
TYPE Review

PUBLISHED 01 March 2024

DOI 10.3389/fams.2024.1221051

OPEN ACCESS

EDITED BY

Axel Hutt,

Inria Nancy - Grand-Est Research Centre,

France

REVIEWED BY

Christos Volos,

Aristotle University of Thessaloniki, Greece

André Röhm,

The University of Tokyo, Japan

*CORRESPONDENCE

Ulrich Parlitz

ulrich.parlitz@ds.mpg.de

RECEIVED 11 May 2023

ACCEPTED 15 January 2024

PUBLISHED 01 March 2024

CITATION

Parlitz U (2024) Learning from the past:

reservoir computing using delayed variables.

Front. Appl. Math. Stat. 10:1221051.

doi: 10.3389/fams.2024.1221051

COPYRIGHT

© 2024 Parlitz. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Learning from the past: reservoir
computing using delayed
variables

Ulrich Parlitz1,2*

1Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen,

Germany, 2Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen,

Göttingen, Germany

Reservoir computing is a machine learning method that is closely linked to

dynamical systems theory. This connection is highlighted in a brief introduction

to the general concept of reservoir computing. We then address a recently

suggested approach to improve the performance of reservoir systems by

incorporating past values of the input signal or of the reservoir state variables

into the readout used to forecast the input or cross-predict other variables of

interest. The e�ciency of this extension is illustrated by a minimal example in

which a three-dimensional reservoir system based on the Lorenz-63 model is

used to predict the variables of a chaotic Rössler system.

KEYWORDS

echo state networks, echo state property, generalized synchronization, chaotic time

series prediction, non-linear observer, delay embedding, forced systems

1 Introduction

Machine learning methods are becoming increasingly important in science and in

everyday life, and new approaches and concepts are being developed all the time. One

method for predicting temporal developments that was already proposed at the beginning

of themillennium is reservoir computing. In this approach, a reservoir of dynamic elements,

often consisting of a recurrent neural network, is driven by a (known) input signal, and

the dynamic response of the reservoir system is used to predict the future evolution of

the input signal or other relevant quantities, e.g., by the linear superposition of its state

variables. This basic concept was developed1 and publicized independently by Jaeger [4]

andMaass et al. [5] in 2001 and 2002, respectively, and represents a special form of random

projection networks [6]. Jaeger introduced the so-called echo state networks, i.e., recurrent

neural networks whose nodes consist of one-dimensional dynamic elements with a sigmoid

activation function. The reservoir system presented by Maass et al. consisted of a neural

system with spike dynamics and was called liquid state machine [5, 7]. Only later did

the generic term reservoir computing become established for the entire class of machine

learning methods that exploit the dynamic response of a driven dynamical system for

prediction and classification of input signals [8].

1 The basic idea of reservoir computing was already described in publications by Kirby [1], Schomaker

[2], and Dominey [3] before the work of Jaeger and Maass et al. appeared.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2024.1221051
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2024.1221051&domain=pdf&date_stamp=2024-03-01
mailto:ulrich.parlitz@ds.mpg.de
https://doi.org/10.3389/fams.2024.1221051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2024.1221051/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

Reservoir computing differs from most other machine learning

methods by the nature of the training, which here essentially

consists of solving a linear system of equations to determine the

weights of the linear superposition of (functions of) the reservoir

variables [9]. However, this fast learning step usually has to be

repeated several times in order to optimize the hyperparameters

of the reservoir system, i.e., the parameters that control its

dynamical features. Nevertheless, the overall training of a reservoir

system is generally faster than, for example, that of a deep neural

network. However, as Jaeger pointed out in his foreword to the

book Reservoir Computing: Theory, Physical Implementations, and

Applications by Nakajima and Fischer [10], a deeper understanding

of reservoir computing is still lacking despite extensive research

since its invention.

Over the past 20 years, not only has the methodology of

reservoir computing been researched and improved, but practical

applications have also been proposed, including, for example,

speech recognition [11], detection of epileptic seizures [12],

control methods [13], online prediction of movement data [14],

approximation of Koopman operators [15], or diverse approaches

for signal classification [16–26], including data structure prior to

extreme events [27] and reservoir time series analysis to distinguish

different signals [28].

In order to achieve fast and energy-efficient performance,

hardware implementations of reservoir systems have been devised,

opening a new field called physical reservoir computing [29],

often based on optical systems [e.g., [30–33]] and other hardware

platforms [26, 34–37]. A readable introduction to reservoir

computation in general and physical reservoir computing in

particular can be found in the review article by Cucchi et al. [38].

For more details and examples, the book by Nakajima and Fischer

[10] is another excellent source.

While reservoir computing has been extensively studied in the

machine learning community since the seminal works of Jaeger and

Maass et al., it initially received little attention in the field of non-

linear dynamics, with a few exceptions [39–41]. This changed in

the last 7 years, mainly due to the work of Ott and collaborators

[42–45]. The main reasons for this are the generally increasing

interest in machine learning methods and applications, as well as

the fact that reservoir computing is a very interesting and not yet

fully explored dynamic process.

A key feature of suitable reservoir systems is their ability

to generate a unique response for a given input time series,

independent from the reservoir system’s initial conditions. In

the context of reservoir computing, this feature is called echo

state property or fading memory. If the known input signal

itself originates from a dynamical system, this system and the

reservoir system form a pair of uni-directionally coupled (sub-)

systems where generalized synchronization can occur. Generalized

synchronization is a necessary condition for reproducible response

and thus for the functionality of the reservoir system and closely

related to the echo state property. The aim of this article is

therefore to look at reservoir computing from a non-linear

dynamics perspective in order to deepen the understanding of

how it works and to provide a review of recently proposed

extensions using delayed variables. To this end, in Sections 2.1–2.3,

we first formulate the concept of reservoir computing in general

terms, i.e., not limited to the use of recurrent neural networks

as reservoir systems. In Section 2.4, the echo state property and

its relation to generalized synchronization will be discussed. The

classical examples of general-purpose reservoir systems are echo

state networks, which are introduced in Section 2.5. In Section 3.1,

we present an extension of the output function by adding input and

state variables from the past. This promising approach is illustrated

in Sections 3.2–3.5 using a minimal reservoir system consisting

of a single three-dimensional system based on the Lorenz-63

differential equations, which is used to predict the variables of

a chaotic Rössler system. Some other concepts to improve the

performance of reservoir computing will be briefly discussed in

Section 4.

2 Fundamentals of reservoir
computing

2.1 Continuous and discrete reservoir
systems

In reservoir computing, an input signal drives a dynamical

system, the reservoir, and the state variables of this system

(evolving in time) are used for generating some desired output,

like a temporal forecast of the input signal or a cross-prediction

of some other signal that is assumed to be related to the

input signal.

The concept of reservoir computing can be implemented

and studied in continuous or discrete time. The discrete time

framework is used, for example, if a time series sampled in time

is input of a dynamical system simulated on a digital computer

(e.g., a recurrent network). With discrete time, the reservoir

system reads2

r[n+ 1] = f (r[n], u[n+ 1]) (1)

where r[n] ∈ R
Nres is the state of the reservoir system and

u[n] ∈ R
Nin the input time series, that is often given by sampling

a time continuous signal u[n] = u(nTsmp) where Tsmp denotes the

sampling time.

If reservoir computing is implemented on an analog computer

or using any driven real-world (physical, biological, etc.) system,

a formal description using continuous time systems [i.e., ordinary

differential equations (ODEs)] is in general more appropriate. If

the input u(t) ∈ R
Nin is given by Nin signals in time, the reservoir

system reads

ṙ = f (r, u) (2)

where r ∈ R
Nres is the state of the reservoir system and Nres its

dimension.

2 Sometimes, u[n] is used instead of u[n + 1] to define a discrete reservoir

system r[n + 1] = f (r[n], u[n])). However, the definition (Equation 1) is better

suited to include in the output Equations (3) and (4) the most current

information at time n, which is given by r[n] and u[n].

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

The output v ∈ R
Nout of the reservoir system is given by a

parameterized readout function g(u, r) of the reservoir state r and

the input u.3

During training (or learning), the parameters of g are the only

quantities to be estimated and adapted. Since the functional form

of the function g should enable efficient training, functions that are

linear in their parameters are preferred for reservoir computing

design, such as linear superpositions of Kj basis functions bkj to

define the component vj of the output v as

vj =

Kj
∑

k=1

wkjb
k
j (u, r) (3)

where the coefficients wkj constitute the parameters to be estimated

using training data (see Section 2.3). The basis functions bkj can

be any linear or non-linear function [e.g., polynomials [43] and

radial basis functions [46]], but in most applications affine linear

or quadratic polynomials have been used as readout functions of

reservoir systems. Affine linear output functions

v = g(u, r) = (1; u; r)Wout = xWout ∈ R
Nout (4)

are given by an Nesv = 1 + Nin + Nres dimensional extended state

vector x = (1; u; r) ∈ R
Nesv and an Nesv × Nout output matrix

W
out whose elements are the parameters to be estimated during

training [here (·; ·; ·) denotes concatenation and x is a row vector].

Equation (4) provides the Nout dimensional output signal (or time

series) v where the j-th column of Wout contains superposition

coefficientswkj for computing the element vj of the row vector v and

the number of basis functions Kj equals Nesv for all j = 1, ...,Nout

components of the output v.

In general, the number of basis functions Kj can be different for

each component vj and can be larger than the dimensionNesv of the

extended state vector x, for example, if (additional) non-linear basis

functions like polynomials [43] or radial basis functions are used.

Such non-linear output functions not only extend the possibilities

of approximating complicated functional relations, but can also be

used to break unwanted symmetries of the reservoir system [47].

In this and the following sections, the reservoir systems are

assumed to be finite dimensional. However, also dynamical systems

with an infinite dimensional state space, like delay differential

equations or extended systems described by partial differential

equations may act as dynamical reservoirs. For example, reservoir

computing using feedback loops (e.g., ring lasers) has been

demonstrated experimentally and in numerical simulations. The

dynamics of these delay-based reservoir systems4 is governed by

delay differential equations5 ṙ(t) = f (r(t), r(t − τ), u(t)) where τ

equals the time delay due to the internal feedback loop (round-

trip time of the light in case of a ring laser, for example). The

3 Depending on the application of the reservoir system, the output may be

defined as a function of the reservoir state r, only. This is often the case, for

example, when implementing autonomous reservoir systems whose output

signal is fed back into their input, see Section 2.2.2.

4 The term delay-based reservoir system is used if the internal dynamics of

the reservoir system contains time delays. This is to be distinguished from the

use of delayed variables in the output function, which is the main topic of the

current review, see Section 3.

5 Delay-based reservoir systems are often described by a single variable r.

output v(t) =
∑N

n=1 wnr(t − τ n−N
N) is obtained by sampling the

solution r(tn) at discrete times tn = t − τ N−n
N along the delay

line. For a more detailed description of this type of delay-based

reservoir computing, see the pioneering work of Appeltant et al.

[30, 48], a recent review by Chembo [49], references [31, 32, 50, 51]

for implementations and extensions, and Hülser et al. [52] for a

detailed discussion of the influence of (multiple) delay times as

successfully used by Stelzer et al. [53]. We will not go further

into delay-based reservoir computing, but most of the aspects and

features discussed below also apply to this approach.

2.2 Forecasting, cross-prediction, and
classification

Reservoir computing can be used for essentially all machine

learning tasks including:

(i) forecasting a future value u(t+Tprd) of the input signal u(t)

(in the case of discrete systems: u[n] 7→ u[n+ Nprd]),

(ii) cross-predicting another variable y(t) or its future value

y(t + Tprd), or

(iii) classifying the input by some constant label.

In all these cases, the reservoir system is trained such that it

provides a task-dependent target value (the training is described in

more detail in Section 2.3). Tasks (i) and (ii) can also be combined

to learn and provide a signal, which is then used to control another

dynamical process. Using different readout functions, a single

reservoir system can perform different tasks like (i), (ii), and (iii)

in parallel.

There are two main options for predicting the evolution of a

target value over time: (a) performing the desired prediction in a

single step or (b) decomposing the prediction interval into many

small steps, resulting in an iterated prediction for discrete systems

and an autonomous ODE in the case of a continuous reservoir

system. Both approaches are now described in more detail.

2.2.1 Single-step prediction
With single-step prediction, the reservoir system is trained such

that its output v(t) provides (an estimate of) the desired future

value u(t + Tprd) or y(t + Tprd) (analogously for discrete systems

predicting Nprd steps ahead). With this method, the reservoir

system continuously generates forecasts of the variables of interest

that may be used, for example, in control loops (to compensate

latency) or for early warning of upcoming (extreme) events. This

approach will be illustrated in Section 3.2. The larger the prediction

time Tprd, however, the more complicated is the function to be

approximated (in particular for signals from chaotic systems).

Therefore, an iterated prediction with a sequence of smaller time

steps is often more advantageous [54, 55] as will be discussed in the

next section.

2.2.2 Output feedback and iterated prediction
Let us first consider the case of a discrete reservoir systemwhere

the output v[n] is a function g(r[n]) = (1; r[n])Wout of the state of

the reservoir system r[n], only, and provides an estimate of the next

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

future value of the input u[n + 1], which is then used as input for

the next prediction step. With this feedback, the reservoir system

becomes an autonomous system6

r[n+ 1] = f (r[n], g(r[n])) (5)

and after Nprd iteration steps, the desired prediction of u[n+Nprd]

is obtained. If the output of the reservoir system is y 6= u, then

the input u[n + 1] for the next temporal iteration step has to be

reconstructed from y[n + 1] to close the feedback loop, e.g., with

the help of another reservoir system trained for cross-prediction

y 7→ u. In general, however, for predicting another target variable,

y[n + Nprd]), in some applications, one would first use iterated

prediction to estimate u[n + Nprd] and then use the same7 or

another reservoir system to cross-predict y[n + Nprd]) from u[n+

Nprd].

Feedback can also be used to predict the future evolution of the

input u(t+Tprd) using a continuous reservoir system (Equation 2).

In this case, the output v(t) = g(r(t)) = (1; r(t))Wout of the

reservoir system is trained to approximate the input u(t), and

the result is substituted in Equation (2) for u(t). The resulting

autonomous reservoir system

ṙ = f (r, g(r)) (6)

is integrated up to time t+Tprd to obtain u(t+Tprd) ≈ v(t+Tprd).

Of course, if the input signal originates from a chaotic system

and if the reservoir system has learned this dynamics, sensitive

dependence on initial conditions will lead to predictions that

deviate exponentially from the true input signal as Tprd increases,

i.e., only short- or medium-term forecasts are possible. This

prediction horizon is often compared with the Lyapunov time,

which is the inverse of the largest Lyapunov exponent of the

dynamical system that generated the input signal. Similar to

synchronization with sporadic coupling [56, 57], a divergence of

the prediction from the true time evolution can be avoided by

feeding the given input signal u into the autonomous reservoir

system from time to time [58].

2.2.3 Short-term prediction and climate
Since training optimizes only the performance of short-term

predictions, when applied for many steps, iterated prediction not

only deviates from the true evolution of the target signal but may

also result in asymptotic behavior with dynamical and statistical

properties that are (very) different from the target signal (e.g.,

periodic or diverging solutions, instead of chaos; different values

of characteristics like fractal dimensions or Lyapunov exponents).

Such long-term features (corresponding to ergodic properties) are

also referred to as climate [42, 59], and it depends on the application

6 A reservoir system driven by an input signal (Equations 1 or 2) is

sometimes called a listening reservoir and autonomous reservoir systems

with a feedback loop (Equations 5 and 6) are referred to as predicting

reservoirs.

7 The same reservoir can, e.g., be trained to model the function u[n− 1] 7→

y[n] by determining a suitable output matrix W
out.

whether it is more important to optimize the accuracy of the short-

or medium-term predictions, or whether a correct representation

of the climate is the main goal [44, 60–62].

Using input data from different sources (e.g., different chaotic

attractors), a reservoir system with feedback can be trained to

produce forecasts and the climates of these sources [63–65]. In this

case, the autonomous reservoir system is trained to have coexisting

attractors and multifunctionality to predict input signals from

different sources, and it is possible to switch between the coexisting

attractors using suitable input signals [63].

2.3 Training of the reservoir system

The only parameters to be determined during training are

the elements of the output matrix Wout. If the output function

g is chosen to be linear in these parameters, training consists

essentially in solving a linear set of equations as will be shown

in the following. First, a training set {(v[m], y[m])} consisting of

m = 1, ...,M sampled output values v[m] and target values y[m] ∈

R
Nout has to be generated, where v[m] = v(mTsmp) and y[m] =

y(mTsmp) in the case of a continuous reservoir system sampled with

a sampling time Tsmp. To make sure that the dynamical evolution

of the reservoir system is (asymptotically) independent from its

(in general unknown) initial conditions, this sampling has to be

preceded by a sufficiently long transient (or washout) time Ttrs =

MtrsTsmp ofMtrs time steps, a requirement that will be discussed in

more detail in Section 2.4.

The output of the reservoir system matches the target if Wout

can be chosen such that the linear equation

XW
out = Y (7)

holds, where X is anM ×Nesv matrix whose rows are extended

states x[m] and Y is an M × Nout matrix whose rows are the

corresponding target values y[m]. If M > Nesv, this linear set of

equations has more equations (M · Nout) than unknowns (Nesv ·

Nout), while forM < Nesv, it is underdetermined. In the latter case,

regularization is required to avoid solutions Wout with very large

matrix elements, but also for the over-determined case M > Nesv,

the solution may suffer from instabilities in the case that some

columns of X are almost collinear, i.e., that elements of u and/or

r are highly correlated. This problem can be addressed by means of

Tikhonov regularization (also known as Ridge Regression) where a

cost function

G(Wout) =

M
∑

m=1

‖y[m]− x[m]Wout‖22 + β‖W
out‖22 (8)

with

‖Wout‖22 =

Nesv
∑

i=1

Nout
∑

j=1

(Wout
ij)2

is minimized that contains a regularization term punishing too

large matrix elements Wout
ij . The regularization parameter β > 0

controls the impact of the regularization and has to be chosen

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

suitably. The minimum of this cost function (Equation 8) is given

by

W
out =

(

X
T
X + βI

)−1
X
T
Y (9)

where XT denotes the transposed of X. Alternatively, the solution

W
out (Equation 9) minimizing the cost function (Equation 8) can

be computed using the singular value decomposition (SVD) of X =

USV
T, where S is a diagonal matrix with Sij ≥ 0 for i = j and

Sij = 0 for i 6= j. In this case, the minimum of the cost function

(Equation 8) is given by

W
out = VDU

T
Y

with

Dij =

{ Sij

S2ij+β
if i = j

0 if i 6= j
. (10)

Instead of Tikhonov regularization, one can also use theMoore-

Penrose-pseudo inverse X+ of X, such that

W
out = X

+
Y .

Using the SVD of X = USV
T, the pseudo-inverse X+ can be

written as X+ = VEU
T with

Eij =

{

1/Sij if Sij > ǫ

0 if Sij ≤ ǫ
(11)

where ǫ > 0 represents the numerical resolution but can also

be chosen larger and then serves as a regularization parameter.8

The difference between the definitions of the matrices D and

E is illustrated in Figure 1. In both cases, the impact of very

small or vanishing singular values Sii is limited by bounding their

inverse values 1/Sii (see Equations 10 and 11). For sufficiently

long training data, i.e., with M > Nesv, the pseudo-inverse

based on Equation (11) may provide better results than Tikhonov

regularization (Equation 10), because the latter has a stronger bias

for small but not too small singular values.

An alternative to minimizing the quadratic cost function

(Equation 8) is L1-optimization, where the Euclidean norm ‖ · ‖2

is replaced by the L1-norm ‖ · ‖1, and the solution of the minimum

of the resulting cost function can be computed using the Lasso

algorithm [66–68]. In this case, the computation of the optimal

coefficients is more time consuming, but since many of them are

zero after training, the calculation of the readout consists of fewer

operations and is therefore more efficient.

An important feature of a trained reservoir system is its

capability for generalization on similar but previously unseen data.

This is notoriously difficult to determine in advance, but for

reservoir systems consisting of (a certain class of) recurrent neural

networks, Han et al. [69] derived a bound for the generalization

error.

8 Many programming languages such as Matlab, Julia, or Python provide a

function pinv(A, tol) for computing the pseudo-inverse of a matrix A with an

optional parameter tol corresponding to ǫ.

FIGURE 1

Graphical illustration of the inversion of the SVD matrix S using

Tikhonov regularization (Equation 10) or when computing the

pseudo-inverse (Equation 11) for di�erent values of the

regularization parameters β and ǫ, respectively.

2.4 Echo state property and generalized
synchronization

To use a trained reservoir system in any application, e.g.,

prediction, its output has to be reproducible and unique if the

same input signal is presented again, independently from the (often

unknown) initial state of the reservoir at the beginning. In reservoir

computing, this feature is known as echo state property (ESP) or

fading memory, and it is formally defined as follows [4, 70, 71].

For all input sequences u[0], u[1], u[2], ... ∈ U ⊂ R
Nin from

a compact set U and any pair of initial conditions of the reservoir

system, r[0] and r̃[0], the iterated application of Equation (1) results

in limn→∞ ‖r[n]− r̃[n]‖ = 0 (or correspondingly limt→∞ ‖r(t)−

r̃(t)‖ = 0 for continuous time systems (Equation 2) with input

signal u(t)).

If the reservoir system fulfills this criterion, it asymptotically

“forgets” its initial state after some transient or washout time Ttrs,

and its (current) state is given by a so-called echo state function ξ of

the semi-infinite input sequence r[n] = ξ (..., u[n− 1], u[n]) [4].

If the input signal was generated by a dynamical system

ż = fsrc(z) or z[n + 1] = fsrc(z[n]), this system and the

reservoir system can be seen as a pair of uni-directionally coupled

dynamical systems (i.e., a drive-response configuration), where

the echo state property occurs due to generalized synchronization

[72–80]. With generalized synchronization, the state of the driven

system, i.e., the reservoir, r(t) is (asymptotically) a function ψ(z(t))

of the state z(t) of the driving system generating the input

signal, i.e., limt→∞ ‖r(t) − ψ(z(t))‖ = 0 (or limn→∞ ‖r[n] −

ψ(z[n])‖ = 0 for discrete systems). In this way, each state

variable ri(t) of the reservoir system represents after a sufficiently

long (synchronization) transient time Ttrs, a dynamically emerging

function ψi(z) of the state of the driving system that is used

in the output Equation (4) as a non-linear basis function for

approximating the target v [39]. This function ψi(z) corresponds

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

to the echo state function r[n] = ξ (..., u[n− 1], u[n]), if the input u

is generated by the dynamical system and given by an observation

function u = h(z). In this case, (previous) values of the input time

series are given by functions of the current state z[n] of the driving

system, because u[n − k] = h(z[n − k]) = h(φ−k(z[n])), where

φ−k denotes the inverse flow of the driving system. The same holds

for continuous reservoir systems driven by an input signal from a

continuous dynamical system.

So in principle, any driven dynamical system may be used as

a reservoir system if it exhibits generalized synchronization with

the dynamical system generating the input signal. This includes

analog computers or even real physical processes. The occurrence

of generalized synchronization can by checked, for example,

using conditional Lyapunov exponents or the auxiliary system

approach [74, 76, 79]. However, generalized synchronization is

only a necessary condition for fulfilling the echo state property

but is not sufficient to guarantee the same unique response for all

initial conditions of the reservoir system. There may be different

coexisting attractors that lead to different reproducible asymptotic

responses depending on the initial conditions of the driven system.

This form of multistability has to be taken in to account [63–65]

or excluded to guarantee a unique response and thus the echo state

property.

The emerging functions ψi are continuous, and their

smoothness properties depend on the (transversal) contraction

properties of the response system. In general, the stronger this

contraction, i.e., the faster two neighboring trajectories r(t) and

r̃(t) converge with limt→∞ ‖r(t) − r̃(t)‖ = 0, the smoother are

the functions ψi. A mathematically more rigorous treatment of

this feature can be found, for example, in a series of publications

by Stark et al. on forced dynamical systems [81–83]. A detailed

mathematical analysis of the differentiability properties of the

echo state functions and their importance for successful reservoir

computing was carried out by Grigoryeva and Ortega [84]. Hart et

al. [85] proved under some mild assumption that ψ almot surely

provides an embedding of the dynamics of the driving system into

the state space of the reservoir system, and that there exists a

linear readout function ϕ(r) that predicts arbitrarily well the input

values provided that the dimension of the reservoir system is high

enough. If this prediction is used to substitute the input u of the

reservoir system an autonomous system r[n+ 1] = f (r[n],ϕ(r[n]))

or ṙ = f (r,ϕ(r)) is obtained (see Section 2.2.2). A well-trained

autonomous reservoir system reproduces the Lyapunov exponents

of the driving system, i.e., the Lypunov exponents of the input

signal are a subset of the Lyapunov exponents of the autonomous

reservoir [42]. In this context, Platt et al. [86] found that the

prediction time for autonomous reservoir systems with a low

Kaplan–Yorke dimension is the longest. Carroll [87] obtained a

similar result for the Kaplan–Yorke dimension calculated from the

full Lyapunov spectrum of the coupled drive-response system.

If the response system exhibits no contraction, generalized

synchronization and the echo state property cannot occur. If, on

the other hand, contraction is too strong, the emerging functions

ψi are very (too) smooth and, therefore, not very well-suited to

be used for approximating functional relations of target signals y,

whose dependence on the state z is given by a less smooth andmore

complicated function. It is therefore important that the contraction

properties of the response system can be adapted to generate

the appropriate level of smoothness of the output for a given

modeling task. In case of echo state networks (see Section 2.5),

contraction is controlled by the spectral radius of the reservoir

matrix W
res, and in many studies, it has been observed that weak

contraction provides best performance of the reservoir system.

Weak contractions lead to long synchronization transients, and an

increased memory capacity of the reservoir system quantified by

the ability to recover past input signals u[n − k] from the current

state r[n] of the reservoir system [88]. A comprehensive discussion

of the role of generalized synchronization and the question under

which conditions iterated prediction of a reservoir reproduces the

attractor (i.e., the climate) of the driving system was given by Lu et

al. [44]. Mathematical criteria and statements for the latter can also

be found in [85].

Dambre et al. [89] pointed out that the information processing

capacity of a driven dynamical system with fading memory (i.e.,

echo state property) and linear readout is bounded by the number

of linearly independent functions of the input the system can

compute (or generate). In general, good performance of any

reservoir system can be expected if the time series ri[n] given by

the state variables of the reservoir system are linearly independent,

because in this case the dimension of the linear subspace spanned

by the columns of the matrix X is large. This feature can be

quantified by the rank of the covariance matrix X
T
X, also called

covariance rank [90–93]. A large covariance rank will not guarantee

good performance, but in general, a reservoir with a large rank will

be superior to a reservoir generating output with a lower covariance

rank.

An extension of generalized synchronization is consistency

[94], which quantifies the degree of functional dependency of

a driven dynamical system on its input in terms of the linear

correlation of the reservoir variables when repeatedly driven by

the same input. If the echo property is fulfilled, the consistency

is equal to one. Consistency has also been used for studying

reservoir computing, in particular with experimental set-ups [31,

32]. Lymburn et al. [95] found that even in cases of non-complete

consistency, such inconsistent echo state networks may exhibit very

good performance because there are subspaces in the state space of

the reservoir system that represent signals with high consistency.

This observation may lead to an enhanced understanding of

the computational capacity of chaotic or noisy response systems

and novel unsupervised optimization procedures. Extending the

basic concept of consistency, Jüngling et al. [96] have developed

an approach to investigate the propagation and distribution of

information-carrying signals in a reservoir system.

Last but not least, reservoir computing using echo state

networks has also been used to approximate the emergent functions

that arise from the generalized synchronization of different coupled

systems [97].

2.5 Echo state networks

An echo state network [4, 98] is a recurrent neural network

acting as a dynamical reservoir that can be given by a set of ordinary

differential equations (ODEs)

ṙ = γ
(

−r+ q
(

W
resr+ σW inu+ b

))

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

or a set of updating rules for echo state networks that operate in

discrete time

r[n+1] = (1−α)r[n]+αq
(

W
resr[n]+ σW inu[n+ 1]+ b

)

. (12)

In both cases, q(·) denotes an activation function (applied

component-wise), which in most applications is a sigmoid function

like q(·) = tanh(·). b ∈ R
Nres is a vector of different bias constants

bi ∈ R affecting the dynamics of the state variable ri of the i-th

node of the network and may be used to break the symmetry of

the dynamical equations [47]. The constants γ > 0 and α ≥ 0

are called leaking rates and can be used to adjust the temporal

scale of the echo state network to that of the input signal and

also to control the (fading) memory of the network dynamics. The

parameter σ > 0 controls the amplitude of the input signal. Both

matrices, W in and W
res, are chosen randomly. Since the impact of

the input can be controlled by the parameter σ , the elements of the

input matrixW in can, for example, be uniformly distributed in the

interval [−1, 1]. The internal coupling matrix of the reservoirWres

and the leaking rates γ or α have to be chosen in a way that the echo

state network possesses the echo state property [99].

Furthermore, in many cases, sparse coupling matrices W
res

provided better performance. Therefore, a sparseness parameter δ

is introduced quantifying the relative number of non-zero elements

of Wres. With a sparse coupling topology, the echo state network

decomposes into many loosely coupled subsystems, and this may

result in a more diverse dynamics of its nodes [100].

All network parameters mentioned so far, Nres,

W
res,W in, b, σ , γ , α, δ, and the regularization weight β , are

hyperparameters, which have to be chosen by the user when

designing the echo state network and may have a major impact

on its performance. Optimal values of hyperparameters can be

found by grid search or using gradient methods [70, 101] or

Bayesian optimization [102]. Improved predictive performance

and enhanced generalization capabilities have been obtained

with first projecting the state of the reservoir system to a lower

dimensional space before computing the parameters of the

readout function [103]. An approach for reducing the size of the

network using proper orthogonal decomposition (or principle

component analysis) of its internal dynamics was suggested by

Jordanou et al. [104].

An important feature of reservoir systems is their memory

capacity, i.e., their ability to reconstruct and output previous input

signals from the past. The memory capacity of an echo state

network increases with the network size and is also affected by the

other hyperparameters [detailed studies using i.i.d. random input

time series can, for example, be found in [88, 105, 106]]. For a given

input signal and task, there is an optimal amount of memory of

the reservoir system maximizing its performance, but it is difficult

to determine it in advance without simulating the full reservoir

computer [107].

Reservoir systems do not have to be non-linear, because

linear system may also generated non-linear output due to their

exponential solution functions [108]. Bollt [109] showed that an

echo state function with a linear activation function is equivalent

to a vector autoregressive (VAR) model and if a quadratic readout

function is used this is equivalent to non-linear VAR (NVAR)

models. Furthermore, he showed that linear echo state networks are

less effective but in combination with quadratic readout prediction

results for chaotic time series may be acceptable. Carroll and Pecora

also found that linear node dynamics in echo state networks is less

effective [90]. In their study of the impact of network structure,

they considered the rank of the covariance matrix of the output,

symmetries, and the resulting memory capacity and found that

sparsity of the internal coupling matrix is beneficial, but much

more important for improving the performance may be flipped

links in the network. To cope with dynamics on multiple time

scales, Tanaka et al. [110] considered echo state networks with

heterogeneous leaky integrator (LI) neurons, where the parameter

α in Equation (12) is chosen different for each node.

The performance of echo state networks (and reservoir

computing in general) also depends on the available input u, more

precisely whether full or only partial information about the state

of the driving system is provided (e.g., a single component of

the state vector of the dynamical system generating the data).

Storm at al. [92] demonstrated that if only partial information is

available, the reservoir system needs some memory to generated

implicitly a delay embedding. This is not necessary if the full

state is presented as input, and in this case, even an echo state

network without internal dynamics can provide good predictions

[62], because static non-linear maps of the input state (given by

the activation functions) are sufficient. However, Lymburn et al.

[97] have shown that the inclusion of internal dynamics can still

be advantageous compared with memoryless reservoir computing,

even if the complete state is available as input, if the input–output

function to be learned is itself dynamically generated and has a very

complex (e.g., fractal) form.

Gauthier et al. [111] compared echo state networks with

NVAR modeling using polynomial basis functions and found

that these types of NVAR models provide similar or even better

predictions, while requiring shorter time series for training and

less computational resources.9 Jaurigue and Lüdge [115] discussed

this approach in the context of other machine learning methods

including delay-based reservoir computing with multiple delay

loops [53]. An evaluation of the performance of different echo state

networks with different network structures compared with other

machine learningmethods was presented by Shahi et al. [116]. They

found that reservoir computing and NVAR models achieve similar

prediction results.

3 Reservoir computing using delayed
variables

3.1 Extending the set of basis functions

The performance of a reservoir computing system can be

improved by increasing its state-space dimension Nres, which

results in a larger number of basis function ψi used for

9 In [111], the NVAR approach presented is called “next-generation

reservoir computing”, a title that is possibly ironic but slightly misleading,

since static functions are used for prediction and not the response of a

dynamical system.Modeling and approximating the flow in embedding space

using static non-linear functions goes back to the 1980s using polynomial

[112] or radial basis functions [54], including Tikhonov regularization [113]. In

this context, early work on NARMAX models should also be mentioned, see,

for example, [114].

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

generating the output (Equation 4) [89]. This increases, however,

the computational load for simulating the reservoir system. An

alternative is the use of delayed input and state variables, u(t − τu)

and r(t − τr), respectively, because they provide additional basis

functions. Let φt be the flow of the driving dynamical systems such

that z(t− τu) = φ−τu (z(t)), and let the input signal of the reservoir

system be given by u(t) = h(z(t)) where h denotes the observation

function. In this case, after the synchronization transient (washout

time) decayed, delayed input and reservoir state variables can be

(asymptotically) written as functions of the state z(t) of the driving

system at time t

u(t − τu) = h(z(t − τu)) = h(φ−τu (z(t)) (13)

r(t − τr) = ψ(z(t − τr)) = ψ(φ−τr (z(t)). (14)

Here, the functions h ◦ φ−τu and ψ ◦ φ−τr , represented by

u(t − τu) and r(t − τr), respectively, can be used to extend the set

of basis functions entering in the computation (Equation 4) of the

output of the reservoir system.10

The extension of reservoir computing using past states of

the reservoir system has been first studied by Marquez et

al. [117], Sakemi et al. [118], and Del Frate et al. [119]

who all found significant improvement in the performance of

the reservoir system, a result that will be confirmed in the

following. Later, Carroll and Hart [91] showed for an opto-

electronic delay-based reservoir computer with only a small

number of virtual nodes that time-shifted readout increases the

rank and memory of the reservoir computer. In general, using

many different delay times τu and τr increases the number of

columns of the matrix X and (if suitable) its covariance rank,

which leads to an improved performance of the reservoir [91,

93].

Duan et al. [120] showed that linear readout functions

including delayed variables may also provide an embedding of

the input dynamics, and they discuss the trade-off between

the number of delays and the state space dimension of the

reservoir system (i.e., the number of nodes in case of a

recurrent network).

Jaurigue et al. [121] showed that the performance of an

unoptimized reservoir system can significantly be improved

by adding a time-delayed input signal. In their study, they

simulated time multiplexed delay-based reservoir computing with

a single non-linear element that can be implemented using optical

hardware. In a recent study, Jaurigue and Lüdge [122] showed

that the dependance of reservoir performance on the choice

of suitable hyperparameter values can be reduced by including

delayed variables.

3.2 Predicting Rössler dynamics using a
Lorenz-63 based reservoir system

To demonstrate the effectiveness of reservoir computing using

delayed variables, we will consider now a very simple example: a

10 Note that here multiple delays are used in the readout function, only.

This is di�erent from delay-based reservoir computing using (multiple) delays

mentioned in Section 2.1.

three-dimensional reservoir system based on the Lorenz-63 system

[79, 123]

ṙ1 = µ[10(u− r1)]

ṙ2 = µ[28r1 − r2 − r1r3]

ṙ3 = µ[ur2 − 2.666r3].

(15)

This system fulfills the echo state property for all initial

conditions r(0) (see Appendix).

The parameter µ is used to adapt the time scale to that of

the driving signal u(t) and controls the transversal contraction

properties of the response system (see Appendix). Therefore, it is

a hyperparameter that has to be carefully chosen.

Using an affine linear readout function, the output component

vj (j = 1, 2, 3) sampled at times tn = nTsmp is given by

vj(tn) = w1j + w2ju(tn)+ w3jr1(tn)+ w4jr2(tn)+ w5jr3(tn)

or using the notation vj[n] = vj(tn)

vj[n] = w1j + w2ju[n]+ w3jr1[n]+ w4jr2[n]+ w5jr3[n]. (16)

The minimal reservoir system (Equation 15) will be used to

predict the variables zi of a chaotic Rössler system [79, 124]

ż1 = −z2 − z3
ż2 = z1 + 0.2z2
ż3 = 0.2+ z3(z1 − 5.7)

(17)

from the observations u[m] = u(tm) = z1(tm) of the first variable

at times tm = mTsmp, where Tsmp denotes the sampling time.

3.3 Cross-prediction of unobserved state
variables of the Rössler system

In our first example, the reservoir system (Equation 15) is used

to cross-predict the variables z2(tm) and z3(tm) of the chaotic

Rössler system (Equation 17) from previous observations u[k] =

u(tk) = z1(tk) of the first variable z1 with k ≤ m. This task is

known in control theory as state observer. If a training time series

u(tk) of length M is available,11 the computation of the weights

wij in Equation (16) consists of solving the set of linear equations

(Equation 7) with

V = XW
out = Y (18)

where

X =

1 u[1] r1[1] r2[1] r3[1]

1 u[2] r1[2] r2[2] r3[2]
...

...
...

...

1 u[M] r1[M] r2[M] r3[M]

W
out =

w11 w12 w13

w21 w22 w23

...
...

...

w51 w52 w53

11 Here, we assume that prior to the sampling of the training data a

su�ciently long transient time Ttrs has elapsed.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

and

Y =

z1[1] z2[1] z3[1]

z1[2] z2[2] z3[2]
...

...

z1[M] z2[M] z3[M]

with the columns of Y given by the target values zi[m] = zi(tm)

of the Rössler system.12 This set of linear equations (Equation 18)

is solved for the weights Wout = X
+
Y using the Moore-Penrose

pseudo-inverse X+ of X (see Section 2.3) with ǫ = 10−7σ1, where

σ1 denotes the largest singular value of X.

Figure 2 shows predictions of z2 and z3 obtained with a training

time series of length M = 50, 000 and sampling time Tsmp = 0.01

corresponding to a time interval of length 500. While the cross-

prediction of the z2 component may be acceptable, the peaks of

the z3 variable are not correctly reconstructed. This relatively poor

result should be expected given the fact that only time series of u,

r1, r2, and r3 have been used to predict the target signal. The bottom

panels of Figures 2C, F show the dependence of the Normalized

Root Mean Squares Error (NRMSE) of the test data

Ej =

√

√

√

√

1

Ntest

Ntest
∑

n=1

(yj[n]− vj[n])2
/

√

√

√

√

1

Ntest

Ntest
∑

n=1

(yj[n]− ȳj)2

=
RMSE(vj)

σyj
(19)

on the parameter µ for both target signals y2 and y3, respectively.

Here, ȳj stands for the mean value of yj, σ
2
yj
represents its variance,

and Ntest is the length of the time series used to compute the test

error. The NRMSE quantifies the performance of the reservoir

compared with a prediction of yj by its mean value ȳj. The lowest

errors occur for predictions of z2 at µ = 0.025 and for z3 near

µ = 1.1. This large difference in optimal µ values may be due

to different smoothness properties of the functions ψi required

to successfully predict z2 or z3 (see Section 2.4 and Appendix).

Such differences with respect to optimal (hyper) parameters may

complicate the simultaneous prediction of different target variables

using output from the same reservoir system.

3.4 Cross-prediction using delayed
variables

We will now increase the pool of signals (or basis functions)

using past values of the input signal (Equation 13) and the state

variables (Equation 14) of the reservoir system (Equation 15) in

terms of delay vectors u(t) = [u(t − Nuτu), ..., u(t − τu), u(t)] and

rk(t) = [rk(t−Nrτr), ..., rk(t− τr), rk(t)], which can for t = mTsmp,

12 Since the target signal y1 = u = z1 is known, only the outputs v2 and

v3 have to be computed to estimate the unobserved variables z2 = y2 and

z3 = y3 for reconstructing the state z of the Rössler system.

τu = LuTsmp and τr = LrTsmp be written as13

u[m] = (u[m− NuLu], ..., u[m− Lu], u[m]) (20)

rk[m] = (rk[m− NrLr], ..., rk[m− Lr], rk[m]). (21)

To simplify the presentation, we use the same number of Nu =

Nr = Ndelay delayed variables u and r in the following. Using

the row vectors u[m] and rk[m], the linear set of equations for

computing the parameters of the affine linear output function reads

XW
out=

1 u[1] r1[1] r2[1] r3[1]

1 u[2] r1[2] r2[2] r3[2]
...

...
...

...

1 u[M] r1[M] r2[M] r3[M]

w11 w12 w13

w21 w22 w23

...
...

...

wK1 wK2 wK3

= Y

(22)

with K = 1+ 4(Ndelay + 1) = 5+ 4Ndelay basis functions. This set

of linear equations can again be solved using the pseudo-inverse

of X or any other method for solving a linear set of equations

using regularization (see Section 2.3). Note that with delay M +

Ndelay samples at times t1−Ndelay
, ..., t1, ..., tM−1, tM are required for

constructing the matrix X and that the number of basis functions

K = 5 + 4Ndelay used for approximating the target function

increases linearly with Ndelay. Furthermore, the rows of matrix X

represent a projection of the state (z, r) of the full coupled system

to a K-dimensional space (providing an embedding if K is large

enough).

Figure 3 shows prediction results for z2 and z3 obtained with

Ndelay = 100 and delay times (τu = 0.32, τr = 0.37) for z2 and

(τu = 0.03, τr = 0.30) for z3, such that the delay vectors for z2
cover approximately a period of time of 32 < Ndelayτu,r < 37

corresponding to about six oscillations of z1 and z2. As can be seen,

not only the z2-component of the Rössler system is recovered with

high precision, but also the peak structure of the input signal and

the z3-component.

The delay times τu, τr and the number of delays Nu and Nr

are additional hyperparameters that have to be carefully chosen

for a given prediction problem. One method for optimization

is the maximization of the rank correlation [93], which can

also be achieved by a targeted use of the zeros or minima

of the autocorrelation functions of the input signal and the

reservoir states.

3.5 Predicting future evolution

So far, only the current values of the target signals z2(t) and

z3(t) have been reconstructed using input signals z1(t) until time

t. As discussed in Section 2.2, reservoir systems can also be used

for predicting the future evolution of the variables of interest.

Figure 4 shows prediction results where the output of the reservoir

system provides the target signals z2(t + Tprd) and z3(t + Tprd)

13 In general, di�erent numbers of delay terms with di�erent delay times

could be used for u and each variable rk. This would, however, increase the

number of hyperparameters that have to be determined using grid search,

for example.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

FIGURE 2

Cross-prediction of the (A) z2(t) and (D) z3(t) variables of the chaotic Rössler system (Equation 17) from u = z1 using the Lorenz-63 based reservoir

system (Equation 15). The elements of the output matrix W
out were computed using Equations (18) and (11) with regularization parameter

ǫ = 10−7σ1, where σ1 denotes the largest singular value of X. The diagrams (B, E) show the corresponding prediction errors ej(t) = vj(t)− zj(t). In (C, F),

the dependences of the test errors E2 and E3 (Equation 19) on the reservoir parameter µ are shown. The examples (A, B, D, E) have been computed

for µ = 0.025 and µ = 1.1, respectively, which are close to the minima of the test errors shown in (C, F).

FIGURE 3

Cross-prediction of the (A) z2 and (C) z3 variables of a chaotic Rössler system (Equation 17) from its first variable z1 using a Lorenz-63 based system

(Equation 15) with delayed readout (Equations 20 and 21). Hyperparameters for the prediction of z2 are µ = 0.81, τu = 0.32, τr = 0.37, Ndelay = 100

and for the prediction of z3 the values µ = 0.83, τu = 0.03, τr = 0.30, Ndelay = 100 were used. The elements of the output matrixWout were computed

using Equations (22) and (11) with regularization parameter ǫ = 10−7σ1, where σ1 denotes the largest singular value of X. The diagrams (B, D) show

the corresponding prediction errors ej(t) = vj(t)− zj. The mean test errors (Equation 19) equal E2 = 0.0203 and E3 = 0.0274.

for a prediction time of Tprd = 10 (in units of the time variable

of the Rössler system). As indicated by the green horizontal bars

in Figures 4A, C, this period of time corresponds to about 1.6

oscillation periods of the z2 variable. The continuously available

future values of the target signals can be used, for example, for

implementing a control system or for predicting the occurrence of

“extreme events” like the peaks of the z3 variable.

A prediction scheme based on delayed variables can also be

implemented using feedback (see Section 2.2.2). In this case, the

output which is fed back as input to the reservoir is a function

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

FIGURE 4

Prediction of future values of the (A) z2 and (C) z3 variables of a chaotic Rössler system (Equation 17) from its first variable z1 using a

Lorenz-63-based system (Equation 15) with delayed readout (Equations 20 and 21). The prediction time interval Tprd = 10 is indicated by a horizontal

bar. Hyperparameters for the prediction of z2 are µ = 3.76 τr = 0.15, τu = 0.24 Ndelay = 100, and for the prediction of z3, the values µ = 3.6 τr = 0.22,

τu = 0.18, Ndelay = 100 were used. The values of the output matrix W
out were computed using Equations (22) and (11) with regularization parameter

ǫ = 10−7σ1, where σ1 denotes the largest singular value of X. The diagrams (B, D) show the corresponding prediction errors. The mean test errors

(Equation 19) equal E2 = 0.443 and E3 = 0.539.

of delayed state variables v(t) = g(r(t), r(t − τ1), r(t − τ2),),

and the resulting autonomous reservoir system is given by a delay

differential equation ṙ = f (r(t), g(r(t), r(t − τ1), r(t − τ2),)) with

multiple delays.

4 Extensions and improvements to
reservoir computing

The use of delayed variables is not the only way to extend

and improve the reservoir computing paradigm. Many studies

for echo state networks have been performed to learn more

about criteria for choosing the most suitable network architecture

[125–129] and alternative activation functions (e.g., relu, radial

basis functions,). Shahi et al. [130] reported more robust and

accurate predictions when reservoir computing is combined with

an autoencoder, where an echo state network operates in the latent

space of the autoencoder. Nathe et al. [131] investigated the effects

of measurement noise and found that the performance of reservoir

observers can be significantly improved with low-pass filtering

applied to the input signal.

Another extension is knowledge-based reservoir computing

[132, 133], where valuable information from existing models based

on first principles and/or other empirical models are combined

with a reservoir system. Existingmodels may be incomplete and are

thus quantitatively not exact, but they still contain the knowledge

of the field and provide at least a good first guess for the desired

output. In this case, machine learning methods like reservoir

computing can be used to add required corrections to the predicted

values or to create the conditions under which the model can be

applied. For example, to make use of existing knowledge-based

dynamical models like ordinary or partial differential equations,

one has to know suitable initial conditions, e.g., the full state

of a dynamical system, which is in most cases not given by the

data available. In this case, a reservoir system (like the example

presented in Section 3.3) can be used to reconstruct the full state

vector from available observations, which can then be used as

initial condition of the mathematical model to compute its future

evolution. Such hybrid configurations are called knowledge-based

or physics-informed14 machine learning and often require (much)

less training data compared with purely data-driven algorithms

(i.e., without employing a physics-based model). A comparison of

different approaches for hybrid reservoir computing was recently

provided by Duncan and Räth [134]. If no model based on first

principles is available, one can also combine reservoir computing

with another type of data-driven model [e.g., some ODE model

obtained by sparse identification of a polynomial vector field [135]].

Reservoir computing has also been successfully applied to

spatially extended systems by using several echo state networks

operating in parallel to avoid the use of extremely large networks

[45, 86, 136–138]. Last but not least, it should be mentioned that

the concept of reservoir computing can also be used with quantum

systems. Such quantum reservoir computing is currently a very

active field [139–142], but beyond the scope of this review.

5 Conclusion

Reservoir computing is an efficient method for time series

prediction and has mainly been studied using recurrent networks

called echo state networks. However, in principle, any driven

dynamical system may serve as a reservoir of output signals that

can be used, for example, to predict or classify the input signal if

the system has a fading memory of its own initial condition. This

feature is also called echo state property, and it is closely linked to

generalized synchronization. The concept of reservoir computing

can be implemented not only on digital computers but also on a

hardware basis. Such physical reservoir computing systems may

offer advantages like very high speed or low energy consumption.

14 Of course, useful mathematical models do not only exist in physics, but

also in many other fields of science.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

Recently, it has been shown that the inclusion of past values

of input and reservoir state variables in the readout function can

significantly improve the performance of reservoir computing. In

particular, for echo state networks, it has been shown that this type

of extended readout may be used to reduce the number of nodes

(i.e., the size of the network) required to achieve a given level of

predictive power [117–120]. As this is a simple but very effective

method for improving reservoir computing, this approach has

been dealt with in more detail in this overview. We demonstrated

and confirmed its effectiveness using a minimal three-dimensional

reservoir system based on the Lorenz-63 system. Using delayed

variables, this low-dimensional reservoir system can reconstruct all

state variables of a chaotic Rössler system from an univariate time

series of the first Rössler variable and even provide some medium-

time prediction of their future evolution. This example was not only

chosen to demonstrate the effectiveness of using delayed variables

but also to show that there alternative reservoir systems and that

it is not mandatory to use high-dimensional systems such as large

networks. Of course, a reservoir system with only three variables

cannot compete in performance with high-dimensional systems

such as echo state networks with hundreds or thousands of nodes.

But it may serve, for example, as a building block of an approach

with several similar systems running in parallel. This can be done

in continuous time, as here, but also using low-dimensional discrete

dynamical systems. Such structures may lead to novel reservoir

system designs that can be efficiently implemented in (physical or

biological) hardware.

Author contributions

UP devised the manuscript, generated all figures, and wrote the

text.

Funding

The author acknowledges support by the Max Planck Society

(MPG).

Acknowledgments

The author would like to thank Stefan Luther, Luk

Fleddermann, Hiromichi Suetani, and all members of the

Biomedical Physics Research Group at the Max Planck Institute for

Dynamics and Self-Organization for their support and stimulating

scientific discussions.

Conflict of interest

The author declares that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Kirby KG. Context dynamics in neural sequential learning. In: Proc Florida AI
Research Symposium (FLAIRS). (1991). p. 66–70.

2. Schomaker LRB. A neural oscillator-network model of temporal pattern
generation. HumMov Sci. (1992) 11:181–92. doi: 10.1016/0167-9457(92)90059-K

3. Dominey PF. Complex sensory-motor sequence learning based on recurrent
state representation and reinforcement learning. Biol Cybern. (1995) 73:265–74.
doi: 10.1007/BF00201428

4. Jaeger H. The “echo state” approach to analysing and training recurrent neural
networks. GMD Rep. (2001) 148:13. doi: 10.24406/publica-fhg-291111

5. MaassW, Natschläger T,MarkramH. Realtime computing without stable states: A
new frame work for neural computation based on perturbations. Neural Comp. (2002)
14:2531–60. doi: 10.1162/089976602760407955

6. Fabiani G, Galaris E, Russo L, Siettos C. Parsimonious physics-informed random
projection neural networks for initial value problems of ODEs and index-1 DAEs.
Chaos. (2023) 33:043128. doi: 10.1063/5.0135903

7. MaassW,MarkramH.On the computational power of circuits of spiking neurons.
J Comp Syst Sci. (2004) 69:593–616. doi: 10.1016/j.jcss.2004.04.001

8. Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D. An experimental
unification of reservoir computing methods. Neural Netw. (2007) 20:391–403.
doi: 10.1016/j.neunet.2007.04.003

9. Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural
network training. Comp Sci Rev. (2009) 3:127–49. doi: 10.1016/j.cosrev.2009.03.005

10. Nakajima K, Fischer I, editors. Reservoir Computing: Theory, Physical
Implementations, and Applications. Natural Computing Series. Singapore: Springer

Singapore (2021). Available online at: https://link.springer.com/10.1007/978-981-13-
1687-6 (accessed January 28, 2024).

11. Triefenbach F, Azarakhsh J, Benjamin S, Jean-Pierre M. Phoneme recognition
with large hierarchical reservoirs. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel
RS, Culotta A, editors. Advances in Neural Information Processing Systems. Vol. 23.
Neural Information Processing System Foundation. Red Hook, NY: Curran Associates
Inc. (2010). p. 9.

12. Buteneers P, Verstraeten D, Van Mierlo P, Wyckhuys T, Stroobandt
D, Raedt R, et al. Automatic detection of epileptic seizures on the
intra-cranial electroencephalogram of rats using reservoir computing.
Artif Intell Med. (2011) 53:215–23. doi: 10.1016/j.artmed.2011.
08.006

13. Antonelo EA, Schrauwen B, Stroobandt D. Event detection and localization
for small mobile robots using reservoir computing. Neural Netw. (2008) 21:862–71.
doi: 10.1016/j.neunet.2008.06.010

14. Hellbach S, Strauss S, Eggert JP, Körner E, Gross HM. Echo state networks for
online prediction of movement data—comparing investigations. In Kurková V, Neruda
R, Koutník J, editors. Artificial Neural Networks - ICANN 2008. Vol. 5163. Berlin:
Springer Berlin Heidelberg (2008). p. 710–9. Available online at: http://link.springer.
com/10.1007/978-3-540-87536-9_73 (accessed January 28, 2024).

15. Gulina M, Mauroy A. Two methods to approximate the Koopman
operator with a reservoir computer. Chaos. (2021) 31:023116. doi: 10.1063/5.00
26380

16. Tanisaro P, HeidemannG. Time series classification using time warping invariant
echo state networks. In: 2016 15th IEEE International Conference on Machine Learning

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.1016/0167-9457(92)90059-K
https://doi.org/10.1007/BF00201428
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1063/5.0135903
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1016/j.cosrev.2009.03.005
https://link.springer.com/10.1007/978-981-13-1687-6
https://link.springer.com/10.1007/978-981-13-1687-6
https://doi.org/10.1016/j.artmed.2011.08.006
https://doi.org/10.1016/j.neunet.2008.06.010
http://link.springer.com/10.1007/978-3-540-87536-9_73
http://link.springer.com/10.1007/978-3-540-87536-9_73
https://doi.org/10.1063/5.0026380
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

and Applications (ICMLA). Anaheim, CA: IEEE (2016). p. 831–6. Available online at:
http://ieeexplore.ieee.org/document/7838253/ (accessed January 28, 2024).

17. Ma Q, Shen L, Chen W, Wang J, Wei J, Yu Z. Functional echo state network for
time series classification. Inf Sci. (2016) 373:1–20. doi: 10.1016/j.ins.2016.08.081

18. Carroll TL. Using reservoir computers to distinguish chaotic signals. Phys Rev E.
(2018) 98:052209. doi: 10.1103/PhysRevE.98.052209

19. Aswolinskiy W, Reinhart RF, Steil J. Time series classification in reservoir- and
model-space. Neural Process Lett. (2018) 48:789–809. doi: 10.1007/s11063-017-9765-5

20. Paudel U, Luengo-Kovac M, Pilawa J, Shaw TJ, Valley GC. Classification of time-
domain waveforms using a speckle-based optical reservoir computer. Opt Exp. (2020)
28:1225. doi: 10.1364/OE.379264

21. Coble NJ, Yu N. A reservoir computing scheme for multi-class classification. In:
Proceedings of the 2020 ACM Southeast Conference. Tampa, FL: ACM (2020). p. 87–93.

22. Athanasiou V, Konkoli Z. On improving the computing capacity of dynamical
systems. Sci Rep. (2020) 10:9191. doi: 10.1038/s41598-020-65404-3

23. Bianchi FM, Scardapane S, Lokse S, Jenssen R. Reservoir computing approaches
for representation and classification of multivariate time series. IEEE Transact Neural
Netw Learn Syst. (2021) 32:2169–79. doi: 10.1109/TNNLS.2020.3001377

24. Carroll TL. Optimizing reservoir computers for signal classification. Front
Physiol. (2021) 12:685121. doi: 10.3389/fphys.2021.685121

25. Gaurav A, Song X, Manhas S, Gilra A, Vasilaki E, Roy P, et al. Reservoir
computing for temporal data classification using a dynamic solid electrolyte ZnO thin
film transistor. Front Electron. (2022) 3:869013. doi: 10.3389/felec.2022.869013

26. Haynes ND, SorianoMC, Rosin DP, Fischer I, Gauthier DJ. Reservoir computing
with a single time-delay autonomous Boolean node. Phys Rev E. (2015) 91:020801.
doi: 10.1103/PhysRevE.91.020801

27. Banerjee A, Mishra A, Dana SK, Hens C, Kapitaniak T, Kurths J, et al. Predicting
the data structure prior to extreme events from passive observables using echo state
network. Front Appl Math Stat. (2022) 8:955044. doi: 10.3389/fams.2022.955044

28. Thorne B, Jüngling T, Small M, Corrêa D, Zaitouny A. Reservoir time series
analysis: Using the response of complex dynamical systems as a universal indicator of
change. Chaos. (2022) 32:033109. doi: 10.1063/5.0082122

29. Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, et al. Recent
advances in physical reservoir computing: a review. Neural Netw. (2019) 115:100–23.
doi: 10.1016/j.neunet.2019.03.005

30. Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez JM, Pesquera L, et al.
Photonic information processing beyond turing: an optoelectronic implementation of
reservoir computing. Opt Exp. (2012) 20:3241. doi: 10.1364/OE.20.003241

31. Nakayama J, Kanno K, Uchida A. Laser dynamical reservoir computing
with consistency: an approach of a chaos mask signal. Opt Exp. (2016) 24:8679.
doi: 10.1364/OE.24.008679

32. Bueno J, Brunner D, Soriano MC, Fischer I. Conditions for reservoir computing
performance using semiconductor lasers with delayed optical feedback.Opt Exp. (2017)
25:2401. doi: 10.1364/OE.25.002401

33. Hou YS, Xia GQ, Jayaprasath E, Yue DZ, Yang WY, Wu ZM. Prediction
and classification performance of reservoir computing system using mutually
delay-coupled semiconductor lasers. Opt Commun. (2019) 433:215–20.
doi: 10.1016/j.optcom.2018.10.014

34. Tsunegi S, Kubota T, Kamimaki A, Grollier J, Cros V, Yakushiji K, et al.
Information processing capacity of spintronic oscillator. Adv Intell Syst. (2023)
5:2300175. doi: 10.1002/aisy.202300175

35. Lee O, Wei T, Stenning KD, Gartside JC, Prestwood D, Seki S, et
al. Task-adaptive physical reservoir computing. Nat Mater. (2024) 23:79–87.
doi: 10.1038/s41563-023-01698-8

36. Canaday D, Griffith A, Gauthier DJ. Rapid time series prediction with a
hardware-based reservoir computer. Chaos. (2018) 28:123119. doi: 10.1063/1.5048199

37. Watanabe M, Kotani K, Jimbo Y. High-speed liquid crystal display simulation
using parallel reservoir computing approach. Jpn J Appl Phys. (2022) 61:087001.
doi: 10.35848/1347-4065/ac7ca9

38. Cucchi M, Abreu S, Ciccone G, Brunner D, Kleemann H. Hands-on reservoir
computing: a tutorial for practical implementation. Neuromor Comp Eng. (2022)
2:032002. doi: 10.1088/2634-4386/ac7db7

39. Parlitz U, Hornstein A. Dynamical prediction of chaotic time series. Chaos Comp
Lett. (2005) 1:135–44.

40. Parlitz U, Hornstein A, Engster D, Al-Bender F, Lampaert V, Tjahjowidodo
T, et al. Identification of pre-sliding friction dynamics. Chaos. (2004) 14:420–30.
doi: 10.1063/1.1737818

41. Worden K, Wong CX, Parlitz U, Hornstein A, Engster D, Tjahjowidodo T, et
al. Identification of pre-sliding and sliding friction dynamics: grey box and black-box
models.Mech Syst Signal Process. (2007) 21:514–34. doi: 10.1016/j.ymssp.2005.09.004

42. Pathak J, Lu Z, Hunt B, Girvan M, Ott E. Using machine learning to replicate
chaotic attractors and calculate Lyapunov exponents from data. Chaos. (2017)
27:121102. doi: 10.1063/1.5010300

43. Lu Z, Pathak J, Hunt B, GirvanM, Brockett R, Ott E. Reservoir observers: model-
free inference of unmeasured variables in chaotic systems. Chaos. (2017) 27:041102.
doi: 10.1063/1.4979665

44. Lu Z, Hunt BR, Ott E. Attractor reconstruction by machine learning. Chaos.
(2018) 28:061104. doi: 10.1063/1.5039508

45. Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large
spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev
Lett. (2018) 120:024102. doi: 10.1103/PhysRevLett.120.024102

46. Broomhead DS, Lowe D. Radial basis functions, multi-variable functional
interpolation and adaptive networks. Complex Syst. (1988) 2:321–55.

47. Herteux J, Räth C. Breaking symmetries of the reservoir equations in echo state
networks. Chaos. (2020) 30:123142. doi: 10.1063/5.0028993

48. Appeltant L, Soriano MC, Van Der Sande G, Danckaert J, Massar S, Dambre J,
et al. Information processing using a single dynamical node as complex system. Nat
Commun. (2011) 2:468. doi: 10.1038/ncomms1476

49. Chembo YK. Machine learning based on reservoir computing with time-delayed
optoelectronic and photonic systems. Chaos. (2020) 30:013111. doi: 10.1063/1.5120788

50. Penkovsky B, Porte X, Jacquot M, Larger L, Brunner D. Coupled nonlinear delay
systems as deep convolutional neural networks. Phys Rev Lett. (2019) 123:054101.
doi: 10.1103/PhysRevLett.123.054101

51. Stelzer F, Röhm A, Lüdge K, Yanchuk S. Performance boost of time-delay
reservoir computing by non-resonant clock cycle. Neural Netw. (2020) 124:158–69.
doi: 10.1016/j.neunet.2020.01.010

52. Hülser T, Köster F, Jaurigue L, Lüdge K. Role of delay-times in delay-
based photonic reservoir computing [Invited]. Opt Mater Exp. (2022) 12:1214.
doi: 10.1364/OME.451016

53. Stelzer F, RöhmA, Vicente R, Fischer I, Yanchuk S. Deep neural networks using a
single neuron: folded-in-time architecture using feedback-modulated delay loops. Nat
Commun. (2021) 12:5164. doi: 10.1038/s41467-021-25427-4

54. Casdagli M. Nonlinear prediction of chaotic time series. Phys D. (1989)
35:335–56. doi: 10.1016/0167-2789(89)90074-2

55. Kuo JM, Principle JC, De Vries B. Prediction of chaotic time series using
recurrent neural networks. In: Neural Networks for Signal Processing II Proceedings
of the 1992 IEEE Workshop. Helsingoer: IEEE (1992). p. 436–43. Available online at:
http://ieeexplore.ieee.org/document/253669/ (accessed January 28, 2024).

56. Stojanovski T, Kocarev L, Parlitz U, Harris R. Sporadic driving of dynamical
systems. Phys Rev E. (1997) 55:4035–48. doi: 10.1103/PhysRevE.55.4035

57. Parlitz U, Kocarev L, Stojanovski T, Junge L. Chaos synchronization using
sporadic driving. Phys D. (1997) 109:139–52. doi: 10.1016/S0167-2789(97)00165-6

58. Fan H, Jiang J, Zhang C, Wang X, Lai YC. Long-term prediction
of chaotic systems with machine learning. Phys Rev Res. (2020) 2:012080.
doi: 10.1103/PhysRevResearch.2.012080

59. Haluszczynski A, Räth C. Good and bad predictions: assessing and improving
the replication of chaotic attractors by means of reservoir computing. Chaos. (2019)
29:103143. doi: 10.1063/1.5118725

60. Bakker R, Schouten JC, Giles CL, Takens F, Bleek CMVD. Learning
chaotic attractors by neural networks. Neural Comput. (2000) 12:2355–83.
doi: 10.1162/089976600300014971

61. Haluszczynski A, Aumeier J, Herteux J, Räth C. Reducing network size and
improving prediction stability of reservoir computing. Chaos. (2020) 30:063136.
doi: 10.1063/5.0006869

62. Griffith A, Pomerance A, Gauthier DJ. Forecasting chaotic systems with very low
connectivity reservoir computers. Chaos. (2019) 29:123108. doi: 10.1063/1.5120710

63. Lu Z, Bassett DS. Invertible generalized synchronization: a putative
mechanism for implicit learning in neural systems. Chaos. (2020) 30:063133.
doi: 10.1063/5.0004344

64. Flynn A, Tsachouridis VA, AmannA.Multifunctionality in a reservoir computer.
Chaos. (2021) 31:013125. doi: 10.1063/5.0019974

65. Flynn A, Heilmann O, Koglmayr D, Tsachouridis VA, Rath C, Amann A.
Exploring the limits of multifunctionality across different reservoir computers. In: 2022
International Joint Conference onNeural Networks (IJCNN). Padua: IEEE (2022). p. 1–8.
Available online at: https://ieeexplore.ieee.org/document/9892203/ (accessed January
28, 2024).

66. Scardapane S, Panella M, Comminiello D, Hussain A, Uncini A. Distributed
reservoir computing with sparse readouts. IEEE Comp Intell Mag. (2016) 11:59–70.
doi: 10.1109/MCI.2016.2601759

67. Xu M, Han M. Adaptive elastic echo state network for multivariate time series
prediction. IEEE Trans Cybern. (2016) 46:2173–83. doi: 10.1109/TCYB.2015.2467167

68. Qiao J, Wang L, Yang C. Adaptive lasso echo state network based on modified
Bayesian information criterion for nonlinear system modeling. Neural Comput Appl.
(2019) 31:6163–77. doi: 10.1007/s00521-018-3420-6

69. Han X, Zhao Y, Small M. A tighter generalization bound for reservoir computing.
Chaos. (2022) 32:043115. doi: 10.1063/5.0082258

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
http://ieeexplore.ieee.org/document/7838253/
https://doi.org/10.1016/j.ins.2016.08.081
https://doi.org/10.1103/PhysRevE.98.052209
https://doi.org/10.1007/s11063-017-9765-5
https://doi.org/10.1364/OE.379264
https://doi.org/10.1038/s41598-020-65404-3
https://doi.org/10.1109/TNNLS.2020.3001377
https://doi.org/10.3389/fphys.2021.685121
https://doi.org/10.3389/felec.2022.869013
https://doi.org/10.1103/PhysRevE.91.020801
https://doi.org/10.3389/fams.2022.955044
https://doi.org/10.1063/5.0082122
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1364/OE.24.008679
https://doi.org/10.1364/OE.25.002401
https://doi.org/10.1016/j.optcom.2018.10.014
https://doi.org/10.1002/aisy.202300175
https://doi.org/10.1038/s41563-023-01698-8
https://doi.org/10.1063/1.5048199
https://doi.org/10.35848/1347-4065/ac7ca9
https://doi.org/10.1088/2634-4386/ac7db7
https://doi.org/10.1063/1.1737818
https://doi.org/10.1016/j.ymssp.2005.09.004
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.5039508
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/5.0028993
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1063/1.5120788
https://doi.org/10.1103/PhysRevLett.123.054101
https://doi.org/10.1016/j.neunet.2020.01.010
https://doi.org/10.1364/OME.451016
https://doi.org/10.1038/s41467-021-25427-4
https://doi.org/10.1016/0167-2789(89)90074-2
http://ieeexplore.ieee.org/document/253669/
https://doi.org/10.1103/PhysRevE.55.4035
https://doi.org/10.1016/S0167-2789(97)00165-6
https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1063/1.5118725
https://doi.org/10.1162/089976600300014971
https://doi.org/10.1063/5.0006869
https://doi.org/10.1063/1.5120710
https://doi.org/10.1063/5.0004344
https://doi.org/10.1063/5.0019974
https://ieeexplore.ieee.org/document/9892203/
https://doi.org/10.1109/MCI.2016.2601759
https://doi.org/10.1109/TCYB.2015.2467167
https://doi.org/10.1007/s00521-018-3420-6
https://doi.org/10.1063/5.0082258
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

70. Jaeger H, Lukoševičius M, Popovici D, Siewert U. Optimization and applications
of echo state networks with leaky- integrator neurons. Neural Netw. (2007) 20:335–52.
doi: 10.1016/j.neunet.2007.04.016

71. Yildiz IB, Jaeger H, Kiebel SJ. Re-visiting the echo state property. Neural Netw.
(2012) 35:1–9. doi: 10.1016/j.neunet.2012.07.005

72. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization
of oscillation in dissipative systems. Radiophys Quant Electron. (1986) 29:795–803.
doi: 10.1007/BF01034476

73. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized
synchronization of chaos in directionally coupled chaotic systems. Phys Rev E. (1995)
51:980–94. doi: 10.1103/PhysRevE.51.980

74. Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization
of chaos: The auxiliary system approach. Phys Rev E. (1996) 53:4528–35.
doi: 10.1103/PhysRevE.53.4528

75. Kocarev L, Parlitz U. Generalized synchronization, predictability, and
equivalence of unidirectionally coupled dynamical systems. Phys Rev Lett. (1996)
76:1816–9. doi: 10.1103/PhysRevLett.76.1816

76. Parlitz U. Detecting generalized synchronization. Nonlinear Theory Appl. (2012)
3:114–27. doi: 10.1587/nolta.3.113

77. Grigoryeva L, Hart A, Ortega JP. Chaos on compact manifolds: Differentiable
synchronizations beyond the Takens theorem. Phys Rev E. (2021) 103:062204.
doi: 10.1103/PhysRevE.103.062204

78. Platt JA, Penny SG, Smith TA, Chen TC, Abarbanel HDI. A systematic
exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
Neural Netw. (2022) 153:530–52. doi: 10.1016/j.neunet.2022.06.025

79. Datseris G, Parlitz U. Nonlinear Dynamics - A Concise Introduction Interlaced
with Code. Cham: Springer Nature Switzerland AG (2022).

80. Suetani H, Iba Y, Aihara K. Detecting generalized synchronization between
chaotic signals: a kernel-based approach. J Phys A Math Gen. (2006) 39:10723–42.
doi: 10.1088/0305-4470/39/34/009

81. Stark J. Invariant graphs for forced systems. Phys D. (1997) 109:163–79.
doi: 10.1016/S0167-2789(97)00167-X

82. Stark J. Delay Embeddings for Forced Systems. I Deterministic Forcing. J
Nonlinear Sci. (1999) 9:255–332. doi: 10.1007/s003329900072

83. Stark J, Broomhead D, Davies ME, Huke J. Delay Embeddings for
Forced Systems. II Stochastic Forcing. J Nonlinear Sci. (2003) 13:255–332.
doi: 10.1007/s00332-003-0534-4

84. Grigoryeva L, Ortega JP. Differentiable reservoir computing. J Mach Learn Res.
(2019) 20:1–62. Available online at: http://jmlr.org/papers/v20/19-150.html

85. Hart A, Hook J, Dawes J. Embedding and approximation theorems for echo state
networks. Neural Netw. (2020) 128:234–47. doi: 10.1016/j.neunet.2020.05.013

86. Platt JA, Wong A, Clark R, Penny SG, Abarbanel HDI. Robust forecasting
using predictive generalized synchronization in reservoir computing. Chaos. (2021)
31:123118. doi: 10.1063/5.0066013

87. Carroll TL. Dimension of reservoir computers. Chaos. (2020) 30:013102.
doi: 10.1063/1.5128898

88. Jaeger H. Short Term memory in Echo State Networks. Sankt Augustin: GMD
Forschungszentrum Informationstechnik. (2001). doi: 10.24406/publica-fhg-291107

89. Dambre J, Verstraeten D, Schrauwen B, Massar S. Information processing
capacity of dynamical systems. Sci Rep. (2012) 2:514. doi: 10.1038/srep00514

90. Carroll TL, Pecora LM. Network structure effects in reservoir computers. Chaos.
(2019) 29:083130. doi: 10.1063/1.5097686

91. Carroll TL, Hart JD. Time shifts to reduce the size of reservoir computers. Chaos.
(2022) 32:083122. doi: 10.1063/5.0097850

92. Storm L, Gustavsson K, Mehlig B. Constraints on parameter choices for
successful time-series prediction with echo-state networks. Mach Learn Sci Technol.
(2022) 3:045021. doi: 10.1088/2632-2153/aca1f6

93. Hart JD, Sorrentino F, Carroll TL. Time-shift selection for reservoir computing
using a rank-revealing QR algorithm. Chaos. (2023) 33:043133. doi: 10.1063/5.0141251

94. Uchida A, McAllister R, Roy R. Consistency of nonlinear system
response to complex drive signals. Phys Rev Lett. (2004) 93:244102.
doi: 10.1103/PhysRevLett.93.244102

95. Lymburn T, Khor A, Stemler T, Corrêa DC, Small M, Jüngling T. Consistency in
echo-state networks. Chaos. (2019) 29:023118. doi: 10.1063/1.5079686

96. Jüngling T, Lymburn T, Small M. Consistency hierarchy of reservoir
computers. IEEE Transact Neural Netw Learn Syst. (2022) 33:2586–95.
doi: 10.1109/TNNLS.2021.3119548

97. Lymburn T, Walker DM, Small M, Jüngling T. The reservoir’s perspective on
generalized synchronization. Chaos. (2019) 29:093133. doi: 10.1063/1.5120733

98. Lukoševičius M. A practical guide to applying echo state networks. In: Neural
Networks: Tricks of the Trade. Berlin; Heidelberg: Springer (2012). p. 659–86.

99. Wainrib G, Galtier MN. A local Echo State Property through the largest
Lyapunov exponent. Neural Netw. (2016) 76:39–45. doi: 10.1016/j.neunet.2015.12.013

100. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems
and saving energy in wireless communication. Science. (2004) 304:78–80.
doi: 10.1126/science.1091277

101. Thiede LA, Parlitz U. Gradient based hyperparameter optimization in Echo
State Networks. Neural Netw. (2019) 115:23–9. doi: 10.1016/j.neunet.2019.02.001

102. Racca A, Magri L. Robust optimization and validation of echo state
networks for learning chaotic dynamics. Neural Netw. (2021) 142:252–68.
doi: 10.1016/j.neunet.2021.05.004

103. Løkse S, Bianchi FM, Jenssen R. Training echo state networks with
regularization through dimensionality reduction. Cogn Comp. (2017) 9:364–78.
doi: 10.1007/s12559-017-9450-z

104. Jordanou JP, Aislan Antonelo E, Camponogara E, Gildin E. Investigation of
proper orthogonal decomposition for echo state networks. Neurocomputing. (2023)
548:126395. doi: 10.1016/j.neucom.2023.126395

105. Boedecker J, Obst O, Lizier JT, Mayer NM, Asada M. Information processing
in echo state networks at the edge of chaos. Theory Biosci. (2012) 131:205–13.
doi: 10.1007/s12064-011-0146-8

106. Farkaš I, Bosák R, Gergel’ P. Computational analysis ofmemory capacity in echo
state networks. Neural Netw. (2016) 83:109–20. doi: 10.1016/j.neunet.2016.07.012

107. Carroll TL. Optimizing memory in reservoir computers. Chaos. (2022)
32:023123. doi: 10.1063/5.0078151

108. Verzelli P, Alippi C, Livi L, Tino P. Input-to-state representation in linear
reservoirs dynamics. IEEE Transact Neural Netw Learn Syst. (2022) 33:4598–609.
doi: 10.1109/TNNLS.2021.3059389

109. Bollt E. On explaining the surprising success of reservoir computing forecaster
of chaos? The universal machine learning dynamical system with contrast to VAR and
DMD. Chaos. (2021) 31:013108. doi: 10.1063/5.0024890

110. Tanaka G, Matsumori T, Yoshida H, Aihara K. Reservoir computing with
diverse timescales for prediction of multiscale dynamics. Phys Rev Res. (2022)
4:L032014. doi: 10.1103/PhysRevResearch.4.L032014

111. Gauthier DJ, Bollt E, Griffith A, Barbosa WAS. Next generation reservoir
computing. Nat Commun. (2021) 12:5564. doi: 10.1038/s41467-021-25801-2

112. Bryant P, Brown R, Abarbanel HDI. Lyapunov exponents from observed time
series. Phys Rev Lett. (1990) 65:1523–6. doi: 10.1103/PhysRevLett.65.1523

113. Parlitz U. Identification of true and spurious lyapunov exponents from time
series. Int J Bifurc Chaos. (1992) 2:155–65. doi: 10.1142/S0218127492000148

114. Chen S, Billings SA. Modelling and analysis of non-linear time series. Int J
Control. (1989) 50:2151–71. doi: 10.1080/00207178908953491

115. Jaurigue L, Lüdge K. Connecting reservoir computing with statistical
forecasting and deep neural networks. Nat Commun. (2022) 13:227.
doi: 10.1038/s41467-021-27715-5

116. Shahi S, Fenton FH, Cherry EM. Prediction of chaotic time series using
recurrent neural networks and reservoir computing techniques: a comparative study.
Mach Learn Appl. (2022) 8:100300. doi: 10.1016/j.mlwa.2022.100300

117. Marquez BA, Suarez-Vargas J, Shastri BJ. Takens-inspired neuromorphic
processor: a downsizing tool for random recurrent neural networks via feature
extraction. Phys Rev Res. (2019) 1:033030. doi: 10.1103/PhysRevResearch.1.033030

118. Sakemi Y, Morino K, Leleu T, Aihara K. Model-size reduction for reservoir
computing by concatenating internal states through time. Sci Rep. (2020) 10:21794.
doi: 10.1038/s41598-020-78725-0

119. Del Frate E, Shirin A, Sorrentino F. Reservoir computing with random and
optimized time-shifts. Chaos. (2021) 31:121103. doi: 10.1063/5.0068941

120. Duan XY, Ying X, Leng SY, Kurths J, Lin W, Ma HF. Embedding theory of
reservoir computing and reducing reservoir network using time delays. Phys Rev Res.
(2023) 5:L022041. doi: 10.1103/PhysRevResearch.5.L022041

121. Jaurigue L, Robertson E, Wolters J, Lüdge K. Reservoir computing with
delayed input for fast and easy optimisation. Entropy. (2021) 23:e23121560.
doi: 10.3390/e23121560

122. Jaurigue LC, Lüdge K. Reducing hyperparameter dependence by
external timescale tailoring. Neuromorph. Comput. Eng. (2023) 4:014001.
doi: 10.1088/2634-4386/ad1d32

123. Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci. (1963) 20:130–41.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

124. Rössler OE. An equation for continuous chaos. Phys Lett A. (1976) 57:397–8.
doi: 10.1016/0375-9601(76)90101-8

125. Ma H, Prosperino D, Räth C. A novel approach to minimal reservoir
computing. Sci Rep. (2023) 13:12970. doi: 10.1038/s41598-023-39886-w

126. Manneschi L, Ellis MOA, Gigante G, Lin AC, Del Giudice P, Vasilaki E.
Exploiting multiple timescales in hierarchical echo state networks. Front Appl Math
Stat. (2021) 6:616658. doi: 10.3389/fams.2020.616658

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1007/BF01034476
https://doi.org/10.1103/PhysRevE.51.980
https://doi.org/10.1103/PhysRevE.53.4528
https://doi.org/10.1103/PhysRevLett.76.1816
https://doi.org/10.1587/nolta.3.113
https://doi.org/10.1103/PhysRevE.103.062204
https://doi.org/10.1016/j.neunet.2022.06.025
https://doi.org/10.1088/0305-4470/39/34/009
https://doi.org/10.1016/S0167-2789(97)00167-X
https://doi.org/10.1007/s003329900072
https://doi.org/10.1007/s00332-003-0534-4
http://jmlr.org/papers/v20/19-150.html
https://doi.org/10.1016/j.neunet.2020.05.013
https://doi.org/10.1063/5.0066013
https://doi.org/10.1063/1.5128898
https://doi.org/10.24406/publica-fhg-291107
https://doi.org/10.1038/srep00514
https://doi.org/10.1063/1.5097686
https://doi.org/10.1063/5.0097850
https://doi.org/10.1088/2632-2153/aca1f6
https://doi.org/10.1063/5.0141251
https://doi.org/10.1103/PhysRevLett.93.244102
https://doi.org/10.1063/1.5079686
https://doi.org/10.1109/TNNLS.2021.3119548
https://doi.org/10.1063/1.5120733
https://doi.org/10.1016/j.neunet.2015.12.013
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1016/j.neunet.2021.05.004
https://doi.org/10.1007/s12559-017-9450-z
https://doi.org/10.1016/j.neucom.2023.126395
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1063/5.0078151
https://doi.org/10.1109/TNNLS.2021.3059389
https://doi.org/10.1063/5.0024890
https://doi.org/10.1103/PhysRevResearch.4.L032014
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1103/PhysRevLett.65.1523
https://doi.org/10.1142/S0218127492000148
https://doi.org/10.1080/00207178908953491
https://doi.org/10.1038/s41467-021-27715-5
https://doi.org/10.1016/j.mlwa.2022.100300
https://doi.org/10.1103/PhysRevResearch.1.033030
https://doi.org/10.1038/s41598-020-78725-0
https://doi.org/10.1063/5.0068941
https://doi.org/10.1103/PhysRevResearch.5.L022041
https://doi.org/10.3390/e23121560
https://doi.org/10.1088/2634-4386/ad1d32
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1038/s41598-023-39886-w
https://doi.org/10.3389/fams.2020.616658
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

127. Gallicchio C, Micheli A. Echo state property of deep reservoir computing
networks. Cognit Comput. (2017) 9:337–50. doi: 10.1007/s12559-017-9461-9

128. Gallicchio C, Micheli A, Pedrelli L. Deep reservoir computing:
a critical experimental analysis. Neurocomputing. (2017) 268:87–99.
doi: 10.1016/j.neucom.2016.12.089

129. Dutoit X, Schrauwen B, Van Campenhout J, Stroobandt D, Van Brussel H,
NuttinM. Pruning and regularization in reservoir computing.Neurocomputing. (2009)
72:1534–46. doi: 10.1016/j.neucom.2008.12.020

130. Shahi S, Fenton FH, Cherry EM. A machine-learning approach for long-term
prediction of experimental cardiac action potential time series using an autoencoder
and echo state networks. Chaos. (2022) 32:063117. doi: 10.1063/5.0087812

131. Nathe C, Pappu C, Mecholsky NA, Hart J, Carroll T, Sorrentino F. Reservoir
computing with noise. Chaos. (2023) 33:041101. doi: 10.1063/5.0130278

132. Pathak J, Wikner A, Fussell R, Chandra S, Hunt BR, Girvan M, et al. Hybrid
forecasting of chaotic processes: using machine learning in conjunction with a
knowledge-based model. Chaos. (2018) 28:041101. doi: 10.1063/1.5028373

133. Wikner A, Pathak J, Hunt B, Girvan M, Arcomano T, Szunyogh I, et al.
Combining machine learning with knowledge-based modeling for scalable forecasting
and subgrid-scale closure of large, complex, spatiotemporal systems. Chaos. (2020)
30:053111. doi: 10.1063/5.0005541

134. Duncan D, Räth C. Optimizing the combination of data-driven and
model-based elements in hybrid reservoir computing. Chaos. (2023) 33:103109.
doi: 10.1063/5.0164013

135. Köster F, Patel D, Wikner A, Jaurigue L, Lüdge K. Data-informed
reservoir computing for efficient time-series prediction. Chaos. (2023) 33:073109.
doi: 10.1063/5.0152311

136. Zimmermann RS, Parlitz U. Observing spatio-temporal dynamics of excitable
media using reservoir computing. Chaos. (2018) 28:043118. doi: 10.1063/1.5022276

137. Barbosa WAS, Gauthier DJ. Learning spatiotemporal chaos using next-
generation reservoir computing. Chaos. (2022) 32:093137. doi: 10.1063/5.0098707

138. Goldmann M, Mirasso CR, Fischer I, Soriano MC. Learn one size to infer
all: Exploiting translational symmetries in delay-dynamical and spatiotemporal
systems using scalable neural networks. Phys Rev E. (2022) 106:044211.
doi: 10.1103/PhysRevE.106.044211

139. Mujal P, Martínez-Peña R, Nokkala J, García-Beni J, Giorgi GL, Soriano MC,
et al. Opportunities in quantum reservoir computing and extreme learning machines.
Adv Quant Technol. (2021) 4:2100027. doi: 10.1002/qute.202100027

140. Ghosh S, Nakajima K, Krisnanda T, Fujii K, Liew TCH. Quantum
neuromorphic computing with reservoir computing networks. Adv Quant Technol.
(2021) 4:2100053. doi: 10.1002/qute.202100053

141. Garca-Beni J, Giorgi GL, Soriano MC, Zambrini R. Scalable photonic platform
for real-time quantum reservoir computing. Phys Rev Appl. (2023) 20:014051.
doi: 10.1103/PhysRevApplied.20.014051

142. Čindrak S, Donvil B, Lüdge K, Jaurigue L. Solving the time-complexity problem
and tuning the performance of quantum reservoir computing by artificial memory
restriction. arXiv. (2023). doi: 10.48550/arXiv.2306.12876

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neucom.2008.12.020
https://doi.org/10.1063/5.0087812
https://doi.org/10.1063/5.0130278
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/5.0005541
https://doi.org/10.1063/5.0164013
https://doi.org/10.1063/5.0152311
https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/5.0098707
https://doi.org/10.1103/PhysRevE.106.044211
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1002/qute.202100053
https://doi.org/10.1103/PhysRevApplied.20.014051
https://doi.org/10.48550/arXiv.2306.12876
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Parlitz 10.3389/fams.2024.1221051

Appendix

Echo state property of the Lorenz-63
based reservoir system

To show that the Lorenz-63 based reservoir system

(Equation 15) fulfills the echo state property, we consider

two arbitrary initial conditions r(0) and r̃(0) and the evolution

of their difference e(t) = r(t) − r̃(t). The first component fulfills

the differential equation ė1 = ṙ1 − ˙̃r1 = −10µe1 and therefore

limt→∞ e1(t) = 0, i.e., r̃1(t) → r1(t) for t → ∞. In this limit the

differential equations for e2 and e3 reduce to

ė2 = µ[−e2 − r1e3]

ė3 = µ[r1e2 − 2.666e3].

Using the Lyapunov function L = e22 + e23 one can

show that L̇ = 2e2ė2 + 2e3ė3 = −2µ(e22 + 2.666e23) ≤ 0

and therefore limt→∞ e2(t) = limt→∞ e3(t) = 0 and

thus r̃2(t) → r2(t) and r̃3(t) → r3(t), i.e., asymptotically

both trajectories represent the same unique response of

the reservoir system. Convergence and resulting transversal

contraction of the response systems increases with µ, i.e., larger

µ-values lead to smoother functions ψi (see discussion in

Section 2.4).

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2024.1221051
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Learning from the past: reservoir computing using delayed variables
	1 Introduction
	2 Fundamentals of reservoir computing
	2.1 Continuous and discrete reservoir systems
	2.2 Forecasting, cross-prediction, and classification
	2.2.1 Single-step prediction
	2.2.2 Output feedback and iterated prediction
	2.2.3 Short-term prediction and climate

	2.3 Training of the reservoir system
	2.4 Echo state property and generalized synchronization
	2.5 Echo state networks

	3 Reservoir computing using delayed variables
	3.1 Extending the set of basis functions
	3.2 Predicting Rössler dynamics using a Lorenz-63 based reservoir system
	3.3 Cross-prediction of unobserved state variables of the Rössler system
	3.4 Cross-prediction using delayed variables
	3.5 Predicting future evolution

	4 Extensions and improvements to reservoir computing
	5 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix
	Echo state property of the Lorenz-63 based reservoir system

