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1 Abstract

2 Soil moisture is a key factor that influences the 
productivity and energy balance of ecosystems and

3 biomes. Global soil moisture measurements have coarse 
native resolutions of 36km and infrequent

4 revisits of around three days. However, these limitations 
are not present for many variables con-

5 nected to soil moisture such as land surface temperature 
and evapotranspiration. For this reason

6 many previous studies have aimed to discern the 

relationships between these higher resolution 7 variables 

and soil moisture to produce downscaled soil moisture 

products.

8

9 In this study, we test four ensemble machine learning models for this downscaling task. These

10 ensembles use a dataset of over 1,000 sites across the US to predict soil moisture at sub-km scales.

11 We find that all ensembles, particularly one with a very simple structure, can outperform SMAP

12 on a cross-fold analysis of the 1,000+ sites. This ensemble has an average ubRMSE of 0.058

13 vs SMAPs 0.065 and an average R of 0.639 vs SMAPs 0.562. Not all ensembles are beneficial,

14 with some architectures performing better with different training weights than with ensemble

15 averaging. However, some ensemble architectures capture more of the land surface characteristics

16 than ensemble members. Lastly, although general improvements over SMAP are observed, there

17 appears to be difficulty in consistently doing so in cropland regions with high clay and low sand

18 content.

19 Keywords
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48 1 Introduction

49 The water in the soil or soil water content (SWC) has a strong coupling with ecosystem stress and

50 production[1][2][3]. SWC is most commonly measured in-situ by changes in electric current passing

51 through the soil. Although accurate, these measurements require an investment of resources, must be

52 calibrated for the soil being measured, and are impractical for observing SWC across regional areas[4].

53 For larger scale SWC measurements, one can estimate SWC by observing changes in radiation inten-

54 sities from absorption by water molecules in the soils surface. Field scale measurements can be made

55 via drones using ground penetrating radar[5]. But for truly global scale soil moisture mapping we need 56 

to look for the aid of satellites.

57

58 The Soil Moisture Active Passive (SMAP) radar mission launched by NASA in 2015 served to be

59 the solution to global SWC measurements. This satellite combines higher resolution active radar

60 measurements with lower resolution passive radiometer measurements[6]. The combination of these

61 two would yield native SWC measurements at 9km per pixel and interpolated 1-3km products for

62 finer resolution. However, after only three months in orbit, the power supply for the active radar

63 component failed leaving just the low resolution radiometer sensor. The native resolution of the current

64 radiometer sensor is 36km per pixel. This resolution can be increased using the Backus-Gilbert optimal

65 interpolation algorithm to 9km per pixel with acceptable accuracy[7]. This lack of resolution has lead

66 to multiple efforts to attempt a downscaling of the SMAP products to provide SWC predictions on

67 scales ranging from 100m-3km. Since, even at 1km resolution, up to 80% of SWC variability is lost[8].

68 At native satellite resolutions, there is a complete loss of SWC variability[8]. The spatial variability

69 of SWC influences a multitude of factors including evapotranspiration, surface temperature, cloud

70 formation, and convective rainfall to name a few of many. This loss in high resolution variability and

71 information makes remotely sensed SWC products limiting as inputs for regional physical models. For

72 this reason, an increase in understanding for SWC variability and a higher resolution SWC data product

73 would have a wide range of applications and benefits in Earth science modelling[9][10][11]. Efforts to
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74 increase resolution or ”downscale” soil moisture measurements, generally, are either empirically based

75 or derived from machine learning.

76 The most common empirical method is the DISaggregation based on a Physical and Theoretical Scale

77 Change (DisPATCH) algorithm. This algorithm is a theoretical conversion of soil temperature fields

78 into soil moisture fields. SWC is predicted through the use of a semi-empirical soil evaporative effi-

79 ciency (SEE) model and the soils average moisture content. DisPATCH performs well on bare soils,

80 but struggles when the soils are occluded either by vegetation or clouds. It also demonstrates inconsis-

81 tencies in more humid regions[12][13][14]. A strong advantage however, is that DisPATCH’s resolution

82 is only limited by temperature field resolution. This provides an opportunity to use higher resolution

83 derived LST products for even higher resolution SWC predictions[15][16]. But higher resolution LST

84 data wouldn’t improve the models performance against dense vegetation and is still limited by cloud 85 

cover.

86

87 The machine learning field has also seen a large number of approaches for this downscaling 
task[17][18][19][20].

88 However, a common occurrence are complex model architectures over particularly limited study 
areas[21][22][23].

89 Complex architectures and workflows serve to further reveal the scope and capabilities of machine learn-

90 ing methods in this task. But their complexities also decrease their reproducibility as they require

91 an increased effort to incorporate. Additionally, many of these complex architectures have only been

92 validated on smaller more homogeneous regions. Therefore, an ideal scenario is an easy to reproduce

93 architecture with a wider region of validation. The works of Abbaszadeh et al. 2018 and more recently

94 Xu et al. 2022 serve as great inspirations to this concept. They employed relatively simple models

95 over larger regions of interest. Abbaszadeh’s approach demonstrated the advantage of an ensemble

96 of random forest predictions whereas Xu’s approach demonstrated the capabilities of a simple neural 97 

network architecture.

98

99 Using the work of Abbaszadeh and Xu as inspiration, this study will explore the performance of four

100 different ensemble architectures for downscaling coarse spatial resolution soil moisture data to sub-
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101 km resolutions. The four ensembles include: two probabilistic estimators consisting of simple neural

102 networks, a wide-deep learning (WDL) architecture modelled after the work of Xu et al. 2022, and a

103 random forest (RF) model. These ensembles will be trained on a large dataset comprised of in-situ

104 soil moisture measurements and ancillary remote sensing predictors across the continental US with

105 sub-km resolutions. The models will then be used to make spatial and temporal predictions of soil

106 moisture. Additionally, analysis will be conducted to conclude the robustness of these methods and

107 generalizability. Lastly, we will look at the viability of using ensembles. This will assess if the models

108 derive any benefit from ensemble averaging, or if single ensemble members can predict adequately on

109 their own. The overarching goal is to demonstrate the feasibility of using ensembles of simple machine 

110 learning architectures to downscale coarse resolution soil moisture products to sub-km resolutions 111 

across a heterogeneous landscape.

112 2 Data

113 Machine learning models like decision trees and non-linear regression can predict outcomes given

114 certain input parameters. However, they require large amounts of data to identify meaningful trends

115 and patterns that allow accurate and generalizable predictions. Therefore, to ensure our models can

116 make soil moisture predictions across a large spatial area (Fig. 1), we first need to accumulate a sizable

117 dataset with relevant input variables for analysis. The first step is deciding which variables to include

118 in the dataset. After a process of feature selection that is covered in the supplemental document, a 119 

dataset comprised of the following variables was assembled: SMAP, NDVI, LST, Precipitation, Sand

120 and Clay content, pH, Evapotranspiration, and Topography/Elevation.

Training and validation locations

Training
Validation
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Figure 1: For this study, data within a temporal period extending from January 1st, 2017 through 
December 31st, 2021 was selected. This period ensured that soil moisture readings would include 
seasonal and, potentially, yearly variability.

121 This dataset was then iteratively trained over while excluding one of these variables. The 
magnitude

122 of drop in performance for each session was then used to assign a rank of importance for that 
variable.

123 These variables ranked by importance are as folows:

124 SMAP > LST > Sand > ET > Precip > Topography > Clay > NDV I > pH

125 Next we will discuss the sources used for this data.

126 2.1 Soil Moisture Active Passive (SMAP) Satellite Readings

127 The remotely sensed soil moisture readings are provided by NASAs SMAP satellite mission. The SMAP

128 satellite provides passive radiometer measurements which allows for inference of the soil moisture

129 content in the top 5cm of soil. Satellite readings have global coverage with a return period between

130 2-3 days for each pass[6]. SMAP data is offered at varying levels of post-processing. The two levels of

131 interest are L3 and L4. L3 data consists of preprocessed measurements that are gridded and mapped

132 spatiotemporally across the globe. L4 data is a further processed gapfilled product derived from L3.

133 In principle, the L4 product offers much greater spatio-temporal coverage and would offer greater data

134 availability. However, training on the L3 product yielded better results and so the L3 product was

135 used throughout. The L3 product records two daily passes of AM (morning) and PM (evening) as it

136 orbits. This does not mean the L3 product has an AM and PM reading for every location on Earth

137 for every day. But, if there exists a reading for a location on that day, it will be either an AM or PM

138 reading. In order to increase SMAP L3 temporal coverage, a simple gap filling method was employed. 139 

This involved ignoring the AM and PM designation and using these passes as a single daily reading.

140 Any areas that experienced both AM and PM passes were averaged. This was done because in-situ

141 data will be aggregated into daily readings and as such are less sensitive to the specific time of SMAP

142 measurement. Therefore, SWC measurements with greater than daily resolution precision are not 143 

considered.
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144 2.2 Moderate Resolution Imaging Spectroradiometer (MODIS)

145 The Moderate Resolution Imaging Spectroradiometer (MODIS) mission provides daily temporal res-

146 olution remote sensing data from sun-synchronous orbits. MODIS offers a wide variety of spectral 
147 reflectances across multiple wavelengths to characterize and infer the Earth surface and its 
properties.

148 The three MODIS inferred properties we use are Land Surface Temperature (LST), Evapotranspira-

149 tion (ET), and the Normalized Difference Vegetation Index (NDVI). In this study, the 500m NDVI

150 (MOD13A1) product is used for training and temporal predictions. The finer 250m NDVI product

151 (MOD13Q1) is used for spatial predictions. The 8-day LST (MOD11A2) product was used during

152 training and prediction to avoid cloud coverage. The daily LST product (MOD21A1) was used for

153 spatial prediction. The 8-day ET product (MOD16A1) based on a modified Penman-Montieth equation 154 

is used for ET estimation. This product has a spatial resolution of 500m.

155 For land cover type classification, the MCD12Q1 product is used with a temporal resolution of 1-year 156 and 

a spatial resolution of 500m.

157 2.3 CHIRPS 2.0 Precipitation

158 Precipitation data was retrieved from the Climate Hazards Center at Santa Barbara[24]. Climate

159 Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a combination between models

160 of terrain-induced precipitation enhancement with interpolated station data and satellite based pre-

161 cipitation estimates. This data provides daily global precipitation coverage estimates at 0.05° spatial 162 

resolution (∼5.5km).

163

164 2.4 Soil Texture and Soilgrids

165 The International Soil Reference and Information Centre (ISRIC) has produced a global harmonised

166 soil properties database called SoilGrids[25]. Although higher fidelity datasets are available for specific

167 regions of interest from local entities, the globally consistent nature of the SoilGrids data implies

168 wider implementation of methods using it. A 1km resolution version of SoilGrids was used as the
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169 coarser resolution will be less sensitive to interpolation artifacts. The Sand, Clay, pH, and USDA soil

170 classification data products were used for this study.

171 Topography

172 The Multi-Error-Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) topography 173 

product was used for this study[26]. This product has a spatial resolution of ∼90m.

174 2.5 In-Situ soil moisture measurements

175 Ground truth data for training the models were obtained from in-situ SWC measurements at sites

176 distributed from two networks throughout CONUS. The International Soil Moisture Network (ISMN)

177 is an international cooperation to provide and maintain a global database of in-situ soil moisture

178 measurements[27]. Ameriflux is a network of flux towers spread across North America recording vari-

179 ous atmospheric and meteorological data and fluxes[28]. Some sites are equipped with SWC sensors.

180 Data for sites from both networks located within the study area and active during the study period

181 were downloaded and used in this study. ISMN data comes with a quality flag, thus, only data with 182 a ’G’ 

[good] quality flag were accepted.

183

184 Ameriflux data does not have quality flags for all measurements. In order to maintain consistency

185 with ISMN quality, the Ameriflux data was pruned to only contain readings with similar properties to

186 ISMN readings with a ’G’ quality flag. This means Ameriflux samples were dropped if either the LST

187 reading was below 3◦C or the SWC reading was above 0.7 m3/m3. Additionally, sites in wetland and 188 

chronically inundated regions were excluded from the dataset.

189 SWC measurements are then aggregated to daily averages.

190 2.6 Datasets

191 The primary dataset is comprised of all available data from ISMN and Ameriflux soil moisture mea-

192 surements within the temporal and spatial boundaries. Each location is classified by soil texture class.

193 For each soil texture class, 80% of sites and all of the samples belonging to them are moved to a

194 training set and the remaining 20% of sites and their samples are sent to the validation set. This
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195 split makes certain that not only are the validation data samples unseen by training, but they are also

196 locations not seen by the model. This ensured that we can generalize the results to the greater CONUS 197

area. Each daily aggregate of in-situ measurements is accompanied by daily aggregate measurements

198 for the covariate inputs. The final dataset is comprised of 657,935 samples and 1054 stations. 206 of 199 

which were moved into the validation dataset. For further validation, two more datasets comprising

200 a small network of soil moisture stations, originally used to calibrate SMAP, will be used to assess 201 

performance. Further discussion of their contents can be found in the supplementary document.

202

203 Next, we will look at how the information within the datasets is utilized to train the ensembles.

204 3 Models and Methods

205 In order to increase SWC remote sensing resolution, a multivariate dataset comprising variables with

206 a known correlation to SWC was assembled. These covariates are SMAP, LST, sand and clay content,

207 pH, NDVI, ET, Topography, and Precipitation. These variables are spatially confined to locations with

208 in-situ soil moisture measurements that are used as a target for the training of model architectures.

209 This study looks at the performance of four different ensemble architectures. Two of the ensembles are

210 replications of the architectures used by Abazsddeh (RF) and Xu (WDL). The remaining two models

211 are simple distance based models. The first being a feed-forward network (Dense) and the other using

212 a probabilistic layer (Prob). Both of their architectures were chosen so as to have almost the same

213 number of hidden parameters. The architectures of the two smaller networks and WDL architectures

214 can be seen in Figures 2 and 3 respectively. More detailed descriptions of their architectures can be 215 

found in the supplement.

216

Texture Land Cover Koeppen Climate Class
Loam Grasslands Dfb
Sandy Loam Savannahs Cfa
Silt Loam Woody Savannahs BSk
Clay Loam Croplands Dfc
Sandy Clay Loam Deciduous Broad-leaf forests Csb
Silty Clay Loam Open Shrublands Dsb
Loamy Sand Evergreen Needle-leaf forests Csa
Sand Mixed Forests Dfa
Clay Barren ET
N/A Cropland/Vegetation Mosaic Dsc

Urban and Built-up Bwk
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Evergreen Broad-leaf forests Cfb

Closed Shrublands Bwh
Bsh
Cfc
Am
Aw

Table 1: All of the categorical land characteristic subclasses.

Figure 2: Probabilistic model architectures

Figure 3: WDL Architecture

217 3.1 Training

218 In this study, we assume that static variables as seen in Table 1 either aide or hinder the models ability

219 to discern SWC. Since these variables are not balanced in the dataset, the model may focus on the most

220 abundant subclass types while neglecting to learn how to predict on other underrepresented subclasses.

221 To account for these imbalances, instead of additional data manipulation, a simple approach is under-

222 taken in the form of ensembles. Each ensemble member is trained with sample weights accounting for

223 imbalances within a static characteristic. For example, an ensemble member trains on data weighted

Sigmoid
Activation

No
Activation - -

- - - - - - - -

...

...

...,0,1] [0 1][0 ,0,,0,1] [0

Categorical Data

Embeddings

Numerical Data
koeppentexture land cover SMAP, ET, NDVI, LST, Sand, Clay, pH, precip, DEM

DNN GLM

- -

- -
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224 to the different soil texture class abundances giving extra weight/importance to correctly predicting

225 the less abundant texture types. For the Dense, Probabilistic, and WDL ensembles, those static char-

226 acteristics are texture, clay and sand content, K¨oppen climate class, land cover class, and an

227 unweighted category that does not use any balancing. Therefore, there are 7 members per ensemble 228 (one 
per characteristic) as seen in Fig. 4.

229

230 The weighting scheme for each static class follows a ”balanced” procedure, namely,

nsamples

wi = , (1)
nclasses × ni

231 where wi is the weight for class i, nsamples is the total number of samples, nclasses is the total number 232 of 

classes and ni is the number of samples for class i.

233

234 The RF model doesn’t use sample weights. Instead, balance is accounted for by training a unique

235 model for each soil texture domain as done by Abbaszadeh et al.[17]. The characteristics learned for

236 each texture then contribute equally to the final prediction regardless of that textures representation 237 

in the dataset. This RF approach does not account for imbalances in other domains.

238 Temporal Resolution

239 The models were trained on the 8-day composite LST product as this permitted more samples to learn

240 from due to less gaps from cloud cover. This means each sample uses padded or the last recorded

241 LST composite temperature as it’s daily value. This value could be, in the worst case scenario, out

242 of date by 7 days. Although this is not ideal, the rationale is that SMAP would account for the

243 temporal variation in SWC while the other variables would account for the spatial variation. Thus,

244 these temporally coarse datasets are acceptable as long as their ”description” of the spatial variability

245 is consistent for that period. This loss of temporal information seems to be offset by the increase in 246 

samples to learn from and is discussed further in the supplement document.
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247 3.2 Predictions

248 For all ensembles, a prediction constitutes the average over all ensemble members. This can be 

repre249 sented by the following equation:

, (2)

Figure 4: Prediction regime for the Dense, Prob, and WDL ensembles. Each ensemble member (cube) is 
trained while weighted against imbalances in a specific characteristic. These predictions are then 
averaged to provide an ensemble prediction.

250 where p(SMd|C) is the downscaled ensemble posterior. This is derived from the average of the posterior

251 predictions of M ensemble member models over covariate vector C (A stacked vector of input variables).

252

253 When making spatial predictions, spatial data are resampled to the highest resolution (90m) using

254 nearest neighbor interpolation. This prevents interpolation error, but introduces some pixelation at 255 

higher levels of zoom.

256

257 In order to assess the performance of the downscaling results, predictions will be evaluated on new

258 spatial domains outside of the training dataset. The metrics used to assess the performance are 259 

ubRMSE, R, and bias.
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(3)

(4)

(5)

, (6)

260 where θp is the predicted value, θm is the measured or in-situ SWC value, and E represents the cumu261

lative average.

262

263 Unbiased Root Mean Squared Error (ubRMSE) is the standard metric to evaluate SWC products

264 employed by NASA. The SMAP mission considers an ubRMSE of less than 0.04 m3/m3 acceptable for

265 a SWC product [6]. An ideal value for ubRMSE is 0. The Pearsons correlation coefficient, R ∈ [−1,1],

266 shows linearity between changes in data points and is especially useful for time series analysis. For

267 this study, an ideal value for R is 1. Lastly, bias dictates whether a model overestimates (positive) or 

268 underestimates (negative) values compared to ground truth. An ideal value for bias is 0.

269 4 Results

270 Predictions were made on three datasets. The first is a large dataset comprising the validation data set

271 aside during training. The second and third comprise smaller networks of soil moisture stations located

272 in Oklahoma. Predictions will be compared against in-situ measurements as well as the predictions 273 

made by SMAP at that location.
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274 4.1 CONUS Dataset

Figure 5: Heatmaps and metrics for algorithm predictions on the validation dataset as a whole.

Figure 6: The average metric score for every site in the validation dataset. (a) numerically (b) visually
275 Because downscaling is an attempt at spatial prediction and reasoning, it’s important that evaluations

276 are done on new spatial areas. For this reason, all data in the validation dataset represents spatial 277 

domains previously unseen during training. This comprised ∼20% of the sites available for each texture 

278 class.

279

280 As shown in Fig. 5, every method was able to generalize over the entire dataset better than the

281 raw SMAP values. The RF predictions are strongly biased with SWC measurements being squashed

282 towards 0.18m3/m3. Because of this, the lowest SWC prediction by the RF ensemble on the entire

283 dataset is 0.10m3/m3. Although the RF output demonstrates a failure to capture the true variance of

284 the dataset, this is not an unacceptable result as ubRMSE and R metrics are both invariant to bias.

285 Thus, we can still observe spatial and temporal trends even with extreme biases. This does however 286 

diminish the value of RF predictions.

287

288 On a site to site level, all ensembles again outperform SMAP on every metric with exception to RFs
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289 bias. This is displayed in Figure 6. In the same figure we also see that timeseries are less consistent from

290 site to site as the mean is notably lower than the median, but the ubRMSE shows a strong agreement

291 between mean and median values demonstrating general consistency for prediction accuracy. Overall, 292

this suggests all methods and their predictions should be as reliable or moreso than SMAP.

293 4.1.1 Spatial Predictions

294 To compare the spatial predictions of each method, a 1°x 1°box is cut out around a specific in-situ

295 location on a summer day with the least cloud cover. Of the resulting predictions, six examples that

296 exhibit unique characteristics are presented, two of which are highlighted in Figure 7. Overall, the

297 ensembles tend to exhibit similar spatial patterns. In some cases, as exhibited in the predictions around

298 PBO: H2O LITTLELOST, the categorical inputs of the WDL model produce strong pixelation which

299 create unpleasant and impractical outputs. Additionally the RF predictions show strong bias and little 300 

variability. The other four examples can be seen and are discussed in the supplement.

301 Next we will look at the ensembles predictions over time.

Figure 7: 1°x 1°spatial SWC predictions of ensembles vs SMAP. Black pixels represent pixels masked as 
’urban’ and blue pixels are water surfaces.

302 4.1.2 Temporal Predictions

303 Although the R metric is calculated for each site in the validation set, it’s also important to view

304 the time-series plotted against each other. For this analysis, the ten sites with the most data were

305 selected and the time-series from 2018 is plotted. One of which is seen in Figure 8. The same figure
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306 also shows the R scores for the validation dataset on each station. Here we can see that the two

307 top performing models in this metric (Dense and RF) both have drastically tightened distributions

308 for R values compared to SMAP. Despite RF having similar performance to Dense, it’s clear in the

309 additional timeseries found in the supplement that RF possesses a strong bias and is often distinct 310 from 

the SMAP, Dense, and in-situ markers. In general, the timeseries predictions of all models are 311 as good 

or better than those of SMAP.

Figure 8: (Left) Temporal predictions on a station in the validation dataset. (Right) Density plot of the R 
values for each station in the validation dataset.

312 In the next subsection we will look at the performance of the ensembles on two additional test datasets.

313 4.2 Oklahoma Basin Datasets

314 The Oklahoma Basin has two well-known neighboring regions of densely covered soil moisture net-

315 works. Not only were these networks used to calibrate SMAP[6] but they are often used to assess

316 downscaling efforts over a more localized region. The two regions, Fort Cobb and Washita River

317 Basin, are comprised of 17 and 20 sites of retrievable data for the study period, respectively. All of

318 these sites are located on loam soil texture according to soil grids data. The majority are classified as 319 

grasslands with a few cropland sites in Fort Cobb.

320 Washita

321 The first dataset is the Washita River basin network.

Dense Prob WDL RF SMAP

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4743411

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



18

322 In this region, all methods struggle on the Washita

323 dataset as a whole as seen in Fig 9. All methods have

324 a significant positive bias on the lower SWC readings

325 with the Prob model having severely shifted predic-
Table 2: Average site metric scores on the

Washita dataset
326 tions. The Prob model also is the only model that

327 fails to outperform SMAP’s ubRMSE score. Only the 328 Dense model outperforms SMAP on 2/3 metrics.

Figure 9: Heatmaps and metrics for algorithm predictions on the Washita dataset as a whole.
329

330 Performance metrics improve significantly on individual sites as seen in Table 2. The Dense network

331 performs well here with the best R score and the only ubRMSE to reach the 0.04m3/m3 realm of 
332 acceptable values. SMAP also exhibits good performance as expected. The other methods are unable

333 to outperform SMAP measurements on a site to site level which can be seen further in tables of station 334 

data in the supplement document.

335 Fort Cobb

336 The second dataset is composed of measurements from

337 the Fort Cobb network. Due to it’s close proximity to

338 Washita, its no suprise that we see similar trends. All

339 methods demonstrate poor fitting to the dataset as a

340 whole and the models show a strong positive bias at
Table 3: Average site 

metric scores on Fort

341 low SWC measurements. The RF model yields the Cobb dataset

342 best bias metric, although likely due to values being 343 squashed towards a mean value.

R 0.752 0.661 0.681 0.700 0.745

ubRMSE 0.041 0.062 0.046 0.044 0.046

Bias 0.053 0.246 0.076 0.006 0.011

Dense Prob WDL RF SMAP

R 0.748 0.708 0.673 0.704 0.752

ubRMSE 0.042 0.049 0.043 0.043 0.046

Bias 0.060 0.116 0.079 0.062 0.062
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344

345 Again, the model performance metrics increase on a site level (Table 3). The dense model is the

346 closest method to the 0.04 m3/m3 ubRMSE threshold established by the SMAP mission. RF also

347 scores within the realms of acceptability for this metric. The Prob and WDL models are unable to 348 

outperform SMAP on any metric with SMAP having the best R score.

Figure 10: Heatmaps and metric scores for algorithm predictions on the Fort Cobb dataset as a whole.

349 Because the Oklahoma Basin networks were used to calibrate the SMAP mission, we expect SMAP to

350 exhibit one of it’s strongest performances here. If a method can reliably match or outperform SMAP

351 here, it would suggest confidence in it’s ability to perform elsewhere. The Dense architecture is the

352 only method to reliably match or exceed SMAP on key metrics on these datasets.

353 Timeseries

Figure 11: (Left) Temporal predictions on a station in the validation dataset. (Right) Density plot of the 
R values for each station in both OK datasets.

354 Similar to the timeseries predictions for the validation set. Timeseries predictions from the Oklahoma

355 dataset help assure us that models are maintaining consistency through time. SMAP has a home field

356 advantage at these sites and only the Dense architecture is able to demonstrate parity and match
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357 SMAPs strong temporal accuracy. A timeseries of a station in the Washita dataset is plotted in Figure

358 11 along with the density plot of the R values of all of the stations in both Oklahoma datasets. Here

359 we can see that RF has a distribution shifted slightly to the left and the Dense peak is a bit below 360 that 

of SMAP.

361 In the next section we will analyze the robustness of the results and look for potential limitations.

362 4.3 Top performer

363 We can evaluate performance based on three criteria: dataset, sites, and domains. We saw in the

364 previous sections that the Dense model was consistently a top performer on datasets, but what about

365 site and domain? For site level, we compare the Dense predictions on each site against the other

366 architectures in the validation dataset. In this context, the Dense architecture outperforms every

367 other model in every other metric as seen in Fig. 12a with the exception of the bias against WDL. In

368 a head-to-head competition of all methods, Dense is the clear winner in ubRMSE and notable winner

369 in R. WDL maintains the best method for bias. To see if Dense is still the top performer by domain,

370 we look at each models performance on stations belonging to the subclasses of each categorical land

371 surface attribute as seen in Table 1. Performance is then normalized so over/underrepresented classeas

372 have equal impact on performance. This normalizing method is discussed further in future sections.

373 When normalizing for class type and abundance, we can see (Fig. 12b) the Dense model is still the

374 most consistent performer for R and ubRMSE. However, this is only slightly more dominant than the 375 

RF ensemble. WDL is again the clear top performer for bias.

(a) (b)
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Figure 12: (a) The Dense model against every other model. For each site one model outperforms the 
other, the value increases. (b) (Top) Percentage of stations where a model was the top performer for a 
given metric (Bottom) Each model predicts on all sites belonging to a specific category in Table 1. Each 
time a model outperforms every other method for that metric it gets a point. All points for that category 
are normalized so that the top performer receives one point for that category. All points are summed 
together for all categories. This produces an unbiased assessment of model performance regardless of 
imbalances in representation of classes.

376 Having a distance based model outperform the RF has additional advantages. For starters the eval-

377 uation speed for distance based models is two orders of magnitude faster (0.16s vs 17.7s on 130k 
378 samples). Therefore, it’s more feasible to predict over large domains. Additionally, the file size of the

379 RF ensemble is three orders of magnitude larger (2.3GB vs 1.03MB) which makes transferring it less

380 convenient than the simple distance based ensembles. For these reasons, it doesn’t seem reasonable to 

381 continue using a RF architecture for this task at this resolution.

382 Next we will look to see how generalizable the performance of the models are for different land surface 383 

characteristics.

384 4.4 Domain Preference

385 To further explore areas of strengths and weakness’, metrics are calculated across each of the three

386 categorical static characteristics: texture, climate class, and land cover. These static character-

387 istics are further broken down into the subclasses previously shown in Table 1. A significant drop in

388 metric performance in one of these subclasses may indicate an inability for a model to fully generalize

389 SWC from the input variables. To search for these preferences/weaknesses we compute the average

390 metric score for a method on each station in the 40 subclasses from Table 1. We then divide this

391 by the average performance for all models on that subclass. This final value gives us the relative

392 performance of a model compared to all others. If any models performance is at least 10% better or

393 worse than the mean score for all models on that subclass, then that model is deemed to have a bias

394 for that subclass. These instances are seen in Table 4. The Bias metric was excluded as the RF model

395 consistently exhibited poor bias. The only instance where a model demonstrates a negative or positive

396 performance on both ubRMSE and R was on Sand. Here, the Dense R value is 40% the mean R value

397 and the ubRMSE is 124% the mean ubRMSE value. This category constitutes only one stations worth 398 

of data and so no conclusions can be made about the models performance on sand overall.
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399

400 Although there doesn’t appear to be any strong 
or negative biases for any single static 
characteristics,

401 what if there exists a combination of inputs 
that exhibit difficulties? The next section will 
explore for

402 just such an instance.

Opn Shrblnds 0.94 1.01 1.14 0.91
6

SaClLo 1.03 1.04 1.04 0.89 3
Bsh 0.95 1.14 0.94 0.91 2
ET 1.00 1.14 0.94 0.92 2

BWh 0.99 1.13 0.99 0.90 1
Sa 1.24 0.71 1.05 1.00 1
Cl 0.85 1.03 1.09 1.03 1

Table 4: Static classes where one model displays a bias (an average metric score on that class which 
deviates 10% or more from the mean of all models) for that specific class. For R, values greater than 1.0 
outperform the mean, for ubRMSE values below 1.0 outperform the mean. No. of stations represents 
number of locations possessing that characteristic

403 4.5 Areas of Underperformance

404 To find combinations of characteristics that exhibit underperformance, the static characteristics for

405 each site in the CONUS dataset were compiled into a dataset with six dimensions (sand, clay, pH,

406 topography, climate class, land cover type) whose values were normalized for each dimension. This

407 dataset was then projected into 2D space using Principle Component Analysis (PCA). This reduction

408 allows one to visualize the high-dimensional six static variables as a 2D image. The sites from the

409 validation set are then plotted and colored if the Dense model failed to outperform SMAP’s ubRMSE

410 score at that site. The 2D projection shows a clear grouping in the box in Figure 13. This area in

411 the PCA represents Cropland land cover type with high clay content and low sand content as seen

412 in Table 5. These values are scaled by the standard deviation of the dataset for each static charac-

413 teristic. A value of −2.0, means two standard deviations below the mean. Some sites have very high

414 clay content and others, like USCRN:Versailles-3-NNW and SCAN:ElsberryPMC, have very low sand 415 

content. More than two standard deviations below the mean. Most of these sites are croplands.

416

417 This brief analysis shows that the best performing model (Dense) does not have consistent performance

Characteristic Dense Prob WDL RF No.ofStations
R

SiClLo 1.07 1.05 0.83 1.05 3
MxdFrsts 1.08 0.98 0.89 1.04 3

Bsh 1.04 1.05 0.88 1.02 2
Sa 0.44 1.181.21 1.17 1

ubRMSE
Csa 0.92 0.99 1.10 0.98 24
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418 on croplands of high clay and low sand content values. Therefore, this method would not be an ideal

419 representation of soil moisture in these conditions and should not be relied upon if a given use case

420 should arise.

Figure 13: Reprojection of test data static characteristics into PCA space. Peach dots represent sites 
where the Dense ensemble’s ubRMSE score was worse than SMAP

site Sand Clay pH Dem Koep LC
SCAN:Ku-nesa -2.02 1.52 -0.00 -1.08 Cfa Svnnas
USCRN:Manhattan-6-SSW -1.88 1.52 0.58 -1.05 Cfa Grsslnds
FLUXNET-AMERIFLUX:BouldinIslandAlfalfa -1.60 3.63 -0.12 -1.38 Csa Crplnds
FLUXNET-AMERIFLUX:BouldinIslandcorn -1.52 3.14 -0.12 -1.39 Csa Crplnds
PBO H2O:MOONEYCYN -0.82 2.01 1.40 -0.98 Csb Crplnds
SCAN:ConradAgRc -1.10 2.33 1.17 -0.31 BSk Crplnds
SCAN:ElsberryPMC -2.09 0.39 0.11 -1.24 Cfa Crplnds
SCAN:Mayday -1.38 2.17 -0.35 -1.35 Cfa Crplnds
SCAN:Moccasin -0.82 1.84 0.93 -0.14 BSk Crplnds
USCRN:Versailles-3-NNW -2.37 0.39 -0.24 -1.12 Cfa Crplnd/Natr msaic
Mean -1.56 1.89 0.34 -1.00 – –

Table 5: The deviations from mean values for static characteristics at the site level

421 4.6 Cross-fold Analysis

422 In order to assess whether our methodology is generalizable. A 10-fold cross validation was conducted.

423 This involved splitting the original dataset into 10 separate datasets containing 10% of the total stations

424 and their respective data. For each of these 10 datasets, the ensembles are trained on the other 90%

425 and then predict the in-situ values for those left out. These datasets are produced randomly and

426 so their proportions of different static characteristics is not curated. This randomness may have a 427 

negative impact on the RF ensemble as it has no weighting scheme to account for the imbalances it 428 will 

learn from.

429 In general, the metrics from the cross validation are similar to those achieved in the validation set.

430 The exception being the RF ensemble. This is likely due to the RF method relying on needing some
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431 information from each texture class. But not every cross validation subset has every texture to learn

432 from. The density curves for the R values for each station in the cross validation dataset are plotted

433 in Figure 14. Compared to SMAP, the Dense and Prob methods (the two strongest performers) have

Figure 14: (a) Density plots of the Dense and Prob R values for each station in the cross validation dataset. 
(b) Spatial distribution of R values on each station as predicted by Dense

434 their distributions tightened over higher R values. This was also the case for the WDL and RF (seen

435 in supplement), but the RF distribution is notably less impressive as expected. Density plots for

436 ubRMSE show improvement from SMAP in all methods except with RF and can be found in the

437 supplement. For the weighted methods (Dense, PRob, WDL), the cross validation appears to confirm 438 

that the weighting scheme limits biases in the training data.
Model Dataset R ubRMSE Bias

Dense Val 
Cross Val

0.632 
0.639

0.055
0.058

-0.004 -
0.000

Prob Val 
Cross Val

0.628
0.621

0.056
0.060

-0.007
-0.008

WDL Val 
Cross Val

0.594 
0.611

0.059
0.060

-0.001
-0.003

RF Val 
Cross Val

0.630
0.572

0.058
0.065

0.019 
0.004

SMAP Val 
Cross Val

0.559 
0.562

0.063
0.065

0.025 
0.023

Table 6: The mean metric score for each method on each station on the validation set vs the cross 
validation dataset

439 5 Discussion

440 The primary focus for this section is to evaluate the the robustness and generalizability of the methods.

441 Additionally, we want to look at the ensemble framework in context of this work and identify whether

442 or not there is any advantage from an ensemble prediction, or if we can achieve equally satisfactory

R
− 0.00.5 0.5 1.0
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2
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443 results with just a single ensemble member.

444 5.1 Generalizability

445 Large domain predictions only yield value if we can trust that those predictions are generalizeable,

446 or consistently accurate, across the hetereogeniety of the domain. To test whether these ensemble

447 predictions can extrapolate beyond their training dataset, we ensured that validation data belonged

448 to locations previously unseen and foreign to the models. After analysis yielded no concerning biases

449 or shortcomings, we then conducted a crossfold analysis across all sites in the training and validation

450 set. Again, we see consistent/similar performance on each site when it was previously unseen during

451 training. The last form of analysis involved monitoring spatial predictions and their associated SHAP

452 values. This analysis is discussed further in the supplement. We find that the SHAP values generally

453 adhere to expectations found in literature, however strangely all methods seem to have an inverse

454 relationship for NDVI from what is expected. Further analysis was not conducted to discern why this 455 was 

the case.

456

457 Results from these analyses demonstrate the generalizability of using ensembles of simple ML archi458 

tectures for downscaling SWC at sub-km resolutions.

459 5.2 Ensemble Advantage

Figure 15: Weighting schema for unbiased top performers. a) All models predict on all sites belonging to 
a specific category. Each time a model outperforms every other model it gets a point. b) Points are then 
normalized. This ensures under-represented categories have equal importance in assessing model 
performance. c) The normalized points are summed providing a final assessment of model performance 
on all categories.
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460 This study serves to assess the feasibility and advantage of using an ensemble of models to predict

461 SWC at higher resolutions. In the case of the two probabilistic ensembles (Dense and Prob), they

Model Metric Ens. Sand Clay Koep MCD12 Free pH Texture

Dense
R 
ubRMSE

0.632
0.055

0.621
0.056

0.615
0.056

0.607
0.058

0.618
0.057

0.631 
0.055

0.613
0.057

0.558
0.058

Bias -
0.004

-0.000 -0.001 -0.001 -0.019 -0.003 -0.006 0.001

Prob
R 
ubRMSE

0.629
0.056

0.629
0.056

0.620
0.057

0.592
0.059

0.618
0.057

0.623 
0.056

0.613
0.057

0.596
0.059

Bias -
0.007

-0.004 -0.004 -0.011 -0.008 -0.007 -0.006 -0.004

WDL
R 
ubRMSE

0.594 
0.059

0.594 
0.059

0.598
0.059

0.586
0.060

0.594 
0.059

0.594 
0.059

0.586
0.060

0.589 
0.059

Bias -
0.001

-0.004 -0.002 0.002 -0.006 -0.002 0.000 0.003

Table 7: Average station performance for each ensemble member and the ensemble as a whole on the 
validation dataset.

462 represent exceedingly simple models. The purpose of these ensembles is to permit equal representa-

463 tion for all unique land characteristics in the training process as to prevent overfitting to a dominant

464 characteristic. However, perhaps the weighting scheme for one land characteristic may be a sufficient 

465 representation of the data and an ensemble is redundant.

466

467 First we compare the average performance of each ensemble member against the ensemble in the val-

468 idation dataset. This is seen in Table 7. Here, we can see that for the Dense ensemble, the ensemble

469 is only marginally better than its unweighted member. Whereas for the Prob and WDL ensembles,

470 the Sand and Clay weighted members outperformed their respective ensembles. In all instances the

471 ensembles average performance is not significantly improved upon when compared to the unweighted 

472 member.

473

474 To ensure that there isn’t a dominant subclass that is easy to predict for both ensemble and mem-

475 bers, we compare the ensembles performance on static domains against every ensemble member. In

476 other words, for each texture/land cover/Koeppen class listed in Table 1, we compare the prediction

477 performance of individual ensemble members versus the full ensemble on that subset of data. For

478 each site a model outperforms the other, their score for that class increases. The two scores for that

479 class are normalized so that the model that outperforms on the most sites receives a value of 1. This

480 process is illustrated in Fig. 15. This is done for each metric (R, ubRMSE, Bias). These final scores
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481 are summed and these final sums represent the total normalized performance ratio for that ensemble

482 vs ensemble member pairing. These final normalized performance ratios for each ensemble-member 483 

pairing are visualized in Fig. 17.

484 When looking at these unbiased performances across subclasses, we see the same trend with no clear 
485 ensemble advantage across all of it’s members. Each ensemble achieves parity or is outperformed by 
an

486 ensemble member at least once. The Dense architecture is likely too simple to overfit a characteristic,

487 and the GLM of the WDL seems to be adept at guiding predictions and preventing overfitting. From 488 a 

purely numerical context, there does not exist a clear ensemble advantage.

489

490 Lastly, we compare the spatial predictions of the ensemble vs the unweighted ensemble member. Here

491 there exists a much starker difference in behaviour. Namely, the Dense ensemble predictions seem to

492 capture more of the land surface characteristics than the single ensemble member. This is seen in

493 Figure 16. Although not directly quantifiable, it is clear that the Ensemble is able to incorporate more

494 of the land surface characteristics into it’s prediction than the unweighted ensemble member. This

495 however, is not the case for the Prob architecture. The single ensemble member for Prob seemed do

496 distinguish the same land characteristic fidelity as the ensemble. For the WDL architecture, ensemble

497 member prediction is noisier than the ensemble. Further analysis will need to be conducted to asses 498 

whether these behaviours constitutes a substantial improvement of one over the other.
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Figure 16: Spatial Predictions comparing the Dense ensemble vs the unweighted (Free) ensemble 
member

499 The RF ensemble has a dominant ensemble advantage due to the nature of how it was trained. This

500 is discussed further in the supplement.

Figure 17: Head to head comparison of Ensembles (Bottom label) vs their member constituents (Top 
label) with normalized performances. Bars highlighted in blue indicate an instance where an ensemble 
member outperformed the ensemble on that metric (Left label). An explanation of this head to head 
competition is seen in Figure 15

501 6 Conclusion

502 The work conducted in this paper served to demonstrate that an ensemble of simple ML architecture

503 can yield acceptable SWC downscaling results. Analysis revealed that these ensembles can reliably do

504 this with strong generalizability. However, certain ensemble members can outperform or achieve parity

505 with the full ensemble on the validation dataset. This suggests there is no/little benefit one would

506 achieve from an ensemble that one would not also achieve with a rigorous sample weighting scheme.

507 Despite this, Comparison of the spatial predictions between Ensembles vs these seemingly similarly

508 performing members showed that ensembles appear to capture more of the land surface characteristics.

509 More analysis is needed to assess whether or not this is advantageous and by how much. Multi-variable

510 analysis of ensemble predictions suggest the top performing model struggles on croplands with higher

511 than average clay and silt content. This model cannot reliably outperform SMAP readings in these

512 areas. Training conducted with time-padded data benefits the performance more than the temporal

513 inaccuracies of these readings hinder the training process. This suggests that models rely on SMAP to

514 describe the temporal evolution of SWC, while using higher spatial resolution data to modulate SWC

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4743411

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



29

515 based on land characteristics. Overall, all models were able to outperform SMAP on the validation

516 and cross-fold datasets. The only exception being the RF ensemble which needs curated dated to learn 517 

from and so struggles on the random crossfold data.

518

519 Final summary:

520 • Ensembles of simple ML architectures can downscale SWC predictions to sub 1km resolutions

521 • Simpler architectures can outperform or match the performance of these ensembles on datasets.

522 However, the spatial predictions of the ensembles can capture more of the land characteristics 523 than 

the ensemble member and reduce noise.

524 • Training the models on temporally padded data provides more benefits than drawbacks in terms 525 of 

overall performance.

526 • The top performing ensemble is unreliable on croplands with higher than average clay and lower 527 than 

average sand content.
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Abstract1

Soil moisture is a key factor that influences the productivity and energy balance of ecosystems and2

biomes. Global soil moisture measurements have coarse native resolutions of 36km and infrequent3

revisits of around three days. However, these limitations are not present for many variables con-4

nected to soil moisture such as land surface temperature and evapotranspiration. For this reason5

many previous studies have aimed to discern the relationships between these higher resolution6

variables and soil moisture to produce downscaled soil moisture products.7

8

In this study, we test four ensemble machine learning models for this downscaling task. These9

ensembles use a dataset of over 1,000 sites across the US to predict soil moisture at sub-km scales.10

We find that all ensembles, particularly one with a very simple structure, can outperform SMAP11

on a cross-fold analysis of the 1,000+ sites. This ensemble has an average ubRMSE of 0.05812

vs SMAPs 0.065 and an average R of 0.639 vs SMAPs 0.562. Not all ensembles are beneficial,13

with some architectures performing better with different training weights than with ensemble14

averaging. However, some ensemble architectures capture more of the land surface characteristics15

than ensemble members. Lastly, although general improvements over SMAP are observed, there16

appears to be difficulty in consistently doing so in cropland regions with high clay and low sand17

content.18

Keywords19

Ensemble, Soil Moisture, Remote Sensing, Downscaling, SMAP20
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1 Introduction48

The water in the soil or soil water content (SWC) has a strong coupling with ecosystem stress and49

production[1][2][3]. SWC is most commonly measured in-situ by changes in electric current passing50

through the soil. Although accurate, these measurements require an investment of resources, must be51

calibrated for the soil being measured, and are impractical for observing SWC across regional areas[4].52

For larger scale SWC measurements, one can estimate SWC by observing changes in radiation inten-53

sities from absorption by water molecules in the soils surface. Field scale measurements can be made54

via drones using ground penetrating radar[5]. But for truly global scale soil moisture mapping we need55

to look for the aid of satellites.56

57

The Soil Moisture Active Passive (SMAP) radar mission launched by NASA in 2015 served to be58

the solution to global SWC measurements. This satellite combines higher resolution active radar59

measurements with lower resolution passive radiometer measurements[6]. The combination of these60

two would yield native SWC measurements at 9km per pixel and interpolated 1-3km products for61

finer resolution. However, after only three months in orbit, the power supply for the active radar62

component failed leaving just the low resolution radiometer sensor. The native resolution of the current63

radiometer sensor is 36km per pixel. This resolution can be increased using the Backus-Gilbert optimal64

interpolation algorithm to 9km per pixel with acceptable accuracy[7]. This lack of resolution has lead65

to multiple efforts to attempt a downscaling of the SMAP products to provide SWC predictions on66

scales ranging from 100m-3km. Since, even at 1km resolution, up to 80% of SWC variability is lost[8].67

At native satellite resolutions, there is a complete loss of SWC variability[8]. The spatial variability68

of SWC influences a multitude of factors including evapotranspiration, surface temperature, cloud69

formation, and convective rainfall to name a few of many. This loss in high resolution variability and70

information makes remotely sensed SWC products limiting as inputs for regional physical models. For71

this reason, an increase in understanding for SWC variability and a higher resolution SWC data product72

would have a wide range of applications and benefits in Earth science modelling[9][10][11]. Efforts to73

increase resolution or ”downscale” soil moisture measurements, generally, are either empirically based74

or derived from machine learning.75
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The most common empirical method is the DISaggregation based on a Physical and Theoretical Scale76

Change (DisPATCH) algorithm. This algorithm is a theoretical conversion of soil temperature fields77

into soil moisture fields. SWC is predicted through the use of a semi-empirical soil evaporative effi-78

ciency (SEE) model and the soils average moisture content. DisPATCH performs well on bare soils,79

but struggles when the soils are occluded either by vegetation or clouds. It also demonstrates inconsis-80

tencies in more humid regions[12][13][14]. A strong advantage however, is that DisPATCH’s resolution81

is only limited by temperature field resolution. This provides an opportunity to use higher resolution82

derived LST products for even higher resolution SWC predictions[15][16]. But higher resolution LST83

data wouldn’t improve the models performance against dense vegetation and is still limited by cloud84

cover.85

86

The machine learning field has also seen a large number of approaches for this downscaling task[17][18][19][20].87

However, a common occurrence are complex model architectures over particularly limited study areas[21][22][23].88

Complex architectures and workflows serve to further reveal the scope and capabilities of machine learn-89

ing methods in this task. But their complexities also decrease their reproducibility as they require90

an increased effort to incorporate. Additionally, many of these complex architectures have only been91

validated on smaller more homogeneous regions. Therefore, an ideal scenario is an easy to reproduce92

architecture with a wider region of validation. The works of Abbaszadeh et al. 2018 and more recently93

Xu et al. 2022 serve as great inspirations to this concept. They employed relatively simple models94

over larger regions of interest. Abbaszadeh’s approach demonstrated the advantage of an ensemble95

of random forest predictions whereas Xu’s approach demonstrated the capabilities of a simple neural96

network architecture.97

98

Using the work of Abbaszadeh and Xu as inspiration, this study will explore the performance of four99

different ensemble architectures for downscaling coarse spatial resolution soil moisture data to sub-100

km resolutions. The four ensembles include: two probabilistic estimators consisting of simple neural101

networks, a wide-deep learning (WDL) architecture modelled after the work of Xu et al. 2022, and a102

random forest (RF) model. These ensembles will be trained on a large dataset comprised of in-situ103
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soil moisture measurements and ancillary remote sensing predictors across the continental US with104

sub-km resolutions. The models will then be used to make spatial and temporal predictions of soil105

moisture. Additionally, analysis will be conducted to conclude the robustness of these methods and106

generalizability. Lastly, we will look at the viability of using ensembles. This will assess if the models107

derive any benefit from ensemble averaging, or if single ensemble members can predict adequately on108

their own. The overarching goal is to demonstrate the feasibility of using ensembles of simple machine109

learning architectures to downscale coarse resolution soil moisture products to sub-km resolutions110

across a heterogeneous landscape.111

2 Data112

Machine learning models like decision trees and non-linear regression can predict outcomes given113

certain input parameters. However, they require large amounts of data to identify meaningful trends114

and patterns that allow accurate and generalizable predictions. Therefore, to ensure our models can115

make soil moisture predictions across a large spatial area (Fig. 1), we first need to accumulate a sizable116

dataset with relevant input variables for analysis. The first step is deciding which variables to include117

in the dataset. After a process of feature selection that is covered in the supplemental document, a118

dataset comprised of the following variables was assembled: SMAP, NDVI, LST, Precipitation, Sand119

and Clay content, pH, Evapotranspiration, and Topography/Elevation.120

Training and validation locations

Training
Validation

Figure 1: For this study, data within a temporal period extending from January 1st, 2017 through
December 31st, 2021 was selected. This period ensured that soil moisture readings would include
seasonal and, potentially, yearly variability.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4743411

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



This dataset was then iteratively trained over while excluding one of these variables. The magnitude121

of drop in performance for each session was then used to assign a rank of importance for that variable.122

These variables ranked by importance are as folows:123

SMAP > LST > Sand > ET > Precip > Topography > Clay > NDV I > pH124

Next we will discuss the sources used for this data.125

2.1 Soil Moisture Active Passive (SMAP) Satellite Readings126

The remotely sensed soil moisture readings are provided by NASAs SMAP satellite mission. The SMAP127

satellite provides passive radiometer measurements which allows for inference of the soil moisture128

content in the top 5cm of soil. Satellite readings have global coverage with a return period between129

2-3 days for each pass[6]. SMAP data is offered at varying levels of post-processing. The two levels of130

interest are L3 and L4. L3 data consists of preprocessed measurements that are gridded and mapped131

spatiotemporally across the globe. L4 data is a further processed gapfilled product derived from L3.132

In principle, the L4 product offers much greater spatio-temporal coverage and would offer greater data133

availability. However, training on the L3 product yielded better results and so the L3 product was134

used throughout. The L3 product records two daily passes of AM (morning) and PM (evening) as it135

orbits. This does not mean the L3 product has an AM and PM reading for every location on Earth136

for every day. But, if there exists a reading for a location on that day, it will be either an AM or PM137

reading. In order to increase SMAP L3 temporal coverage, a simple gap filling method was employed.138

This involved ignoring the AM and PM designation and using these passes as a single daily reading.139

Any areas that experienced both AM and PM passes were averaged. This was done because in-situ140

data will be aggregated into daily readings and as such are less sensitive to the specific time of SMAP141

measurement. Therefore, SWC measurements with greater than daily resolution precision are not142

considered.143

2.2 Moderate Resolution Imaging Spectroradiometer (MODIS)144

The Moderate Resolution Imaging Spectroradiometer (MODIS) mission provides daily temporal res-145

olution remote sensing data from sun-synchronous orbits. MODIS offers a wide variety of spectral146
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reflectances across multiple wavelengths to characterize and infer the Earth surface and its properties.147

The three MODIS inferred properties we use are Land Surface Temperature (LST), Evapotranspira-148

tion (ET), and the Normalized Difference Vegetation Index (NDVI). In this study, the 500m NDVI149

(MOD13A1) product is used for training and temporal predictions. The finer 250m NDVI product150

(MOD13Q1) is used for spatial predictions. The 8-day LST (MOD11A2) product was used during151

training and prediction to avoid cloud coverage. The daily LST product (MOD21A1) was used for152

spatial prediction. The 8-day ET product (MOD16A1) based on a modified Penman-Montieth equation153

is used for ET estimation. This product has a spatial resolution of 500m.154

For land cover type classification, the MCD12Q1 product is used with a temporal resolution of 1-year155

and a spatial resolution of 500m.156

2.3 CHIRPS 2.0 Precipitation157

Precipitation data was retrieved from the Climate Hazards Center at Santa Barbara[24]. Climate158

Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a combination between models159

of terrain-induced precipitation enhancement with interpolated station data and satellite based pre-160

cipitation estimates. This data provides daily global precipitation coverage estimates at 0.05° spatial161

resolution (∼5.5km).162

163

2.4 Soil Texture and Soilgrids164

The International Soil Reference and Information Centre (ISRIC) has produced a global harmonised165

soil properties database called SoilGrids[25]. Although higher fidelity datasets are available for specific166

regions of interest from local entities, the globally consistent nature of the SoilGrids data implies167

wider implementation of methods using it. A 1km resolution version of SoilGrids was used as the168

coarser resolution will be less sensitive to interpolation artifacts. The Sand, Clay, pH, and USDA soil169

classification data products were used for this study.170
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Topography171

The Multi-Error-Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) topography172

product was used for this study[26]. This product has a spatial resolution of ∼90m.173

2.5 In-Situ soil moisture measurements174

Ground truth data for training the models were obtained from in-situ SWC measurements at sites175

distributed from two networks throughout CONUS. The International Soil Moisture Network (ISMN)176

is an international cooperation to provide and maintain a global database of in-situ soil moisture177

measurements[27]. Ameriflux is a network of flux towers spread across North America recording vari-178

ous atmospheric and meteorological data and fluxes[28]. Some sites are equipped with SWC sensors.179

Data for sites from both networks located within the study area and active during the study period180

were downloaded and used in this study. ISMN data comes with a quality flag, thus, only data with181

a ’G’ [good] quality flag were accepted.182

183

Ameriflux data does not have quality flags for all measurements. In order to maintain consistency184

with ISMN quality, the Ameriflux data was pruned to only contain readings with similar properties to185

ISMN readings with a ’G’ quality flag. This means Ameriflux samples were dropped if either the LST186

reading was below 3◦C or the SWC reading was above 0.7 m3/m3. Additionally, sites in wetland and187

chronically inundated regions were excluded from the dataset.188

SWC measurements are then aggregated to daily averages.189

2.6 Datasets190

The primary dataset is comprised of all available data from ISMN and Ameriflux soil moisture mea-191

surements within the temporal and spatial boundaries. Each location is classified by soil texture class.192

For each soil texture class, 80% of sites and all of the samples belonging to them are moved to a193

training set and the remaining 20% of sites and their samples are sent to the validation set. This194

split makes certain that not only are the validation data samples unseen by training, but they are also195

locations not seen by the model. This ensured that we can generalize the results to the greater CONUS196
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area. Each daily aggregate of in-situ measurements is accompanied by daily aggregate measurements197

for the covariate inputs. The final dataset is comprised of 657,935 samples and 1054 stations. 206 of198

which were moved into the validation dataset. For further validation, two more datasets comprising199

a small network of soil moisture stations, originally used to calibrate SMAP, will be used to assess200

performance. Further discussion of their contents can be found in the supplementary document.201

202

Next, we will look at how the information within the datasets is utilized to train the ensembles.203

3 Models and Methods204

In order to increase SWC remote sensing resolution, a multivariate dataset comprising variables with205

a known correlation to SWC was assembled. These covariates are SMAP, LST, sand and clay content,206

pH, NDVI, ET, Topography, and Precipitation. These variables are spatially confined to locations with207

in-situ soil moisture measurements that are used as a target for the training of model architectures.208

This study looks at the performance of four different ensemble architectures. Two of the ensembles are209

replications of the architectures used by Abazsddeh (RF) and Xu (WDL). The remaining two models210

are simple distance based models. The first being a feed-forward network (Dense) and the other using211

a probabilistic layer (Prob). Both of their architectures were chosen so as to have almost the same212

number of hidden parameters. The architectures of the two smaller networks and WDL architectures213

can be seen in Figures 2 and 3 respectively. More detailed descriptions of their architectures can be214

found in the supplement.215

216

Texture Land Cover Koeppen Climate Class
Loam Grasslands Dfb
Sandy Loam Savannahs Cfa
Silt Loam Woody Savannahs BSk
Clay Loam Croplands Dfc
Sandy Clay Loam Deciduous Broad-leaf forests Csb
Silty Clay Loam Open Shrublands Dsb
Loamy Sand Evergreen Needle-leaf forests Csa
Sand Mixed Forests Dfa
Clay Barren ET
N/A Cropland/Vegetation Mosaic Dsc

Urban and Built-up Bwk
Evergreen Broad-leaf forests Cfb
Closed Shrublands Bwh

Bsh
Cfc
Am
Aw

Table 1: All of the categorical land characteristic subclasses.
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Figure 2: Probabilistic model architectures
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Figure 3: WDL Architecture

3.1 Training217

In this study, we assume that static variables as seen in Table 1 either aide or hinder the models ability218

to discern SWC. Since these variables are not balanced in the dataset, the model may focus on the most219

abundant subclass types while neglecting to learn how to predict on other underrepresented subclasses.220

To account for these imbalances, instead of additional data manipulation, a simple approach is under-221

taken in the form of ensembles. Each ensemble member is trained with sample weights accounting for222

imbalances within a static characteristic. For example, an ensemble member trains on data weighted223

to the different soil texture class abundances giving extra weight/importance to correctly predicting224

the less abundant texture types. For the Dense, Probabilistic, and WDL ensembles, those static char-225

acteristics are texture, clay and sand content, Köppen climate class, land cover class, and an226

unweighted category that does not use any balancing. Therefore, there are 7 members per ensemble227
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(one per characteristic) as seen in Fig. 4.228

229

The weighting scheme for each static class follows a ”balanced” procedure, namely,230

wi =
nsamples

nclasses × ni
, (1)

where wi is the weight for class i, nsamples is the total number of samples, nclasses is the total number231

of classes and ni is the number of samples for class i.232

233

The RF model doesn’t use sample weights. Instead, balance is accounted for by training a unique234

model for each soil texture domain as done by Abbaszadeh et al.[17]. The characteristics learned for235

each texture then contribute equally to the final prediction regardless of that textures representation236

in the dataset. This RF approach does not account for imbalances in other domains.237

Temporal Resolution238

The models were trained on the 8-day composite LST product as this permitted more samples to learn239

from due to less gaps from cloud cover. This means each sample uses padded or the last recorded240

LST composite temperature as it’s daily value. This value could be, in the worst case scenario, out241

of date by 7 days. Although this is not ideal, the rationale is that SMAP would account for the242

temporal variation in SWC while the other variables would account for the spatial variation. Thus,243

these temporally coarse datasets are acceptable as long as their ”description” of the spatial variability244

is consistent for that period. This loss of temporal information seems to be offset by the increase in245

samples to learn from and is discussed further in the supplement document.246

3.2 Predictions247

For all ensembles, a prediction constitutes the average over all ensemble members. This can be repre-248

sented by the following equation:249

p(SMd|C) =
1

M

M∑
t=1

pt(SMd|C), (2)
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Figure 4: Prediction regime for the Dense, Prob, and WDL ensembles. Each ensemble member (cube)
is trained while weighted against imbalances in a specific characteristic. These predictions are then
averaged to provide an ensemble prediction.

where p(SMd|C) is the downscaled ensemble posterior. This is derived from the average of the posterior250

predictions of M ensemble member models over covariate vector C (A stacked vector of input variables).251

252

When making spatial predictions, spatial data are resampled to the highest resolution (90m) using253

nearest neighbor interpolation. This prevents interpolation error, but introduces some pixelation at254

higher levels of zoom.255

256

In order to assess the performance of the downscaling results, predictions will be evaluated on new257

spatial domains outside of the training dataset. The metrics used to assess the performance are258

ubRMSE, R, and bias.259

Bias = E[(θp − θm)] , (3)

RMSE =
√

E[(θp − θm)2] , (4)

ubRMSE =
√
RMSE2 − bias2 , (5)

R =

∑n
i (θp − θ̄p)(θm − θ̄m)√∑n
i (θp − θ̄p)2(θm − θ̄m)2

, (6)

where θp is the predicted value, θm is the measured or in-situ SWC value, and E represents the cumu-260

lative average.261

262
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Unbiased Root Mean Squared Error (ubRMSE ) is the standard metric to evaluate SWC products263

employed by NASA. The SMAP mission considers an ubRMSE of less than 0.04 m3/m3 acceptable for264

a SWC product [6]. An ideal value for ubRMSE is 0. The Pearsons correlation coefficient, R ∈ [−1, 1],265

shows linearity between changes in data points and is especially useful for time series analysis. For266

this study, an ideal value for R is 1. Lastly, bias dictates whether a model overestimates (positive) or267

underestimates (negative) values compared to ground truth. An ideal value for bias is 0.268

4 Results269

Predictions were made on three datasets. The first is a large dataset comprising the validation data set270

aside during training. The second and third comprise smaller networks of soil moisture stations located271

in Oklahoma. Predictions will be compared against in-situ measurements as well as the predictions272

made by SMAP at that location.273

4.1 CONUS Dataset274
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Figure 5: Heatmaps and metrics for algorithm predictions on the validation dataset as a whole.
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14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4743411

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Because downscaling is an attempt at spatial prediction and reasoning, it’s important that evaluations275

are done on new spatial areas. For this reason, all data in the validation dataset represents spatial276

domains previously unseen during training. This comprised ∼20% of the sites available for each texture277

class.278

279

As shown in Fig. 5, every method was able to generalize over the entire dataset better than the280

raw SMAP values. The RF predictions are strongly biased with SWC measurements being squashed281

towards 0.18m3/m3. Because of this, the lowest SWC prediction by the RF ensemble on the entire282

dataset is 0.10m3/m3. Although the RF output demonstrates a failure to capture the true variance of283

the dataset, this is not an unacceptable result as ubRMSE and R metrics are both invariant to bias.284

Thus, we can still observe spatial and temporal trends even with extreme biases. This does however285

diminish the value of RF predictions.286

287

On a site to site level, all ensembles again outperform SMAP on every metric with exception to RFs288

bias. This is displayed in Figure 6. In the same figure we also see that timeseries are less consistent from289

site to site as the mean is notably lower than the median, but the ubRMSE shows a strong agreement290

between mean and median values demonstrating general consistency for prediction accuracy. Overall,291

this suggests all methods and their predictions should be as reliable or moreso than SMAP.292

4.1.1 Spatial Predictions293

To compare the spatial predictions of each method, a 1°x 1°box is cut out around a specific in-situ294

location on a summer day with the least cloud cover. Of the resulting predictions, six examples that295

exhibit unique characteristics are presented, two of which are highlighted in Figure 7. Overall, the296

ensembles tend to exhibit similar spatial patterns. In some cases, as exhibited in the predictions around297

PBO: H2O LITTLELOST, the categorical inputs of the WDL model produce strong pixelation which298

create unpleasant and impractical outputs. Additionally the RF predictions show strong bias and little299

variability. The other four examples can be seen and are discussed in the supplement.300

Next we will look at the ensembles predictions over time.301
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Figure 7: 1°x 1°spatial SWC predictions of ensembles vs SMAP. Black pixels represent pixels masked
as ’urban’ and blue pixels are water surfaces.

4.1.2 Temporal Predictions302

Although the R metric is calculated for each site in the validation set, it’s also important to view303

the time-series plotted against each other. For this analysis, the ten sites with the most data were304

selected and the time-series from 2018 is plotted. One of which is seen in Figure 8. The same figure305

also shows the R scores for the validation dataset on each station. Here we can see that the two306

top performing models in this metric (Dense and RF) both have drastically tightened distributions307

for R values compared to SMAP. Despite RF having similar performance to Dense, it’s clear in the308

additional timeseries found in the supplement that RF possesses a strong bias and is often distinct309

from the SMAP, Dense, and in-situ markers. In general, the timeseries predictions of all models are310

as good or better than those of SMAP.311
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Figure 8: (Left) Temporal predictions on a station in the validation dataset. (Right) Density plot of
the R values for each station in the validation dataset.
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In the next subsection we will look at the performance of the ensembles on two additional test datasets.312

4.2 Oklahoma Basin Datasets313

The Oklahoma Basin has two well-known neighboring regions of densely covered soil moisture net-314

works. Not only were these networks used to calibrate SMAP[6] but they are often used to assess315

downscaling efforts over a more localized region. The two regions, Fort Cobb and Washita River316

Basin, are comprised of 17 and 20 sites of retrievable data for the study period, respectively. All of317

these sites are located on loam soil texture according to soil grids data. The majority are classified as318

grasslands with a few cropland sites in Fort Cobb.319

Washita320

Dense Prob WDL RF SMAP

R 0.752 0.661 0.681 0.700 0.745

ubRMSE 0.041 0.062 0.046 0.044 0.046

Bias 0.053 0.246 0.076 0.006 0.011

Table 2: Average site metric scores on the
Washita dataset

The first dataset is the Washita River basin network.321

In this region, all methods struggle on the Washita322

dataset as a whole as seen in Fig 9. All methods have323

a significant positive bias on the lower SWC readings324

with the Prob model having severely shifted predic-325

tions. The Prob model also is the only model that326

fails to outperform SMAP’s ubRMSE score. Only the327

Dense model outperforms SMAP on 2/3 metrics.328
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Figure 9: Heatmaps and metrics for algorithm predictions on the Washita dataset as a whole.

329

Performance metrics improve significantly on individual sites as seen in Table 2. The Dense network330

performs well here with the best R score and the only ubRMSE to reach the 0.04m3/m3 realm of331
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acceptable values. SMAP also exhibits good performance as expected. The other methods are unable332

to outperform SMAP measurements on a site to site level which can be seen further in tables of station333

data in the supplement document.334

Fort Cobb335

Dense Prob WDL RF SMAP

R 0.748 0.708 0.673 0.704 0.752

ubRMSE 0.042 0.049 0.043 0.043 0.046

Bias 0.060 0.116 0.079 0.062 0.062

Table 3: Average site metric scores on Fort
Cobb dataset

The second dataset is composed of measurements from336

the Fort Cobb network. Due to it’s close proximity to337

Washita, its no suprise that we see similar trends. All338

methods demonstrate poor fitting to the dataset as a339

whole and the models show a strong positive bias at340

low SWC measurements. The RF model yields the341

best bias metric, although likely due to values being342

squashed towards a mean value.343

344

Again, the model performance metrics increase on a site level (Table 3). The dense model is the345

closest method to the 0.04 m3/m3 ubRMSE threshold established by the SMAP mission. RF also346

scores within the realms of acceptability for this metric. The Prob and WDL models are unable to347

outperform SMAP on any metric with SMAP having the best R score.348
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Figure 10: Heatmaps and metric scores for algorithm predictions on the Fort Cobb dataset as a whole.

Because the Oklahoma Basin networks were used to calibrate the SMAP mission, we expect SMAP to349

exhibit one of it’s strongest performances here. If a method can reliably match or outperform SMAP350

here, it would suggest confidence in it’s ability to perform elsewhere. The Dense architecture is the351

only method to reliably match or exceed SMAP on key metrics on these datasets.352
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Timeseries353
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Figure 11: (Left) Temporal predictions on a station in the validation dataset. (Right) Density plot of
the R values for each station in both OK datasets.

Similar to the timeseries predictions for the validation set. Timeseries predictions from the Oklahoma354

dataset help assure us that models are maintaining consistency through time. SMAP has a home field355

advantage at these sites and only the Dense architecture is able to demonstrate parity and match356

SMAPs strong temporal accuracy. A timeseries of a station in the Washita dataset is plotted in Figure357

11 along with the density plot of the R values of all of the stations in both Oklahoma datasets. Here358

we can see that RF has a distribution shifted slightly to the left and the Dense peak is a bit below359

that of SMAP.360

In the next section we will analyze the robustness of the results and look for potential limitations.361

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4743411

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



4.3 Top performer362

We can evaluate performance based on three criteria: dataset, sites, and domains. We saw in the363

previous sections that the Dense model was consistently a top performer on datasets, but what about364

site and domain? For site level, we compare the Dense predictions on each site against the other365

architectures in the validation dataset. In this context, the Dense architecture outperforms every366

other model in every other metric as seen in Fig. 12a with the exception of the bias against WDL. In367

a head-to-head competition of all methods, Dense is the clear winner in ubRMSE and notable winner368

in R. WDL maintains the best method for bias. To see if Dense is still the top performer by domain,369

we look at each models performance on stations belonging to the subclasses of each categorical land370

surface attribute as seen in Table 1. Performance is then normalized so over/underrepresented classeas371

have equal impact on performance. This normalizing method is discussed further in future sections.372

When normalizing for class type and abundance, we can see (Fig. 12b) the Dense model is still the373

most consistent performer for R and ubRMSE. However, this is only slightly more dominant than the374

RF ensemble. WDL is again the clear top performer for bias.375
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Figure 12: (a) The Dense model against every other model. For each site one model outperforms the
other, the value increases. (b) (Top) Percentage of stations where a model was the top performer for
a given metric (Bottom) Each model predicts on all sites belonging to a specific category in Table 1.
Each time a model outperforms every other method for that metric it gets a point. All points for that
category are normalized so that the top performer receives one point for that category. All points
are summed together for all categories. This produces an unbiased assessment of model performance
regardless of imbalances in representation of classes.

Having a distance based model outperform the RF has additional advantages. For starters the eval-376

uation speed for distance based models is two orders of magnitude faster (0.16s vs 17.7s on 130k377
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samples). Therefore, it’s more feasible to predict over large domains. Additionally, the file size of the378

RF ensemble is three orders of magnitude larger (2.3GB vs 1.03MB) which makes transferring it less379

convenient than the simple distance based ensembles. For these reasons, it doesn’t seem reasonable to380

continue using a RF architecture for this task at this resolution.381

Next we will look to see how generalizable the performance of the models are for different land surface382

characteristics.383

4.4 Domain Preference384

To further explore areas of strengths and weakness’, metrics are calculated across each of the three385

categorical static characteristics: texture, climate class, and land cover. These static character-386

istics are further broken down into the subclasses previously shown in Table 1. A significant drop in387

metric performance in one of these subclasses may indicate an inability for a model to fully generalize388

SWC from the input variables. To search for these preferences/weaknesses we compute the average389

metric score for a method on each station in the 40 subclasses from Table 1. We then divide this390

by the average performance for all models on that subclass. This final value gives us the relative391

performance of a model compared to all others. If any models performance is at least 10% better or392

worse than the mean score for all models on that subclass, then that model is deemed to have a bias393

for that subclass. These instances are seen in Table 4. The Bias metric was excluded as the RF model394

consistently exhibited poor bias. The only instance where a model demonstrates a negative or positive395

performance on both ubRMSE and R was on Sand. Here, the Dense R value is 40% the mean R value396

and the ubRMSE is 124% the mean ubRMSE value. This category constitutes only one stations worth397

of data and so no conclusions can be made about the models performance on sand overall.398

399

Although there doesn’t appear to be any strong or negative biases for any single static characteristics,400

what if there exists a combination of inputs that exhibit difficulties? The next section will explore for401

just such an instance.402
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Characteristic Dense Prob WDL RF No. of Stations
R

SiClLo 1.07 1.05 0.83 1.05 3
Mxd Frsts 1.08 0.98 0.89 1.04 3

Bsh 1.04 1.05 0.88 1.02 2
Sa 0.44 1.21 1.17 1.18 1

ubRMSE
Csa 0.92 0.99 1.10 0.98 24

Opn Shrblnds 0.94 1.01 1.14 0.91 6
SaClLo 1.03 1.04 1.04 0.89 3
Bsh 0.95 1.14 0.94 0.91 2
ET 1.00 1.14 0.94 0.92 2
BWh 0.99 1.13 0.99 0.90 1
Sa 1.24 0.71 1.05 1.00 1
Cl 0.85 1.03 1.09 1.03 1

Table 4: Static classes where one model displays a bias (an average metric score on that class which
deviates 10% or more from the mean of all models) for that specific class. For R, values greater than 1.0
outperform the mean, for ubRMSE values below 1.0 outperform the mean. No. of stations represents
number of locations possessing that characteristic

4.5 Areas of Underperformance403

To find combinations of characteristics that exhibit underperformance, the static characteristics for404

each site in the CONUS dataset were compiled into a dataset with six dimensions (sand, clay, pH,405

topography, climate class, land cover type) whose values were normalized for each dimension. This406

dataset was then projected into 2D space using Principle Component Analysis (PCA). This reduction407

allows one to visualize the high-dimensional six static variables as a 2D image. The sites from the408

validation set are then plotted and colored if the Dense model failed to outperform SMAP’s ubRMSE409

score at that site. The 2D projection shows a clear grouping in the box in Figure 13. This area in410

the PCA represents Cropland land cover type with high clay content and low sand content as seen411

in Table 5. These values are scaled by the standard deviation of the dataset for each static charac-412

teristic. A value of −2.0, means two standard deviations below the mean. Some sites have very high413

clay content and others, like USCRN:Versailles-3-NNW and SCAN:ElsberryPMC, have very low sand414

content. More than two standard deviations below the mean. Most of these sites are croplands.415

416

This brief analysis shows that the best performing model (Dense) does not have consistent performance417

on croplands of high clay and low sand content values. Therefore, this method would not be an ideal418

representation of soil moisture in these conditions and should not be relied upon if a given use case419

should arise.420
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FLUXNET-AMERIFLUX:BouldinIslandAlfalfa

FLUXNET-AMERIFLUX:BouldinIslandcorn

PBO_H2O:MOONEYCYN

SCAN:ConradAgRc

SCAN:ElsberryPMC

SCAN:Ku-nesa

SCAN:Mayday
SCAN:Moccasin

USCRN:Manhattan-6-SSW

USCRN:Versailles-3-NNW

ubRMSE
Dense < SMAP

Dense > SMAP

Figure 13: Reprojection of test data static characteristics into PCA space. Peach dots represent sites
where the Dense ensemble’s ubRMSE score was worse than SMAP

site Sand Clay pH Dem Koep LC
SCAN:Ku-nesa -2.02 1.52 -0.00 -1.08 Cfa Svnnas
USCRN:Manhattan-6-SSW -1.88 1.52 0.58 -1.05 Cfa Grsslnds
FLUXNET-AMERIFLUX:BouldinIslandAlfalfa -1.60 3.63 -0.12 -1.38 Csa Crplnds
FLUXNET-AMERIFLUX:BouldinIslandcorn -1.52 3.14 -0.12 -1.39 Csa Crplnds
PBO H2O:MOONEYCYN -0.82 2.01 1.40 -0.98 Csb Crplnds
SCAN:ConradAgRc -1.10 2.33 1.17 -0.31 BSk Crplnds
SCAN:ElsberryPMC -2.09 0.39 0.11 -1.24 Cfa Crplnds
SCAN:Mayday -1.38 2.17 -0.35 -1.35 Cfa Crplnds
SCAN:Moccasin -0.82 1.84 0.93 -0.14 BSk Crplnds
USCRN:Versailles-3-NNW -2.37 0.39 -0.24 -1.12 Cfa Crplnd/Natr msaic
Mean -1.56 1.89 0.34 -1.00 – –

Table 5: The deviations from mean values for static characteristics at the site level

4.6 Cross-fold Analysis421

In order to assess whether our methodology is generalizable. A 10-fold cross validation was conducted.422

This involved splitting the original dataset into 10 separate datasets containing 10% of the total stations423

and their respective data. For each of these 10 datasets, the ensembles are trained on the other 90%424

and then predict the in-situ values for those left out. These datasets are produced randomly and425

so their proportions of different static characteristics is not curated. This randomness may have a426

negative impact on the RF ensemble as it has no weighting scheme to account for the imbalances it427

will learn from.428

In general, the metrics from the cross validation are similar to those achieved in the validation set.429

The exception being the RF ensemble. This is likely due to the RF method relying on needing some430

information from each texture class. But not every cross validation subset has every texture to learn431

from. The density curves for the R values for each station in the cross validation dataset are plotted432

in Figure 14. Compared to SMAP, the Dense and Prob methods (the two strongest performers) have433
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Figure 14: (a) Density plots of the Dense and Prob R values for each station in the cross validation
dataset. (b) Spatial distribution of R values on each station as predicted by Dense

their distributions tightened over higher R values. This was also the case for the WDL and RF (seen434

in supplement), but the RF distribution is notably less impressive as expected. Density plots for435

ubRMSE show improvement from SMAP in all methods except with RF and can be found in the436

supplement. For the weighted methods (Dense, PRob, WDL), the cross validation appears to confirm437

that the weighting scheme limits biases in the training data.438

Model Dataset R ubRMSE Bias

Dense
Val 0.632 0.055 -0.004

Cross Val 0.639 0.058 -0.000

Prob
Val 0.628 0.056 -0.007

Cross Val 0.621 0.060 -0.008

WDL
Val 0.594 0.059 -0.001

Cross Val 0.611 0.060 -0.003

RF
Val 0.630 0.058 0.019

Cross Val 0.572 0.065 0.004

SMAP
Val 0.559 0.063 0.025

Cross Val 0.562 0.065 0.023

Table 6: The mean metric score for each method on each station on the validation set vs the cross
validation dataset

5 Discussion439

The primary focus for this section is to evaluate the the robustness and generalizability of the methods.440

Additionally, we want to look at the ensemble framework in context of this work and identify whether441

or not there is any advantage from an ensemble prediction, or if we can achieve equally satisfactory442

results with just a single ensemble member.443
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5.1 Generalizability444

Large domain predictions only yield value if we can trust that those predictions are generalizeable,445

or consistently accurate, across the hetereogeniety of the domain. To test whether these ensemble446

predictions can extrapolate beyond their training dataset, we ensured that validation data belonged447

to locations previously unseen and foreign to the models. After analysis yielded no concerning biases448

or shortcomings, we then conducted a crossfold analysis across all sites in the training and validation449

set. Again, we see consistent/similar performance on each site when it was previously unseen during450

training. The last form of analysis involved monitoring spatial predictions and their associated SHAP451

values. This analysis is discussed further in the supplement. We find that the SHAP values generally452

adhere to expectations found in literature, however strangely all methods seem to have an inverse453

relationship for NDVI from what is expected. Further analysis was not conducted to discern why this454

was the case.455

456

Results from these analyses demonstrate the generalizability of using ensembles of simple ML archi-457

tectures for downscaling SWC at sub-km resolutions.458

5.2 Ensemble Advantage459

Figure 15: Weighting schema for unbiased top performers. a) All models predict on all sites belonging
to a specific category. Each time a model outperforms every other model it gets a point. b) Points are
then normalized. This ensures under-represented categories have equal importance in assessing model
performance. c) The normalized points are summed providing a final assessment of model performance
on all categories.

This study serves to assess the feasibility and advantage of using an ensemble of models to predict460

SWC at higher resolutions. In the case of the two probabilistic ensembles (Dense and Prob), they461
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Model Metric Ens. Sand Clay Koep MCD12 Free pH Texture

Dense
R 0.632 0.621 0.615 0.607 0.618 0.631 0.613 0.558
ubRMSE 0.055 0.056 0.056 0.058 0.057 0.055 0.057 0.058
Bias -0.004 -0.000 -0.001 -0.001 -0.019 -0.003 -0.006 0.001

Prob
R 0.629 0.629 0.620 0.592 0.618 0.623 0.613 0.596
ubRMSE 0.056 0.056 0.057 0.059 0.057 0.056 0.057 0.059
Bias -0.007 -0.004 -0.004 -0.011 -0.008 -0.007 -0.006 -0.004

WDL
R 0.594 0.594 0.598 0.586 0.594 0.594 0.586 0.589
ubRMSE 0.059 0.059 0.059 0.060 0.059 0.059 0.060 0.059
Bias -0.001 -0.004 -0.002 0.002 -0.006 -0.002 0.000 0.003

Table 7: Average station performance for each ensemble member and the ensemble as a whole on the
validation dataset.

represent exceedingly simple models. The purpose of these ensembles is to permit equal representa-462

tion for all unique land characteristics in the training process as to prevent overfitting to a dominant463

characteristic. However, perhaps the weighting scheme for one land characteristic may be a sufficient464

representation of the data and an ensemble is redundant.465

466

First we compare the average performance of each ensemble member against the ensemble in the val-467

idation dataset. This is seen in Table 7. Here, we can see that for the Dense ensemble, the ensemble468

is only marginally better than its unweighted member. Whereas for the Prob and WDL ensembles,469

the Sand and Clay weighted members outperformed their respective ensembles. In all instances the470

ensembles average performance is not significantly improved upon when compared to the unweighted471

member.472

473

To ensure that there isn’t a dominant subclass that is easy to predict for both ensemble and mem-474

bers, we compare the ensembles performance on static domains against every ensemble member. In475

other words, for each texture/land cover/Koeppen class listed in Table 1, we compare the prediction476

performance of individual ensemble members versus the full ensemble on that subset of data. For477

each site a model outperforms the other, their score for that class increases. The two scores for that478

class are normalized so that the model that outperforms on the most sites receives a value of 1. This479

process is illustrated in Fig. 15. This is done for each metric (R, ubRMSE, Bias). These final scores480

are summed and these final sums represent the total normalized performance ratio for that ensemble481

vs ensemble member pairing. These final normalized performance ratios for each ensemble-member482

pairing are visualized in Fig. 17.483

When looking at these unbiased performances across subclasses, we see the same trend with no clear484
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ensemble advantage across all of it’s members. Each ensemble achieves parity or is outperformed by an485

ensemble member at least once. The Dense architecture is likely too simple to overfit a characteristic,486

and the GLM of the WDL seems to be adept at guiding predictions and preventing overfitting. From487

a purely numerical context, there does not exist a clear ensemble advantage.488

489

Lastly, we compare the spatial predictions of the ensemble vs the unweighted ensemble member. Here490

there exists a much starker difference in behaviour. Namely, the Dense ensemble predictions seem to491

capture more of the land surface characteristics than the single ensemble member. This is seen in492

Figure 16. Although not directly quantifiable, it is clear that the Ensemble is able to incorporate more493

of the land surface characteristics into it’s prediction than the unweighted ensemble member. This494

however, is not the case for the Prob architecture. The single ensemble member for Prob seemed do495

distinguish the same land characteristic fidelity as the ensemble. For the WDL architecture, ensemble496

member prediction is noisier than the ensemble. Further analysis will need to be conducted to asses497

whether these behaviours constitutes a substantial improvement of one over the other.498

91 W 91.5 W

36.5 N

37 N
Ensemble Prediction

91 W 91.5 W

Unweighted Member Prediction

0.20

0.25

0.30

0.35

SW
C

 m
3 /m

3

Figure 16: Spatial Predictions comparing the Dense ensemble vs the unweighted (Free) ensemble
member

The RF ensemble has a dominant ensemble advantage due to the nature of how it was trained. This499

is discussed further in the supplement.500
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Dense Prob WDL Dense Prob WDL Dense Prob WDL Dense Prob WDL Dense Prob WDL Dense Prob WDL Dense Prob WDL

Sand Clay Koep MCD12 Free pH Texture
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Figure 17: Head to head comparison of Ensembles (Bottom label) vs their member constituents (Top
label) with normalized performances. Bars highlighted in blue indicate an instance where an ensemble
member outperformed the ensemble on that metric (Left label). An explanation of this head to head
competition is seen in Figure 15

6 Conclusion501

The work conducted in this paper served to demonstrate that an ensemble of simple ML architecture502

can yield acceptable SWC downscaling results. Analysis revealed that these ensembles can reliably do503

this with strong generalizability. However, certain ensemble members can outperform or achieve parity504

with the full ensemble on the validation dataset. This suggests there is no/little benefit one would505

achieve from an ensemble that one would not also achieve with a rigorous sample weighting scheme.506

Despite this, Comparison of the spatial predictions between Ensembles vs these seemingly similarly507

performing members showed that ensembles appear to capture more of the land surface characteristics.508

More analysis is needed to assess whether or not this is advantageous and by how much. Multi-variable509

analysis of ensemble predictions suggest the top performing model struggles on croplands with higher510

than average clay and silt content. This model cannot reliably outperform SMAP readings in these511

areas. Training conducted with time-padded data benefits the performance more than the temporal512

inaccuracies of these readings hinder the training process. This suggests that models rely on SMAP to513

describe the temporal evolution of SWC, while using higher spatial resolution data to modulate SWC514

based on land characteristics. Overall, all models were able to outperform SMAP on the validation515

and cross-fold datasets. The only exception being the RF ensemble which needs curated dated to learn516

from and so struggles on the random crossfold data.517

518

Final summary:519
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• Ensembles of simple ML architectures can downscale SWC predictions to sub 1km resolutions520

• Simpler architectures can outperform or match the performance of these ensembles on datasets.521

However, the spatial predictions of the ensembles can capture more of the land characteristics522

than the ensemble member and reduce noise.523

• Training the models on temporally padded data provides more benefits than drawbacks in terms524

of overall performance.525

• The top performing ensemble is unreliable on croplands with higher than average clay and lower526

than average sand content.527
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