally, are either empirically based or derived from machine
learning.

The most common empirical method is the DISaggregation based on
a Physical and Theoretical Scale Change (DisPATCH) algorithm. This
algorithm is a theoretical conversion of soil temperature fields into soil
moisture fields. SWC is predicted through the use of a semi-empirical
soil evaporative efficiency (SEE) model and the soils average moisture
content. DisPATCH performs well on bare soils, but struggles when the
soils are occluded either by vegetation or clouds. It also demonstrates
inconsistencies in more humid regions (Colliander et al., 2017; Ojha
et al., 2021; Zheng et al., 2021). A strong advantage however, is that
DisPATCH’s resolution is only limited by temperature field resolution.
This provides an opportunity to use higher resolution derived LST
products for even higher resolution SWC predictions (Sánchez et al.,
2020; Ojha et al., 2019). But higher resolution LST data would not
improve the models performance against dense vegetation and is still
limited by cloud cover.

The machine learning field has also seen a large number of ap-
proaches for this downscaling task (Abbaszadeh et al., 2019; Xu et al.,
2022; Zhao et al., 2022; Montzka et al., 2018). However, a common
occurrence are complex model architectures over particularly limited
study areas (Abowarda et al., 2021; Xu et al., 2021; Cai et al., 2022).
Complex architectures and workflows serve to further reveal the scope
and capabilities of machine learning methods in this task. But their
complexities also decrease their reproducibility as they require an
increased effort to incorporate. Additionally, many of these complex
architectures have only been validated on smaller more homogeneous
regions. Therefore, an ideal scenario is an easy to reproduce archi-
tecture with a wider region of validation. The works of Abbaszadeh
et al. 2018 and more recently Xu et al. 2022 serve as great inspirations
to this concept. They employed relatively simple models over larger
regions of interest. Abbaszadeh’s approach demonstrated the advantage
of an ensemble of random forest predictions whereas Xu’s approach
demonstrated the capabilities of a simple neural network architecture.

Using the work of Abbaszadeh and Xu as inspiration, this study
will explore the performance of four different model architectures
for downscaling coarse spatial resolution soil moisture data to sub-
km resolutions. The four models include: two probabilistic estimators
consisting of simple neural networks, a wide-deep learning (WDL)
architecture modeled after the work of Xu et al. 2022, and a random
forest (RF) model. These models will be trained on a large dataset
comprised of in-situ soil moisture measurements and ancillary remote
sensing predictors across the continental US with sub-km resolutions.
The models will then be used to make spatial and temporal predictions
of soil moisture. Additionally, analysis will be conducted to conclude
the robustness of these models and generalizability. Lastly, we will look
at the viability of using ensembles. This will assess if the models derive
any benefit from ensemble averaging, or if single ensemble members
can predict adequately on their own. The overarching goal is to demon-
strate the feasibility of using ensembles of simple machine learning
architectures to downscale spatially coarse soil moisture products to
sub-km resolutions across a heterogeneous landscape.

2. Data

Machine learning models like decision trees and non-linear regres-
sion can predict outcomes given certain input parameters. However,
they require large amounts of data to identify meaningful trends and
patterns. To ensure our models can make soil moisture predictions
across a large spatial area (Fig. 1), we first need to accumulate a
sizable dataset with relevant input variables for analysis. The first step
is feature selection.
2 
Fig. 1. Spatial distribution of CONUS dataset.

2.0.1. Feature selection
A large dataset of variables used in previous studies and with known

or potential correlations with SWC was compiled. Variables were com-
pared to in-situ SWC measurements. Those with Pearson, Kendall or
Spearman correlations below a certain threshold were marked as po-
tential candidates for exclusion from the final dataset. Additionally, a
single large RF model with 54 million nodes was fit to this dataset to
predict SWC. Inputs to this large RF model with a variable importance
less than 25% of the most important variable (SMAP) were marked for
potential exclusion from the final dataset. Variables who received two
or more marks from the four tests were removed from the dataset.

2.0.2. Feature importance
The final dataset consisted of the following variables: SMAP, NDVI,

LST, Precipitation, Sand and Clay content, pH, Evapotranspiration, and
Topography/Elevation.

This dataset was then iteratively trained over while excluding one
variable. The magnitude of drop in performance for each session was
then used to assign a rank of importance for that variable. These
variables ranked by importance are as follows:

𝑆 𝑀 𝐴𝑃 > 𝐿𝑆 𝑇 > 𝑆 𝑎𝑛𝑑 > 𝐸 𝑇 > 𝑃 𝑟𝑒𝑐 𝑖𝑝 > 𝑇 𝑜𝑝𝑜𝑔 𝑟𝑎𝑝ℎ𝑦 >
𝐶 𝑙 𝑎𝑦 > 𝑁 𝐷 𝑉 𝐼 > 𝑝𝐻

2.1. Datasets

Acquired data extends over the entire continental United States
(CONUS) within a temporal period from January 1st, 2017 through
December 31st, 2021. This period ensured that soil moisture readings
would include seasonal and, potentially, yearly variability. A map of
coverage can be seen in Fig. 1.

Locations are categorized by soil texture class. For each class, 80%
of sites and all samples are allocated to the training set, while the
remaining 20% of sites and samples are designated for the validation
set. This ensures that models are learning generalizable trends that
translate to new locations. In-situ measurement’s are aggregated to
daily readings and are paired with daily aggregates of covariate inputs.
The final dataset consists of 657,935 samples from 1054 stations, with
206 stations included in the validation set.

For additional validation, two datasets from a network of soil mois-
ture stations used to calibrate SMAP will be utilized to evaluate per-
formance. Details on these datasets are provided in the supplementary
document.
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2.2. Data sources

2.2.1. Soil moisture active passive (SMAP) satellite product
Remotely sensed soil moisture readings are provided by NASAs

SMAP satellite mission. The SMAP satellite provides passive radiometer
measurements which permits inference of moisture content in the top
 cm of soil. Satellite readings have global coverage with a return
eriod between 2–3 days (Entekhabi, 2014). SMAP data is offered at

varying levels of post-processing. Two levels of interest are L3 and L4.
L3 consists of preprocessed measurements that are gridded and mapped
spatiotemporally across the globe. L4 data is a gapfilled product derived
from L3. The L4 product offers much greater spatio-temporal coverage
and would offer greater data availability. However, training on the L3
product yielded better metrics and so the L3 product was selected.

Observations from L3 passes occur at either AM or PM timestamps.
To improve SMAP L3’s temporal coverage, both AM and PM readings
are treated as one daily reading and both are averaged if a location
receives both in the same day. Because in-situ data will be aggregated
into daily readings, SWC measurements with finer than daily resolution
are not considered.

2.2.2. Moderate resolution imaging spectroradiometer (MODIS) data
The MODIS mission provides daily data with sun-synchronous or-

its, capturing spectral reflectance across various wavelengths to an-
lyze Earth’s surface. Land Surface Temperature (LST), Evapotranspi-
ation (ET), and the Normalized Difference Vegetation Index (NDVI)
re surface properties used in this study. For NDVI, the 500 m product
MOD13A1) is used for training and temporal predictions, while the
50 m product (MOD13Q1) is used for spatial predictions. For LST,
he 8-day product (MOD11A2) is utilized during training to minimize
loud interference, and the daily LST product (MOD21A1) is used
or spatial prediction. ET inputs come from the 8-day ET product
MOD16A1) derived from a modified Penman–Montieth equation. This
as a spatial resolution of 500 m. For land cover classification, the
CD12Q1 product is employed with a 1-year temporal and 500 m

patial resolution.

2.2.3. CHIRPS 2.0 Precipitation
Precipitation data was retrieved from the Climate Hazards Center at

anta Barbara (Funk et al., 2015). Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS) is a combination between models
of terrain-induced precipitation enhancement with interpolated station
data and satellite based precipitation estimates. This data provides
daily global precipitation coverage estimates at 0.05◦ spatial resolution
(∼5.5 km).

2.2.4. Soil texture and soilgrids
The International Soil Reference and Information Centre (ISRIC)

has produced a global harmonized soil properties database called Soil-
Grids (Hengl et al., 2017). Although higher fidelity datasets are avail-
ble for specific regions of interest from local entities, the globally
onsistent nature of the SoilGrids data implies wider implementation

of methods using it. A 1 km resolution version of SoilGrids was used
as the coarser resolution will be less sensitive to interpolation artifacts.
The Sand, Clay, pH, and USDA soil classification data products were
used for this study.

2.2.5. Topography
The Multi-Error-Removed Improved-Terrain (MERIT) Digital Eleva-

ion Model (DEM) topography product was used for this study (Yamazak
t al., 2017). This product has a spatial resolution of ∼90 m.
 t

3 
2.2.6. In-situ soil moisture measurements
Ground truth data for training were obtained from in-situ SWC mea-

surements from two networks at sites distributed throughout CONUS.
he International Soil Moisture Network (ISMN) is an international

cooperation to provide and maintain a global database of in-situ soil
oisture measurements (Dorigo et al., 2011). Ameriflux is a network of

flux towers spread across North America recording various atmospheric
and meteorological data and fluxes (Boden et al., 2013). Some sites are
equipped with SWC sensors. Data for sites from both networks located
within the study area and active during the study period were used.
ISMN data comes with a quality flag, thus, only data with a ‘G’ [good]
quality flag were accepted.

Ameriflux data does not have quality flags for all measurements. In
order to maintain consistency with ISMN measurements, the Ameriflux
data was pruned to only contain readings with similar properties to
ISMN readings with a ‘G’ quality flag (Dorigo et al., 2013). Ameriflux
samples were dropped if either the LST reading was below 3 ◦C or
he SWC reading was above 0.7 m3/m3. This removed sites with
otentially frozen ground and saturated soils. Additionally, sites in
etland and chronically inundated regions were excluded from the
ataset.

SWC measurements are then aggregated to daily averages.

3. Models and methods

In order to increase SWC remote sensing resolution, a multivariate
dataset comprising variables with a known correlation to SWC was
assembled. These covariates are SMAP, LST, sand and clay content, pH,

DVI, ET, Topography, and Precipitation. These variables are spatially
onfined to locations with in-situ soil moisture measurements that are
sed as a target for the training of model architectures. The study
valuates four model architectures, referred to as RF, WDL, Dense,
nd Prob. The RF and WDL models replicate the architectures used by

Abbaszadeh et al. (2019) and Xu et al. (2022), respectively. The Dense
and Prob models are simpler, distance-based models: Dense is a feed-
orward network, while Prob includes a probabilistic layer. Both Dense
nd Prob models were designed to have a similar number of hidden
arameters. The architectures for all models are illustrated in Fig. 2.

3.1. Architectures

Random forest
The random forest (RF) ensemble borrows heavily from the work

of Abbaszadeh et al. (2019). This ensemble is comprised of ten unique
andom forest models composed of 100 trees (Fig. 2(a)). Each of the
en forests are trained on specific data belonging to one of the texture
lasses present in the training data as seen in the texture column of

Table 1. The different soil texture classes are not equally represented
in the training dataset. This imbalanced distribution of texture types
ntroduces a bias in the data that each model sees during training. This
eans each member on it’s own would produce inconsistent predictions

n samples outside of it’s texture class. However, averaging all of the
redictions of the forests for each sample has been shown to produce

robust predictions (Abbaszadeh et al., 2019).

Wide-deep model
The Wide-Deep Learning (WDL) architecture (Fig. 2(b)) is based on

the work of Cheng et al. (2016) which was applied to soil moisture
downscaling (Xu et al., 2022). The WDL structure consists of one
imple Dense Neural Network (DNN) with two hidden layers and a

Generalized Linear Model (GLM) which consists of no hidden layers.
his architecture aims to capture fine details with the DNN while
sing the GLM to guide the output and prevent overfitting. The WDL
odel in the referenced paper consists of two hidden layers with the

irst containing 128 units and the second containing 64. The WDL
rchitecture in this study also uses the same number of units. The WDL
odel is designed to incorporate categorical data into the DNN portion

f the model. This means this method will have additional information
o learn from in the form of categorical data as seen in Table 1.
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Fig. 2. Model architectures.
Table 1
Static categorical land variables and their classes.

Texture Land Cover Koeppen Climate Class

Loam Grasslands Dfb
Sandy loam Savannahs Cfa
Silt loam Woody savannahs BSk
Clay loam Croplands Dfc
Sandy clay loam Deciduous broad-leaf forests Csb
Silty clay loam Open Shrublands Dsb
Loamy sand Evergreen needle-leaf forests Csa
Sand Mixed forests Dfa
Clay Barren ET
N/A Cropland/Vegetation Mosaic Dsc

Urban and Built-up Bwk
Evergreen Broad-leaf forests Cfb
Closed shrublands Bwh

Bsh
Cfc
Am
Aw

Dense and prob
The Dense (Fig. 2(c)) and Prob (Fig. 2(d)) models follow a feed

forward (or dense) architecture. They consist of just two or three
hidden layers and a total parameter count of 164 and 150 parameters
for Dense and Prob respectively. The output layer for both networks is
an Independent Normal distribution layer. This layer outputs a single
distribution which allows us to leverage the Negative Log Likelihood
loss function. The Prob model utilizes a Bayesian layer (Dense Varia-
tional Layer) to learn a posterior distribution over the weights. This
layer is discussed further in the supplement.
4 
Fig. 3. Inputs comprise data seen by the models. The three variables not included as
inputs (LC, Koeppen, Texture) are only used as references to apply weights to samples
during training. This is an exception for the WDL model which also uses these variables
as inputs (Fig. 2(b)).

3.2. Training

In this study, static variables and landscape characteristics are
considered to either assist or hinder the models’ ability to predict SWC.
These static variables are not equally represented during training. For
example, there are a lot more field land cover types than forest. Models
might prioritize the most common class for a static variable, potentially
overlooking less common ones. To counter this, each ensemble member
is trained on samples weighted to emphasize imbalances in a specific
static variable. An overview of all variables can be seen in Fig. 3.
For the Dense, Prob, and WDL models, samples are weighted by the
following variables: texture, clay and sand content, pH, Köppen
climate class, land cover class, and no weights. This results in the
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Fig. 4. Prediction regime for the Dense, Prob, and WDL ensembles. Each ensemble member (cube) is trained on samples weighted against imbalances in a static variable. These
predictions are then averaged to provide an ensemble prediction.
training of seven ensemble members one for each of the previously
mentioned variables. Each ensemble member receives all nine input
variables (Inputs in Fig. 3) with samples weighted according to imbal-
ances in static variables (Green outline in Fig. 3). After training, the
predictions from each ensemble member are averaged to produce the
final prediction for the entire ensemble. See Fig. 4

The weighting scheme for each static variable follows a ‘‘balanced’’
procedure, namely:

𝑤𝑖 =
𝑛samples

𝑛classes × 𝑛i
, (1)

where 𝑤𝑖 is the weight for classi, 𝑛samples is the total number of samples,
𝑛classes is the total number of classes and 𝑛i is the number of samples
for classi.

The RF model does not use sample weights. Instead, balance is
accounted for by training a unique model for each soil texture domain
as done by Abbaszadeh et al. (2019). The characteristics learned for
each texture then contribute equally to the final prediction regardless
of that textures representation in the dataset. This RF approach does
not account for imbalances in other domains.

Temporal resolution
The models were trained on the 8-day composite LST product as

this permitted more samples due to less gaps from cloud cover. Each
sample uses padded or the last recorded LST composite temperature
as it’s daily value. This value could be, in the worst case scenario, out
of date by 7 days. This is also the case for the ET product which also
has an 8-day resolution. Although not ideal, it is assumed that SMAP
accounts for the temporal variation in SWC while the other variables
account for the spatial variation. Thus, these temporally coarse datasets
are acceptable as long as their ‘‘description’’ of the spatial variability is
consistent for that period. When comparing the daily vs. 8-day average,
this loss of temporal information seems to be offset by the increase in
samples to learn from. As seen in Fig. 5, training on the temporally
coarse LST product yielded better metrics on both datasets. This is
discussed further in the supplement document.

3.3. Predictions

For all models/ensembles, a prediction constitutes the average over
all ensemble members. This can be represented by the following equa-
tion:

𝑝(𝑆 𝑀𝑑 |𝐶) = 1
𝑀

𝑀
∑

𝑡=1
𝑝𝑡(𝑆 𝑀𝑑 |𝐶), (2)

where 𝑝(𝑆 𝑀𝑑 |𝐶) is the downscaled ensemble posterior. This is derived
from the average of the posterior predictions of M ensemble member
models over covariate vector C (A stacked vector of input variables).
5 
For spatial predictions, spatial data are resampled to the highest
resolution (90 m) using nearest neighbor interpolation. This prevents
interpolation error, but introduces some pixelation at higher levels of
zoom. Pixelation can be eliminated if one wishes to spatially inter-
polate the input data to higher resolutions. This study does not use
interpolated data so as to best display the underlying data structure.

Metrics
In order to assess the performance of the downscaling results, pre-

dictions will be evaluated on new spatial domains outside of the train-
ing dataset. The metrics used to assess the performance are ubRMSE, R,
and bias.

𝐵 𝑖𝑎𝑠 = 𝐸[(𝜃𝑝 − 𝜃𝑚)] , (3)

𝑅𝑀 𝑆 𝐸 =
√

𝐸[(𝜃𝑝 − 𝜃𝑚)2] , (4)

𝑢𝑏𝑅𝑀 𝑆 𝐸 =
√

𝑅𝑀 𝑆 𝐸2 − 𝑏𝑖𝑎𝑠2 , (5)

𝑅 =
∑𝑛

𝑖 (𝜃𝑝 − 𝜃𝑝)(𝜃𝑚 − 𝜃𝑚)
√

∑𝑛
𝑖 (𝜃𝑝 − 𝜃𝑝)2(𝜃𝑚 − 𝜃𝑚)2

, (6)

where 𝜃𝑝 is the predicted value, 𝜃𝑚 is the measured or in-situ SWC
value, and E represents the cumulative average.

Unbiased Root Mean Squared Error (ubRMSE) is the standard metric
to evaluate SWC products employed by NASA. The SMAP mission
considers an ubRMSE of less than 0.04 m3/m3 acceptable for a SWC
product (Entekhabi, 2014). An ideal value for ubRMSE is 0. The Pear-
sons correlation coefficient, 𝑅 ∈ [−1, 1], shows linearity between
changes in data points and is especially useful for time series analysis.
For this study, an ideal value for R is 1. Lastly, bias detects whether
a model overestimates (positive) or underestimates (negative) values
compared to ground truth. An ideal value for bias is 0.

4. Results

Predictions were made on three datasets. The first is the valida-
tion data set aside during training. The second and third comprise
smaller networks of soil moisture stations used to calibrate the SMAP
measurements.

4.1. CONUS dataset

Because downscaling is an attempt at spatial prediction and reason-
ing, it is important that evaluations are done on new spatial areas. For
this reason, all data in the validation dataset represents spatial domains
previously unseen during training. This comprised ∼20% of the sites
available for each texture class.
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Fig. 5. Predictions for a model trained on a time-padded dataset which contains much more samples (658,000) to learn from and a model trained on a temporally accurate dataset
(372,000). Both models predict on the validation sets for each dataset.
Fig. 6. Heatmaps and metrics for model predictions on the validation dataset as a whole.
Fig. 7. The average metric score for individual sites in the validation dataset.
As shown in Fig. 6, every model was able to generalize over the
entire dataset better than the raw SMAP values. The RF predictions are
strongly biased with SWC measurements being squashed towards 0.18
m3∕m3. Because of this, the lowest SWC prediction by the RF model on
the entire dataset is 0.10 m3∕m3. Although the RF output demonstrates
a failure to capture the true variance of the dataset, this is not an
unacceptable result as ubRMSE and R metrics are both invariant to
bias. Thus, we can still observe spatial and temporal trends even with
extreme biases. This does however diminish the value of RF predictions.

On a site to site level, all models surpass SMAP on every metric with
exception to RFs median bias. This is displayed in Fig. 7. The figure
also indicates that time series are less consistent across sites, with the
mean R value being notably lower than the median. The ubRMSE shows
a strong agreement between mean and median values demonstrating
6 
general consistency for prediction accuracy. Overall, this suggests all
models and their predictions should be as reliable or more so than
SMAP.

4.1.1. Spatial predictions
To compare the spatial predictions of each method, a 1◦ × 1◦ box is

cut out around in-situ locations on a summer day with the least cloud
cover. Of the resulting predictions, six examples that exhibit unique
characteristics are highlighted, two of which are displayed in Fig. 8.
Overall, the models tend to exhibit similar spatial patterns. In some
cases, as exhibited in the predictions around PBO: H2O_LITTLELOST,
the extra categorical inputs of the WDL model produce strong pixelation
which create unpleasant and impractical outputs. Additionally the RF
predictions show strong bias and little variability. Four additional
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Fig. 8. 1◦ × 1◦ spatial SWC predictions of models vs. SMAP. Black pixels represent pixels masked as ‘urban’ and purple pixels are water surfaces.
Fig. 9. (Left) Temporal predictions on a station in the validation dataset. (Right) Density plot of the R values for each station in the validation dataset.
examples can be found in the supplement document.

4.1.2. Temporal predictions
Temporal accuracy is measured with Pearson’s R. This value is

calculated for the timeseries of each site in the validation set is an ac-
ceptable guage of temporal accuracy. However, because R is invariant
to bias, it is good to plot timeseries to observe prediction behavior.
For this purpose, the ten sites with the most data were selected and a
time-series for 2018 is plotted. One of which is seen in Fig. 9. The figure
also displays the R scores for each station in the validation dataset. The
two models with the strongest average R are plotted (Dense and RF).
Both distributions have shifted to higher R values with mean, median,
and every quantile being higher than their SMAP counterpart. Although
RF’s performance is comparable to Dense’s, it exhibits a pronounced
bias on sites with low SWC and often deviates from in-situ markers as
shown in additional timeseries in the supplement. Overall, the time-
series predictions from all models are on par with or exceed those of
SMAP.

4.2. Oklahoma basin datasets

The Oklahoma Basin has two well-known neighboring regions of
densely covered soil moisture networks. Not only were these networks
used to calibrate SMAP (Entekhabi, 2014) but they are often used
to assess downscaling efforts over a more localized region. The two
regions, Fort Cobb and Washita River Basin, are comprised of 17 and 20
sites of retrievable data for the study period, respectively. All of these
sites are located on loam soil texture according to soil grids data. The
majority are classified as grasslands with a few cropland sites in Fort
Cobb.
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Table 2
The average metric score for individual sites in the Washita dataset.

Dense Prob WDL RF SMAP

R 0.752 0.661 0.681 0.704 0.745
ubRMSE 0.041 0.062 0.046 0.044 0.046
Bias 0.053 0.248 0.076 0.006 0.011

Washita
The first dataset is the Washita River basin network. In this region,

all models struggle on the Washita dataset as a whole as seen in Fig. 10.
All models have a significant positive bias on the lower SWC readings
with the Prob model having severely shifted predictions. The Prob
model also is the only model that fails to outperform SMAP’s ubRMSE
score. Only the Dense model outperforms SMAP on 2/3 metrics.

Performance metrics improve significantly on individual sites as
seen in Table 2. The Dense network performs well here with the best
R score and the only ubRMSE to reach the 0.04 m3/m3 realm of
acceptable values. The other models are unable to outperform SMAP
measurements on a site to site level which can be seen further in tables
of station data in the supplement document.

Fort Cobb
The second dataset consists of measurements from the Fort Cobb

network, which, due to its proximity to Washita, exhibits similar trends.
All models show poor overall fit to the dataset (Fig. 11) and a strong
positive bias at low SWC measurements. The RF model has the best bias
metric, likely because values are compressed towards a mean value.

On a site-by-site basis, model performance metrics improve
(Table 3). The Dense model approaches the 0.04 m3/m3 ubRMSE
threshold set by the SMAP mission with RF and WDL on the periphery
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Fig. 10. Heatmaps and metrics for model predictions on the Washita dataset as a whole.
Fig. 11. Heatmaps and metric scores for model predictions on the Fort Cobb dataset as a whole.
Fig. 12. (Left) Temporal predictions on a station in the Washita dataset. (Right) Density plot of the R values for each station in both OK datasets.
Table 3
The average metric score for individual sites in Fort Cobb dataset.

Dense Prob WDL RF SMAP

R 0.748 0.708 0.673 0.709 0.752
ubRMSE 0.042 0.049 0.044 0.043 0.046
Bias 0.017 0.112 0.062 0.010 −0.008

for this metric. The Prob model does not surpass SMAP on any metric,
with SMAP achieving the highest R score and best bias.

Because the Oklahoma Basin networks were used to calibrate the
SMAP mission, we expect SMAP to exhibit one of it’s strongest perfor-
mances here. If a model can reliably match or outperform SMAP here,
it would suggest confidence in it’s ability to perform elsewhere. The
Dense architecture is the only model to reliably match or exceed SMAP
on key metrics on these datasets.

Timeseries
Only the Dense model is able to demonstrate parity and match

SMAPs strong temporal accuracy. A timeseries of a station in the
Washita dataset is plotted in Fig. 12 along with the density plot of the R
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values of all of the stations in both Oklahoma datasets. Here we can see
that RF has a distribution shifted slightly to the left as it fails to match
SMAPs performance. The Dense distributions peak (Q2) is lower than
SMAPs (0.766 vs. 0.774) but the dense distribution has a higher mean
(0.750 vs. 0.748) and both Q1 and Q3 quartiles have slightly higher
values compared to SMAP.

4.3. Top performer

Performance evaluation is based on three criteria: dataset, sites,
and domains. The Dense model is the clear a top performer across
datasets (Figs. 6, 10, 11). For site-level comparison, in a head-to-head
competition, Dense outperforms all other models in every metric except
for bias against WDL, as shown in Fig. 13(a).

To determine if Dense remains the top performer by domain, we
assess each model’s performance on sites categorized by land sur-
face variables, as detailed in Table 1. Performance is normalized to
ensure that over- or underrepresented classes equally influence the
results. This normalization process is elaborated upon in subsequent
sections. After normalization for class type and abundance, Fig. 13(b)
reveals that Dense continues to be the most consistent performer for
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Table 4
The deviations from mean values for static variables at the site level.
site Sand Clay pH Elev Koep LC

SCAN:Ku-nesa −2.02 1.52 −0.00 −1.08 Cfa Savannahs
USCRN:Manhattan-6-SSW −1.88 1.52 0.58 −1.05 Cfa Grasslands
FLUXNET-AMERIFLUX:BouldinIslandAlfalfa −1.60 3.63 −0.12 −1.38 Csa Croplands
FLUXNET-AMERIFLUX:BouldinIslandcorn −1.52 3.14 −0.12 −1.39 Csa Croplands
PBO_H2O:MOONEYCYN −0.82 2.01 1.40 −0.98 Csb Croplands
SCAN:ConradAgRc −1.10 2.33 1.17 −0.31 BSk Croplands
SCAN:ElsberryPMC −2.09 0.39 0.11 −1.24 Cfa Croplands
SCAN:Mayday −1.38 2.17 −0.35 −1.35 Cfa Croplands
SCAN:Moccasin −0.82 1.84 0.93 −0.14 BSk Croplands
USCRN:Versailles-3-NNW −2.37 0.39 −0.24 −1.12 Cfa Cropland/Vegetation Mosaic

Mean −1.56 1.89 0.34 −1.00 – –
Fig. 13. (a) The Dense model against every other model. For each site one model outperforms the other, the value increases. (b) (Top) Percentage of stations where a model was
the top performer for a given metric (Bottom) Each model predicts on all sites belonging to a specific class in Table 1. Each time a model outperforms every other model for
a metric it gets a point. All points for that class are normalized so that the top performer receives one point for that class. All points are summed together for all classes. This
produces an unbiased assessment of model performance regardless of imbalances in representation of classes.
R and ubRMSE, albeit slightly less dominant than the RF model. WDL
maintains its position as the best model for bias.

Having a distance based model outperform RF has additional ad-
vantages. For starters the evaluation speed for distance based models
is two orders of magnitude faster (0.16 s vs. 17.7 s on 130k samples).
Therefore, it is more feasible to predict over large domains. Addition-
ally, the file size of the RF model is three orders of magnitude larger
(2.3 GB vs. 1.03 MB) which makes transferring it less convenient than
the simple distance based models. For these reasons, it is unreasonable
to continue using a RF architecture for this task at this resolution.

4.4. Areas of underperformance

As the Dense model was the strongest performer. It is important
to find circumstances where it struggles. To do so, the static variables
for each site in the CONUS dataset were compiled into a dataset with
six normalized dimensions (sand, clay, pH, topography, climate class,
land cover type). This dataset was then projected into 2D space using
Principle Component Analysis (PCA). This reduction allows one to
visualize the high-dimensional six static variables as a 2D image. The
sites from the validation set are then plotted and colored if the Dense
model failed to outperform SMAP’s ubRMSE score at that site. The 2D
projection shows a clear grouping in the box in Fig. 14. This area in
the PCA represents Cropland land cover type with high clay content
and low sand content as seen in Table 4. These values are scaled by
the standard deviation of the dataset for each static variable. A value
of −2.0, means two standard deviations below the mean. Some sites
have very high clay content and others, like USCRN:Versailles-3-NNW
and SCAN:ElsberryPMC, have very low sand content. More than two
9 
Fig. 14. Reprojection of test data static variables into PCA space. Orange dots represent
sites where the Dense model’s ubRMSE score was worse than SMAP.

standard deviations below the mean. Most of these sites are croplands.
This brief analysis shows the Dense model does not have consistent

performance on croplands of high clay and low sand content values.
Therefore, this model would not be an ideal representation of soil
moisture in these conditions and should not be relied upon if a given
use case should arise.
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Fig. 15. (a) Box plots of the SMAP, Dense, and Prob R values for each station in the cross validation dataset. (b) Spatial distribution of R values on each station as predicted by
Dense.
4.5. Cross-fold analysis

In order to assess whether our methodology is generalizable, a 10-
fold cross validation was conducted. Using stratified random sampling,
the original dataset is grouped into soil texture classes where the sites
belonging to that texture class are divided into 10 groups of equivalent
count. One of these groups from each texture class is moved into a
validation dataset. If a texture class has less than 10 sites of data,
(Sand(2), Clay(2), and Undefined(4)) half of the stations are randomly
sampled. Models are then trained on the data not in the validation
dataset.

The cross-validation metrics generally align with those from the
validation set, with one exception: the Random Forest (RF) model.
When comparing temporal consistency (R) with SMAP, the Dense and
Probabilistic models — our top performers — show improved results.
Each quantile of their distribution is higher than that of SMAP (as
shown in Fig. 15). Neither were able to sufficiently correct outliers and
as a result each have a higher kurtosis than the SMAP distribution. The
Wide and Deep Learning (WDL) model exhibited a similar trend, which
can be found in the supplementary materials.

The Random Forest (RF) model’s performance unexpectedly de-
clined in the cross-validation compared to the validation dataset. Its
average temporal consistency (R) showed only marginal improvement
over SMAP. This drop is surprising because each cross-validation train-
ing set included all texture classes, similar to the validation dataset.
The cause of this significant performance decrease remains unclear.
However, we observed that nearly all forests in the ensemble (except
the forest trained on Sandy Clay Loam data) showed less variability
(lower standard deviation) in their predictions compared to the forests
trained on the original dataset.

One possible explanation could be related to the amount of training
data used. The cross-validation forests were trained on approximately
90% of the data, whereas the original forests used about 80%. This
additional data might have led to some form of overfitting. However,
we did not conduct further analysis to confirm this hypothesis or
identify other potential causes.

The cross validation and additional plots found in the supplement
appear to confirm that the weighting scheme for distance-based models
limits biases in the training data and that model predictions remain
robust on unseen locations when compared to SMAP (see Table 5).

5. Discussion

The primary focus for this section is to evaluate the robustness
and generalizability of model performance. Additionally, we want to
assess the ensemble framework and identify whether or not there is
any advantage from an ensemble prediction.
10 
Table 5
The mean metric score for each model on each station on the validation set vs. the
cross validation dataset.

Model Dataset R ubRMSE Bias

Dense Val 0.632 0.055 −0.004
Cross Val 0.638 0.058 −0.002

Prob Val 0.628 0.056 −0.007
Cross Val 0.620 0.060 −0.003

WDL Val 0.594 0.059 −0.001
Cross Val 0.608 0.061 −0.004

RF Val 0.630 0.058 0.019
Cross Val 0.564 0.066 0.019

SMAP Val 0.559 0.063 0.025
Cross Val 0.562 0.065 0.023

It is worth noting the existence of SMAP-HydroBlocks (Vergopolan
et al., 2021), a high-resolution (30 m) surface soil moisture prod-
uct for CONUS. While SMAP-HydroBlocks employs a sophisticated
physical model incorporating detailed hydrological processes and high-
resolution regional datasets, our approach differs in its use of simple
machine learning ensembles and globally available datasets. This dis-
tinction makes our method potentially more adaptable for global appli-
cations, particularly in regions where high-resolution local data may be
limited. However, for studies focused within the United States, SMAP-
HydroBlocks likely offers superior fidelity due to its incorporation of
detailed local information.

5.1. Generalizability

Large-scale domain predictions are valuable only if they are consis-
tently accurate across the domain’s heterogeneity. To test our model
predictions’ generalizability, we:

1. Validated using data from previously unseen locations.
2. Conducted cross-fold analysis across all sites in the training and

validation sets.
3. Monitored spatial predictions and their associated SHAP values.

Results showed consistent performance on unseen sites during training.
SHAP values generally aligned with literature expectations, except for
an unexpected inverse relationship with NDVI across all models. This
anomaly warrants further investigation. Detailed analysis of spatial
predictions and SHAP values is available in the supplement.

Results from these analyses demonstrate the generalizability of
using ensembles of simple ML architectures for downscaling SWC at
sub-km resolutions.
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Fig. 16. Spatial predictions can be smoothen if input data is interpolated. This increases fidelity and continuity but can introduce interpolation error.
Fig. 17. Weighting schema for unbiased top performers. (a) All models predict on
all sites belonging to a specific category. Each time a model outperforms every other
model it gets a point. (b) Points are then normalized. This ensures under-represented
categories have equal importance in assessing model performance. (c) The normalized
points are summed providing a final assessment of model performance on all categories.

5.2. Interpolation

Although the finest spatial resolution is 90 m (elev), the native
resolution of other variables are coarser. As a result, plotting the
pixels of coarser data on this finer data creates a ‘‘true’’ prediction but
introduces some harsh boundaries or pixelation. One can completely
eliminate this pixelation if all input data is interpolated to the highest
resolution. As mentioned, this was not done in this study to preserve
the structure of the data. However, predictions using interpolated data
present high-fidelity and continuous predictions (Fig. 16).

5.3. Ensemble advantage

This study assesses the feasibility and advantages of using model
ensembles to predict Soil Water Content (SWC) at higher resolutions.
The rationale behind these ensembles is to ensure equal representation
of all unique land characteristics during training, potentially prevent-
ing overfitting to dominant features. However, the necessity of this
approach remains in question. We begin by comparing the ensemble
performance against the performance of each ensemble member in the
validation dataset (Table 6):

1. The Dense ensemble shows only marginal improvement over its
unweighted member.
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2. For both Prob and WDL ensembles, the Sand and Clay weighted
members outperformed their respective ensembles.

3. In all cases, the ensembles’ average performance is not signifi-
cantly better than the unweighted member.

To ensure an unbiased comparison, we evaluate performance using
static variables in a head-to-head competition. Scores are normalized
by class abundance to account for varying sample sizes. The process is
as follows:

1. For each texture, land cover, and Koeppen class listed in Table 1,
we compare individual ensemble members against the full en-
semble.

2. Each time a model outperforms the other for a given site, its
score for that class increases. Scores for each class are normal-
ized, with the model performing best on most sites receiving a
value of 1.

3. We sum these normalized scores to obtain a total normalized
performance ratio for each ensemble vs. ensemble member pair-
ing.

This weighting schema is illustrated in Fig. 17, and the resulting
performance ratios are visualized in Fig. 18.

Again we see the same trend with no clear ensemble advantage
across all of it’s members. Each ensemble achieves parity or is out-
performed by an ensemble member at least once. The Dense/Prob
architectures are likely too simple and the GLM of the WDL seems adept
enough at guiding predictions that any overfitting of training data is
negligible. From a purely numerical context, there does not exist a clear
ensemble advantage. However, for the Dense/Prob architectures, there
is a clear advantage for timeseries predictions (R).

The RF ensemble has a dominant ensemble advantage due to the
nature of how it was trained. This is discussed further in the supple-
ment.

Lastly, we compared the spatial predictions of the ensemble to
those of the top-performing ensemble member. Our analysis revealed
that the Dense ensemble predictions appear to capture more land sur-
face characteristics than the single ensemble member, as illustrated in
Fig. 19. While not directly quantifiable, it is evident that the Ensemble
incorporates more land surface features into its prediction than the
unweighted member.

However, this observation does not hold true for the Prob ar-
chitecture. In this case, the ensemble member achieved similar land
characteristic fidelity to the ensemble prediction. For the WDL archi-
tecture, the ensemble member prediction shows more noise than the
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Table 6
Average performance for each ensemble member and the ensemble as a whole on all sites in the validation dataset. Bold indicates top performer

for that metric.
Model Metric Ens. Sand Clay Koep Land Cvr Free pH Texture

Dense
R 0.632 0.621 0.615 0.607 0.618 0.631 0.613 0.558
ubRMSE 0.055 0.056 0.056 0.058 0.057 0.055 0.057 0.058
Bias −0.004 −0.000 −0.001 −0.001 −0.019 −0.003 −0.006 0.001

Prob
R 0.629 0.629 0.620 0.592 0.618 0.623 0.613 0.596
ubRMSE 0.056 0.056 0.057 0.059 0.057 0.056 0.057 0.059
Bias −0.007 −0.004 −0.004 −0.011 −0.008 −0.007 −0.006 −0.004

WDL
R 0.594 0.594 0.598 0.586 0.594 0.594 0.586 0.589
ubRMSE 0.059 0.059 0.059 0.060 0.059 0.059 0.060 0.059
Bias −0.001 −0.004 −0.002 0.002 −0.006 −0.002 0.000 0.003
Fig. 18. Head to head comparison of Ensembles (Bottom label) vs. their member constituents (Top label) with normalized performances. Bars highlighted in red indicate an
instance where an ensemble member outperformed the ensemble on that metric (Left label). An explanation of this head to head competition is seen in Fig. 17.
Fig. 19. Spatial Predictions comparing the Dense ensemble vs. the unweighted (Free) ensemble member.
ensemble but retains similar details. These comparisons can be found
in the supplement.

Further analysis is needed to determine whether these differences
constitute a substantial improvement of one approach over the other.

6. Conclusion

The work conducted in this paper served to demonstrate that an
ensemble of simple ML architectures can acceptably downscale SWC.
Models can reliably predict SWC with strong generalizability. However,
certain ensemble members can outperform or achieve parity with the
full ensemble on the validation dataset. This suggests that an ensemble
is unnecessary and the same generlizability can be achieved with more
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rigorous weighting during training. However, for the top performing
ensemble/model, the ensemble captured more of the land characteris-
tics than its top performing single member. More analysis is needed to
assess whether or not this is advantageous and by how much.

Multi-variable analysis of model predictions suggest the top per-
forming model struggles on croplands with higher than average clay
and silt content. This model cannot reliably outperform SMAP readings
in these areas.

Training conducted with time-padded data benefits the performance
more than the temporal inaccuracies of these readings hinder the
training process. This suggests that models rely on SMAP to describe
the temporal evolution of SWC, while using higher spatial resolution
data to modulate SWC based on land characteristics.



J. Poehls et al.

r

Journal of Hydrology 652 (2025) 132624 
Overall, all models were able to outperform SMAP on the valida-
tion and cross-fold datasets. The only exception being the RF model
failing to achieve similar performance on both the validation and
cross-validation datasets.

Final summary:

• Ensembles of simple ML architectures can downscale SWC predic-
tions to sub 1 km resolutions

• Ensemble members can outperform or match the performance of
these ensembles on datasets. However, the spatial predictions of
some ensembles can capture more of the land characteristics than
the ensemble member and reduces noise.

• Training the models on temporally padded data provides more
benefits than drawbacks in terms of overall performance.

• The top performing model is unreliable on croplands with higher
than average clay and lower than average sand content.
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