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In magnetoconvection, the flow of an electromagnetically conductive fluid is driven
by a combination of buoyancy forces, which create the fluid motion due to thermal
expansion and contraction, and Lorentz forces, which distort the convective flow structure
in the presence of a magnetic field. The differences in the global flow structures in the
buoyancy-dominated and Lorentz-force-dominated regimes lead to different heat transport
properties in these regimes, reflected in distinct dimensionless scaling relations of the
global heat flux (Nusselt number Nu) versus the strength of buoyancy (Rayleigh number
Ra) and electromagnetic forces (Hartmann number Ha). Here, we propose a theoretical
model for the transition between these two regimes for the case of a static vertical
magnetic field applied across a convective fluid layer confined between two isothermal,
a lower warmer and an upper colder, horizontal surfaces. The model suggests that
the scaling exponents γ in the buoyancy-dominated regime, Nu ∼ Raγ , and ξ in the
Lorentz-force-dominated regime, Nu ∼ (Ha−2Ra)ξ , are related as ξ = γ /(1 − 2γ ), and
the onset of the transition scales with Ha−1/γ Ra. These theoretical results are supported
by our direct numerical simulations for 10 ≤ Ha ≤ 2000, Prandtl number Pr = 0.025 and
Ra up to 109 and data from the literature.
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1. Introduction

Magnetoconvection (MC) governs most astro- and geophysical systems and is relevant
to various engineering applications (Weiss & Proctor 2014; Davidson 2016). The former
include, for instance, outer layers of stars and liquid-metal planetary cores (Jones
2011), examples of the latter comprise liquid-metal batteries, electromagnetic brakes in
continuous casting, liquid-metal cooling for nuclear fusion reactors and semiconductor
crystal growth (Davidson 1999). Magnetoconvection occurs in an electrically conducting
fluid that is subjected to both a magnetic field and an imposed temperature gradient. The
buoyancy forces induce convective fluid motion due to thermal expansion and contraction,
while the magnetic field affects this motion and distorts the global flow structure through
the Lorentz force, which eventually influences the heat transport in the system. The
resulting main two control parameters, the strength of the imposed thermal driving and
that of the external magnetic field, are encoded in independent dimensionless groups, the
Rayleigh number Ra and Hartmann number Ha, respectively, while the ratio of viscous to
thermal diffusion coefficients, the Prandtl number, defines the working fluid:

Ra ≡ αgΔH3

κν
, Pr ≡ ν

κ
, Ha ≡ B0H

√
σ

ρν
, (1.1a–c)

where σ is the electrical conductivity, ρ the mass density, α the thermal expansion
coefficient, g the acceleration due to gravity, ν the kinematic viscosity, κ the thermal
diffusivity, Δ the temperature difference between bottom and top plate, B0 the external
magnetic field strength, and H the domain height.

One of the key objectives in MC research is to provide scaling relations for the heat
transport through the system, represented in dimensionless form by the ratio of total to
conductive heat flux, the Nusselt number Nu, as a function of Ra and Ha. However, the
heat transport scaling relations also depend on the flow configuration, including the angle
between the magnetic field and gravity, the geometry of the container and the boundary
conditions (BCs), and on whether the buoyancy forces dominate over the Lorentz forces in
the system or vice versa. This inherent complexity results in the need, at least in principle,
to derive separate heat transport scaling relations to describe each specific flow regime
itself and transitions between distinct regimes. The considerable difficulty of doing so in
a coherent manner is exacerbated by non-universal scaling relations even within specific
regimes – the scaling relations in the buoyancy-dominated and Lorentz-force-dominated
regimes themselves change with the control parameters, and transitions between the
different regimes are also non-universal.

The objective of this paper is to offer a unifying heat transport model for the transition
between the buoyancy-dominated and Lorentz-force-dominated regimes in quasistatic
MC. We focus on Rayleigh–Bénard convection (RBC) (Ahlers, Grossmann & Lohse 2009)
with an applied vertical magnetic field and assume that the magnetic field is constant in
the entire domain, without being affected by a fluid motion or finite magnetic diffusion.
The model uses the theoretical predictions by Grossmann and Lohse (Grossmann & Lohse
2000, 2001; Stevens et al. 2013) for RBC without magnetic field and transfers the approach
by Ecke and Shishkina (Ecke & Shishkina 2023, § 3.3) for transitions in rotating RBC to
the case of RBC with a vertical magnetic field. To verify the proposed model, we compare
the theoretical predictions with results for liquid-metal MC obtained by direct numerical
simulation (DNS) carried out by us and others (Liu, Krasnov & Schumacher 2018; Yan
et al. 2019; Akhmedagaev et al. 2020; Xu, Horn & Aurnou 2023), as well as experiments
(Cioni, Chaumat & Sommeria 2000; King & Aurnou 2015; Zürner et al. 2020; Xu et al.
2023). In addition, we carried out simulations for a different working fluid at higher Prandtl
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number Pr to compare our DNS data with that from Lim et al. (2019). The predictions of
the proposed model agree well with the experimental and DNS data.

2. Model for regime transition

We consider a layer of electrically conducting fluid confined between two infinitely wide
and long plates, driven by a buoyancy force generated by an imposed vertical temperature
difference between the top and bottom plates, and subjected to a uniform vertically
orientated magnetic field. We further consider the flow to be turbulent, that is, in a
regime sufficiently far from bulk onset such that the heat transport obeys a power-law
dependence on the thermal driving. When the magnetic field is weak compared with the
buoyancy force, we recover classical RBC scaling for the dimensionless convective heat
flux Nu − 1, that is, the total dimensionless heat flux Nu less its conductive contribution,
Nu − 1 ∼ (Ra/Rac,b)

γ ∼ Raγ , for an exponent γ , where Rac,b is the critical Ra for
RBC bulk onset for a given container geometry. When the Lorentz force is strong
compared with the buoyancy force, we expect a similar scaling law Nu − 1 ∼ (Ra/Rac,L)ξ ,
for an exponent ξ . Here, the dependence on the critical Rayleigh number Rac,L in
the Lorentz-force-dominated regime is kept due to its dependence on Ha, which can
be obtained from linear stability theory (Chandrasekhar 1961) Rac,L ∼ Ha2, with no
dependence on the Prandtl number.

Although these buoyancy-dominated and Lorentz-force-dominated scaling laws appear
disconnected, they are intrinsically linked under the assumption that they must overlap at
some intermediate region between the two extreme regimes, where the influence of neither
the Lorentz force or buoyancy force on the convective heat transport can be ignored. In
order to derive a model connecting the two scaling laws, we make two key assumptions;
(i) the thermal and Hartmann boundary layers (BLs) scale as δT ∝ 1/Nu and δν ∝ 1/Ha,
respectively, and (ii) there is a transition point at a universal ratio of BL thicknesses across
parameter space. The former are the well-known classical scaling relations for laminar
BLs, and there is ample experimental and numerical evidence for the relations to hold.
We will revisit this point in § 4.1. For the latter, we postulate that at the transition between
these regimes, the two corresponding scaling laws will cross over,

Raγ ∼ Nu − 1 ∼ (Ha−2Ra)ξ , (2.1)

and, to construct a relationship between the two scaling exponents γ and ξ , we assume that
this cross-over occurs at a Pr-dependent ratio of the thermal and viscous boundary layer
thicknesses that is independent of the control parameters Ra and Ha. For Pr > 1, this
ratio may be close to unity as the thermal BL is nested within the viscous or Hartmann
layer at moderate value of Ha. Increasing Ha results in a thinner Hartmann layer and thus
eventually to a BL crossing. However, for Pr � 1, as is the case for liquid metals, the
Hartmann layer is much thinner than the thermal BL. Hence depending on the strength of
the external magnetic field, very strong thermal driving is required to quench the thermal
BL to become thinner than the Hartmann layer, and a BL cross-over will only occur far
in the buoyancy-dominated regime, if at all (Zürner 2020). We will return to this point in
§ 4.1.

Assuming δT = βδν for a constant β = β(Pr) at the transition implies Nu ∼ Ha. Since
this transition is seen to typically occur at high Nusselt numbers, meaning Nu ≈ Nu − 1,
we obtain

Ha ∼ Nu ∼ Raγ ∼ Raξ Ha−2ξ ∼ Ra−2ξγ+ξ , (2.2)
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Figure 1. Scalings of Nu − 1 vs (a) Ha and (b) Ra, according to the theory. The scaling laws Ha−2/3 and
Ha−1 in (a) correspond to Ra1/5 and Ra1/4 in (b), respectively. These are regimes I and II in the classification
provided by GL theory, where Ra1/4 refers to the small-Ra regime I, with most of the thermal and kinetic
energy dissipation occurring in the BLs. The law Ra1/5 (regime II) is predicted to occur at small Pr.

resulting in the following relationship between the exponents:

ξ = γ /(1 − 2γ ), or γ = ξ/(1 + 2ξ). (2.3)

One can see that a larger (smaller) exponent in one regime requires a larger (smaller)
exponent in the other regime, and that γ is always smaller than 1/2. The latter suggests that
the ultimate regime can be attained only asymptotically, under overwhelming dominance
of buoyancy over Lorentz force, and may not be attained under the dominance of magnetic
fields, as the Lorentz force suppresses turbulence.

In figure 1 we present a sketch of the proposed scaling relations for (Nu − 1) vs Ha
(figure 1a) and Ra (figure 1b), according to the relations (2.3). Once γ is known for any
specific Pr, the exponent ξ can be calculated from (2.3). These scalings can then be used to
define coordinates (Nu − 1)Ra−γ and Ha−1/γ Ra with respect to which the heat transport
dependence for different values of Ha and Ra collapse onto a master curve, as sketched in
figure 2. The transition then should take place in a Rayleigh-number range that scales as
Ha1/γ .

To close the model, a theoretical prediction for either γ or ξ must be made. The
former is readily available through Grossmann–Lohse (GL) theory (Grossmann & Lohse
2000, 2001; Stevens et al. 2013) for RBC without magnetic field, applicable here in
the buoyancy-dominated regime. An extension of GL theory to MC at finite magnetic
Reynolds number was suggested by Chakraborty (2008), Zürner et al. (2016) and Zürner
(2020). As the quasistatic approximation applies in the limit of vanishing magnetic
Reynolds number, and as we apply GL theory in the buoyancy-dominated regime where
the effect of the Lorentz force is weak compared with buoyancy, we do not consider
MC-extended GL theory here. Furthermore, for low Pr, so far the MC extension describes
only the heat transport to a good approximation; effects on momentum transport such as
turbulence suppression by a magnetic field appear not to be captured well (Zürner 2020).
For any given Pr and Ra range, the theory provides accurate predictions of the value of γ ,
for containers of aspect ratio Γ � 1. For Γ � 1, the data can be rescaled according to the
method suggested in (Shishkina 2021; Ahlers et al. 2022), which we do not discuss here,
as in the present study Γ = 1.
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Figure 2. Schematic representation of the normalised convective heat transport Nu − 1 displaying the
transition from the Lorentz-force-dominated regime, Nu − 1 ∼ (Ha−2Ra)ξ , to the buoyancy-dominated
regime, Nu − 1 ∼ Raγ , according to our model. The scaling exponents ξ and γ follow (2.3), while the transition
scales with Ha−1/γ Ra.

3. Experimental and numerical data

To verify the theoretical model, we compare its predictions against data obtained from
experiments of liquid-metal MC (Cioni et al. 2000; King & Aurnou 2015; Zürner et al.
2020; Xu et al. 2023) and DNS conducted by us and others (Liu et al. 2018; Yan et al. 2019;
Akhmedagaev et al. 2020; McCormack et al. 2023; Xu et al. 2023). However, before doing
so we provide a brief overview of the data collated from the literature and produced by us
to demonstrate the considerable challenges that arise when trying to draw firm conclusions
on the scaling of the heat transport with Ha and Ra.

3.1. Numerical simulations
We simulate an incompressible, viscous buoyancy-driven flow of an electrically
conducting fluid in the presence of a static external magnetic field for very small magnetic
Reynolds number Rm � 1 and magnetic Prandtl number Pm � 1 by solving numerically
the MC equations within the Oberbeck–Boussinesq and quasistatic approximations:

∂u
∂t

+ u · ∇u + ∇p =
√

Pr
Ra

[∇2u + Ha2( j × eB)] + Tez, (3.1)

∂T
∂t

+ u · ∇T = 1√
RaPr

∇2T, (3.2)

∇ · u = 0, (3.3)

j = −∇φ + u × eB, (3.4)

∇2φ = ∇ · (u × eB), (3.5)

where u is the velocity, T the temperature, p the kinematic pressure, j the electric current
density, φ the electric potential, and ez and eB are unit vectors that point, respectively,
upward (opposite to gravity) and in the direction of the magnetic field B = B0eB.
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The magnetic field is aligned with the buoyancy force, eB = ez. As for the non-conducting
case in the Oberbeck–Boussinesq approximation,

Nu = 〈uzT〉z − κ∂z〈T〉z

κΔ/H
, (3.6)

where 〈·〉z denotes the time average taken over cross-sections at height z.
Equations (3.1)–(3.5) have been non-dimensionalised using the container height H,

the free-fall velocity uff ≡ (αgHΔ)1/2, the free-fall time tff ≡ H/uff , the temperature
difference between the bottom and top plates, Δ ≡ T+ − T−, and the external magnetic
field strength, B0, as units of length, velocity, time, temperature and magnetic field
strength, respectively. We apply no-slip BCs for the velocity at all boundaries, u = 0,
constant temperatures at the end faces, i.e. T = T+ at the bottom plate at z = 0 and T = T−
at the top plate at z = H, and adiabatic BC at the sidewalls, ∂T/∂n = 0, where n is the
vector orthogonal to the surface. All solid boundaries are considered electrically insulated;
Neumann BCs for the electric potential are ∂φ/∂n = 0. The simulation domain is cubic
of height H, width W, length L, H = W = L, i.e. has aspect ratio Γ ≡ L/H = 1. Most
simulations are carried out for liquid metals such as Ga-In-Sn eutectic alloy at Pr = 0.025,
for Ra up to 109 and Ha up to 2000. Some DNS are conducted also for Pr = 8, to extend
the parameter range studied in Lim et al. (2019).

Our DNS have been carried out with an MC extension of the direct numerical solver
GOLDFISH (Kooij et al. 2018; Reiter et al. 2021; Reiter, Zhang & Shishkina 2022;
McCormack et al. 2023), which has been widely used in previous studies of different
convective flows. The new version of the code that applies a fourth-order finite-volume
discretisation on staggered grids and a third-order Runge–Kutta time marching scheme
(Reiter et al. 2021, 2022) has been extended to simulate magnetoconvective flows, where
a consistent and conservative scheme (Ni & Li 2012) is utilised to calculate the current
density and the Lorentz force. The DNS dataset comprises 38 simulations to cover the
necessary ranges in Ha and Ra. To obtain a dataset this large within the available resources,
a compromise had to be made in terms of the bulk resolution. Staggered grids are used to
provide fine resolution in the core part of the domain and near the rigid walls (Shishkina
et al. 2010). In the bulk, spatial flow fluctuations are resolved down to 2–5, occasionally
10 Kolmogorov microscales; near the rigid walls we resolve the thermal and Hartmann
BLs. To ensure accurate predictions of mean Nu, grid refinement studies have been done
for key simulations. For these cases, changing the grid resolution by a factor of at least 2.5
resulted in changes of Nu by less than 1 % over a long-time average. The main parameters
of the simulations and key observables are summarised in Appendix A, table 1.

Figure 3 presents example visualisations of the velocity magnitude and temperature,
respectively, at an instant in time during statistically steady evolution in the magnetically
dominated and the buoyancy-dominated regimes. Panels (a,c) correspond to Ra = 107,
Ha = 1000, (b,d) to Ra = 109, Ha = 10. As can be seen from a comparison of the flow
fields between both regimes, both velocity and temperature fluctuate on much smaller
scales in the buoyancy-dominated regime. The magnetically dominated regime shows
strong vertical flows near the walls, and we note the absence of plumes in the temperature
field.

3.2. Summary and comparison of experimental and numerical data
In figure 4 we present Nu − 1 as a function of Ra (figure 4a,b) and Ha (figure 4c,d),
respectively, from our DNS, experimental (Cioni et al. 2000; King & Aurnou 2015;
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Figure 3. Instantaneous velocity magnitude U and temperature field T on the y mid-plane for (a,c) Ra = 107,
Ha = 1000 and (b,d) Ra = 109, Ha = 10, with Umax = 0.12 (a) and Umax = 0.8 (b).
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Figure 4. The dimensionless convective heat transport, i.e. Nu − 1, as functions of (a,b) Ra and (c,d) Ha, for
(a,c) Pr = 8 and (b,d) 0.025 ≤ Pr ≤ 0.029. The colour scales are according to (a,b) Ha and (c,d) Ra.

Zürner et al. 2020; Xu et al. 2023) and DNS data (Liu et al. 2018; Akhmedagaev et al.
2020; Xu et al. 2023) for liquid metals, 0.025 ≤ Pr ≤ 0.029 (figure 4b,d) and a fluid with
Pr = 8 (figure 4a,c). In addition, in figure 4(b,d), we plot for comparison the DNS data
(Yan et al. 2019) for free-slip BCs. In figure 4(a,b) one can see that Nu generally increases
with growing Ra, but with different slopes for different Ha, which are steeper for larger
Ha. In the double logarithmic plots of figure 4(a,b), the curves of the (Nu − 1)-vs-Ra
dependences for different Ha approach each other when Ra increases. In figure 4(c,d) one
can see that Nu remains almost unaffected by the magnetic field for relatively small Ha,
but for a strong Lorentz force (large Ha) Nu gradually decreases with growing Ha. Here,
again, the decreasing slopes are different for different Ra, and the transition to the regime,
where the heat transport is affected by the magnetic field, depends on Ra. In summary, the
data in figure 4 looks rather different across experiments and DNSs carried out in different
regions of parameter space. In what follows, we show that our model results in a collapse
of all data points on a single master curve.

4. Model validation

We now validate the model using the data presented in figure 4. To calculate the scaling
exponent γ in the buoyancy-dominated regime, for the considered Pr and Ra ranges, we
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Figure 5. All data from figure 4 follow master scaling curves if plotted as figure 2 suggests, for (a) Pr = 8
and (b) 0.025 ≤ Pr ≤ 0.029. The values of γ are calculated from GL theory, and the values of ξ are calculated
from (2.3). Pink and blue lines show the predictions of the slopes in the buoyancy and Lorentz-force-dominated
regimes, respectively. The symbols have the same meaning as in figure 4.

use GL theory, which gives Nu − 1 ≈ 0.127Ra0.299, that is γ ≈ 0.30 for Pr = 8 and Nu −
1 ≈ 0.053Ra0.311, i.e. γ ≈ 0.31 for Pr = 0.025. Fits to data have been carried out for 3 ×
106 � Ra � 109 for Pr = 0.025 and 3 × 106 � Ra � 109 for Pr = 8, resulting in a very
good agreement between the theoretical predictions and the data for both values of Pr.

Using (2.3) with γ = 0.30 for Pr = 8 and γ = 0.31 for Pr = 0.025, we calculate the
exponent ξ in the Lorentz-force-dominated regime, which equals ξ = 0.75 for Pr = 8 and
ξ ≈ 0.82 for Pr = 0.025. In figure 5 we plot all data presented previously in figure 4 using
the coordinates suggested by our model and visualised in figure 2 and in Lorentz-force
compensated form (insets). Both representations result in a clear collapse of the data onto
master curves for Pr = 8 (figure 5a) and 0.025 ≤ Pr ≤ 0.029 (figure 5b). As can be seen
from the data presented in the inset of figure 5(b), some deviation of the data from the
master curve in the inset of figure 5(b) is observed when Ra is relatively small, that is, for
Ra < 2Rac,L. Data in this parameter regime, where the flow is in either the pure wall-mode
regime before bulk onset or slightly above bulk onset and thus strongly influenced by wall
modes with the heat transport mostly confined to the near-wall region, has been removed
from the main panel of figure 5(b). Since the influence of no-slip sidewalls is outside
the scope of our model, the observed deviations are expected in this regime. However, it is
remarkable that power-law scaling extends into flow regimes where some amount of heat is
transferred by large-scale dynamics close to the wall, such as that shown in figure 3(a,c).
In fact, the scaling laws provided by the model are robust, as they describe numerical
and experimental data very well, despite differences in BCs between experiments and
DNS. In the latter, electrically insulating BCs are being applied while copper plates or
metallic-coated copper plates are being used in the former. However, the intensity of the
Lorentz force usually depends very sensitively on the electrical BCs.

4.1. Boundary layers
The model derivation relies on two key assumptions (§ 2): (i) laminar scaling of the
BLs across the transition region and (ii) a cross-over of the respective scaling laws for
the buoyancy- and the magnetically dominated regime for a Pr-dependent ratio of BL
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thicknesses that does not implicitly depend on the control parameters, at least to a good
approximation. In what follows we validate these assumptions against DNS data.

Concerning assumption (i), in a domain of height H over a semi-infinite plate, the
average thermal BL thickness from laminar Prandtl–Blasius BL theory (Prandtl 1905;
Schlichting 1979) is δT = 1/(2Nu), while the laminar viscous BL influenced by a vertical
magnetic field is the Hartmann layer (Hartmann & Lazarus 1937; Davidson 2016),
δν = c/Ha, where c is a constant. For our data, values of δT and δT/δν are provided
in Appendix A, table 1. The BL thicknesses were determined by measurements of the
slope of the mean temperature profile (Tilgner, Belmonte & Libchaber 1993) and the mean
horizontal velocity profile, respectively. The measured values of δT agree very well with
the expected laminar scaling for all values of Ha considered here, see table 1. In contrast,
Hartmann-scaling δν ≈ cH/Ha with c ≈ 1 is attained only for Ha ≥ 200 (not shown). In
fact, deviations from Hartmann-scaling are expected at low Ha, as inertial forces dominate
over the Lorentz force and the viscous BL is of Prandtl–Blasius type (Lim et al. 2019).
With increasing Ha the Lorentz force eventually dominates the force balance and the
Prandtl–Blasius BL transitions into the Hartmann layer. As can be seen from figure 5(b),
the transitional regime requires Ha ≥ 200 for the values of Ra considered here. Similarly,
according to the BL measurements for the Pr = 8 data (Lim et al. 2019), δν = c/Ha
with c = 1.22 for Hartmann numbers Ha ≥ 50 which, according to the data presented in
figure 5(a), covers the transitional and Lorentz-force dominated regimes and even extends
into the buoyancy-dominated regime. As the transition between the two regimes is smooth
and as δT = 1/(2Nu) and δν = c/Ha are measured to a very good approximation for both
the Pr = 8 and the Pr = 0.025 data where relevant, we conclude that both relations hold
across the transition region.

A formal way of stating assumption (ii) is to postulate the existence of two transition
conditions at an intermediate point, where the influence of neither the Lorentz force or the
buoyancy force can be ignored:

Raξ−γ Ha−2ξ = α, (4.1)

δT/δν = β, (4.2)

where α = α(Pr) and β = β(Pr) only depend on Pr. To check if these relations hold,
we use a bisection-type approach in combination with interpolation in Ha and Ra where
required. We take an initial guess for (α, β), and for each value of Ra (or Ha) we
find the value of Ha (or Ra) for which (4.2) holds, Ha∗ (or Ra∗), and see if this
combination of (Ra, Ha∗) (or (Ra∗, Ha) ) satisfies (4.1). For the Lim et al. (2019)
dataset at Pr = 8, we find β ≈ 0.63 and α ≈ 11.24 across a wide range of Ra, that is
(Ra, Ha∗) ∈ {(107, 25.05), (108, 50), (109, 99.5), (1010, 200.5)}. For the Pr = 0.025 data,
we find β ≈ 33.33 and α ≈ 0.223 satisfy these conditions for (Ra∗, Ha) ∈ {(1.32 ×
106, 200), (2.49 × 107, 500), (2.34 × 108, 1000)}. We are unable to check this condition
for lower Ha since this requires a Ra beneath the critical value for onset.

In summary, a BL cross-over is not observed during the transition. For the Pr = 8 case,
the transition occurs with the thermal BL nested within the Hartmann layer with δT/δν ≈
0.63, while the opposite applies for Pr = 0.025, where δT/δν ≈ 33.33. In fact, we would
expect the scaling cross-over to occur at a BL-thickness ratio δT/δν � 1 for small Pr, as
temperature fluctuations play a more important role then. Furthermore, according to (3.1),
both damping effects, that is momentum diffusion and the effect of the Lorentz force, are
of less relevance at low Pr. That is, the transition to the buoyancy-dominated regime can
be expected to occur at much lower thermal driving than at high Pr.
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5. Conclusion

In summary, we have proposed a heat transport model for the transition between the
buoyancy- and Lorentz-force-dominated regimes of vertical MC. We validated the model
using our DNS and data available in the literature. We wish to emphasise that the proposed
model is parameter-free. For a given Pr and Ra range, one can calculate the scaling
exponent in the buoyancy-dominated regime, using GL theory. Then, using (2.3), one can
calculate the scaling exponent ξ in the Lorentz-force-dominated regime and collapse the
data on a master curve by rescaling the coordinate axes as in figure 2. The model can
in principle be extended to include the effect of a fluctuating magnetic field; this merely
results in an adjustment of the prefactors.
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Appendix A. Data table

Pr Ha Ra Nu σNu δT δT/δν Nx Ny Nz Trun NT NHa hDNS/hK

8 500 2.0 × 106 2.42 0.01 — — 100 100 300 350 90 8 0.40
500 5.0 × 106 3.86 0.02 — — 100 100 300 550 70 8 0.60

0.025 10 1.0 × 105 3.08 0.04 0.167 2.76 150 150 200 40 49 36 1.06
10 5.0 × 105 4.76 0.21 0.103 8.46 150 150 200 45 37 36 1.76
10 1.0 × 106 5.70 0.32 0.088 8.18 150 150 200 65 33 36 2.20
10 5.0 × 106 8.77 0.67 0.056 7.27 150 150 200 100 25 36 3.64
10 1.0 × 107 10.68 0.78 0.047 6.99 150 150 200 160 22 36 4.49*

10 1.0 × 108 20.42 1.98 0.024 6.73 250 250 350 50 29 67 5.42
10 5.0 × 108 33.18 1.47 0.015 7.09 250 250 350 90 21 67 8.76
10 1.0 × 109 40.47 2.32 0.012 7.05 350 350 450 40 25 87 8.64*

100 5.0 × 105 3.29 0.06 0.169 18.60 200 200 250 20 60 10 1.07
100 1.0 × 106 4.39 0.14 0.118 14.39 200 200 250 30 50 10 1.34
100 5.0 × 106 7.74 0.56 0.066 9.80 200 200 250 40 35 10 2.40
100 1.0 × 107 9.69 0.44 0.052 8.17 200 200 250 60 31 10 3.09*

100 1.0 × 108 19.72 1.36 0.025 6.69 220 220 300 45 24 13 5.81
100 5.0 × 108 33.10 1.76 0.015 7.06 250 250 350 65 21 16 8.45*

200 1.0 × 106 2.62 0.03 0.191 37.83 220 220 350 120 101 15 1.13
200 2.0 × 106 3.69 0.01 0.136 27.31 220 220 350 225 84 15 1.46
200 5.0 × 106 5.78 0.22 0.087 18.15 220 220 350 225 66 15 2.06

Table 1. For caption see on next page.
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Pr Ha Ra Nu σNu δT δT/δν Nx Ny Nz Trun NT NHa hDNS/hK

200 1.0 × 107 7.87 0.39 0.064 14.04 220 220 350 160 56 15 2.65*

200 1.0 × 108 18.06 1.82 0.028 7.76 250 250 400 100 42 17 5.07
200 5.0 × 108 30.56 2.63 0.016 7.06 250 250 400 100 32 17 8.66*

500 5.0 × 106 3.51 0.06 0.137 67.35 220 220 350 650 86 9 1.82
500 2.0 × 107 6.70 0.34 0.074 37.28 220 220 350 190 61 9 3.02
500 5.0 × 107 10.73 0.64 0.047 24.08 220 220 350 300 48 9 4.27*

500 1.0 × 108 13.88 0.76 0.036 18.53 250 250 400 500 48 11 4.74
500 5.0 × 108 26.75 1.77 0.019 10.17 250 250 400 150 34 11 8.36
500 1.0 × 109 34.44 2.59 0.015 8.47 250 250 400 250 30 11 10.64*

1000 1.0 × 107 2.41 0.26 0.208 198.94 220 220 300 600 90 5 1.92*

1000 2.0 × 107 3.02 0.08 0.165 158.66 220 220 300 1300 80 5 2.30
1000 3.0 × 107 4.12 0.28 0.121 117.31 220 220 300 500 68 5 2.40
1000 5.0 × 107 5.84 0.37 0.082 81.77 220 220 300 500 56 5 3.02
1000 1.0 × 108 9.39 0.51 0.053 53.64 220 220 300 1100 44 5 3.77
1000 5.0 × 108 22.78 1.35 0.023 23.85 220 220 300 60 18 5 6.44*

2000 5.0 × 107 2.53 0.09 0.195 371.93 250 250 400 90 116 5 2.20
2000 1.0 × 108 4.50 0.11 0.110 215.35 250 250 400 160 86 5 2.68
2000 3.0 × 108 9.61 0.46 0.052 103.72 250 250 400 800 58 5 3.67
2000 5.0 × 108 13.60 0.63 0.037 73.53 250 250 400 220 49 5 4.47*

Table 1. DNS details, where σNu is the standard deviation of the Nusselt number Nu, δT and δν the thermal and
viscous BL thicknesses, Nx, Ny, Nz the number of nodes in x-, y- and z-direction, respectively; Trun the number
of free-fall times used for averaging; NT and NHa the number of nodes within the thermal and Hartmann BLs;
hK the Kolmogorov microscale, and hDNS/hK the relative mean grid stepping. Grid refinement studies have
been carried out for simulations marked by an asterisk.
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