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The timing and phylogeny of bacterial evolution is difficult to reconstruct because of a scarce
fossil record, deep genomic divergences and complexities associated with molecular clocks. Studying
bacterial evolutionary history using rich and rapidly accumulating genomic data requires accurate
modeling of genome evolution, taking into account that different parts of bacterial genomes have
different history. In particular, along the genome, different loci are subject to different selective
pressure. In addition, some are horizontally transferred from one bacterium to another, resulting
in a mosaic-like genome structure. An important technical aspect is that loci with high effective
mutation rates can diverge beyond the aligner detection limit, biasing the genome-wide divergence
estimate towards more conserved loci. Therefore, the genome-wide molecular clock cannot be di-
rectly applied to study bacterial evolutionary history. In this article, we propose a novel method to
gain insight into bacterial evolution based on statistical properties of genomic sequences compar-
isons. The length distribution of the sequence matches is shaped by the effective mutation rates of
different loci, by the horizontal transfers and by the aligner sensitivity. Based on these inputs we
build a model and demonstrate that it accounts for the empirically observed distributions, taking
the Enterobacteriaceae family as an example. Using the model and the empirical data we fit the
evolutionary parameters: time divergences and horizontal transfer rates. Based on the estimated
time divergences we build a time-calibrated phylogenetic tree, demonstrating the accuracy of the
method and its ability to unravel vertical and horizontal transfers in bacterial genomes.

I. Introduction

Reconstructing bacterial evolution is a challenging task. In contrast to multicellular organisms for which an abun-
dant fossil record helps to date events on phylogenetic trees, bacteria leave very little trace of their existence [1].
Despite the accumulation of genomic data in the last decades, divergence times of many bacterial taxa are yet to be
reliably estimated. Such estimates may be very useful, especially when combined with host, habitat or ecosystem
data [2]. The concept of the "molecular clock" [3, 4] has become fundamental in the analysis of evolution [5, 6], but
applying it to date bacterial diversification events is often problematic. In particular, it is necessary to determine the
rate at which nucleotides mutate over time, i.e. the speed at which the clock “ticks”. However, this effective mutation
rate does not only depend on the background point mutation rate (associated with replication errors and repair) and
on the generation time of the bacterium [7, 8], but also on different ecological parameters [9, 10], location along the
chromosome [11–13], activity of nucleoid-associated proteins [14], fitness effects of the mutations [15–17] and other
factors. All this, being difficult to assess in practice, prevent an accurate estimation of divergence times. Furthermore,
the molecular clock is also obfuscated by horizontal gene transfers, especially if the clock is based on a small number
of genes (e.g. slow evolving rRNA genes) [18–22] and some of them have taken part in horizontal transfer [23–27].
Finally, loci with high effective mutation rates diverge rapidly, such that alignment algorithms do not detect such
homologous loci in distant bacteria. As a consequence, these regions are not considered in divergence time estimation,
resulting in information loss and underestimation of the divergence time.

While the phylogenetic relationships between species can usually be inferred using the molecular clock, we lack
reliable and scalable methods to infer the branching times on phylogenetic trees. Namely, the bacterial molecular
clock cannot be satisfactorily calibrated in contrast to multicellular organisms [28]: one has to relate to ecological
events at known times to specific points in the phylogenetic tree [29]. For instance, to link the evolution of bacteria and
their hosts [30], etc. [6]. However, this approach often leads to orders of magnitude discrepancies between estimates
of the mutation rate on different timescales [6, 28, 31, 32]. Such discrepancies led to the hypothesis of time-dependent
mutation rate [33–36] and corresponding relaxed molecular clock models [37]. Such relaxed molecular clock models
however require to fit many free parameters, which can be problematic when there is only limited amount of data
available. Moreover, these models are mostly applied to a small number of marker genes, such that large parts of the
genomes are not considered in the time divergence estimations, discarding potentially useful information.

In sum, evolutionary reconstruction in bacteria is particularly difficult due to the mosaic structure of genomes:
different loci evolve with different effective mutation rates, while some loci are acquired via horizontal gene/allele
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transfer. The mosaic structure of bacterial genomes can be directly observed. In the alignment of two bacterial
genomes (see Figs. S1 and S2 for the example of E. coli and S. enterica pair) the mutation densities significantly vary
along the alignment from one locus to another.

In this article, we show that taking into account the mosaic structure of genomes allows to resolve time estimate
discrepancies and to reconstruct bacterial evolutionary history. We do so introducing the "mosaic molecular clock",
that is a molecular clock which accounts for variations of mutation rate from one locus to another. We show that quickly
mutating loci cross the homology detection limit of the aligner sooner than loci mutating slowly and demonstrate how
this affects empirical time divergence estimates. This model makes it possible to estimate time divergences based on
all detectable homologous loci in the studied genomes, in contrast to most existing methods based on marker genes.
Importantly, our model also takes into account horizontal gene transfer. Predictions of the model—total homologous
region length, average similarity observed and other statistical properties—agree well with the empirical results for
real taxa over a wide range of pairwise time divergences.

II. Model and analytical solution

The mosaic molecular clock model The main assumption of our model is that bacterial genomes have a
mosaic structure, that is, each locus i mutates with a different effective mutation rate µi and is inherited vertically.
We refer to this part of the genome as vertical. By "Effective" mutation rate we mean the rate of mutation and
its fixation in the population. In addition, a taxa pair horizontally exchanges random loci with rate ρ. The part of
the genome that comprises such loci is denoted as horizontal. One can see a schematic illustration of the model in
Fig. 1(a). Below we describe in more detail our assumptions about the effective mutation rate distribution and how
we model detection limit of the aligner.
Mutation rate distribution The mutation rates are distributed between two values: the smallest one, µc

corresponds to the mutation rate of the most conserved regions, like rRNA genes, while the largest one, µs, corresponds
to the spontaneous background point mutation rate. Relatively rare cases of faster than background mutation rate
due to positive selection are ignored within the considered model. We model the mutation rate along the genome as
a random variable. Its distribution is a crucial ingredient in the model that we infer using a combination of analytical
arguments and empirical evidences.

Consider a locus i in two bacterial taxa A and B. The genomic divergence between the two bacteria along this locus
is given by θi = µiτ (in the θi � 1 regime) where µi = (µAi +µBi )/2 is the average of the two effective mutation rates,
µAi and µBi , at this locus for these lineages and τ is the time divergence between the bacteria (twice the time to their
last common ancestor). We assume that mutation rates of two bacterial lineages are not correlated (see discussion
about this assumption in the Discussion and Summary section). Following this assumption, it can be demonstrated
that the distribution of µi scales linearly for small values [38, 39]. Thus, it is expected that the divergences of different
loci θi (in the vertical part of the genome) are also distributed in a similar linear fashion. We observe this linear
regime empirically, as shown in Fig. 1(b).

In sum, our assumption for the distribution of the effective mutation rate is given by

p(µi) =

{
2µi

µ2
s−µ2

c
µc ≤ µi ≤ µs

0 otherwise
. (1)

Further on, we omit the locus index i to simplify the notation.
Alignment software detection limit The ability of an alignment software to detect homology depends on the

properties of the alignment algorithm used and on the properties of the considered sequences. Here we summarize the
properties of the aligner into one effective parameter δ, assuming that an aligner can detect homologous sequences as
long as their divergence θ is smaller than a threshold δ. Namely, if a given locus mutates with a mutation rate µ and
the time divergence of this locus is τ , it is detected as homologous if and only if µτ ≤ δ. Defining µa as the mutation
rate of the least conserved alignable region, for τ < δ

µc
we have µa = min

(
δ
τ , µs

)
. For τ > δ

µc
no homology of the

vertical part of the genome can be detected. The dependence on the length is much weaker and is ignored.
We verified the validity of this simplifying assumption within our framework using simulated data and calculated

the effective value of δ for the specific software that we used in this study (see discussion below in Section IIA and
Figs. S7,S8).
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FIG. 1: Illustration of the model for the evolution of two taxa, A and B. (a) Vertical lines represent different loci
along the genome, evolving with different effective mutation rates, while horizontal lines depict horizontal transfer of
loci between the taxa. Vertical and horizontal parts of the genomes are marked by v and h, correspondingly. (b)
Distribution of mutation rate in a bacterial genome. Solid lines represent the assumed distribution of mutation rate,
as described in Eq. (1) with µc = 10−10 [29] and µs = 3.64 · 10−9 [40]. Circles represent empirical distribution of
segment divergences between E. coli and E. albertii (see upper horizontal axis). Segments were obtained using the
segmut R package [41] (see Method). Here, to get the values of µi = τθi from the mutation densities θi we took
τ = 2.3 · 107, as obtained in further analyses (see Fig. 2(a)).

A. Analytical solution

How to relate the model to genomic data? Inferring the parameters of our model from empirical genomic
data is challenging. This is due to the fact that, unlike artificial mosaics, the boundaries of the constituent pieces
are not well recognizable and the pieces are often too small to be analysed thoroughly and even identified. Here we
briefly discuss the validation procedure of our model using empirical data and demonstrate how to relate p(µ) to an
easily accessible empirical quantity.

In principle, using the molecular clock assumption, the evolutionary time divergence τ between two DNA loci with
effective mutation rate µ is related to the density of mismatches at these loci, µτ . To take into account the mosaic
structure of the genomes, we consider a combination of clocks, one per locus—each clock ticking at a different pace
due to the different mutation rates. In addition, some loci may also have undergone horizontal gene transfer, and thus
vary in their divergence times. In this paper, we combine these different molecular clocks into one "mosaic molecular
clock".

In practice, the mosaic structure of the genomes we study is not known a priori, that is, one has to infer the regions
with constant mutation densities. To this end, we developed a simple method called segmut to partition the genomes
into regions with constant mismatch densities using a χ2 approach (see Methods and Figs. 1(b),S3,S2). This method
has several drawbacks since it is computationally intensive, and the results are difficult to verify on empirical data. To
circumvent this difficulty we decided to use another approach that was already efficiently applied in different contexts
(see [38, 39, 42–44]). The main idea, we employ here, is to study the length distribution of maximal exact matches
between homologous sequences. Indeed, one can show [45], using the result derived in [46] that studying match length
distribution (MLD) allows to assess time divergence between DNA sequences. Namely, for a given τ and µ between
two loci of length K � r the expected number of their exact sequence matches, m(r), is given by

m(r|µ, τ) = K(µτ)2e−µτr. (2)
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Therefore, if the mutation rate follows a certain distribution p(µ), the MLD for two genomes of length L is given by

m(r|τ) = L

∫ ∞
0

(µτ)2e−µτrp(µ)dµ (3)

We note that the integral above can be represented as a Laplace transformation and:

m(r|τ) = L
∂2

∂r2
p̃(τr) (4)

where p̃(τr) = L {p}(τr) =
∫∞
0
e−µτrp(µ)dµ is the Laplace transform of p(µ). Hence, there is a direct relationship

between the MLD m(r|τ) and the Laplace transform of the mutation rate distribution. As a consequence, studying
m(r) – a quantity that can be easily computed for empirical data – allows to reconstruct the evolutionary history
of the genomes, in particular their mutation rate distribution. Below we further take into account that τ is also
distributed along genomes due to horizontal transfers, but the principle is the same: the distribution m(r) is easy to
compute empirically, easy to calculate analytically and contains informations about the distributions of µ and τ .

To demonstrate the validity of our approach on empirical data, we computed the alignment of one strain of E.
coli vs. one strain of S. enterica (Fig. S3(a)). Ignoring the mosaic structure of genomes, assuming that the average
genome-wide density of mutations θ is uniform along the genome, the MLD would simply follow m(r) = Lθ2e−θr,
which is very different from the empirical observation. To make sure that this discrepancy is due to the existence of loci
with different effective mutation rates along the genome, we used the segmut R package (see methods) to reconstruct
the mosaic structure of the genomes. This way we can compute the empirical distribution of mutation rates p(θi).
Assuming that the mutations are uniformly distributed inside each locus (that is, m(r|θi) ' θ2i e−θir), we can compute
a pseudotheoretical MLDm(r) =

∑
i p(θi)m(r|θi) which very closely mimics the empirical distribution, demonstrating

the validity of our model. The disagreement between the naive model (uniform distribution of mutations along the
whole genome) and our mosaic model is even more evident when one considers the comparisons of many pairs of
strains as shown for the analysis of all vs. all alignments of E. coli vs. S. enterica (Fig. S3(b)).

In the following, we use our model to calculate analytically the MLD, compare it to the empirical one and infer the
model parameters τ and ρ for all considered pairs of taxa. To simplify the analysis, below we consider separately the
MLD from the vertical part of the genome, mv, and the MLD from the horizontally transferred part, mh. In the next
section, we calculate analytically the shape of the MLD for the vertical and horizontal parts of the genomes.
Vertical part The MLD from the δ-detectable vertical part of the genome (homologous loci with divergences

smaller than δ) with time divergence τ , using Eq. (1), is given by

mv(r) = L0

∫ ∞
0

(µτ)2e−µτrp(µ)dµ = L0
∂2

∂r2

 2
r2τ2

e−µcτr(µcrτ+1)−e−µsτr(µsrτ+1)
µ2
s−µ2

c
τ ≤ δ

µs
2

r2τ2

e−µcτr(µcrτ+1)−e−δr(δr+1)
µ2
s−µ2

c
τ > δ

µs

. (5)

One can see that the tail of the MLD from the vertical part scales as r−4, as previously observed in eukaryotes
[38, 39].

The total length of the δ-detectable homologous vertical part of the genome decreases with increasing time divergence
τ and is given by

Lv = L0

∫ ∞
0

p(µ)dµ = L0
µ2
a − µ2

c

µ2
s − µ2

c

= L0

1 τ ≤ δ
µs

( δτ )
2−µ2

c

µ2
s−µ2

c
τ > δ

µs

(6)

Along the vertical region with this length the average divergence is given by

θv =
L0

Lv

∫ ∞
0

µτp(µ)dµ =
2

3

µ3
a − µ3

c

µ2
a − µ2

c

τ =
2

3
τ


µ3
s−µ

3
c

µ2
s−µ2

c
τ ≤ δ

µs

( δτ )
3−µ3

c

( δτ )
2−µ2

c

τ > δ
µs

(7)

See Fig. S11 for representative plots of these functions.
Horizontally transferred part Assuming that only a small fraction of the genome has been transferred (i.e.

ρτ
2 � 1), the MLD from the δ-detectable horizontal part of the genome can be written as:

mh(r) =

∫ τ

0

mv(r|τ ′)
ρ

2
e−

ρ
2 τ
′
dτ ′ '

∫ τ

0

mv(r|τ ′)
ρ

2
dτ ′ =

ρL0

2

∂2

∂r2

{
2

(µc+µs)r
− 2

τr2
e−µcτr−e−µsτr

µ2
s−µ2

c
τ ≤ δ

µs
2

(µc+µs)r
− 2

τr2
e−µcτr−e−δr(δr−µsrτ+1)

µ2
s−µ2

c
τ > δ

µs

.

(8)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.22.558938doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.22.558938
http://creativecommons.org/licenses/by/4.0/


5

One can see that the tail of the MLD from the horizontally transferred part scales as r−3, as was also derived and
shown empirically in Ref. [44].

In the same regime, the total length of the δ-detectable homologous part of the genome due to HGT is given by

Lh =

∫ τ

0

Lv(τ
′)
ρ

2
e−

ρ
2 τ
′
dτ ′ '

∫ τ

0

Lv(τ
′)
ρ

2
dτ ′ = L0

{ρ
2τ τ ≤ δ

µs

δρ
2µs

+ ρ
2µs

τµ2
c( δτ−µs)−δµs(

δ
τ−µs)

µ2
s−µ2

c
τ > δ

µs

. (9)

Along the horizontally transferred region with this length the average divergence is given by

θh =

∫ τ
0
θv(τ

′)Lv(τ
′)ρ2e

− ρ2 τ
′
dτ ′

Lh
'
∫ τ
0
θv(τ

′)Lv(τ
′)ρ2dτ

′

Lh
=

 2
3
µ3
s−µ

3
c

µ2
s−µ2

c

τ
2 τ ≤ δ

µs

δ
2
2
3

2δ2+ 1
δ (µcτ)

3−3δµsτ
δ2+(µcτ)2−2δµsτ τ > δ

µs

(10)

Total MLD Assuming that the total contribution of the homologous part due to HGT is much smaller than the
contribution from the vertical part (i.e. Lh � Lv), the total MLD is given by:

m(r) = mv(r) +mh(r), (11)

where mv and mh are given by Eqs. (5,8). The total δ-detectable homologous length is given by

L = Lv + Lh, (12)

where Lv and Lh are given by Eqs. (6,9). The average divergence is given by

θ =
Lvθv + Lhθh
Lv + Lh

, (13)

where θv and θh are given by Eqs. (7,10).
Finally, note that in our framework gene losses reduce the overall length of the homologous regions between the

two taxa L0, but do not change the shape of the MLD.
Numerical validation To test our theory, we simulated the evolution of species under the assumptions of the

model (see Fig. 1(a)): each locus mutates with a certain rate, distributed as (1) and horizontal transfer of loci occurs
with rate ρ (see Methods). We aligned sequences obtained in these simulations using the nucmer software [47] with
default parameters. Importantly, we kept only matches that are unique in both strains to reduce the influence of
paralogs that are not the main focus of this study (see Methods). Fitting all MLDs with δ as a free parameter, we
find that for the used aligner, δ ' 0.25 results in good fits (see Fig. S7). Using this parameter we were able to fit the
numerical MLDs, demonstrating the validity of our approach. In addition, the estimations of divergence times and
horizontal transfer rates reproduced well the simulation parameters (see Fig. S8) showing that our method allow to
reconstruct the evolutionary history of species from genomic data. In the following, analyzing empirical data we use
δ = 0.25, assuming that δ is the property of the aligner and does not depend strongly on the analyzed sequences.

III. Empirical validation

MLD fitting—two regimes We then tested our model on empirical data. We downloaded 3, 249 fully assembled
genomes from 11 taxa of the Enterobacteriaceae family, as well as 759 genomes from two outgroups Serratia and Vibrio
genera (see Table I for details).

We computed one MLD per pair of taxa from all 13×12/2 pairwise comparisons (see Methods for technical details,
Fig. 2 for a few examples and Supplementary File mAllṗdf for all comparisons). Obtained MLDs exhibit two different
regimes, corresponding to short and long matches, in good agreements with the prediction of our model. Indeed, we
observe that short matches follow a power-law with a −4 exponent, as expected for the matches from the vertical part
(see Eq. 5) while long matches are distributed according to a −3 power-law, as predicted for horizontally transferred
segments (see Eq. 8). The location of the transition between the two regimes depends on the time divergence between
the taxa: the closer the two taxa are, the longer the matches of the vertical part. Analytical prediction for the
combination of the vertically and horizontally transferred part Eq. (11) fits well the empirical data for almost all taxa
pairs.
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Model setbacks Our model failed to estimate the time divergence for two specific taxa pairs: 1. E. coli vs.
E. fergusonii and 2. E. asburiae vs. E. hormaechei. In Fig. S10 one can see the reason for this: the MLD of the
first pair has a m(r) ∼ r−3 regime in the vertical part, implying that Eq. (1) is not valid and suggesting instead
p(µ) ∼ µ0 for this pair. One can observe similar behaviours for another closely related pair in Fig. 2(a) (for this
pair the time divergence estimate is nevertheless reasonable). For the other pair, E. asburiae vs. E. hormaechei
(see Fig. S10(b)), the rate of horizontal transfer is that high that the horizontally transferred segments dominate
over the vertical part. Since time divergence estimation is based solely on the vertical part, the signal is obfuscated.
In fact, this demonstrates another quality of our approach: using MLD one can easily diagnose pairs for which the
assumptions of the model are not fulfilled, and therefore the parameter estimation fails.
Eukaryotic genomes If our model is correct, the same principles should also apply to eukaryotic genomes.

Indeed, eukaryotes also have mosaic genomes with a distribution of mutation rates, the main difference being that
horizontal transfer in eukaryotes is much rarer than in prokaryotes [48]. We thus applied our method to the comparison
of a few vertebrate genomes, and found that the resulting MLDs could be fitted with only the vertical part, see Fig. S9
(similar results were found in Refs. [38, 39, 49, 50]).
Estimated parameters Our model makes several predictions regarding the estimated parameters and their

relationships. If the assumptions of our model are correct, we should observe these relationships as well in the
empirical data. First, our model predicts that the total length of the homologous regions of the genomes of two
species depends on the time divergence, see Eq. (6). For small time divergences, the full genome can be aligned, and
after a certain time threshold (i.e. τ > δ/µs), Lv decreases with the divergence time as Lv ' δ2/(µsτ)2, as predicted
in Eq. (6). Indeed, this relationship is well reproduced on empirical data as shown in Fig. 3(a). Our model further
predicts that the average divergence between the two genomes depends on the time divergence in a non trivial fashion,
see Eq. (7). As predicted, we observe on empirical data that the average genome-wide divergence scales linearly for
closely related species, reaches ' 2

3 of the aligner detection limit δ for τ = µs/δ, and then grows very slowly with τ
(see Fig. 3(b)). Finally, we find that the rate of horizontal transfer, ρ, as presented in Fig. 3(c), can vary by orders
of magnitude (see also [51]), and exhibits a clear trend to decay as the divergence time grows, as previously observed
(see e.g. [44, 52–54]).

Our model failed to estimate the time divergence for two specific taxa pairs: 1. E. coli vs. E. fergusonii and 2.
E. asburiae vs. E. hormaechei (annotated with digits 1 and 2 in Fig. 3). In Fig. S10 one can see the reason for
this: the MLD of the first pair has a m(r) ∼ r−3 regime in the vertical part, implying that Eq. (1) is not valid
and suggesting instead p(µ) ∼ µ0 for this pair. One can observe similar behaviour for another closely related pair
in Fig. 2(a). For the other pair, E. asburiae vs. E. hormaechei (see Fig. S10(b)), the rate of horizontal transfer is
that high that the horizontally transferred loci dominate over the vertical part in the MLD. Since time divergence
estimation is based solely on the vertical part, the signal is obfuscated. In fact, this demonstrates another quality of
our approach: analysing the MLD, one can easily diagnose special pairs of taxa for which estimating the parameters
requires a different approach. Overall, the empirical data agree well with our theoretical predictions, demonstrating
the accuracy of the model.
Resulting phylogenetic tree We next investigated whether the time estimates we computed with our method

were coherent and compatible. To do so, we computed a phylogenetic tree from our time estimates using the UPGMA
method [56], forcing ultrametricity of the tree (see Methods). The resulting phylogenetic tree is shown in Fig. 3(d).
In the inset of the figure one can see that the pairwise distances in the obtained tree follow closely the estimated
values. This result shows that our estimated time divergences have an inherent ultrametric structure, demonstrating
that all considered lineages have similar mutation rate distributions. Moreover, the topology of the tree reproduces
well what is expected based on the literature: for instance, Klebsiella pneumoniae is closely related to Raoultela [57]
and S. enterica is closely related to Citrobacter [58].

In contrast, using a simple molecular clock assumption, the topology of the tree and the value of the time estimates
would be very different (see Fig. S4). Indeed, because segments with high divergence are not identified by the alignment
software, the estimated divergence are greatly underestimated for distant pairs, and the resulting tree would have an
unresolved star-like structure.

IV. Discussion and summary

In this paper, we studied the statistical properties of similarities between bacterial genomes. Similarities between two
bacterial genomes are shaped by mutations, horizontal transfer of genes/alleles, gene losses and selection during their
evolution since their last common ancestor. In practice, the observed similarities are also shaped by the sensitivity of
the used aligner: if two loci are too evolutionary distant, the aligner cannot detect their homology and these distant
loci are disregarded. In this case, only the more conserved loci are detected by the aligner, making the bacterial
genomes appear more similar than they really are.
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FIG. 2: Match length distributions of 9 selected pairs of taxa. Names of the taxa are indicated in the bottom-left
corner of the panels. The numbers in the brackets indicate number of strains. The average divergence is indicated
by θ. The empirical data (dots) are fitted with Eq. (11) (black solid lines) using the global parameters
µs = 3.64 · 10−9/bp/yrs, µc = 10−10/bp/yrs and δ = 0.25. The values of τ and ρ are fitted for each pair separately
and are shown in the top-right corner. Using the obtained parameters the vertical and the horizontal parts of the
match length distributions is plotted using Eqs. (5) (blue lines) and (8) (red lines), respectively. The genome length
of the most recent common ancestor of two taxa is assumed to be the minimum of the taxas’ genome lengths.

In this study we combine all these factors and propose a mathematical framework to model and assess their
contributions. We show that the analysis of match length distributions is a powerful tool that reflects details of
bacterial evolution. In our model, mutations are assumed to occur randomly, breaking long matches to shorter ones.
Different loci mutate with different effective rates, µ, depending on their associated selective pressure. On the other
hand, horizontal transfers between two genomes generate long matches with a given rate ρ. Gene losses reduce the
total length of homologous loci, scaling down the MLD prefactor L0. The sensitivity of the aligner is modelled by
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FIG. 3: Relationships between the models parameters and the estimated time divergences for species of the
Enterobacteriaceae family. (a) Ratio of the detectable homologous length and estimated value of the genome length
of the common ancestor for all pairs of taxa as a function of the time divergence between the taxa. The blue line is
Lv/L0, the predicted length ratio from the vertical part based on Eq. (6), the red line is Lh/L0 the predicted length
ratio from the horizontally transferred and detectable part based on Eq. (9). The dotted grey line represents the full
(detectable and non-detectable) length ratio of the horizontally transferred part, given by ρτ . The length ratio L/L0

from both detectable parts (vertically and horizontally transferred), from Eq. (12) is indistinguishable from Lv—the
blue line—on this scale for these data. Detailed empirical data for each taxa pair is shown in Fig. S5. (b) Empirical
divergences for all taxa pairs after Jukes-Cantor distance correction [55] vs. fitted time divergence (squares). The
blue line represents the predicted divergence along the vertical part (Eq. (7)), while the red line represents the
predicted divergence along the horizontally transferred part ( Eq. (10)). The total predicted divergence given by
Eq. (13) is indistinguishable from θv for these data. Detailed empirical data for each taxa pair is shown in Fig. S6.
(c) Fitted HGT rate as a function of the fitted divergence time for all pairs of taxa. Digits 1 and 2 on the upper
panels indicate "model setbacks" for 1. E. coli vs. E. fergusonii and 2. E. asburiae vs. E. hormaechei. (d) UPGMA
tree using estimated pairwise time distances τ . Inset plot compares the time distances on the resulting ultrametric
tree with the estimated values (on a double-logarithmic scale).

considering only homologous loci with an average divergence lower than a threshold δ.
We find that the shape of the mutation rate distribution strongly influences the size of the alignable part of the

genomes, and, as such, the average divergence between them. By explicitly modeling the distribution of mutation
rates along genomes, we can resolve the long-standing discrepancy between the spontaneous mutation rate measured
in short time-scale experiments and the one inferred from distant bacteria on the evolutionary time-scales without
the ad hoc assumption of time-dependent mutation rate. Our results indicate that the mutation rate distribution is
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linear (see Fig. 1(b)) between two extreme values: the spontaneous mutation rate µs and the mutation rate of the
most conserved loci µc.
Selective pressure and distribution of effective mutation rates The distribution of mutation rate along

genomes reflects the variation of selective pressure. The selective pressure on a locus is affected by the fitness effect of
a mutation at this locus and by the effective population size of the taxon [59, 60]. The distribution of fitness effects
can in principle be assessed [16], but these methods require in general to conduct complex experiments in controlled
environments. In contrast, in this study we directly model the mosaic distribution of effective mutation rates under
simple assumptions.

If mutation rates along different lineages are not correlated, one expects that the mean effective mutation rates
are linearly distributed (see Eq. (1)) [38, 39]. The validity of the no-correlation assumption is not obvious—more
conserved loci in one lineage are expected to tend to be more conserved in another lineage. Therefore, there might be
another explanation for the approximate linear distribution of the effective mutation rates that we observe empirically
in very different comparisons: from bacteria to mammals (see Fig. S9). This aspect requires more detailed study, for
instance analysing bacterial ancient DNA [1].
HGT detection based on MLD Detection of horizontal transfer of a locus is often based on its high similarity

in two organisms, much higher than one would expect due to conservation [61]. Long (almost) exact matches are
often interpreted as horizontal transfers, [44, 53, 62, 63]. However, in the absence of a model, it is not clear what
is the threshold that discriminates horizontally transferred and well conserved sequences, leading to false-negative or
false-positive detection errors [64]. Detailed analysis of the MLD can help to minimize those errors: the presence of
two clear regimes in the MLD suggests that sequences with exact matches shorter than the crossover between the two
regimes are conserved, while longer ones most probably have been horizontally transferred. This way of classifying
loci is non-parametric and can be applied to almost all pairs of taxa studied here (see below for exceptions), which
all exhibit MLDs with two clear regimes.

Since the model proposed here clearly disentangles conservation and horizontal transfers, our estimate of horizontal
transfer rates are expected to be more accurate than the one found in previous studies. Our results confirms that the
rate decreases with the divergence time, as previously observed [44, 51–54]. Note, that in this study we filtered out
plasmid sequences, so that the estimated horizontal transfer rates are related only to the chromosomal part of the
genome.
Phylogenetic analysis Using the presented approach we built an ultrametric tree of the Enterobacteriaceae

family with Serratia and Vibrio as outgroups (see Fig. 3(d)). Topologically the tree reproduces known phylogenetic
relationships.

While these relationships can also be found on a tree constructed using the average genome-wide divergences (see
Fig. S4), we emphasise that this tree is not topologically identical to the one built using our method. For instance, the
average divergence tree suggests that Salmonella is closer to Klebsiella (θ = 0.1479) than to Escherichia (θ = 0.1498).
The tree based on the time divergences estimated using our method suggests the opposite (τ = 1.88 · 108 and
τ = 6.67 · 107, respectively), in agreement with the 16S rRNA result [65, 66] (although 16S rRNA phylogeny cannot
be taken as a ground truth [27, 67]).

Overall, for closely related taxa where the molecular clock still holds, the two methods yield very similar trees. In
contrast, for distantly related taxa where many homologous sequences are too diverged to be identified by the aligner,
the branch lengths estimated by our method are very different from those found by the average divergence method. As
a consequence, the average divergence tree has a star-like shape, while our method can better resolve deep branching
patterns.

Interestingly, we estimate that Escherichia and Salmonella branched 100 · 106yrs ago. This is ' 30% earlier than
the currently accepted estimate of 140 · 106yrs based on the appearance of mammals [29]. This suggest that our
assumptions about the values of the mutation rates µc and µs are higher than the real ones or that the branching of
the two taxa occurred significantly after the appearance of mammals.
Model Setbacks For two taxa pairs the time divergence estimates are not accurate. Possible reasons for this may

be that the recombination rate between the two species is so high that the vast majority of the observed matches result
from horizontally transferred loci rather than from evolutionary conserved ones. Hence, one cannot reliably estimate
the time divergence using our approach. Another possible reason might be that the mutation rate distribution does
not follow the linear distribution assumed in our model. Although the assumption of linear mutation rate distribution
is very general and is fulfilled in most cases, it might be violated for closely related pairs in at least two scenarios: (i)
if the effective mutation rates of the homologous loci are well correlated or (ii) if mutations occur mostly at loci with
high effective mutation rates for which the asymptotic scaling considerations in Section II do not apply.
Improvement of the method For simplicity, in this article, we used a strict molecular clock, meaning that the

mutation rate distribution is the same along all branches, and we assumed that the mutation rate varies only along
the genome. We demonstrate that this simple model is consistent with the current knowledge of bacterial evolution
and allows to estimate reasonable divergence times. The presented approach could further be extended, relaxing the
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clock also along the lineages by assuming a different distribution of the effective mutation rate along every branch.
This extension has the potential to improve the quality of the parameter estimations, and solve some discrepancies
of our model (see discussion above), although it would require to make many more ad-hoc assumptions and to fit a
much larger number of free parameters.

On the technical side, in this paper, we used the nucmer software to construct all alignments, because this method
is computationally very efficient. However, our framework could easily be adapted to other algorithms with improved
sensitivity (e.g. lastz [68]) to align more distantly related genomes and measure horizontal transfer rates and time
divergences. The exact same theoretical framework could be used, just changing the effective parameter δ to account
for the difference in sensitivity.
Summary We demonstrated that a method embracing the complex mosaic structure of bacterial genomes and

explicitly accounting for the technical limitations of sequence homology detection can improve the estimation of deep
phylogenetic branches and their timing. The main advantage of our method is that it can leverage genome-wide
alignment data resulting in robust time divergence estimates that are not dependent on a few specific marker genes.
Our results have implications that go beyond bacterial evolution as we have shown that our model applies to the
mosaic structure of many more genomes, including vertebrates.

V. Methods

Throughout this article the time (τ) units are years, length (L) units are bp, while the rates (mutation µ and
horizontal transfer ρ) are in units of yrs−1 bp−1.
Data To validate the theoretical predictions we used taxa from the well known Enterobacteriaceae family and two

outgroups: Serratia and Vibrio genera. We considered only chromosomal part of the genome. To filter out plasmids
we used only complete genome and chromosome level assemblies in the RefSeq [69] and GenBank [70] databases using
NCBI [71]. We considered only species with at least 20 available assemblies. For species with smaller number of full
assemblies we grouped the species to corresponding genera.
Aligning the genomes To align pairs of genomes we used nucmer [47] with the default settings, using only

unique matches in both genomes (--mum option). To estimate the divergence we calculated the number of differences
per alignment, normalized by the alignment length. We consider all insertions and deletions as a single difference.
The code is available on the github repository [72].
Plotting MLDs – log binning To plot the MLD we used a linear 3bp binning up to 35bp and logrithmic binning

with 10 points per decade for larger matches. Namely, our breaks of the histogram are: 0.5, 2.5, 5.5, 8.5, ..., 35.5, 35.5 ·
100.1, 35.5 · 100.2, 35.5 · 100.3... Within each bin we count the number of matches and normalize it by the size the bin.
In addition, we normalize the MLD by the total number of alignments we do for the two considered taxa. If we
analyze two taxa with n1 and n2 genomes, respectively, we do n1 × n2/2 alignments, collect all the exact matches
and, therefore, divide the total MLD by n1 × n2/2. The code is available on the github repository [72].
Simulating the genomes To simulate bacterial evolution we started from 5,005,213-long E. coli chromosome

NZ_CP092647.1 and divided it to segments with different lengths, distributed exponentially with an average of
104bp. Each segment was evolved with a mutation rate drawn from the distribution of Eq. (1) with µc = 10−10 and
µs = 3.64 · 10−9. We assume that transversions and transitions occur with the same probability and back mutations
are allowed. We used this framework to evolve pairs of genomes with a wide range of divergence times, from 107yrs
to 9 · 108yrs. Horizontal transfer is implemented by transferring a random segment of length 104 from one branch
to another with rate ρ = 106yrs/τ2 per bp, to mimic the relationship between the horizontal transfer rate and the
divergence time observed in real data. For each value of τ we simulated 12,800 pairs with different random seeds. The
resulting sequences were aligned and analyzed using the same procedure used for empirical genomes (see Sections V
and V). The code is available on the github repository [72].
Segmenting the genomes (segmut package) Our model assumes mosaic structure of the genome: different

loci mutate with different rate and may have different divergence time due to horizontal transfer. Our approach
allows to analyze the evolutionary history without explicit identification of the mosaic segments. However, to get
more confidence about our approach and the results, we segmented the alignments of the bacterial genomes with
respect to the density of mutations. To do so we followed the ideas in Refs. [73–75], maximizing the χ2 statistic of
the mutations density of the segments. The R package implementation can be found in the github repository [41].
Fitting procedure To fit the empirical MLD using Eq. (11) for each pair of taxa, we used two free parameters:

τ and ρ. Genome length of the common ancestor of the pair of taxa, L0, is taken as the length of the smallest genome
of the pair. The fitting is performed by minimizing the mean square relative difference between the theoretical and
the empirical MLDs using the Nelder-Mead algorithm [76]. To find the best starting point we used Harmony Search
heuristic [77] with 10,000 starting points. The code is available on the github repository [72].
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Building the tree We build the ultrametric tree using hierarchical clustering of the taxa based on their estimated
pairwise time divergences τ . We use average linkage clustering (hclust function from the stats R package), which
is equivalent to the UPGMA method [56]. To get the pairwise distances from the resulting tree we use cophenetic
function from the stats R package.

VI. Acknowledgements

Authors thank M.S. Gelfand for useful comments and discussion. Numeric analysis was carried out using the
supercomputer cluster “Afalina” in Sevastopol State University.

[1] N. Arning and D. J. Wilson, Microbial Genomics 6 (2020).
[2] X. Didelot, A. S. Walker, T. E. Peto, D. W. Crook, and D. J. Wilson, Nature Reviews Microbiology 14, 150 (2016).
[3] E. Zuckerkandl and L. Pauling, in Evolving genes and proteins (Elsevier, 1965) pp. 97–166.
[4] M. Kimura, Nature 217, 624 (1968).
[5] F. Delsuc, H. Brinkmann, and H. Philippe, Nature Reviews Genetics 6, 361 (2005).
[6] C.-H. Kuo and H. Ochman, Biology Direct 4, 1 (2009).
[7] C. Weller and M. Wu, Evolution 69, 643 (2015).
[8] B. Gibson, D. J. Wilson, E. Feil, and A. Eyre-Walker, Proceedings of the Royal Society B 285, 20180789 (2018).
[9] L. Bromham, Biology letters 5, 401 (2009).

[10] M. Lynch, M. S. Ackerman, J.-F. Gout, H. Long, W. Sung, W. K. Thomas, and P. L. Foster, Nature Reviews Genetics
17, 704 (2016).

[11] S. Benzer, Proceedings of the national Academy of Sciences 47, 403 (1961).
[12] R. E. Hudson, U. Bergthorsson, J. R. Roth, and H. Ochman, Molecular biology and evolution 19, 85 (2002).
[13] M. Kivisaar, Microorganisms 8, 25 (2019).
[14] T. Warnecke, F. Supek, and B. Lehner, PLoS Computational Biology 8, e1002846 (2012).
[15] M. Nei, R. Chakraborty, and P. A. Fuerst, Proceedings of the National Academy of Sciences 73, 4164 (1976).
[16] A. Eyre-Walker and P. D. Keightley, Nature Reviews Genetics 8, 610 (2007).
[17] P. Nosil, D. J. Funk, and D. Ortiz-Barrientos, Molecular ecology 18, 375 (2009).
[18] C. Woese, E. Stackebrandt, T. Macke, and G. Fox, Systematic and applied microbiology 6, 143 (1985).
[19] F. U. Battistuzzi, A. Feijao, and S. B. Hedges, BMC evolutionary biology 4, 1 (2004).
[20] D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski, P.-A. Chaumeil, and P. Hugenholtz, Nature

biotechnology 36, 996 (2018).
[21] P. H. Nhung, K. Ohkusu, N. Mishima, M. Noda, M. M. Shah, X. Sun, M. Hayashi, and T. Ezaki, Diagnostic microbiology

and infectious disease 58, 153 (2007).
[22] Q. Zhu, U. Mai, W. Pfeiffer, S. Janssen, F. Asnicar, J. G. Sanders, P. Belda-Ferre, G. A. Al-Ghalith, E. Kopylova,

D. McDonald, et al., Nature communications 10, 5477 (2019).
[23] M. Syvanen, J Mol Evol 26, 16 (1987).
[24] P. S. Novichkov, M. V. Omelchenko, M. S. Gelfand, A. A. Mironov, Y. I. Wolf, and E. V. Koonin, Journal of bacteriology

186, 6575 (2004).
[25] P. D. Dixit, T. Y. Pang, F. W. Studier, and S. Maslov, Proceedings of the National Academy of Sciences 112, 9070 (2015).
[26] H. B. Hassler, B. Probert, C. Moore, E. Lawson, R. W. Jackson, B. T. Russell, and V. P. Richards, Microbiome 10, 104

(2022).
[27] M. Naum, E. W. Brown, and R. J. Mason-Gamer, Journal of molecular evolution 66, 630 (2008).
[28] H. Ochman, S. Elwyn, and N. A. Moran, Proceedings of the National Academy of Sciences 96, 12638 (1999).
[29] H. Ochman and A. C. Wilson, Journal of molecular evolution 26, 74 (1987).
[30] N. A. Moran, M. A. Munson, P. Baumann, and H. Ishikawa, Proceedings of the Royal Society of London. Series B:

Biological Sciences 253, 167 (1993).
[31] L. Feng, P. R. Reeves, R. Lan, Y. Ren, C. Gao, Z. Zhou, Y. Ren, J. Cheng, W. Wang, J. Wang, et al., PloS one 3, e4053

(2008).
[32] F. Menardo, S. Duchêne, D. Brites, and S. Gagneux, PLoS pathogens 15, e1008067 (2019).
[33] H. Philippe and P. Lopez, Trends in Biochemical Sciences 26, 414 (2001).
[34] S. Y. Ho, M. J. Phillips, A. Cooper, and A. J. Drummond, Molecular biology and evolution 22, 1561 (2005).
[35] S. Y. Ho, B. Shapiro, M. J. Phillips, A. Cooper, and A. J. Drummond, Systematic biology 56, 515 (2007).
[36] S. Y. Ho, R. Lanfear, L. Bromham, M. J. Phillips, J. Soubrier, A. G. Rodrigo, and A. Cooper, Molecular ecology 20, 3087

(2011).
[37] S. Y. Ho and S. Duchêne, Molecular ecology 23, 5947 (2014).
[38] F. Massip, M. Sheinman, S. Schbath, and P. F. Arndt, Molecular biology and evolution 32, 524 (2015).
[39] F. Massip, M. Sheinman, S. Schbath, and P. F. Arndt, Genetics 204, 475 (2016).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.22.558938doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.22.558938
http://creativecommons.org/licenses/by/4.0/


12

[40] S. Wielgoss, J. E. Barrick, O. Tenaillon, S. Cruveiller, B. Chane-Woon-Ming, C. Médigue, R. E. Lenski, and D. Schneider,
G3: Genes| Genomes| Genetics 1, 183 (2011).

[41] M. Sheinman, P. F. Arndt, and F. Massip, “segmut,” https://github.com/mishashe/segmut (2023).
[42] K. Harris and R. Nielsen, PLoS genetics 9, e1003521 (2013).
[43] F. Massip and P. F. Arndt, Physical review letters 110, 148101 (2013).
[44] M. Sheinman, K. Arkhipova, P. F. Arndt, B. E. Dutilh, R. Hermsen, and F. Massip, Elife 10, e62719 (2021).
[45] P. F. Arndt, Journal of Statistical Mechanics: Theory and Experiment 2019, 064003 (2019).
[46] R. M. Ziff and E. McGrady, Journal of Physics A: Mathematical and General 18, 3027 (1985).
[47] G. Marçais, A. L. Delcher, A. M. Phillippy, R. Coston, S. L. Salzberg, and A. Zimin, PLoS computational biology 14,

e1005944 (2018).
[48] C. Ku and W. F. Martin, BMC biology 14, 1 (2016).
[49] W. Salerno, P. Havlak, and J. Miller, Proceedings of the National Academy of Sciences 103, 13121 (2006).
[50] D. Polychronopoulos, D. Sellis, and Y. Almirantis, PloS one 9, e95437 (2014).
[51] M. Vos and X. Didelot, The ISME journal 3, 199 (2009).
[52] C. Fraser, W. P. Hanage, and B. G. Spratt, Science 315, 476 (2007).
[53] C. S. Smillie, M. B. Smith, J. Friedman, O. X. Cordero, L. A. David, and E. J. Alm, Nature 480, 241 (2011).
[54] A. Greenlon, P. L. Chang, Z. M. Damtew, A. Muleta, N. Carrasquilla-Garcia, D. Kim, H. P. Nguyen, V. Suryawanshi,

C. P. Krieg, S. K. Yadav, et al., Proceedings of the National Academy of Sciences 116, 15200 (2019).
[55] T. H. Jukes, C. R. Cantor, et al., Mammalian protein metabolism 3, 21 (1969).
[56] R. Sokal and C. Michener, (1958).
[57] Y. Ma, X. Wu, S. Li, L. Tang, M. Chen, and Q. An, Research in Microbiology 172, 103851 (2021).
[58] A. V. C. Pilar, N. Petronella, F. M. Dussault, A. J. Verster, S. Bekal, R. C. Levesque, L. Goodridge, and S. Tamber,

BMC genomics 21, 1 (2020).
[59] A. Sturtevant, The Quarterly Review of Biology 12, 464 (1937).
[60] O. K. Silander, O. Tenaillon, and L. Chao, PLoS biology 5, e94 (2007).
[61] M. Ravenhall, N. Škunca, F. Lassalle, and C. Dessimoz, PLoS computational biology 11, e1004095 (2015).
[62] M. Groussin, M. Poyet, A. Sistiaga, S. M. Kearney, K. Moniz, M. Noel, J. Hooker, S. M. Gibbons, L. Segurel, A. Froment,

et al., Cell 184, 2053 (2021).
[63] H. Zhou, J. F. Beltrán, and I. L. Brito, Science Advances 7, eabj5056 (2021).
[64] M. Dmitrijeva, J. Tackmann, J. M. Rodrigues, J. Huerta-Cepas, L. P. Coelho, and C. von Mering, (2023).
[65] B. J. Adams, A. Fodor, H. S. Koppenhöfer, E. Stackebrandt, S. P. Stock, and M. G. Klein, Biological control 38, 4 (2006).
[66] M. Francino, S. Santos, and H. Ochman, Prokaryotes 6, 41 (2006).
[67] Y. Lan, G. Rosen, and R. Hershberg, Microbiome 4, 1 (2016).
[68] R. S. Harris, Improved pairwise alignment of genomic DNA (The Pennsylvania State University, 2007).
[69] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White,

D. Ako-Adjei, et al., Nucleic acids research 44, D733 (2016).
[70] E. W. Sayers, M. Cavanaugh, K. Clark, K. D. Pruitt, C. L. Schoch, S. T. Sherry, and I. Karsch-Mizrachi, Nucleic acids

research 50, D161 (2022).
[71] E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, C. M. Farrell, M. Feldgarden, A. M. Fine,

K. Funk, et al., Nucleic acids research 51, D29 (2023).
[72] M. Sheinman, P. F. Arndt, and F. Massip, “Bacteriatworegimes,” https://github.com/mishashe/

BacteriaTwoRegimes/ (2023).
[73] J. M. Smith, Journal of molecular evolution 34, 126 (1992).
[74] T. Inglot and A. Janic-Wróblewska, Journal of Statistical Computation and Simulation 73, 545 (2003).
[75] A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler, Biostatistics 5, 557 (2004).
[76] J. A. Nelder and R. Mead, The computer journal 7, 308 (1965).
[77] Z. W. Geem, J. H. Kim, and G. V. Loganathan, simulation 76, 60 (2001).
[78] T. Williams, C. Kelley, C. Bersch, H.-B. Bröker, J. Campbell, R. Cunningham, D. Denholm, G. Elber, R. Fearick,

C. Grammes, et al., An interactive plotting program. Available online: http://www. gnuplot. info/docs_5 2 (2017).
[79] L. R. Nassar, G. P. Barber, A. Benet-Pagès, J. Casper, H. Clawson, M. Diekhans, C. Fischer, J. N. Gonzalez, A. S.

Hinrichs, B. T. Lee, et al., Nucleic Acids Research 51, D1188 (2023).
[80] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haussler, and W. Miller, Genome research

13, 103 (2003).
[81] S. Kumar, M. Suleski, J. M. Craig, A. E. Kasprowicz, M. Sanderford, M. Li, G. Stecher, and S. B. Hedges, Molecular

Biology and Evolution 39, msac174 (2022).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.22.558938doi: bioRxiv preprint 

https://github.com/mishashe/segmut
https://github.com/mishashe/BacteriaTwoRegimes/
https://github.com/mishashe/BacteriaTwoRegimes/
https://doi.org/10.1101/2023.09.22.558938
http://creativecommons.org/licenses/by/4.0/


13

A. Supplementary material

FIG. S1: Dotplot using nucmer of E. coli (NZ_CP068796.1 strain RIVM_C012087) and S. enterica
(NZ_CP019035.1 str. 9184 isolate ATCC 9184). The alignment was done using nucmer with the default settings
and --mum option and visualized using gnuplot [78]. Markers denote differences between the two homologous
genomic loci.
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FIG. S2: Mutations along the largest alignment block for E. coli strain ATCC 8739 (NZ_CP033020.1) and S.
enterica strain SE20-72C-2 (NZ_AP026948.1). Each short vertical black line represents a mutation (vertical position
is random). Colored rectangles represent the 68% confidence intervals of the mutation density along the segments
(± one standard deviation, calculated assuming Poisson distribution), obtained using the segmut R package.[41]
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FIG. S3: (a) Empirical vs. pseudotheoretical MLD. Circles represent empirical MLD for alignment of E. coli strain
ATCC 8739 (NZ_CP033020.1) and S. enterica strain SE20-72C-2 (NZ_AP026948.1). The line is based on the
segmentation of the alignment using the segmut R package. For each segment i the divergence θi and length Ki

are calculated and then the pseudotheoretical MLD is calculated as
∑
iKiθ

2
i e
−θir. (b) MLD calculated from all vs.

all 2, 166× 1, 096 alignments of E. coli vs. S. entrerica strains. Grey solid line in both panels represents theoretical
MLD, ignoring mosaic structure of the genome, assuming that the average genome-wide density of mutations θ is
uniform along the genome, Lθ2e−θr (see Eq. (2)).
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Escherichia coli

Klebsiella pneumoniae

Salmonella enterica

Enterobacter asburiae

Escherichia fergusonii

Escherichia albertii

Raoultella

Citrobacter

Cronobacter

Serratia

Enterobacter roggenkampii

Enterobacter hormaechei

Vibrio

0 0.02 0.04 0.06 0.08

FIG. S4: UPGMA tree using the average divergences θ.

Escherichia coli 2,166
Klebsiella pneumoniae 1,226
Salmonella enterica 1,096
Vibrio 619
Enterobacter hormaechei 279
Citrobacter 192
Serratia 140
Escherichia fergusonii 50
Enterobacter roggenkampii 39
Raoultella 32
Enterobacter asburiae 25
Escherichia albertii 22
Cronobacter 22

TABLE I: Number of fully assembled chromosomal genomes used in this study for each taxon.
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FIG. S5: Violin plot of homologous fraction of the genome, detected by the aligner for all pairwise alignments
ordered by the median value.
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FIG. S6: Violin plot of average divergences θ for all pairwise alignments ordered by the median value.
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FIG. S7: Match length distributions of simulated pairs of genomes with different divergence times, indicated in the
bottom-left corner of the panels. The average divergence is indicated by θ. The simulated data (dots) are fitted
using the global parameters µc = 10−10 and µs = 3.64 · 10−9 and δ = 0.25. The values of τ and ρ are fitted for each
pair separately and are shown in the top-right corner.
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FIG. S8: Analysis of the simulated sequences. (a) Ratio of detectable homologous length and fitted value of the
genome length of the common ancestor for all pairs of taxa as a function of fitted time divergence between the taxa.
Blue line is Lv/L0, the predicted length ratio from the vertical part based on Eq. (6), red line is Lh/L0 the
predicted length ratio from the horizontally transferred and detectable part based on Eq. (9). Pink line is the full
(detectable and non-detectable) length ratio from the horizontally transferred part: ρτ . The length ratio L/L0 from
both detectable parts (vertically and horizontally transferred), from Eq. (12) is indistinguishable from Lv—the blue
line—on this scale for these data. (b) Empirical divergences for all taxa pairs after Jukes and Cantor distance
correction [55] vs. fitted time divergence are indicated by squares. Blue line represents the predicted by Eq. (7)
divergence along the vertical part, while the red line represents the predicted by Eq. (10) divergence along the
horizontally transferred part. The total predicted divergence given by Eq. (13) is indistinguishable from θv for these
data. (c) Fitted HGT rate as a function of the fitted divergence time for all pairs of taxa.
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FIG. S9: MLD of animal pairs alignments, downloaded from UCSC [79] (note that here the alignment was done not
by nucmer, but using chained lastz aligner [68, 80]). The analytical fit of µc and µs (see upper-right corner) was
done using (5)—the vertical part of the MLD (we assume that here there is no horizontal transfer). The divergence
times τ are taken from Ref. [81] (see bottom-left corners).
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FIG. S10: Match length distributions of 2 pairs of taxa for which the model assumptions are not valid and the time
divergence estimation is not accurate. Names of the taxa are indicated in the bottom-left corner of both panels. The
numbers in the brackets indicate number of strains. The average divergence is indicated by θ. The empirical data
(dots) are fitted with Eqs. (5,8,11) using the global parameters µs = 3.64 · 10−9/bp/yrs, µc = 10−10/bp/yrs and
δ = 0.25. The values of τ and ρ are fitted for each pair separately and are shown in the top-right corner. The
genome length of the most recent common ancestor of two taxa is assumed to be the minimum of the taxas’ genome
lengths. The green line in (a) corresponds to m(r) ∼ r−3 power-law.
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FIG. S11: (a) the length of the δ-detectable fraction of a genome. The vertical lines are at δ/µs and δ/µc. The
detectable part decreases proportional to 1/τ2 initially as indicated by the dotted line. (b) The empirical divergence
as a function of τ . The dashed lines represent the prediction due to the Jukes-Cantor model with rates µs,
µeff = (2/3)(µ3

s − µ3
c)/(µ

2
s − µ2

c) , and µc. (c) Match length distributions for several values of τ . The functions for
small τ < δ/µs show a power-law regime with exponent −4, as indicated by the dashed gray lines. Corresponding
exponential distributions with the same mean are shown with gray dotted lines.
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