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1 Model Architecture Supplement

Probabilistic Layer

The hidden probabilistic layer in the Prob model serves to learn and map a posterior multivariate
normal distribution onto a prior multivariate normal distribution. The prior multivariate distribution
has fixed standard deviations of 0.5 with learnable mean values. The posterior multivariate normal
distribution has both learnable mean and standard deviation.

During the training process, the layer tries to learn the prior distribution for all values fed into it.
It then tries to learn the distribution for the posterior given the inputs. These two values are then
compared via the Kullback-Leibler (KL) divergence to gauge similarity. This is done to ensure the
posterior distribution is not overfitting a specific sample and is penalized for deviating too far from
the prior distribution. The posterior distribution is then condensed to two values and passed forward
in the network to the Independent Normal layer.

Temporal Resolution

The padded model doesn’t just out perform the daily model on the dataset as a whole. The padded
model also outperformed the daily model on a site by site basis for each metric except for R on the daily
validation dataset (Fig. 1b). This is not unexpected as the daily model had greater LST variations
in it’s dataset than the padded model. The daily training model exhibits slight biased against low
SWC readings. This is visible in the heatmaps of Figure 1a. At near zero in-situ SWC measurement
readings the daily model has a strong cluster of predictions around 0.1 m3/m3. The mechanism for
this is unknown, however, it seems apparent that training on additional samples helped the model
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identify lower SWC trends.
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Figure 1: a) Predictions for a model trained on a time-padded dataset which contains much more
samples (658,000) to learn from and a model trained on a temporally accurate dataset (372,000). Both
models predict on the validation sets for each dataset. b) Head to head for these models on sites in
each dataset. If a model outperforms the other in a metric the bar increases by one.

2 Dataset Supplement

2.1 Feature Selection

The variables selected SMAP, NDVI, LST, Precipitation, Sand and Clay content, pH, Evapotranspi-
ration, and Topography/Elevation. are linked to SWC through multiple mechanisms.

NDVI, LST, and ET

Vegetation Index (NDVI), and Evapotranspiration (ET) Land surface temperature (LST) has a very
strong coupling with SWC. As LST increases, more energy is available for SWC to harness in order to
evaporate and leave the soil. This relationship is well established and exploited to benefit in DisPATCH
algorithms. NDVI corresponds to plant greenness and plant cover over an area. Because plants require
water for healthy efficient production, NDVI has been correlated to SWC on multiple occasions[1][2].
Evapotranspiration (ET) is also included as a variable as it is directly associated with SWC.

Soil Texture

SWC is directly influenced by the physical properties of the soil, such as texture and composition.
Porosity and grain size directly influence the cohesive and adhesive properties of water which permit
capillary rise. The greater the surface area by volume, the easier it is for water to adhere to mineral
surfaces and resist extracting forces such as the downward flow due to gravity or uptake by evaporative
processes. Smaller grained soils offer a greater surface area to volume ratio allowing for large capillarity
for soil water. Soils with smaller grain size, e.g., clay, are therefore able to hold more water[3]. For
this reason, soil textures and composition were included as variables for prediction.
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Topography

Elevation and Topography have a strong influence on waterflow and subsequently SWC[4][5]. On a
local scale, water naturally moves down the gravitational gradient, draining from higher elevations and
accumulating in lower areas[4]. For this reason topographical changes correlate to SWC. At regional
scales, topography also informs relative height vs the sea level which is especially relevant for areas
that are below sea level or at greater elevations. Greater elevations experience a drop in atmospheric
pressure as well as vapor pressure deficit (VPD)[6]. VPD correlates to the rate of evapotranspiration[7]
and thus impacts SWC. For these reasons topography is included as a covariate in the dataset.

2.2 Scaling

Variable Spatial Resolution Temporal Resolution Scaling Factors
SMAP 9km ∼3 Days N/A
Precipitation ∼5.5km Daily 1/1000
LST 1km 8-Days/Daily (1/5000)-2.7315
Sand/Clay/pH Content 1km N/A 1/100
ET 500m 8-Days 1/1000
NDVI 500m/250m 16-Days 1/10000
Topography 90m N/A 1/10000

Table 1: Variable resolutions and value scaling. All
variables are resampled to 90m spatial resolution
using nearest neighbor

Figure 2: Stacking of readings for
one prediction

For the distance based models (WDL, Dense, Prob) the input data/values were normalized to between
0-1 as seen in Table 1. The exceptions being Topography which has negative elevation values and LST
and Precipitation values which do not reach all the way to one. The random forest model uses the
raw values from the data as the Random Forest algorithm is invariant to distance.

2.2.1 Precipitation Data

Since ensemble predictions will be performed pixel-wise over single timesteps, past precipitation data
would be absent from model input. In order to incorporate temporal information into the precipitation
input, a rolling window was passed over the time axis summing the last weeks worth of values at each
pixel with a decay factor of e(−i/10) where i is the number of days in the past. This served to capture
a memory of rain in the days prior while suppressing the impact of rain many days in the past. Any
rain from 7 days or further in the past is not included.

2.3 Composition
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Dataset sites Textures Climate Class Land Covers
Washita 20 Lo Cfa Grasslands
Fort Cobb 16 Lo Cfa Croplands, Grasslands

Table 2: Additional Validation datasets
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Figure 3: Number of stations with binned number
of days of data available

2.4 OK Datasets

Nomenclature * #
Where * is the prediction method
Where # is the metric

* Translation
d Dense
p Prob
wdl WDL ensemble
r RF ensemble

smap SMAP

# Translation
r Pearsons R
ub ubRMSE
b Bias

Table 3: short hand writings for metric tables e.g * # could be p b which means the bias scored by
the Prob ensemble
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Figure 4: Temporal Predictions for top 4 sites for the Washita and Fort Cobb networks. Grey is
SMAP, blue is Dense, and green is RF.

3 Spatial Predictions

Spatial predictions are made using the highest spatial and temporal resolution data. Spatial predic-
tions use the 250m NDVI resolution (MOD13Q1) and the daily resolution LST product (MOD21A2).
The time-padded LST product (MOD11A1) can be used to reduce the impact of cloud cover, however,
this product can have anomalies if that 8-day period it averages over was very cloudy. This produces
aesthetically unappealing artifacts in spatial predictions.

Spatial data is resampled to the highest resolution (90m) using nearest neighbor interpolation. This
means that the coordinates of prediction pixels are defined by the highest resolution data pixel and
that coarser data contributes the same values to patches of pixels in spatial predictions.

Additional spatial predictions are seen in Figure 5. Here we see that all methods agree on overar-
ching structure of SWC. Tender Foot Creek exhibits an interesting pattern. Here all models identify
two moist regions surrounded by dry, wheras in SMAP there exists a smooth gradient between these
two regions. This may be a product of the backus-gilbert interpolation.
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Figure 5: Spatial Preds
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4 Cross Validation
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Figure 6: Cross Validation metrics and performance

5 SHAP

Validating the spatial predictions is difficult due to the lack of ground truth data at the same high
resolution. Timeseries data provides the only pure validation source. One analysis method involves
observing the learned sensitivities of the models on their spatial predictions to see if they have learned
patterns that align with empirical observations and expectations. In other words, ”do the models find
the same correlations between variables that we expected before training them?” To accomplish this,
the spatial predictions made earlier were analyzed to observe prediction sensitivity to changes in input
variables.

In Fig. 7 we can see these varying sensitivities to specific variables as well as the trends/correlations that
are being drawn. The most apparent source of concern is the inversely correlated NDVI sensitivities
for all of the models. This trend is the opposite from what we would expect from previous literature.
Generally, an increase in NDVI correlates with increases in SWC. However, as seen in Fig. ??, that
positive relationship is not readily apparent in the training data and in fact, the negative correlation is
present at low SWC. Besides this trend in NDVI, all of the models appear to have learned appropriate
relationships between the variables and SWC. The RF ensemble has a more noisy signal on many of
the lower sensitivity variables. The Dense model has a noisy signal on pH showing no clearly identified
trend. Overall, the Prob ensemble demonstrates the clearest adherence to learned trends.

9



ph
clay
dem

LST_21
NDVI_250

sand
precip

ET
smap

Dense

clay
ph

dem
LST_21

NDVI_250
ET

sand
precip
smap

Prob

sandclayphdemETNDVI_250LST_21smapprecipmcd12texturekoep
WDL

clay
sand

ph
LST_21

dem
ET

NDVI_250
precip
smap

RF

Low

High
Ensemble SHAP values

Figure 7: SHAP values for each input variable for each Ensemble. WDL takes three categorical inputs
and these three exhibit the strongest sensitivity due to their categorical nature.

6 Ensemble Advantage

The RF model ensemble members are trained only seeing a specific subset of data. As a result all
members are missing some contexts. Although some ensemble members can outperform the ensemble
on bias and ubRMSE, these predictions are not consistent through time and there exists a significant
ensemble advantage for the R metric across all members (Figure 8)

7 Domain Preference

To further explore areas of strengths and weakness’, metrics are calculated across each of the three
categorical static variables: texture, climate class, and land cover. These static variables are
further broken down into the subclasses previously shown in Table 1 of the main text. A significant
drop in metric performance in one of these subclasses may indicate an inability for a model to fully
generalize SWC from the input variables. To search for these preferences/weaknesses we compute the
average metric score for a model on each station in the 40 subclasses from Table 1. We then divide
this by the average performance for all models on that subclass. This final value gives us the relative
performance of a model compared to all others. If any models performance is at least 10% better or
worse than the mean score for all models on that subclass, then that model is deemed to have a bias
for that subclass. These instances are seen in Table 6. The Bias metric was excluded as the RF model
consistently exhibited poor bias. The only instance where a model demonstrates a negative or positive
performance on both ubRMSE and R was on Sand. Here, the Dense R value is 40% the mean R value
and the ubRMSE is 124% the mean ubRMSE value. This category constitutes only one stations worth
of data and so no conclusions can be made about the models performance on sand overall.

Although there doesn’t appear to be any strong or negative biases for any single static variables, what
if there exists a combination of inputs that exhibit difficulties?
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Figure 10: WDL Ensemble spatial predictions vs top performing member

11



Characteristic Dense Prob WDL RF No. of Stations
R

SiClLo 1.07 1.05 0.83 1.05 3
Mxd Frsts 1.08 0.98 0.89 1.04 3

Bsh 1.04 1.05 0.88 1.02 2
Sa 0.44 1.21 1.17 1.18 1

ubRMSE
Csa 0.92 0.99 1.10 0.98 24

Opn Shrblnds 0.94 1.01 1.14 0.91 6
SaClLo 1.03 1.04 1.04 0.89 3
Bsh 0.95 1.14 0.94 0.91 2
ET 1.00 1.14 0.94 0.92 2
BWh 0.99 1.13 0.99 0.90 1
Sa 1.24 0.71 1.05 1.00 1
Cl 0.85 1.03 1.09 1.03 1

Table 6: Static classes where one model displays a bias (an average metric score on that class which
deviates 10% or more from the mean of all models) for that specific class. For R, values greater than 1.0
outperform the mean, for ubRMSE values below 1.0 outperform the mean. No. of stations represents
number of locations possessing that characteristic

8 Code and Data availability

All relevant code and data can be accessed at https://github.com/TheJeran/ensemble-downscaling
The RF model files are not available as they are too large for github. However, a new set can easily
be trained by running through the available code.
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