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Abstract: 30 

Multivariate approaches have recently gained in popularity to address the physiological 31 
unspecificity of neuroimaging metrics and to better characterize the complexity of biological 32 
processes underlying behavior. However, commonly used approaches are biased by the intrinsic 33 
associations between variables, or they are computationally expensive and may be more 34 
complicated to implement than standard univariate approaches. Here, we propose using the 35 
Mahalanobis distance (D2), an individual-level measure of deviation relative to a reference 36 
distribution that accounts for covariance between metrics. To facilitate its use, we introduce an 37 
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open-source python-based tool for computing D2 relative to a reference group or within a single 38 
individual: the MultiVariate Comparison (MVComp) toolbox. The toolbox allows different levels 39 
of analysis (i.e., group- or subject-level), resolutions (e.g., voxel-wise, ROI-wise) and dimensions 40 
considered (e.g., combining MRI metrics or WM tracts). Several example cases are presented to 41 
showcase the wide range of possible applications of MVComp and to demonstrate the 42 
functionality of the toolbox. The D2 framework was applied to the assessment of white matter 43 
(WM) microstructure at 1) the group-level, where D2 can be computed between a subject and a 44 
reference group to yield an individualized measure of deviation. We observed that clustering 45 
applied to D2 in the corpus callosum yields parcellations that highly resemble known topography 46 
based on neuroanatomy, suggesting that D2 provides an integrative index that meaningfully 47 
reflects the underlying microstructure. 2) At the subject level, D2 was computed between voxels 48 
to obtain a measure of (dis)similarity. The loadings of each MRI metric (i.e., its relative 49 
contribution to D2) were then extracted in voxels of interest to showcase a useful option of the 50 
MVComp toolbox. These relative contributions can provide important insights into the 51 
physiological underpinnings of differences observed. Integrative multivariate models are crucial 52 
to expand our understanding of the complex brain-behavior relationships and the multiple 53 
factors underlying disease development and progression. Our toolbox facilitates the 54 
implementation of a useful multivariate method, making it more widely accessible. 55 
 56 
 57 
Keywords: Multivariate analysis, white matter, covariance, personalized assessment, toolbox, 58 
python 59 
 60 
  61 
1. Introduction 62 

 63 
In the past decade, there has been exponential growth in the number of modeling approaches 64 
that link white matter (WM) microstructural properties and the MR signal (Novikov et al., 2018). 65 
Since none of the existing models (e.g., diffusion tensor, neurite orientation dispersion and 66 
density imaging (NODDI), etc.) is a perfect representation of the underlying microstructure, 67 
choosing a model and contrast for analyses can be challenging, potentially leading to errors in 68 
biological interpretation (Novikov et al., 2018). Multi-modal imaging, and multivariate 69 
frameworks that combine several parameters derived from different models and modalities, 70 
have been suggested as a promising avenue to harness the complementarity of different 71 
neuroimaging-derived metrics (Tardif et al., 2016; Uddin et al., 2019).  72 
 73 
Multivariate frameworks have the potential to counteract issues arising from the physiologically 74 
unspecific nature of commonly used neuroimaging metrics and to capture the complexity and 75 
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heterogeneity of biological properties (Dean et al., 2017; Guberman et al., 2022; Seidlitz et al., 76 
2018; Tardif et al., 2016; Taylor et al., 2020). Multiple mechanisms give rise to brain structure 77 
(e.g., myelination, cell proliferation), support neuroplastic change (e.g., Azzarito et al., 2023; 78 
Taubert et al., 2012) and behavioral performance (e.g., Seidlitz et al., 2018; Thiebaut de Schotten 79 
& Forkel, 2022), and are involved in neurological disorders (e.g., Iturria-Medina et al., 2017). 80 
Interpreting the results of univariate statistical analyses is thus challenging within this context. In 81 
addition to capturing a more nuanced picture of the expected mechanisms, multivariate 82 
statistical frameworks can offer greater statistical power than multiple univariate analyses as 83 
they reduce the amount of multiple comparisons correction required (Avants et al., 2008; Naylor 84 
et al., 2014; Owen et al., 2021). Lastly, and perhaps most importantly, multivariate frameworks 85 
can be leveraged to move away from group comparisons and towards individual-level analyses, 86 
an essential step on the road to precision medicine (Chamberland et al., 2021; Marquand et al., 87 
2016; Wolfers et al., 2018). 88 
 89 
Multivariate approaches that combine structural MRI metrics have been used in a number of 90 
promising contexts. At the group level, partial least squares (PLS) analyses and their variants 91 
can be used to assess the covariance between multiple metrics (Khedher et al., 2015; Nestor et 92 
al., 2002). Other multivariate approaches that can be used in group analyses include principal 93 
component analysis (PCA), independent component analysis (ICA) and non-negative matrix 94 
factorization (Calhoun et al., 2001; Khedher et al., 2015; Plitman et al., 2020; Yang et al., 2011). 95 
At the individual level, inter-regional correlations of multiple metrics can be used to create 96 
individual-specific network maps based on morphometric similarity that can then be linked to 97 
behavior (Seidlitz et al., 2018). Individualized network maps provide a more comprehensive 98 
structural mapping that captures both biological complexity and individual variability because 99 
they integrate multiple MRI features (e.g., Vandekar et al., 2016; Whitaker et al., 2016). 100 
However, in this study by Seidlitz et al., (2018), the shared covariance between MRI metrics was 101 
not accounted for. This has the potential to bias inferences made from such analyses, as there 102 
is significant covariance between many commonly used imaging parameters (Carter et al., 103 
2022; Uddin et al., 2019). Various multivariate approaches that can overcome this issue exist, 104 
including multivariate linear regression (Naylor et al., 2014; Young et al., 2010), machine-105 
learning (e.g., Calhoun et al., 2001; Carbonell et al., 2020; Chen et al., 2019; Guberman et al., 106 
2022; Khedher et al., 2015; Yang et al., 2011), and Hotelling’s T2 test (Avants et al., 2008; 107 
Hotelling, 1947). However, many of these approaches (including multivariate linear regression 108 
and machine learning) are computationally expensive and some necessitate making subjective 109 
decisions (Alexopoulos, 2010; Gyebnár et al., 2019; Hayasaka et al., 2006; Naylor et al., 2014). 110 
The Hotelling’s T2 test, a multivariate extension of a two-sample t-test, is a simple yet powerful 111 
option for group comparisons (Avants et al., 2008; Hotelling, 1947), but provides little insight at 112 
the individual level (Guberman et al., 2022). 113 
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 114 
Here we propose using the Mahalanobis distance (D2) (Mahalanobis, 1936) for analyzing 115 
multimodal MRI metrics. D2 is closely related to Hotelling’s T2, but can also provide an individual-116 
level measure of deviation relative to a reference distribution. It is defined as the multivariate 117 
distance between a point and a distribution in which covariance between features (i.e., imaging 118 
metrics) is accounted for. Initially developed by P. C. Mahalanobis in 1936 to quantify racial 119 
similarities based on anthropometric measurements of skulls  (Mahalanobis, 1927), D2 can be 120 
thought of as a multivariate z-score where the covariance between features is accounted for 121 
(Taylor et al., 2020). 122 
 123 
The D2 approach has been used extensively in outlier detection, cluster analysis, and 124 
classification applications (e.g., Ghorbani, 2019; Kritzman & Li, 2010; Xiang et al., 2008). D2 has 125 
also been used in neuroimaging, mainly in the study of neurological disorders, to detect lesions 126 
(Gyebnár et al., 2019; Lindemer et al., 2015), or to evaluate the degree of abnormality in the 127 
brains of patients relative to controls (Dean et al., 2017; Owen et al., 2021; Taylor et al., 2020), 128 
but also to study healthy WM development (Kulikova et al., 2015). Despite promising 129 
implementations and its high versatility, D2 has not yet been widely adopted. To facilitate its use, 130 
we present here an open-source python-based tool for computing D2 relative to a reference 131 
group or within a single individual: the MultiVariate Comparison (MVComp) toolbox. We provide 132 
a step-by-step guide to computing D2 using the MVComp tool 133 
(https://github.com/neuralabc/mvcomp) for two distinctive scenarios: a) comparisons between 134 
a subject and a reference group, and b) within-subject comparisons between voxels (Section 2). 135 
Lastly, the results of these example cases are presented (Section 3) and the general approach is 136 
discussed (Section 4) (Tremblay et al., 2024). 137 

 138 
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 139 
Fig. 1. Implementations of the D2 framework in neuroimaging studies. Analysis level: (1) Within an individual 140 
(left panel, in light blue): D2 can be computed between different voxels or brain regions (e.g., WM tracts) within 141 
a single subject. (2) Between an individual and a group (right panel, in light gray): D2 can be computed between 142 
a subject and a reference group (e.g., control group). Resolution of D2: (a) Voxel-voxel matrix D2: D2 can be 143 
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computed between each voxel and all other voxels in a mask of analysis, resulting in a D2 matrix of size n voxels 144 
x n voxels (only applicable to analyses within an individual). (b) Voxel-wise D2: A D2 value can be computed at 145 
each voxel. (c) ROI D2: In this case, a D2 value is obtained for each WM tract, or other brain region (ROI) defined 146 
by the user. (d) Subject D2: A single D2 value can be obtained per subject, resulting in a measure of global brain 147 
deviation from the reference (only applicable to analyses between an individual and a group). Dimensions 148 
combined: (i) MRI metrics: when the dimensions combined through D2 are MRI metrics, the length of the 149 
vector of data is the number of metrics. (ii) Spatial dimensions: when WM tracts, or other parcellated brain 150 
regions, are combined through D2, the length of the vector of data is equal to the number of WM tracts (only 151 
applicable to analyses between an individual and a group; yields a single D2 value per subject). 152 

 153 
 154 

2. Methods 155 
 156 
2.1 General framework 157 

Since D2 can be defined relative to virtually any reference of matching features, MVComp has 158 
been designed to support a wide range of applications. The first step is to define the set of 159 
multivariate data that will serve as the reference for computing D2. This choice depends on the 160 
hypothesis of interest, which will determine the Level of Analysis (Fig. 1). D2 can be computed 161 
between different brain regions within an individual (with the individual’s data also serving as 162 
the reference) or between an individual and a group, in spatially correspondent regions. In each 163 
case, multiple different Resolutions of analysis are possible, including voxel-wise and region of 164 
interest- (ROI) based comparisons. 165 

Lastly, the choice of which dimensions to combine, either MRI-derived metrics or brain regions 166 
(e.g., WM tracts), depends on what we want to capture. Combining brain regions within a 167 
multivariate measure allows to capture the degree of deviation from a reference even in the 168 
presence of high spatial heterogeneity (e.g., Owen et al., 2021; Taylor et al., 2020), while 169 
combining features is useful in the presence of mechanistic heterogeneity (i.e, several 170 
concomitant underlying biological mechanisms) and when preserving regional specificity is 171 
desirable (e.g., Guerrero-Gonzalez et al., 2022; Gyebnár et al., 2019; Lindemer et al., 2015). See 172 
Fig. 1. for a comprehensive view of the possible combinations of levels of analysis, resolutions 173 
and with different dimensions combined. 174 

To illustrate the flexibility of the D2 approach, we present a few examples: 175 

2.1.1 Comparisons between an individual and a group (reference) 176 

Example 1: Computing a voxel-wise D2 map for each individual  177 
 178 
Data: Diffusion MRI (dMRI) data in several subjects 179 
Level of Analysis: Between an individual and a group (Fig. 1 right panel) 180 
Feature Resolution: Voxel-wise D2 (in all WM voxels) (Fig. 1b) 181 
Dimensions combined: dMRI-derived metric maps (Fig. 1i) 182 
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In this example the reference would be defined as the voxel-wise group average 183 
for each dMRI-derived metric (!1, !2, !n, where n is the number of metrics) and 184 
D2 is computed by comparing the feature values in each voxel of an individual to 185 
the corresponding voxel in the reference (see Fig. 2a-c). The resulting D2 maps can 186 
then be entered into second-level analyses to, for example, identify brain-187 
behavior associations. If two groups are being analyzed (e.g., patients vs controls), 188 
the control group could be used as the reference and D2 values computed 189 
between each patient and the reference would represent voxel-wise multivariate 190 
distance from controls. 191 

 192 
Example 2 : Computing a single D2 score per individual  193 
 194 
Data: dMRI data in several subjects 195 
Level of Analysis: Between an individual and a group (Fig. 1 right panel) 196 
Feature Resolution: Subject D2 (Fig. 1d) 197 
Dimensions combined: WM tracts (spatial dimensions) (Fig. 1ii) 198 

A single MRI metric can also be used and combined across multiple ROIs (e.g., 199 
mean FA in pre-defined WM tracts). The reference is defined as the group mean 200 
of each tract (!1, !2, !n, where n is the number of tracts) and a single D2 value 201 
is computed for each individual. In this case, D2 represents a measure of how 202 
different an individual's WM microstructure is relative to a reference, across 203 
multiple tracts. This application is not demonstrated in the present article but it 204 
has been used by others (e.g., Owen et al., 2021; Taylor et al., 2020) and can be 205 
implemented using MVComp.  206 

 207 
To ensure that each subject’s data will not bias their D2 values in single sample designs 208 
(i.e., where the entire sample is used as a reference) and to allow the evaluation of 209 
controls in two-sample designs, a leave-one-subject-out approach is also possible. In this 210 
way, the subject under evaluation is excluded from the group mean (reference) and 211 
covariance matrix prior to calculating D2. 212 
 213 
2.1.2 Comparisons within an individual 214 

Example 3: Computing D2 between lesion voxels and normal appearing WM 215 
(NAWM) 216 
 217 
Data: dMRI data in one subject 218 
Level of Analysis: within an individual (Fig. 1 left panel) 219 
Feature Resolution: voxel-wise (in lesion voxels) (Fig. 1b) 220 
Feature Dimensions: dMRI-derived metric maps (Fig. 1i) 221 

Here, the level of analysis is within-subject, the dimensions combined are multiple 222 
dMRI-derived metrics in each voxel, and the reference is the average of all voxels 223 
within a region of interest (ROI) for each metric. To investigate the distance 224 
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between WM lesions and NAWM, the reference would be defined as the average 225 
of all NAWM voxels (!1, !2, !n, where n is the number of metrics) and D2 would 226 
be computed for each voxel classified as a lesion. Alternatively, the resolution 227 
could be ROI-wise, if the user deems a single D2 value per lesion sufficient. This 228 
within-subject approach can also be used as a measure of similarity by computing 229 
D2 between all WM voxels and a reference ROI in a specific tract (e.g., voxels in 230 
the cortico-spinal tract, as in Fig. 2d). Voxels within the same WM tract as the 231 
reference ROI are likely to have lower D2 values (indicating higher similarity) than 232 
voxels in other tracts or in areas of crossing fibers (Fig. 2e). 233 
 234 
Example 4: Computing D2 between each voxel and all other voxels in a mask 235 

Data: dMRI data in one subject 236 
Level of Analysis: within an individual (Fig. 1 left panel) 237 
Feature Resolution: Voxel-voxel D2 matrix (Fig. 1a) 238 
Feature Dimensions: dMRI-derived metric maps (Fig. 1i) 239 

D2 can be calculated between every pair of voxels (voxel x − voxel y) within a mask 240 
of analysis to compute a voxel-voxel D2 matrix (see Fig. 1a). In this case, the 241 
reference for computing the covariance matrix would be the data in all voxels 242 
contained in the mask.  243 
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 244 
Fig. 2. D2 workflow. Voxel-wise comparisons between a subject and a reference. (a) The multivariate space is 245 
illustrated here. In this example, we have a vector of 10 dMRI metrics at each WM voxel for each subject. (b) 246 
The covariance matrix is computed from the reference feature matrix of shape n voxels in WM x n features. 247 
The plot shows the amount of correlation between features in the reference sample (i.e., the whole group). (c) 248 
Voxel-wise D2 maps in two example subjects, where bright yellow represents areas of greater deviation from 249 
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the reference population. Distinct patterns can be seen in the two subjects. Note that the leave-one-subject-250 
out approach was used so that the data of the subject under evaluation was not included in the group mean 251 
(i.e., reference) and covariance matrix prior to D2 calculation. Within-subject comparisons between all WM 252 
voxels and a reference ROI. (d) Schematic representation of the multivariate comparisons showing that D2 253 
was computed between all WM voxels and a ROI of 24 voxels in the corticospinal tract (CST). (e) D2 map 254 
showing the multivariate distance between all WM voxels and the CST ROI (in pink).  255 
*Data used for these examples will be presented in section 2.7. 256 
 257 
 258 
2.2 Data preparation 259 

In all cases, data for all subjects should be preprocessed and all MRI metrics of interest computed 260 
and transformed to bring them into the same voxel space. If instead of voxel-wise comparisons 261 
the user is interested in performing ROI-based comparisons, summary metrics should be 262 
calculated for each region of interest (e.g., mean FA in each WM tract of interest) for each 263 
subject. Masks should also be generated to restrict analyses to chosen regions (e.g., WM) and 264 
these should also be transformed into the same space. Masks can be binary or thresholded at a 265 
later step within MVComp. 266 
 267 
2.3 Computing the reference mean and covariance matrix 268 

In the case of analyses between subject(s) and a reference (Fig. 1 right panel), the reference mean 269 
and covariance matrix are derived either from multiple features (Fig. 1i) or multiple ROIs (Fig. 1ii) 270 
in another group (e.g., control group). The comparison can also be between each individual and 271 
the mean of all other individuals if only a single group is available. In the case of analyses within 272 
an individual (Fig. 1 left panel), multiple features can be compared between voxels (e.g., Fig. 1 a-273 
b) or between ROIs (e.g., Fig. 1c).  274 

2.3.1 Comparisons between an individual and a group (reference) 275 

Combining MRI metrics 276 

For this application, the group average of each metric must be computed from the 277 
reference group (mvcomp.compute_average can be used to perform this task). The 278 
mvcomp.feature_list function can then be used to create a list of feature names 279 
and a list of the full paths of the average maps that were created with the 280 
compute_average function. The mvcomp.feature_gen function extracts the 281 
feature matrix from a set of input images. Run on the reference group mean images with 282 
a provided mask, it returns the feature matrix (m_f_mat of shape n voxels in the mask x 283 
n features), a mask vector (mat_mask of shape n voxels) and a nibabel object of the 284 
mask (mask_img). The mask array contains zeros at voxels where values are nan or inf 285 
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for at least one of the reference average maps in addition to the voxels below the 286 
threshold set for the mask. The  mvcomp.norm_covar_inv function is then used to 287 
compute the covariance matrix (s) and its pseudoinverse (pinv_s) from the reference 288 
feature and mask matrices (m_f_mat and mat_mask). The  289 
mvcomp.correlation_fig function can be used to generate a correlation matrix 290 
from the covariance matrix (s), which is informative to verify if expected relationships 291 
between features are present.  292 

A leave-one-out approach (where the individual to be compared to the reference is left 293 
out of the average) is preferred in cases where the individual subject is also a member of 294 
the reference group. This functionality is directly available in the model comparison 295 
function (model_comp). If the leave-one-out approach is used, it is not necessary to 296 
compute the group average nor to use the mvcomp.feature_gen and 297 
mvcomp.norm_covar_inv functions since the average and covariance matrix will 298 
be computed within the model_comp function from a group that excludes the subject 299 
for which D2 is being computed. 300 

Combining spatial dimensions 301 

The reference mean values (e.g., reference group mean FA in each WM tract) and 302 
covariance matrix are computed within the spatial_mvcomp function described in 303 
detail below. See Owen et al., 2020; Taylor et al., 2020 for example applications of this 304 
implementation. 305 

2.3.2 Comparisons within an individual 306 

Voxel-wise D2 resolution 307 

In the case of comparisons within a single subject, one of the possible applications is to 308 
compute D2 between specific ROIs. If the reference ROI is a set of NAWM voxels, the 309 
covariance matrix will be computed based on all voxels within that ROI in that subject. 310 
The path of the images (i.e., one image per metric) can be provided to the feature_gen 311 
function, along with the ROI mask, to create the reference feature matrix (m_f_mat ) 312 
and mask vector (mat_mask). The mvcomp.norm_covar_inv function is then used 313 
to compute the covariance matrix (s) and its pseudoinverse (pinv_s) from the feature 314 
and mask matrices. The mvcomp.correlation_fig function can again be used to 315 
visualize relationships between metrics. 316 
 317 
 318 
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Voxel-voxel matrix D2 resolution 319 

For this approach, the covariance matrix is computed from a feature matrix that includes 320 
all voxels in the mask of analysis. For instance, if we are interested in computing D2 321 
between each voxel and all other voxels in the whole WM, the covariance matrix is based 322 
on all WM voxels. Therefore, the matrix provided to the norm_covar_inv function 323 
will be of shape n voxels in the mask x n features. 324 

 325 
2.4 Computing D2 326 

Once the mean of the reference and the covariance matrix have been computed and the data for 327 
comparisons has been prepared, the D2 computation can be performed. Depending on the 328 
resolution of D2, this computation may be repeated several times (i.e., between every pair of 329 
voxels or once for each voxel or each ROI; Fig. 1a-c), or it may only be done once if the user is 330 
interested in obtaining a single individualized score of deviation from a group (Fig. 1d). The 331 
MVComp tool contains functions to easily compute D2 for each of these applications, according 332 
to this equation: 333 
 334 

"! = (% −!)"(#$(% − !), 335 
 336 
where % is the vector of data for one observation (e.g., one subject), ! is the vector of averages 337 
of all observations for each independent variable (e.g., MRI metrics), and (#$ is the inverse of 338 
the covariance matrix. 339 
 340 

2.4.1 Comparisons between an individual and a group (reference)  341 

Combining MRI metrics 342 

The mvcomp.model_comp function allows the calculation of voxel-wise D2 between 343 
each subject contained in the provided subject_ids list and the reference (group 344 
average) (Fig. 1 right panel; b). The user should specify the directories and suffix of the 345 
subjects’ features and of the reference images (feature_in_dir, model_dir, 346 
suffix_name_comp and suffix_name_model), the mask of analysis (mask_f) 347 
and a threshold if the mask is not binary (mask_threshold). If subjects or features are 348 
to be excluded at this point, they can be specified with the exclude_subject_ids 349 
and the feat_sub options, respectively. If the user wishes to use the leave-one-out 350 
approach, the exclude_comp_from_mean_cov option should be set to True. If this 351 
option is set to True, the mean (reference) and pinv_s are computed for each subject 352 
comparison, excluding the subject being compared before computing its D2. Therefore, it 353 
is not necessary to specify the directory of the reference (model_dir) in this 354 
application. The model_comp function yields a matrix containing the D2 data of all 355 
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subjects (of size number of voxels x number of subjects). To obtain a D2 map (in nifti 356 
format) for each subject, the dist_plot function can then be used. The function also 357 
outputs a mean D2 map of all subjects and a histogram of all D2 values. 358 

Combining spatial dimensions 359 

The mvcomp.spatial_mvcomp function is used to compute a D2 score between each 360 
subject and the reference computed from all subjects (Fig. 1ii). A matrix containing the 361 
data (e.g., mean FA in each WM tract) of all subjects (n subjects x n tracts) should be 362 
provided to the function. The spatial_mvcomp function returns a vector with a single 363 
D2 value per subject, reflecting the subject’s individualized score of deviation from the 364 
group. As in model_comp, setting the exclude_comp_from_mean_cov to True 365 
leaves out the current subject when computing the mean and covariance.  366 

2.4.2 Comparisons within an individual 367 

Voxel-wise D2 resolution 368 

The mah_dist_mat_2_roi function is used to compute voxel-wise D2 between all 369 
voxels within a mask and a specific ROI (Fig. 1 left panel; b). Here, in addition to the feature 370 
matrix containing the data for the voxels to be evaluated (n voxels in the mask x n 371 
features), the user will need to provide a vector of data for the reference ROI (i.e., mean 372 
across voxels in the ROI for each metric) and the inverse of the covariance matrix 373 
(pinv_s). 374 

Voxel-voxel matrix D2 resolution 375 

The voxel2voxel_dist function is used to compute D2 between each voxel and all 376 
other voxels in a mask (Fig. 1 left panel; a). This yields a symmetric 2-D matrix of size n 377 
voxels x n voxels containing D2 values between each pair of voxels.  378 
 379 

2.5 Statistical analysis  380 
 381 
Once D2 values are computed, second-level statistical analyses can be used to assess group 382 
differences and longitudinal trajectories, to explore relationships between D2 and behavior. 383 
Machine learning techniques can also be used to reduce dimensionality and produce network 384 
maps based on (dis)similarity. 385 
 386 

2.5.1 Comparisons between an individual and a group (reference)  387 

For group comparisons, a two-samples t-test can be performed on D2 values (e.g., D2 388 
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values in patients vs D2 in controls), which would be equivalent to performing a 389 
Hotelling’s T2 test on raw metrics (i.e., without computing D2). Alternatively, a statistical 390 
method such as the Bhattacharyya coefficient can be used to estimate the degree of 391 
overlap between the distribution of each group, where less overlap indicates a higher 392 
probability that the groups differ, as in (Dean et al., 2017). However, such group analyses 393 
are likely to average out interindividual variability and may be problematic when 394 
heterogeneity is high (Guberman et al., 2022). Wilk’s criterion is another approach that 395 
can be used to define abnormality based on a calculated critical value that accounts for 396 
normative sample size, number of features, and multiple comparisons (Guerrero-397 
Gonzalez et al., 2022; Gyebnár et al., 2019; Wilks, 1963). 398 
 399 
2.5.2 Comparisons within an individual 400 

In within-subjects analyses, clustering approaches can be applied to the voxel-voxel 401 
matrix D2 to partition brain voxels into networks or other parcellations. 402 
 403 

Changes in D2, either from the group or subject-level, can also be assessed through longitudinal 404 
analyses, to investigate WM damage progression or brain maturation for instance (e.g., Kulikova 405 
et al., 2015; Lindemer et al., 2015). D2, or changes in D2, can also be related to behavioral 406 
outcomes (e.g., cognitive score, performance on a skill test, or symptom severity) in the same 407 
way one would with univariate measures of fractional anisotropy for instance (Dean et al., 2017; 408 
Owen et al., 2021; Taylor et al., 2020). 409 
 410 
 411 
2.6 Determining feature importance 412 

D2 summarizes the amount of deviation from a reference, based on several metrics or brain 413 
regions, into a single score. This yields a useful metric to easily quantify abnormalities, whether 414 
due to pathology or to exceptional abilities such as musical skills. However, when summarizing 415 
several features into a single score, we lose specificity. To help address this limitation, it is 416 
possible to extract the contribution of each feature to the multivariate distances (D2) using 417 
functions of the MVComp tool to recover biological or spatial specificity. 418 
 419 

2.6.1 Comparisons between an individual and a group (reference)  420 

Combining MRI metrics 421 

If the user is interested in understanding the physiological mechanisms underlying 422 
microstructural deviations in a region of interest (e.g., voxels where D2 is high), the 423 
return_raw option of the mvcomp.model_comp function can be used. This allows 424 
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the extraction of each metrics’ weight in D2. If return_raw is set to True, the function 425 
returns a 3D array of size (number of voxels) x (number of metrics) x (number of subjects) 426 
that contains the voxel-wise distances for each feature and each subject. A flattened mask 427 
of the region of interest (e.g., a region of high D2) can then be applied to select voxels 428 
from the 3D array. The distances can be summarized across voxels and/or subjects to 429 
obtain a % contribution to D2 for each MRI metric within that region. 430 

Combining spatial dimensions 431 

The return_raw option is also available in the spatial_mvcomp function. If set to 432 
True, a 2D array of size (number of subjects) x (number of tracts) containing the distances 433 
between every subject's tract and the mean tract values is returned. These raw distances 434 
provide information regarding the contribution of each WM tract to D2, which gives 435 
insights on the localization of greatest deviation for each subject. 436 

2.6.2 Comparisons within an individual 437 

Voxel-wise D2 resolution 438 

The return_raw option of the mah_dist_mat_2_roi function can be used to 439 
extract features’ contributions. In this case, the distances between features in all voxels 440 
being compared and feature values in the ROI are returned. The output will be of shape 441 
(number of voxels) x (number of metrics). 442 

  443 
2.7 Experiments 444 

 2.7.1 Data Description  445 

We computed 10 microstructural features for 1001 subjects from the Human 446 
Connectome Project S1200 data release (Van Essen et al., 2013) for these experiments. 447 
DWI, T1- and T2-weighted data were acquired using a custom-made Siemens Connectom 448 
Skyra 3 Tesla scanner with a 32-channel head coil. The DWI data (TE/TR=89.5/5520 ms, 449 
FOV=210×180 mm) were multi-shell with b-values of 1000, 2000 and 3000 s/mm2 and a 450 
1.25 mm isotropic resolution, 90 uniformly distributed directions, and 6 b=0 volumes. T1-451 
w data was acquired with a 3D-MPRAGE sequence and T2w images with a 3D T2-SPACE 452 
sequence, both with a 0.7mm isotropic resolution (T1w: 0.7 mm iso, 453 
TI/TE/TR=1000/2.14/2400 ms, FOV=224×224 mm; T2w: 0.7 mm iso, TE/TR=565/3200 ms, 454 
FOV=224×224 mm). Anatomical scans were acquired during the first session, and DWI 455 
data were acquired during the fourth session. More details on the acquisitions can be 456 
found at: https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging. The 457 
imaging data of 1065 young healthy adults, those who had undergone T1w, T2w and 458 
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diffusion-weighted imaging, were preprocessed. The data of 64 participants were 459 
excluded due to poor cerebellar coverage. 460 

2.7.2 Preprocessing 461 

Diffusion Tensor Imaging  462 

The minimally preprocessed HCP data was used (Glasser et al., 2013; Van Essen et al., 463 
2013). The minimal preprocessing pipeline for DWI data includes intensity normalization 464 
of the b0 images, eddy current and susceptibility-induced distortions correction, using 465 
DWI volumes of opposite phase-encoding directions, motion correction and gradient 466 
nonlinearity correction. DWI data were registered to native structural space (T1w image), 467 
using a rigid transform computed from the mean b0 image, and diffusion gradient vectors 468 
(bvecs) were rotated accordingly.  469 
 470 
Most subsequent processing steps were performed using the MRtrix3 toolbox (Tournier 471 
et al., 2019). The minimally preprocessed DWI data was converted to the mif format, with 472 
the bvals and bvecs files embedded, after which a bias field correction was performed 473 
using the ANTs algorithm (N4) of the dwibiascorrect function of MRtrix3 (Tustison et al., 474 
2010). The tensor was computed on the bias field-corrected DWI data (using dwi2tensor) 475 
and DTI metrics were then calculated (FA, MD, AD and RD) using tensor2metric (Basser et 476 
al., 1994a, 1994b; Veraart et al., 2013).  477 
 478 
Multi-tissue Multi-shell Constrained Spherical Deconvolution 479 

The multi-tissue Constrained Spherical Deconvolution (CSD) was performed following the 480 
fixel-based analysis (FBA) workflow (Tournier et al., 2019). The T1-w images were 481 
segmented using the 5ttgen FSL function of MRtrix3, which uses the FAST algorithm 482 
(Patenaude et al., 2011; R. E. Smith et al., 2012; S. M. Smith, 2002; S. M. Smith et al., 2004; 483 
Y. Zhang et al., 2001). Response functions for each tissue type were then computed from 484 
the minimally preprocessed DWI data (without bias field correction) and the five-tissue-485 
type (5tt) image using the dwi2response function (msmt_5tt algorithm) (Jeurissen et al., 486 
2014). The bias-uncorrected DWI data was used because bias field correction is 487 
performed at a later step in the FBA pipeline (Raffelt, Tournier, et al., 2017). The WM, GM 488 
and CSF response functions were then averaged across all participants, resulting in a 489 
single response function for each of the three tissue types. Multi-shell multi-tissue CSD 490 
was then performed based on the response functions to obtain an estimation of 491 
orientation distribution functions (ODFs) for each tissue type (Jeurissen et al., 2014). This 492 
step is performed using the dwi2fod msmt_csd function of MRtrix3 within a brain mask 493 
(i.e., nodif_brain_mask.nii.gz). Bias field correction and global intensity normalization, 494 
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which normalizes signal amplitudes to make subjects comparable, were then performed 495 
on the ODFs, using the mtnormalise function in MRtrix3 (Dhollander et al., 2021; Raffelt, 496 
Dhollander, et al., 2017). 497 
 498 
Registration 499 

In order to optimize the alignment of WM as well as gray matter, multi-contrast 500 
registration was performed. Population templates were generated from the WM, GM and 501 
CSF FODs and the “nodif” brain masks of a subset of 200 participants using the 502 
population_template function of MRtrix3 (with regularization parameters: 503 
nl_update_smooth= 1.0 and nl_disp_smooth= 0.75), resulting in a group template for 504 
each of the three tissue types (Tournier et al., 2019). 505 
 506 
Subject-to-template warps were computed using mrregister in MRtrix3 with the same 507 
regularization parameters and warps were then applied to the brain masks, WM FODs, 508 
DTI metrics (i.e., FA, MD, AD and RD), T1w, and T2w images using mrtransform (Raffelt et 509 
al., 2011). T1w and T2w images were kept in native resolution (0.7mm) and the ratio of 510 
T1w/T2w was calculated to produce a myelin map (Glasser & Essen, 2011). WM FODs 511 
were transformed but not reoriented at this step, which aligns the voxels of the images 512 
but not the fixels (“fibre bundle elements”). A template mask was computed as the 513 
intersection of all warped brain masks (mrmath min function). This template mask 514 
includes only the voxels that contain data in all subjects. The WM volumes of the five-515 
tissue-type (5tt) 4-D images were also warped to the group template space since these 516 
are then used to generate a WM mask for analyses.   517 
 518 
Computing fixel metrics 519 

The WM FOD template was segmented to generate a fixel mask using the fod2fixel 520 
function (Raffelt et al., 2012; R. E. Smith et al., 2013). This mask determines the fiber 521 
bundle elements (i.e., fixels), within each voxel of the template mask, that will be 522 
considered for subsequent analyses. Fixel segmentation was then performed from the 523 
WM FODs of each subject using the fod2fixel function, which also yields the apparent fibre 524 
density (FD) metric. The fixelreorient and fixelcorrespondence functions were then used 525 
to ensure subjects’ fixels map onto the fixel mask (Tournier et al., 2019). 526 
 527 
The fibre bundle cross-section (FC) metric was then computed from the warps generated 528 
during registration (using the warp2metric function) as FC is a measure of how much a 529 
fiber bundle has to be expanded/contracted for it to fit the fiber bundles of the fixel 530 
template. Lastly, a combined metric, fibre density and cross-section (FDC), representing 531 
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a fibre bundle’s total capacity to carry information, was computed as the product of FD 532 
and FC. 533 
 534 
Transforming fixel metrics into voxel space 535 

In order to integrate all metrics into the same multi-modal model, fixel metric maps were 536 
transformed into voxel-wise maps. As a voxel aggregate of fiber density, we chose to use 537 
the l=0 term of the WM FOD spherical harmonic expansion (i.e., 1st volume of the WM 538 
FOD, which is equal to the sum of FOD lobe integrals) to obtain a measure of the total 539 
fibre density (FDtotal) per voxel. This was shown to result in more reproducible estimates 540 
than when deriving this measure from fiber specific FD (i.e., by summing the FD fixel 541 
metric) (Calamante et al., 2015). The FOD l=0 term was scaled by the spherical harmonic 542 
basis factor (by multiplying the intensity value at each voxel by the square root of 4π). 543 

For the fiber cross-section voxel aggregate measure, we opted for computing the mean 544 
of FC, weighed by FD (using the mean option of the fixel2voxel function). We thus 545 
obtained the typical expansion/contraction necessary to align fiber bundles in a voxel to 546 
the fixels in the template.  547 

Lastly, the voxel-wise sum of FDC, reflecting the total information-carrying capacity at 548 
each voxel, was computed using the fixel2voxel sum option. 549 
 550 
NODDI metrics 551 

Bias field corrected DWI data was fitted to the neurite orientation dispersion and density 552 
imaging (NODDI) model using the python implementation of Accelerated Microstructure 553 
Imaging via Convex Optimization (AMICO) (Daducci et al., 2015; H. Zhang et al., 2012). 554 
First, small variations in b values were removed by assigning the closest target bval (0, 555 
1000, 2000 or 3000) to each value of the bvals file. This is to prevent the fitting algorithm 556 
from interpreting every slightly different bval as a different diffusion shell. A diffusion 557 
gradient scheme file is then created from the bvecs, and the new bvals file. The response 558 
functions are computed for all compartments and fitting is then performed on the 559 
unbiased DWI volumes, within the non-diffusion weighted brain mask 560 
(nodif_brain_mask.nii.gz). The resulting parameters obtained are: the intracellular 561 
volume fraction (ICVF, also referred to as neurite density), the isotropic volume fraction 562 
(ISOVF), and the orientation dispersion index (OD). In this study, we will use ICVF and OD. 563 

 564 
Generating masks for analyses 565 
 566 
The maps of each of the 10 metrics of interest (FA, AD, RD, MD, T1w/T2w, FDtotal, 567 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.27.582381doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

FCmean, FDCsum, ICVF and OD) were then averaged across all subjects. These average 568 
maps served as the reference. A WM mask was created by computing the group average 569 
of the corresponding volume of the T1 5tt image (volume 2). A threshold of 0.99 was 570 
applied within the MVComp toolbox’s functions.  571 
 572 

2.7.3 Experiment 1: Comparisons between an individual and a group (reference)   573 

Here, we present an example case of using D2 in a large sample from the HCP dataset to 574 
quantify voxel-wise microstructural differences in WM according to several dMRI metrics. 575 
Since the dataset used in this study contains the data of healthy young adults, a relatively 576 
homogeneous population, the entire sample was set as the reference and the leave-one-577 
out approach was used to exclude the subject under evaluation. The analysis was 578 
restricted to the corpus callosum (CC). Voxel-wise D2 from 10 microstructural features 579 
was computed in the CC for each subject, yielding a D2 matrix of 1001 subjects X 2845 580 
voxels. The D2 values represent voxel-wise microstructural differences in an individual’s 581 
CC relative to the group average, while accounting for the covariance between features. 582 
Large D2 scores in a voxel indicate greater deviation from the group average, whereas 583 
scores closer to 0 indicate lower distance (i.e., more typical microstructure).  584 

Past literature on CC neuroanatomy shows several segments that are distributed along 585 
the anterior to posterior axis, where each segment is defined by common microstructural 586 
properties and/or connectivity profiles (Aboitiz et al., 1992; Chao et al., 2009; Hofer & 587 
Frahm, 2006). We therefore hypothesized that these segments could be extracted via 588 
clustering, an unsupervised machine learning technique, of D2 values in the CC. We 589 
performed k-means clustering on the D2 matrix, setting the number of clusters to 9 based 590 
on literature on CC topography (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 591 
2006). Prior to clustering, we applied z-score and power transformation on the D2 matrix 592 
to achieve gaussian distributions of the standardized scores. Due to the large number of 593 
datapoints and potential effects of partial voluming, we observed several outliers in D2 594 
maps of several subjects. We therefore excluded participants with at least 50 voxels that 595 
were deemed as outliers (i.e. exceeded a threshold of 5 standard deviations from the 596 
voxel mean D2). This yielded a final sample of 723 participants. Final visualization was 597 
done using BrainNet Viewer (http://www.nitrc.org/projects/bnv/). 598 

2.7.4 Experiment 2: Comparisons within an individual  599 

The within-subject approach allows the computation of voxel-voxel D2 in a single 600 
individual from multiple microstructural features. Here, D2 was calculated between each 601 
voxel and every other voxel in a subject’s CC, while accounting for the covariance between 602 
the 10 microstructural features. All voxels within the CC of that subject were used to 603 
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compute the covariance matrix and this same covariance matrix was used in the D2 604 
calculation of every voxel. The resulting D2 matrix is a 2845 voxel X 2845 voxel dense 605 
matrix representing the distance between each voxel and every other voxel in the CC (Fig. 606 
4a-b). We standardized the matrix to z-scores and applied Principal component analysis 607 
(PCA) to reduce the matrix dimensionality (Fig. 4c). We then extracted the contributions 608 
of each metric to D2 within the voxels with the largest and the lowest scores on the first 609 
principal component (Fig. 4d-f). 610 

 611 

3. Results 612 

3.1 Experiment 1: Comparisons between an individual and a group (reference)   613 

614 
Fig. 3. Voxel-wise comparisons between each subject and the reference. (a) Voxel-wise D2 is calculated 615 
between the reference (group average of the whole sample, except the subject under evaluation) and 616 
each subject’s data (feature (10) X voxel (2845) matrix), in voxels of the corpus callosum (CC). (b) This 617 
results in a D2 matrix of size subject (723 after exclusion of outliers) X voxel (2845) containing the 618 
multivariate distance between a subject’s data and the reference at each CC voxel. (c) Applying k-619 
means clustering to the D2 matrix, voxels of the CC were partitioned into 9 clusters distributed along 620 
the anterior-posterior axis, in close accordance with known topography of the CC as seen in (d). (d) 621 
Schematic representation of CC topography based on literature (Aboitiz et al., 1992; Chao et al., 2009; 622 
Hofer & Frahm, 2006).  623 

 624 

For this experiment, D2 was computed voxel-wise in the CC between each subject and a 625 
reference consisting in all other subjects (Fig. 3a-b). K-means clustering was applied to 626 
the D2 matrix of size (subjects) X (voxels). We observed that the 9 clusters were 627 
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distributed along the anterior-posterior axis, in accordance with past evidence on CC 628 
microstructure and connectivity (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 629 
2006). Fig. 3c shows the clusters identified via k-means and Fig. 3d shows the topography 630 
expected according to literature. The genu of the CC was clustered into 3 segments, while 631 
the midbody displays 2 segments. The splenium was divided into 4 segments (with one 632 
segment positioned on the isthmus).  633 

3.2 Experiment 2: Comparisons within an individual 634 

 635 

Fig. 4. Within-subject voxel-voxel comparisons. D2 was computed between all voxel pairs from the (a) 636 
(features) x (voxels in the CC) matrix of a subject. (b) A voxel x voxel D2 matrix was generated. (c) PCA 637 
was then applied to the D2 matrix. The PCA matrix shows the first 10 principal components. (d) Voxels 638 
with the highest and lowest score on PC1 are shown. PC1 scores were scaled between -10 and 10 to 639 
facilitate visualization. (e) In the voxel with the lowest value on PC1, located in the midbody of the CC, 640 
all metrics had approximately equal contribution to D2. (f) SumFDC contributed most to D2 in the voxel 641 
with the highest PC1 score, located in the genu of the CC. 642 

 643 
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For the within-subject experiment, D2 was computed between all voxel pairs in the CC of 644 
a single individual, yielding a voxel X voxel D2 matrix (Fig. 4a-b). PCA was applied to the 645 
D2 matrix. Fig. 4c shows the first 10 principal components (PCs). We then extracted the 646 
contributions (i.e., loadings) of each metric to D2 within the voxels with the largest and 647 
the lowest scores on the first principal component. The first PC explained 95% of the 648 
variance in the voxel X voxel dense D2 matrix. The highest and the lowest PC1 scores were 649 
in the genu and in the midbody of the CC, respectively (Fig. 4d). In the voxel with the 650 
largest value on PC1, the fibre density and cross-section metric (sumFDC) contributed 651 
most to D2, while mean diffusivity (MD) contributed the least (Fig. 4f). On the other hand, 652 
in the voxel with the lowest score on PC1, all microstructural features had nearly equal 653 
contributions to D2, indicating minimal variability in this voxel (Fig. 4e).  654 

 655 

 656 
4. Discussion 657 
 658 
In the present study, we introduced the MVComp tool, a set of python-based functions that can 659 
be used to compute the Mahalanobis distance (D2) for a wide range of neuroimaging 660 
applications. At the group-level, MVComp allows the calculation of a score that quantifies how 661 
different the brain structure of an individual is from a reference group. The MVComp tool 662 
provides a versatile framework that can be used to answer various research questions, from 663 
quantifying the degree of abnormality relative to a control group in individuals with a pathology, 664 
to exploring interindividual variability in healthy cohorts. At the subject level, D2 can be used to 665 
assess differences between regions of interest or to compute a measure of similarity that can 666 
then be used for subsequent analyses (e.g., graph theory/network analyses). Lastly, D2 can 667 
combine multiple MRI metrics in the same spatial locations, or it can combine a single metric 668 
across several brain regions.  669 
 670 
Our approach allows the integration of several variables while accounting for the relationships 671 
between these variables. Several biological properties influence the same neuroimaging metric 672 
and multiple neuroimaging metrics indirectly reflect a similar underlying physiological property. 673 
This overlap means that accounting for covariance between metrics is essential. It also means 674 
that using a single neuroimaging metric, or metrics stemming from a single model, offers limited 675 
potential for interpretation and is biased by the set of assumptions of the chosen model (e.g., 676 
some models assume fixed compartment diffusivities while others attempt to estimate them) 677 
(Novikov et al., 2018). Similarly, integrating the assessment of multiple brain regions may map 678 
better onto behavior (e.g., cognition or disease severity) than assessing each region separately. 679 
Here, again the relationships between variables should be accounted for as observations are not 680 
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completely independent from each other (i.e., in the same individual, there is likely a great 681 
amount of covariance between FA in different voxels or in different WM tracts). While some 682 
multivariate frameworks have been implemented in the neuroimaging field, several of them are 683 
either applicable at the group level or at the subject level (Alexander-Bloch et al., 2013; Hotelling, 684 
1947; Marquand et al., 2016; Seidlitz et al., 2018), and do not extend from one level to another. 685 
Moreover, several multivariate approaches are complicated to implement and computationally 686 
expensive which limits their accessibility (Alexopoulos, 2010; Gyebnár et al., 2019; Hayasaka et 687 
al., 2006). The D2 framework, on the other hand, is highly versatile and the open-source MVComp 688 
toolbox we propose makes implementation accessible for assessing various research questions 689 
(see Fig. 1).  690 
 691 
One of the novelties of this work is that it provides the option to extract the contributions of all 692 
features within the D2 measure. This addresses one of the main limitations of typical multivariate 693 
frameworks, allowing researchers to develop more mechanistic interpretations. In previous work 694 
using the D2 approach, the loadings (or weights) of the elements combined in the multivariate 695 
measure (i.e., either WM tracts or MRI metrics) were not extracted, which has been a significant 696 
limitation (Dean et al., 2017). Characterizing the extent by which each feature contributes to D2 697 
can provide important insights into the physiological underpinnings of the differences observed 698 
and/or their localization. To our knowledge, MVComp is the only available toolbox for computing 699 
D2 on imaging data. In this paper, we detailed the usage of MVComp through 4 example cases 700 
(see Supplementary material) covering a wide range of applications and presented the results of 701 
2 experiments. 702 
 703 
 704 
D2 reflects the underlying microstructure of WM 705 

To provide specific examples of how MVComp can be used, the D2 framework was applied to the 706 
assessment of WM microstructure. We found the approach to be particularly suitable for the 707 
study of WM because of the number of modeling methods available for dMRI data. However, it 708 
is important to note that other types of tissues and imaging techniques can also be used within 709 
the MVComp framework. By applying K-Means clustering to D2 in the corpus callosum, we 710 
observed a clear segmentation along the anterior-posterior axis (Fig. 3), consistent with known 711 
topography from ex-vivo anatomical studies and tractography-based connectivity (Aboitiz et al., 712 
1992; Chao et al., 2009; Hofer & Frahm, 2006). This high correspondence between clustered D2 713 
and previously described CC topography suggests that the microstructural score obtained by 714 
combining several WM neuroimaging metrics through D2 provides a useful index of 715 
microstructure.  716 
 717 
At the individual level, D2 can capture the amount of (dis)similarity between voxels and, through 718 
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the extraction of features’ contributions (i.e., loadings), the specific microstructural properties 719 
underlying regional differences can be inferred. For example, in our within-subject experiment 720 
(Fig. 4) we found high spatial heterogeneity in the relative contributions of different features to 721 
D2. The voxel with the highest loading on the first latent component (PC1) was primarily 722 
dominated by one metric (sumFDC) while the voxel with the lowest loading was characterized by 723 
similar weightings across all features. In the voxel with the highest PC1 score, sumFDC (combined 724 
metric of fiber cross-section and density, indicative of the amount of information-carrying 725 
capacity) contributed most to D2, meaning sumFDC had higher variability across CC voxels than 726 
other metrics. This is consistent with the known microstructural properties of the CC, which 727 
shows regional variations in densities of fibers of different sizes along the CC (Aboitiz et al., 1992; 728 
Hofer & Frahm, 2006). Further, given that the CC is composed of tightly packed fiber tracts, MD 729 
would likely be very low in all those CC voxels (i.e., low variability), which would explain its low 730 
contribution. Overall, this supports the relevance of D2 in assessing variability in WM 731 
microstructure properties and showcases the use of the features contribution option (i.e, 732 
return_raw) included in MVComp. 733 
 734 
D2 in the study of pathologies 735 

Given the complexity of underlying pathological changes in various brain conditions, 736 
multiparametric approaches are a promising avenue to capture the combination of multiple 737 
changes in brain properties (Dean et al., 2017; Guberman et al., 2022; Guerrero-Gonzalez et al., 738 
2022; Iturria-Medina et al., 2017; Owen et al., 2021; Taylor et al., 2020). For instance, D2 739 
incorporating fractional anisotropy (FA) in multiple WM tracts in epileptic patients was found to 740 
show stronger associations with epilepsy duration than any univariate measure (e.g., mean FA in 741 
a single WM tract) (Owen et al., 2021). Another study reported better performance using D2 742 
encompassing FA in several WM tracts, vs using FA in a single tract, in discriminating between 743 
controls and individuals with TBI (Taylor et al., 2020). The multivariate D2 measure allowed for 744 
the discrimination of even mild TBI cases from controls and correlated significantly with cognitive 745 
scores. Similarly, using D2 combining both spatial (i.e., WM regions) and feature (i.e., different 746 
DTI metrics) dimensions led to improved detection between autistic and typically developing 747 
individuals compared to univariate approaches or to D2 computed by combining brain regions 748 
only (Dean et al., 2017). Associations between D2 and autism symptom severity were also 749 
reported in this study, providing additional evidence that D2 can serve as a behaviorally relevant 750 
measure of WM abnormality.  751 

 752 
Other interesting implementations have used D2 to detect and characterize lesions. Gyebnár et 753 
al. (2019) combined DTI eigenvalues into a voxel-wise D2 measure between epilepsy patients and 754 
controls to detect cortical malformations in patients. Voxels were identified as belonging to a 755 
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lesion if their D2 value exceeded a critical value calculated using Wilks’ criterion (Wilks, 1963), a 756 
criterion used for multivariate statistical outlier detection. In another implementation, D2 was 757 
employed to characterize the heterogeneity within WM lesions by computing the multivariate 758 
distance (combining T1-w, T2-w and PD-w signal intensities) between voxels in WM 759 
hyperintensities and those in normal appearing WM (NAWM) (Lindemer et al., 2015). D2 in WM 760 
hyperintensities progressed at a quicker rate in individuals who converted from mild cognitive 761 
impairment to Alzheimer’s disease (AD) compared to those who did not convert. Interestingly, 762 
the rate of change of WM hyperintensities volume (i.e., lesion load), a metric more commonly 763 
used (Bilello et al., 2015; Schmidt et al., 2005), did not differentiate converters from non-764 
converters cross-sectionally and longitudinally, suggesting that a characterization of WM lesion 765 
heterogeneity through a multivariate framework was more informative than the volume of WM 766 
lesions (Lindemer et al., 2015). 767 
 768 
Limitations 769 

There are some limitations of D2 computation as presented in MVComp. First, D2 itself is a 770 
squared measure, thus the directionality of the difference is non-specific. As it is currently 771 
implemented, it is not possible to determine whether a given subject’s features are higher or 772 
lower than the average, although this information can be easily extracted by comparing the 773 
subject’s voxel values or ROI means to the mean of the group average on a per-metric basis. 774 
Future studies could potentially address this limitation indirectly by integrating with studies that 775 
model ground-truth biophysical properties to better interpret differences and/or splitting groups 776 
based on expected direction of change. Then, the directions of deviations from the average could 777 
be hypothesized a priori.  778 
 779 
D2 is a sensitive multivariate distance measure that has since found applications in various fields, 780 
such as classification, cluster analysis, and outlier detection. Our implementation makes use of 781 
the sensitivity of D2 to detect multivariate deviations in WM microstructure. This high sensitivity 782 
also means the method can be affected by registration inaccuracies and partial voluming (PV). 783 
Therefore, special attention must be paid to ensure optimal alignment across subjects and 784 
modalities (e.g., using directional information from dMRI to align WM tracts). Strict tissue type 785 
masking (e.g., using a high threshold on probabilistic segmentation images) can also be used to 786 
limit the amount of PV. However, this may result in a large number of excluded voxels, especially 787 
for low resolution images. Alternatively, the PV effect can be quantified and accounted for (e.g., 788 
González Ballester et al., 2002; Gyebnár et al., 2019). The latter option would be preferable if the 789 
D2 framework was used to detect tumors and estimate their volume, for instance.    790 
 791 
Another limitation of D2 as presented in MVComp is that its use is restricted to continuous 792 
variables. However, more recent formulations of D2 allow for nominal and ordinal variables to 793 
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be incorporated in the model, in addition to continuous variables (Barhen & Daudin, 1995; de 794 
Leon & Carrière, 2005). Future developments of MVComp could thus allow generalization of D2 795 
to include mixed data types (e.g. WM, sex, or other grouping variable).  796 
 797 
5. Conclusion 798 
 799 
We introduce a new open-source tool for the computation of the Mahalanobis distance (D2), the 800 
MVComp (MultiVariate Comparisons) toolbox. D2 is a multivariate distance measure relative to 801 
a reference that inherently accounts for covariance between features. MVComp can be used in 802 
a wide range of neuroimaging implementations, at both the group and subject levels. In line with 803 
the current shift towards precision medicine, MVComp can be used to obtain personalized 804 
assessments of brain structure and function, which is essential in the study of brain conditions 805 
with high heterogeneity. 806 
 807 
Data and Code Availability 808 

The data is openly available from the Human Connectome Project 809 
(https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-810 
release) and the code of the MVComp toolbox is available at 811 
https://github.com/neuralabc/mvcomp (Tremblay et al., 2024). 812 
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Supplementary Material 
 
Table 1. Comparisons between subject(s) and a reference – Combining MRI metrics 
  

MVComp function name Description 

compute_average To compute the group average maps of each metric (will 
serve as the reference). 

feature_gen Apply to the reference group average maps to extract the 
feature matrix (m_f_mat of shape n voxels x n features), 
a mask vector (mat_mask of shape n voxels) and a 
nibabel object of the mask (mask_img). 

norm_covar_inv To compute the covariance matrix (s) and its 
pseudoinverse (pinv_s) from the reference feature and 
mask matrices (m_f_mat and mat_mask). 

correlation_fig To generate a correlation matrix figure from the 
covariance matrix (s). For visualization. 

model_comp To calculate voxel-wise D2 between each subject 
contained in the provided subject_ids list and the 
reference (group average). Yields a D2 matrix of size 
number of voxels x number of subjects. 

*For leave-one-out approach, set the 
exclude_comp_from_mean_cov option to True 
(the previous steps can be skipped in this case since a 
new covariance matrix is computed for each subject, 
within the model_comp function). 

dist_plot To produce D2 maps for every subject from the D2 matrix 
generated by model_comp. 
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model_comp with  
return_raw set to True 

To extract features contribution to D2 in a region of 
interest. When return_raw is set to True, the function 
returns a 3D array of size (number of voxels) x (number of 
metrics) x (number of subjects). This information can then 
be summarized to obtain the % contribution of each metric 
for a group of subjects. 

  
  
Table 2. Comparisons between subject(s) and a reference – Combining spatial dimensions 
  

MVComp function name Description 

spatial_mvcomp To compute a D2 score between each subject and the 
reference from a matrix containing the data (e.g., mean 
FA in each WM tract) of all subjects (n subjects x n tracts). 
Returns a vector with a single D2 value per subject. 

*For leave-one-out approach, set the 
exclude_comp_from_mean_cov option to True. 

spatial_mvcomp with  
return_raw set to True 

To extract features contribution to D2. If set to True, a 2D 
array of size (number of subjects) x (number of tracts) is 
returned. This information can then be summarized to 
obtain the relative importance of each tract to D2. 

  
  
Table 3. Comparisons within a single subject – Voxel-wise D2 resolution 
  

MVComp function name Description 
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feature_gen Provide the path of the images (i.e., one image per 
metric) and the reference ROI mask to this function to 
extract the feature matrix (m_f_mat of shape n voxels 
x n features), a mask vector (mat_mask of shape n 
voxels) and a nibabel object of the mask (mask_img). 
This function can also be used to extract the data inside 
the ROI of voxels to be evaluated. 

norm_covar_inv To compute the covariance matrix (s) and its 
pseudoinverse (pinv_s) from the reference feature 
and mask matrices (m_f_mat and mat_mask). 

correlation_fig To generate a correlation matrix figure from the 
covariance matrix (s). For visualization. 

mah_dist_mat_2_roi To compute voxel-wise D2 between all voxels within a 
mask and a specific reference ROI. The user will need to 
provide a vector of data for the reference ROI (i.e., mean 
across voxels in the ROI for each metric), along with the 
feature matrix containing the data for the voxels to be 
evaluated. 

mah_dist_mat_2_roi with  
return_raw set to True 

To extract features’ contributions. The output will be of 
shape (number of voxels) x (number of metrics). 

  
  
Table 4. Comparisons within a single subject – Voxel-voxel matrix D2 resolution 
  

MVComp function name Description 

voxel2voxel_dist To compute D2 between each voxel and all other 
voxels in a mask. Yields a symmetric 2-D matrix of 
size n voxels x n voxels containing D2 values 
between each pair of voxels. 
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