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SUMMARY	

Mammalian	stem-cell-based	models	of	embryo	development	(stembryos)	hold	great	promise	in	basic	
and	applied	research.	However,	considerable	phenotypic	variation	despite	identical	culture	conditions	
limits	their	potential.	The	biological	processes	underlying	this	seemingly	stochastic	variation	are	poorly	
understood.	Here,	we	investigate	the	roots	of	this	phenotypic	variation	by	intersecting	transcriptomic	
states	and	morphological	history	of	individual	stembryos	across	stages	modeling	post-implantation	and	
early	 organogenesis.	 Through	 machine	 learning	 and	 integration	 of	 time-resolved	 single-cell	 RNA-
sequencing	with	imaging-based	quantitative	phenotypic	profiling,	we	identify	early	features	predictive	
of	the	phenotypic	end-state.	Leveraging	this	predictive	power	revealed	that	early	imbalance	of	oxidative	
phosphorylation	and	glycolysis	results	in	aberrant	morphology	and	a	neural	 lineage	bias	that	can	be	
corrected	by	metabolic	interventions.	Collectively,	our	work	establishes	divergent	metabolic	states	as	
drivers	 of	 phenotypic	 variation,	 and	 offers	 a	 broadly	 applicable	 framework	 to	 chart	 and	 predict	
phenotypic	 variation	 in	 organoid	 systems.	 The	 strategy	 can	 be	 leveraged	 to	 identify	 and	 control	
underlying	biological	processes,	ultimately	increasing	the	reproducibility	of	in	vitro	systems.	
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INTRODUCTION	

As	 mammalian	 embryos	 develop	 in	 utero,	 direct	 observation	 and	 manipulation	 of	 developmental	
processes	is	difficult.	This	obstacle	can	be	overcome	by	coaxing	human	and	mouse	pluripotent	stem	cells	
(PSCs)	to	self-organize	into	three-dimensional	structures,	called	stembryos,	reflecting	many	molecular,	
cellular	and	morphological	characteristics	of	the	embryo	(stembryo:	a	portmanteau	of	stem	cells	and	
embryos).1,2	Because	stembryos	are	easy	to	access,	track,	manipulate	and	scale,	more	quantitative	and	
detailed	mechanistic	 insights	can	be	obtained	in	statistically	relevant	sample	sizes.	Hence,	 they	offer	
huge	 potential	 in	 both	 fundamental	 (e.g.	 genetic	 screens,	 lineage	 tracing)	 and	 applied	 (e.g.	 drug	
screenings,	embryo	toxicology)	research.3	However,	a	major	hurdle	for	the	widespread	implementation	
of	stembryos	is	considerable	phenotypic	variation	that	is	largely	unexplained.1,2,4	More	broadly,	inter-
structure	variation,	presumably	arising	from	genetic	heterogeneity,	cellular	interactions,	and	the	micro-
environment,	poses	a	significant	challenge	in	organoid	research.5,6	

Consequently,	 unraveling	 the	 biological	 processes	 that	 underlie	 phenotypic	 variation	 is	 crucial	 to	
maximize	 the	 potential	 applications	 of	 organoids	 and	 stembryos.	 This	 remains	 a	 formidable	 task,	
especially	since	conventional	assays	to	infer	biological	processes	in	an	unbiased	manner	(e.g.	single-cell	
RNA-sequencing	 (scRNA-seq))	 necessitate	 the	 destruction	 of	 samples,	 making	 it	 impossible	 to	
simultaneously	capture	both	the	current	gene	expression	state	and	the	future	phenotypic	state	within	
the	same	sample.	Hence,	a	framework	that	enables	integrated,	longitudinal	analysis	of	gene	expression	
and	phenotypic	dynamics	(phenodynamics)	 is	required	to	obtain	insights	 into	the	roots	of	divergent	
differentiation	outcomes	in	vitro.		

Here,	 we	 combined	 high-throughput	 longitudinal	 imaging	 and	 scRNA-seq	 of	 individual	 structures,	
quantitative	image	analysis,	and	machine	learning,	to	map	the	expression	and	phenotypic	landscapes	of	
individual	 gastruloids	 and	 trunk-like	 structures.7–11	By	 integrating	 time-resolved	expression	profiles	
with	 phenodynamics,	 we	 successfully	 identified	 early	 predictors	 of	 stembryo	 end-states.	 Through	
sampling	 across	 these	 predictive	 phenotypic	 spaces,	 we	 uncovered	 biological	 processes	 strongly	
associated	with	phenotypic	variation.	Specifically,	balanced	glycolysis	and	oxidative	phosphorylation	in	
neuromesodermal	 progenitors	 (NMPs12–14)	 underlies	 the	 harmonious	 development	 of	 somitic	 and	
neural	 tissues	 and	 modulation	 of	 metabolic	 activity	 can	 effectively	 tune	 stembryo	 differentiation	
outcomes.	 Collectively,	 our	 findings	 establish	 divergent	 metabolic	 states	 as	 drivers	 of	 phenotypic	
variation	in	stembryos.	

RESULTS	

Divergent	differentiation	outcomes	in	stembryos	modeling	the	embryonic	trunk	

Gastruloids	are	aggregates	of	mouse	embryonic	stem	cells	(mESCs)	that	break	symmetry,	elongate	and	
self-organize	the	major	body	axes	upon	a	24h-pulse	with	the	WNT	agonist	CHIR99021	(hereafter	CHIR)	
(Figure	1A).7,11,8,9	When	supplemented	with	the	extracellular	matrix	compound	Matrigel,	gastruloids	
develop	 into	 trunk-like-structures	 (TLSs)	 resembling	 the	 core	 part	 of	 the	 embryonic	 trunk	 (Figure	
1A).10,15	While	nearly	half	of	the	TLSs	exhibit	coordinated	formation	of	somites	and	a	neural	tube,	why	
>50%	of	 the	structures	 fail	 to	develop	properly	diversified	and	organized	 tissues	 is	unclear	 (Figure	
1A,B).10,15	 We	 therefore	 investigated	 the	 complete	 TLS	 morphospace	 in	 more	 detail	 upon	 initial	
classification	of	TLSs	based	on	bright-field	imaging	(“successful”	and	“unsuccessful”	–	see	Methods	for	
criteria10).	To	ease	visualization	and	quantification,	we	generated	structures	 from	mESCs	carrying	a	
T::H2B-mCherry	 (hereafter	 TmCH)	 and	 Sox2::H2B-Venus	 (hereafter	 Sox2VE)	 reporter,	 labeling	 cells	
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actively	expressing	T	(also	known	as	Brachyury;	expressed	in	NMPs	and	nascent	mesoderm)	or	Sox2	
(expressed	in	NMPs	and	their	neural	descendants)	as	well	as	their	progeny.10,16	Overall	architecture	was	
assessed	by	DAPI	(nuclei)	and	Phalloidin	(F-Actin)	staining.	While	successful	TLSs	form	a	central	neural	
tube-like	structure	flanked	by	somites,	unsuccessful	TLSs	showed	disorganized	neural	tissue,	or,	in	few	
cases,	 internalization	 of	 mesodermal	 tissue	 enveloped	 by	 neural	 tubes	 (Figure	 1C-E	 and	 S1A,B).	
Accordingly,	in	unsuccessful	structures	the	TmCH+	volume	fraction,	but	not	intensity,	is	reduced	(Figure	
1C,D	and	S1C,D).		

A	 second	 frequently	 observed	 aberrant	 phenotype	 (compared	 to	 the	 embryo)	was	 the	 formation	 of	
multi-axes	 structures	with	 a	 total	 volume	 comparable	 to	 those	with	 a	 single	 axis	 (Figure	1B,F	and	
S1E).10	 Notably,	 in	multipolar	 structures	without	morphological	 somite	 formation	 the	TmCH+	 volume	
fraction	was	decreased	less	than	in	unipolar	structures	(Figure	S1F).	

Quantitative	charting	of	phenodynamics	

We	hypothesized	that	subtle	phenotypic	variation	at	earlier	stages	could	precede	divergent	end-state	
differentiation	outcomes.	To	test	this,	we	quantitatively	charted	the	48-96h	stembryo	phenodynamics	
of	a	total	of	768	stembryos	and	performed	wide-field	imaging	at	24	hour-intervals	(Figure	2A).	Using	
deep-learning-based	 segmentation	 and	 a	 combination	 of	 feature	 extraction	 approaches17–21,	 we	
extracted:	i)	structure-level	morphometric	features	from	the	bright-field	(BF)	data	(hereafter	referred	
to	 as	 [feature]-BF);	 ii)	 morphometric	 and	 distribution	 features	 from	 the	 TmCH+	 domain	 (hereafter	
referred	to	as	[feature]-TmCH);	iii)	intensity	features	measured	as	a	function	of	the	TmCH+	domain	or	whole	
structure	 (hereafter	 referred	 to	as	 [feature]-TmCH(mCH)	and	[feature]-TmCH(BF)	respectively)	 (Figure	2A)	
(Supplementary	Note	1).	

We	then	employed	unsupervised	machine	learning	in	the	form	of	Sparse	Principal	Component	Analysis	
(SPCA)	 (Figure	 2B,C).	 With	 [feature]-BF	 as	 input	 the	 first	 principal	 component	 (PC1)	 separated	
stembryos	based	on	culture	time;	loadings	were	dominated	by	area	and	minor	axis	length,	and	features	
strongly	 correlated	 with	 both	 (Figure	 2B,D	 and	 S2A,C,D).	 PC2	 comprised	 [AR]-BF	 (Aspect	 Ratio),	
[eccentricity]-BF	and	first	Hu-moment	([hu1]-BF	-	a	scale,	rotation	and	translation	invariant	description	
of	shape)	(S2D,E).	Consequently,	96h	structures	were	separated	from	other	timepoints,	reflecting	the	
onset	of	axial	elongation	(Figure	2B,D	and	S2E).	A	second	major	contributor,	[form	factor]-BF,	reflects	
the	emergence	of	complex	shapes	around	96h	(Figure	2D).	

To	 quantify	 phenotypic	 variation,	 we	 calculated	 the	 squared	 coefficient	 of	 variation	 (CV2)	 for	 the	
dominant	 contributors	 over	 time,	 which	 showed	 that	 phenotypic	 variation	 overall	 increases	 as	
stembryos	develop	(Figure	2E).	Decreased	CV2	for	a	subset	of	features	([AR]-BF,	[hu1]-BF)	from	48-72h	
suggests	that	some	variation	emerging	during	aggregation	is	constrained	by	the	CHIR	pulse	(Figure	2E	
and	S2E).	

Similarly,	SPCA	with	[feature]-TmCH	as	 input	sorted	stembryos	along	a	temporal	trajectory,	especially	
when	considering	PC2	and	PC3	(Figure	2C;	PC1	discussed	in	Supplementary	Note	2).	Evaluation	of	
PC3	loadings	showed	a	high	contribution	of	[mean_intensity]-TmCH(BF),	which	steadily	increased	over	time	
(Figure	 2D,F).	 Other	 PC3	 loadings	 correlated	 significantly	 with	 [mean_intensity]-TmCH(BF)	 (Figure	
S2F,G).	PC2	loadings	were	dominated	by	the	coefficient	of	variation	(CV)	calculated	across	the	radial	
slices	of	the	mask	([radial_distribution_CV]-TmCH(BF)),	a	proxy	for	the	homogeneity	of	intensity	in	the	core	
versus	 periphery	 (Figure	 2G;	 Supplementary	 Note	 2).	 Hence,	 higher	 CV	 values	 in	 the	 periphery	
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indicate	TmCH	polarization	over	time.	Indeed,	PC4	separated	96h	structures	from	earlier	timepoints,	with	
polarization	along	the	major	and	minor	axes	as	predominant	loadings	(Figure	S2F,I).	

In	conclusion,	phenodynamic	analysis	could	capture	the	previously	described	growth,	elongation,	and	
establishment	of	polarized	Brachyury	expression.7–11,22	In	addition,	it	revealed	that	phenotypic	variation	
increases	over	time.	

Time-resolved	single-cell	RNA-sequencing	across	the	phenotypic	landscape	

In	parallel	with	phenodynamic	analysis,	we	assessed	heterogeneity	in	gene	expression	dynamics	and	
cell	 state	 composition.	We	 used	MULTI-Seq23	 to	 profile	 individual	 stembryos	 by	 scRNA-seq	 at	 48h	
(n=72),	72h	(n=48),	96h	(n=24)	and	120h	(n=24)	(Figure	2A	and	S3A-C).	After	stringent	quality	control	
(see	Methods),	we	recovered	high-quality	transcriptomes	of	21,026	cells	(48h:	3,861	cells;	72h:	1,742	
cells,	96h:	2,056	cells;	120h:	13,367	cells).	

First,	we	aggregated	all	structures	on	a	per	time-point	basis	to	obtain	a	time-resolved	compendium	of	
stembryo	development.	Inspection	of	cluster	marker	genes,	intersection	with	data	capturing	naïve-to-
primed	pluripotency	transitions	in	vitro,	and	pseudotime	analysis	showed	that	48h	structures	harbor	
cells	 in	 naïve,	 formative	 and	 primed	 pluripotency	 states,	 whereas	 lineage-specific	 factors	 are	 not	
expressed	 (Figure	 2H	 and	 S3D-H).24,25	 24	 hours	 later,	 most	 cells	 had	 acquired	 signatures	 of	 the	
primitive	 streak,	 caudal	 epiblast,	 caudal	mesoderm,	 caudal	 neuroectoderm,	nascent	mesoderm	 	 and	
cardiomyocytes	(annotations	based	on	embryo	data26)	(Figure	2H	and	S3D’).	Pseudotime	 inference	
showed	a	trajectory	from	a	naïve	pluripotent	state,	via	an	epiblast	and	primitive	streak	signature,	to	an	
axial	progenitor	(caudal	epiblast,	mesoderm	and	neuroectoderm)	state	(Figure	S3J,K).		

Higher-level	 separation	 at	 96h	demonstrated	 a	 small	 partition	with	 a	 pluripotency	 signature,	 and	 a	
larger	 one	 comprising	 three	 clusters	 (Figure	 S3L),	 organized	 into	 a	 continuum	of	 states,	with	 axial	
progenitors	 ((early)	 NMPs)	 flanked	 by	 mesodermal	 or	 neural	 biased	 cells	 (Figure	 2H	 and	 Figure	
S3D’’,M,N).	A	similar	organization	was	observed	at	120h,	with	NMPs	adjoined	by	somitic	and	neural	
cells	(Figure	2H	and	S3D’’’,O,P).	Notably,	 fine-grained	clustering	of	 the	pluripotent	cluster	revealed	
two	distinct	populations,	characterized	by	high	expression	of	naïve	and	formative	pluripotency	genes,	
and	primordial	germ	cell	(PGC)	marker	genes	respectively	(PGC-like	cells	(PGCLCs))	(Figure	S3Q-S).	
These	two	states	were	detected	as	early	as	48h	(Figure	S3S,T).	Hence,	the	recently	identified	ectopic	
pluripotent	cells	(EPCs)	in	gastruloids	are	also	present	in	TLSs.27	

Profiling	of	inter-stembryo	transcriptional	variation	

We	 leveraged	 the	 single-cell,	 single-structure	 resolution	 of	 our	 data-set	 to	 assess	 inter-structure	
variation	 in	 gene	 expression	 and	 cellular	 composition.	 The	 latter	 varied	 considerably	 between	
stembryos	at	all	timepoints,	with	inter-structure	variation	increasing	over	time	(Figure	2I	and	Figure	
S4A-D).	At	120h	unsuccessful	and	successful	structures	significantly	differed	in	the	fraction	of	somitic	
and	neural	cells,	providing	further	support	for	our	manual	morphology-based	classification	(Figure	1	
and	S4E).	

We	then	computed	highly	variable	genes	(HVGs)	across	individual	structures	(see	Methods)	(Figure	2J-
M	and	S4F-I).	As	expected,	at	the	end-state	(120h)	HVGs	were	involved	in	somite,	mesoderm,	neural	
tube	and	spinal	cord	development	and	their	developmental	induction	(Figure	2J	and	S4I,K).	Variation	
in	 the	expression	of	genes	 involved	 in	 these	processes	was	already	prominent	at	96h,	when	marker	
genes	 of	 NMPs	 (e.g.	 Epha5,	 Cdx2/4)	 as	 well	 as	 their	 neural	 (e.g.	 Irx1/2/5,	 Sox1,	 Dbx1,	 Rfx4)	 and	
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mesodermal	 (e.g.	 Uncx,	 Foxc2,	 Tcf15,	 Pcdh8)	 progeny	 displayed	 significantly	 more	 variation	 than	
randomly	selected	or	all	other	expressed	genes	(Figure	2K	and	S4H,J).	Concomitantly,	expression	of	
gene	modules	for	signaling	pathways	involved	in	axial	patterning,	NMP	maintenance	and/or	decision	
making	(FGF,	WNT,	Retinoid	Acid,	Notch)	showed	high	inter-structure	variation	(Figure	2K).	While	at	
earlier	 time-points	 (48h	 and	72h),	HVGs	were	 dominated	 by	 pluripotency	 genes	 (Figure	2L,M	and	
S4F,G),	inter-structure	divergence	in	mesoderm	and	somite	development	signatures	became	evident	at	
72h	(Figure	2M).	

The	variation	 in	cell	state	composition	suggested	extensive	 inter-stembryo	heterochronicity.	 Indeed,	
pseudotime	 distributions	 were	 highly	 variable	 between	 individual	 structures	 (Figure	 S4L-O).	 To	
identify	 genes	 associated	 with	 heterogeneous	 developmental	 time,	 we	 correlated	 pseudo-bulked	
expression	 with	 pseudotime	 values.	 At	 48h,	 “younger”	 and	 “older”	 structures	 showed	 enriched	
expression	of	naïve	(e.g.	Klf2,	Fbxo15)	whereas	“older”	and	formative	(e.g.	Sox4,	Dnmt3b)	pluripotency	
markers	 respectively	 (Figure	 S4P),	 confirming	 the	 validity	 of	 our	 approach.	 At	 72h,	 less	 advanced	
developmental	 time	 was	 associated	 with	 high	 expression	 of	 epiblast	 genes	 (e.g.	Utf1,	 Lefty1/2	 and	
Tdgf1),	while	developmentally	more	progressed	structures	showed	increased	expression	of	primitive	
streak	 genes	 (e.g.	Gbx2,	Hoxa1)	 (Figure	 S4Q).	 Younger	 96h	 gastruloids	were	 characterized	 by	 high	
expression	of	primitive	streak	and	axial	progenitor	markers	(including	T),	whereas	older	gastruloids	
displayed	 higher	 expression	 of	 neural	 genes	 (Figure	 S4R).	 Finally,	 at	 120h,	 more	 advanced	
developmental	 progression	 was	 associated	 with	 an	 increased	 neural	 expression	 signature	 at	 the	
expense	of	NMP	marker	genes	(Figure	S4S).	

In	sum,	these	data	show	that	molecular	and	phenotypic	variation	emerge	concomitantly.	Next,	we	set	
out	to	integrate	both	modalities.	

Phenotypic	fingerprints	enable	early	prediction	of	morphological	end-state	

The	destructive	nature	of	 scRNA-seq	made	 it	 impossible	 to	simultaneously	capture	both	 the	current	
molecular	 and	 future	 phenotypic	 state	 within	 the	 same	 sample,	 prohibiting	 their	 integration.	 To	
overcome	this,	we	aimed	to	identify	early	phenotypic	features	predictive	of	the	stembryo	end-state,	in	
order	to	correlate	early	expression	profiles	to	(predicted)	morphological	outcome.	

We	used	 two	different	 approaches:	 i)	 integration	 of	 end-state	 expression	with	phenodynamics	 data	
(next	section);	 ii)	Partial	Least	Squares	Regression	(PLSR),	a	method	designed	to	determine	a	 latent	
space	in	which	the	explanatory	and	target	variables	show	high	covariance.28,29	This	space	is	determined	
by	 a	 set	 of	 latent	 variables	 combinations	 of	 features	 similar	 to	 principal	 components,	which	 can	be	
analyzed	in	terms	of	their	abilities	to	separate	phenotypic	(end-)states	and	the	contributing	features.29,30		

When	using	differentiation	outcomes	as	the	target	vector,	the	first	latent	variable	(Dev-Dim1)	clearly	
separated	successful	and	unsuccessful	TLSs	(Figure	3A).	Examining	 its	 loadings	revealed	significant	
contributions	of	72h	and	96h	TmCH	levels,	along	with	the	TmCH		radial	distribution	features	(Figure	3C)	
and	 highly	 correlated	 features	 (Table	 S1).	 At	 both	 72h	 and	 96h	 high(er)	 TmCH	 levels	were	 strongly	
associated	with	successful	TLS	formation,	in	particular	in	unipolar	structures	(Figure	3C,E-G).	In	terms	
of	distribution,	higher	TmCH	 levels	at	the	core	were	associated	with	better	differentiation	outcome,	as	
demonstrated	 by	 computing	 “virtual”	 average	 gastruloids	 (Figure	 3C,D).	 These	 simplified	
representations	 also	 showed	 that	 structures	 with	 an	 increased	 TmCH+	 area	 fraction	 at	 96h	 (96h-
[fraction]-TmCH)	exhibited	better	differentiation	outcomes	in	unipolar	structures	(Figure	3D,H).	
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When	investigating	the	 first	 latent	variable	 for	axes	number	as	 the	target	vector	(Axes-Dim1),	many	
features	 identified	 for	 differentiation	 outcome	 reappeared	 as	major	 contributors	 (Figure	 3B,C	 and	
Table	S1).	Specifically,	for	120h	single-axis	structures	TmCH	intensity	at	72h	and	96h	was	overall	lower,	
higher	in	the	periphery	versus	the	core	of	the	TmCH	domain,	and	more	polarized	(Figure	3C-I).	Compared	
to	the	differentiation	outcome	PLSR	results,	there	was	a	higher	contribution	of	96h	BF	shape	descriptors	
to	Axes-Dim1;	more	elongated	structures	were	more	likely	to	become	unipolar	(Figure	3I,J).		

We	next	tested	the	feasibility	to	predict	phenotypic	(end-)state	at	earlier	time-points.	Reduced	feature	
sets	 comprising	 only	 48h	 and	 72h	 features	 showed	 convincing	 separation	 of	 phenotypic	 end-states	
(Figure	 S5A,B).	 For	 axes	 number,	 predictive	 features	 shifted	 from	 shape	 to	 TmCH	 intensity	 and	
distribution	features	(Figure	S5C,D	and	Table	S1).	Similar	to	the	analysis	using	the	complete	feature	
space,	higher	72h-[mean_intensity]-TmCH(BF)	was	associated	with	better	differentiation	outcome	(Figure	
3E	and	Table	S1),	 and	TmCH	 signal	distribution	with	both	axes	number	and	differentiation	outcome	
(Figure	S5C,D	and	Table	S1).	

Overall,	 the	 PLSR	 analysis	 identified	 early	 phenotypic	 features	 that	 harbor	 predictive	 power	 for	
stembryo	phenotypic	end-state.	In	particular,	successful	TLS	formation	is	strongly	associated	with:	i)	
higher	activation	of	the	TmCH	reporter	at	72h	and	96h;	ii)	a	higher	fraction	of	the	structure	expressing	
TmCH	at	96h;	iii)	a	higher	reporter	signal	in	the	core	compared	to	the	periphery	at	96h.	For	single	versus	
double	axes,	both	overall	shape	(e.g.	AR,	minor	axis	length),	as	well	as	TmCH	intensity	and	distribution	
harbor	predictive	power.	

Integrated	 molecular-phenotypic	 analysis	 identifies	 features	 predictive	 of	 differentiation	
outcome	

Although	 imaging-based	analysis	alone	 identified	predictive	 features,	our	analysis	of	 the	phenotypic	
landscape	showed	that	for	differentiation	outcome	the	data	followed	a	continuum	rather	than	discrete	
distribution	(Figure	1D,E).	We	therefore	 leveraged	that	our	experimental	design	comprised	parallel	
recording	of	phenotypic	and	transcriptional	states,	including	ground	truth	outcomes.	

Specifically,	we	aimed	to	 identify	early	phenotypic	 features	predictive	of	end-state	somitic	vs	neural	
ratio.	We	computed	somitic	and	neural	module	scores	for	individual	120h	structures	and	used	these	
scores	 as	 “bait”	 in	 a	 correlation	 analysis	 with	 the	 phenotypic	 features	 (Figure	 4A	 and	 S5E).	 This	
integration	 of	 both	 high-dimensional	 spaces	 (i.e.	 48h/72h/96h	 phenotypic	 space	 and	 120h	
transcriptional	 space)	revealed	high	absolute	correlations	of	 somitic	and	neural	module	scores	with	
TmCH	intensity	and	distribution,	but	not	BF,	features	(Figure	4B,C	and	S5F).	Specifically,	we	observed	a	
high	positive	correlation	between	the	120h	somitic	module	score	and	both	96h-[fraction]-TmCH	and	96h-
[mean_intensity]-TmCH(mCH).	Vice	versa,	the	neural	module	score	was	strongly	negatively	correlated	with	
these	 features	 (Figure	4B,C	and	Figure	S5G).	These	associations	were	also	apparent	upon	quartile	
binning	 of	 structures	 based	 on	 [fraction]-TmCH	 or	 [mean_intensity]-TmCH(mCH);	 with	 higher	 values,	 the	
percentage	 of	 NMP	 and	 somitic	 cells	 increased,	 and	 cells	 occupied	 distinct	 regions	 of	 the	 120h	
compendium’s	expression	space	(Figure	4D,E	and	Figure	S5H).	A	small	set	of	72h	TmCH	features	was	
strongly	 associated	 with	 future	 differentiation	 outcome;	 in	 particular	 72h-[mean_intensity]-TmCH	
correlated	with	an	increased	somitic	vs	neural	fraction	at	120h,	as	well	as	a	relative	increase	of	NMPs	
(Figure	4B,C,F).		

To	assess	the	predictive	power,	we	compared	machine	learning	classifiers	of	varying	complexity	(Linear	
Discriminant	 Analysis	 (LDA)31,	 State	 Vector	 Classifier	 (SVC)32	 and	 eXtreme	 Gradient	 Boosting	
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(XGBoost)33)	in	their	ability	to	predict	axis	number	and	differentiation	outcome	based	on	all	features	or	
predictive	 features	 only.	 SVC	 and	 XGBoost	 displayed	 similar	 accuracies,	whereas	 LDA	 scored	 lower	
(Figure	 S5I,J).	Whereas	 feature	 selection	 only	marginally	 impacted	 SVC	 and	 XGBoost	 classification	
scores,	LDA	benefited,	possibly	due	to	the	reduced	complexity	of	its	decision	surface	(Figure	S5I,J).	

Altogether,	our	 integrated	molecular-phenotypic	analysis	demonstrated	 that	96h-[fraction]-TmCH	 and	
72h-	and	96h-[mean_intensity]-TmCH	are	strongly	associated	with	differentiation	outcomes	at	120h.	This,	
together	with	the	PLSR	analysis	(Figure	3),	suggests	that	these	features	are	dominant	predictors	of	the	
structure’s	ability	to	balance	somite	and	neural	tube	formation.	Indeed,	projecting	the	120h	phenotypic	
outcome	on	a	 simplified	72h	or	96h	 feature	 space	well-separated	120h	 successful	 and	unsuccessful	
structures,	showing	that	these	features	can	predict	the	stembryo	end-state	(Figure	4G-I).		

Identification	of	divergent	glycolytic	activity	as	a	major	putative	driver	of	variation	

Next,	 we	 utilized	 the	 newly	 obtained	 predictive	 power	 to	 identify	 biological	 processes	 involved	 in	
divergent	 differentiation	 outcomes.	 The	 even	 distribution	 of	 sequenced	 96h	 structures	 across	 the	
predictive	state	space	allowed	us	to	match	these	with	phenotypically	similar	structures	for	which	the	
ground	truth	end-state	was	captured	(Figure	5A,B).	As	discussed	above,	on	average	structures	at	this	
stage	comprised	4	major	cell	states:	pluripotent	cells,	and	axial	progenitors	(early	NMPs)	flanked	by	
mesodermal	or	neural	biased	cells	(Figure	2H).	This	lineage	bias	was	reflected	by	predictive	phenotypic	
features	(Figure	S6A,B).	

To	 identify	 underlying	 processes,	 we	 correlated	 pseudo-bulk	 transcriptome	 data	 with	 dominant	
predictive	features	(96h-[fraction]-TmCH	and	96h-[mean_intensity]-TmCH).	We	then	ranked	genes	based	
on	their	correlation	with	either	and	performed	Gene	Set	Enrichment	Analysis	(GSEA),	which	revealed	a	
single	prominent	hit:	“glycolysis”	(Figure	5C-E).	This	was	corroborated	by	computing	module	scores	
for	 glycolytic	pathway	genes,	which	 showed	 that	 inferred	glycolytic	 activity	 is	 increased	 in	 samples	
predicted	to	form	successful	structures	(Figure	5F,G).		

In	chick	embryos,	high	glycolytic	activity	in	the	posterior	end	was	linked	to	NMP	maintenance	and	their	
mesodermal	exit.34	Indeed,	NMPs	and	mesoderm-biased	cells	had	a	higher	glycolysis	module	score	than	
neural-biased	 cells	 at	 96h	 (Figure	 S6C).	We	 therefore	 tested	 if	 the	 observed	 relationship	 between	
inferred	glycolytic	activity	and	higher	96h-[fraction]-TmCH	and/or	[mean_intensity]-TmCH	was	conserved	
in	the	NMP	pool.	To	this	end,	we	extracted	the	NMP	cluster	in	silico,	and	performed	the	same	analysis	as	
for	all	96h	cells.	Strikingly,	this	not	only	confirmed	a	positive	enrichment	for	the	“glycolysis”	term,	but	
additionally	revealed	a	negative	enrichment	for	“oxidative	phosphorylation”	(OxPhos)	(Figure	5H,I).	
Computation	of	module	scores	for	glycolysis	and	OxPhos	pathway	genes	provided	additional	evidence,	
showing	 higher	 glycolysis	 scores,	 and	 lower	 OxPhos	 scores,	 as	 96h-[fraction]-TmCH	 or	 96h-
[mean_intensity]-TmCH	increased	(Figure	5J,K	and	S6D,E).	Analysis	of	the	expression	of	individual	genes	
in	the	NMP	pool	showed	that	for	nearly	all	glycolytic	pathway	genes	expression	increased	as	a	function	
of	 96h-[fraction]-TmCH	 or	96h-[mean_intensity]-TmCH	(Figure	 5L	 and	 S6F).	 Since	 the	 aforementioned	
study	provided	evidence	 for	a	 regulatory	FGF-glycolysis-WNT	 loop	 in	 the	posterior	end	of	 the	chick	
embryo34,35,	we	assessed	the	relationship	between	FGF/WNT	signaling	and	glycolysis.	We	found	that	
higher	inferred	glycolytic	activity	was	associated	with	increased	expression	of	FGF/WNT	pathway	genes	
(Figure	5M	and	S6G,G’).	Moreover,	expression	of	WNTs,	FGFs	and	their	downstream	targets	involved	
in	NMP	maintenance	and	decision	making	strongly	correlated	with	the	expression	of	genes	encoding	
rate-limiting	enzymes	of	 glycolysis	 (Pfkl,	Pkm,	Pgk1),	 as	well	 as	Ldha,	which	 converts	pyruvate	 to	 l-
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lactate	(Figure	5N).	Finally,	we	found	a	strong	correlation	with	transcription	factors	(TFs)	governing	
NMP	maintenance	and	neural	vs	mesodermal	decision	making	(Figure	5M,N).	

In	sum,	these	findings	show	that	the	metabolic	profile	of	the	early	NMP	pool	predicts	the	capacity	of	
structures	to	coordinate	somite	and	neural	tube	formation.	Higher	glycolytic	activity	is	associated	with	
better	outcome,	concomitant	with	increased	expression	of	FGF/WNT	pathway	genes	and	their	targets.	
Hence,	 our	 data	 strongly	 suggest	 that	 variable	 FGF-glycolysis-WNT	 activity	 underlies	 phenotypic	
variation.	

Divergent	metabolic	and	signaling	states	upon	WNT	pulse	

Motivated	by	these	findings,	we	tested	if	we	could	detect	distinct	metabolic	and	morphogen	signatures	
at	earlier	stages.	To	this	end,	we	leveraged	the	predictive	power	of	72h-[mean_intensity]-TmCH	(Figure	
3,4	and	S5),	which	correlated	well	with	T	 expression	(Figure	S6H).	Structures	with	 increased	72h-
[mean_intensity]-TmCH	displayed	an	increased	primitive	streak	signature	at	the	expense	of	pluripotency,	
leading	up	to	an	enhanced	mesodermal	signature	24	hours	later	(Figure	6A,B	and	Figure	S6I).	

Lower	TmCH	 levels	at	72h	were	associated	with	enriched	signatures	of	OxPhos	and	related	processes,	
including	 glutathione	 metabolism	 -	 a	 defense	 against	 respiration-induced	 reactive	 oxygen	 species	
(Figure	6C,D).	Vice	versa,	structures	with	higher	TmCH	levels	showed	enrichment	of	a	“developmental	
induction”	module	comprising	morphogens	implicated	in	NMP	maintenance	and	mesoderm	formation	
(e.g.	Wnt3,	Wnt3a,	 Fgf8),	 and	 their	 downstream	 targets	 (Figure	 6C,E).	 Notably,	 the	 expression	 of	
secreted	WNT	inhibitors	Sfrp1/2	-	knockdown	of	which	leads	to	a	multipolar	phenotype36	-	decreased	
with	higher	TmCH	levels	(Figure	6E).		

Although	glycolysis	was	not	among	the	significantly	enriched	processes,	module	score	analysis	not	only	
confirmed	that	structures	with	higher	TmCH	 levels	at	72h	had	lower	OxPhos	scores,	but	also	revealed	
higher	 glycolysis	 scores	 and	 gradually	 increased	 Ldha	 expression	 (Figure	 6F,G	 and	 Figure	 S6J).	
Moreover,	72h	TmCH	levels	were	predictive	of	inferred	OxPhos	and	glycolysis	activity	at	96h	(Figure	6H).	
Finally,	a	targeted	analysis	showed	that	an	enhanced	glycolytic	state	at	96h	correlated	with	aggregate	
size	 at	 72h,	 raising	 the	 intriguing	 possibility	 that	 early	 size	 differences	 set	 the	 stage	 for	 divergent	
metabolic	 activity,	 ultimately	 impinging	 on	 differentiation	 outcome	 (Figure	 6I).	 Indeed,	 larger	 72h	
aggregates	displayed	higher	 inferred	glycolytic	activity,	 concomitant	with	 increased	expression	of	T,	
Fgf8	and	Nodal	co-receptor	Tdgf1	(Cripto)	(Figure	6J,K).	

Collectively,	our	data	strongly	suggest	that	divergent	metabolic	and	morphogen	signaling	states	drive	
phenotypic	variation.	Higher	glycolysis-WNT	activity	results	in	harmonious	formation	of	somitic	and	
neural	tissue,	ultimately	resulting	in	successful	TLSs	(Figure	6L).	

Metabolic	interventions	correct	unsuccessful	differentiation	outcome	

The	newly	identified	association	between	differentiation	outcome	and	divergent	metabolic	activity	in	
NMPs	prompted	us	to	test	if	the	coordinated	development	of	neural	and	somitic	tissue	could	be	tuned	
by	 metabolic	 state	 alterations.	 We	 subjected	 a	 total	 of	 966	 stembryos	 to	 metabolic	 interventions	
designed	 to	modulate	OxPhos-glycolysis	balance	and	assessed	TLS	morphology	and	somitic	 :	neural	
ratio	at	120h	(Figure	S7A,D,E).	Specifically,	we	treated	structures	from	72-96h	or	from	96-120h	with	
the	 mitochondrial	 complex	 I	 inhibitor	 rotenone37	 or	 2-Deoxy-D-glucose	 (2-DG),	 a	 compound	 that	
competes	with	glucose	to	bind	hexokinase,	the	first	rate-limiting	enzyme	of	glycolysis38,39	(Figure	7A	
and	S7A).	
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Treatment	 with	 rotenone	 from	 96-120h	 did	 not	 drastically	 affect	 overall	 morphology,	 but	 clearly	
increased	the	TmCH+	volume	(both	absolute	and	fraction),	concomitant	with	increased	somite	formation	
at	the	highest	concentration	(Figure	7B,C	and	Figure	S7B,D,F).	Vice	versa,	Sox2VE+	volume	fraction	was	
reduced	(Figure	S7F).	Treatment	from	72-96h	increased	not	only	TmCH+	volume,	but	also	the	volume	
with	 tissue-level	 co-localization	 of	 TmCH	 and	 Sox2VE	 at	 both	 96h	 and	 120h	 at	 the	 highest	 rotenone	
concentration	 (Figure	 7B,C	 and	 Figure	 S7G,H).	 Altogether,	 these	 results	 show	 that	 a	 metabolic	
intervention	that	induces	glycolysis	at	the	expense	of	OxPhos	leads	to	more	balanced	lineage	allocation	
of	NMPs	-	also	evident	from	the	increased	TmCH+/Sox2VE+	volume	ratio	(Figure	7C)	-	and	that	early,	but	
not	late,	enhancement	of	glycolysis	expands	the	NMP	pool	(Figure	7C	and	S7G,H).	

In	 contrast	 to	 rotenone,	 2-DG	 treatment	 resulted	 in	 pronounced	 alterations	 in	 overall	morphology,	
showing	a	dose-dependent	 reduction	of	 total	volume	and	elongation	 (Figure	7D,E	and	S7C).	At	 the	
highest	concentration,	TLS	morphology	was	severely	disrupted	with	aberrant	formation	of	disorganized	
neural	 tissue	 and	 severely	 hampered	 somite	 formation	 (Figure	 7E	 and	 S7I),	 emphasized	 by	
quantitative	 analysis	 demonstrating	 a	 decreased	 TmCH+/Sox2VE+	 volume	 ratio	 and	 somite	 number	
(Figure	7E	and	S7J).	Although	the	lower	concentration	did	not	quantitatively	affect	the	TmCH+/Sox2VE+	
volume	 ratio	 (Figure	 7E)),	 clear	 defects	 were	 observed.	 Treatment	 from	 72-96h	 resulted	 in	
disorganization	of	(posterior)	somitic	tissue	with	“scattering”	of	somites	(Figure	7D	and	S7I),	whereas	
treatment	from	96-120h	completely	abolished	segmentation	of	somitic	(TmCH+)	tissue	(Figure	7D	and	
S7I,J).	Finally,	quantification	of	the	TmCH+/Sox2VE+	overlapping	volume	showed	that	2-DG	decreased	the	
size	 of	 the	 NMP	 pool	 (Figure	 7E).	 In	 sum,	 effects	 of	 2-DG	 are	 dose-	 and	 time-dependent;	 high	
concentration	 increases	 neural	 at	 the	 expense	 of	 somitic	 tissue	 and	 inhibits	 elongation,	 low	
concentration	affects	segmentation.	Both	concentrations	decrease	the	size	of	the	NMP	pool.	

Collectively,	the	metabolic	interventions	show	that	the	phenotypic	landscape	of	the	stembryo	can	be	
tuned	 by	 altering	 the	 balance	 between	 oxidative	 phosphorylation	 and	 glycolysis.	Most	 importantly,	
favoring	glycolysis	can	correct	neural	 lineage	bias.	Furthermore,	the	data	suggest	the	presence	of	an	
early	temporal	window	in	which	enhanced	glycolysis	increases	the	size	of	the	NMP	pool.	

DISCUSSION	

Viktor	 Hamburger	 famously	 stated	 that	 “the	 embryo	 is	 [...]	 always	 right”.40	 In	 contrast,	 stembryos	
frequently	deviate	from	this	ideal	state,	manifesting	as	phenotypic	variability.	Such	seemingly	stochastic	
variation	 represents	 a	 major	 hurdle.	 Here,	 we	 demonstrated	 that	 biological	 processes	 underlying	
phenotypic	variation	can	be	identified	through	integrated	molecular-phenotypic	profiling.		

We	focused	on	the	variable	propensity	to	form	somites	and	a	neural	tube	from	an	NMP	pool.	Our	finding	
that	this	divergent	propensity	can	be	detected	prior	to	the	end-state	and	associates	with	variable	WNT	
signaling	 activity	 aligns	 with	 recent	 work	 in	 gastruloids.41	 Our	 unique	 integrative	 strategy	 in	
combination	with	 functional	experiments	strongly	suggest	 that	 this	divergence	 is	driven	by	variable	
metabolic	 activity,	 and	 can	 be	 controlled	 by	 metabolic	 interventions.	 Specifically,	 we	 reveal	 that	
glycolytic	 versus	 OxPhos	 activity	 regulates	 NMP	 decision	 making	 and,	 potentially,	 maintenance,	
presumably	by	regulating	FGF	and/or	WNT	signaling	activity.		

Consistent	with	our	findings,	a	parallel	preprint	showed	that	decreasing	glucose	concentrations	in	early	
gastruloids	progressively	 shifts	germ	 layer	proportions	away	 from	mesodermal	derivatives	 towards	
more	neuroectodermal	cell	fates.42	Furthermore,	the	authors	show	that	the	addition	of	Nodal	or	Wnt	
signaling	agonists	can	rescue	mesoderm	and	endoderm	development	in	glycolysis-inhibited	gastruloids,	
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suggesting	 that	 glycolytic	 activity	 is	 an	 important	 activator	 of	 signaling.42	Hence,	 this	 and	our	work	
provides	further	support	for	the	idea	that	metabolic	pathways	can	act	as	regulators	of	patterning	and	
morphogenesis	 during	 embryogenesis.	 The	 concept	 of	 metabolic	 signaling,	 rooted	 in	 the	metabolic	
gradient	theory43,	has	picked	up	interest.44	Some	work	focused	on	gastrulating	amniote	embryos,	and	is	
therefore	of	particular	interest	in	light	of	our	discoveries.		

In	chick,	suppressing	glycolysis	alters	NMP	differentiation	potential,	promoting	a	shift	towards	neural	
at	the	expense	of	mesodermal	differentiation.34	An	FGF-glycolysis-WNT	loop	was	proposed,	where	an	
FGF	signaling	gradient	establishes	posterior-to-anterior	glycolytic	activity,	leading	to	a	corresponding	
gradient	in	WNT	signaling.34,35	Our	findings	suggest	that	this	loop	operates	in	stembryos	and	that	its	
variable	activity	underlies	phenotypic	variation.	

On	 the	 contrary,	 in	 mouse	 embryo	 explants	 glycolysis	 was	 reported	 to	 negatively	 regulate	 WNT	
signalling.38,45	 Although	 the	 authors	 suggested	 that	 the	 discrepancy	 could	 be	 rooted	 in	 short-term	
negative38	versus	long-term	positive	regulation34,	our	data	show	that	-	at	the	same	time-point	-	higher	
glycolytic	activity	is	positively	associated	with	expression	of	WNTs	and	their	targets.	Our	discovery	that	
the	FGF/WNT/glycolysis	connection	is	conserved	in	the	scalable	and	tractable	stembryos	presents	an	
exciting	opportunity	to	unravel	the	intricate	spatiotemporal	dynamics	of	feedback.	

Pyruvate	produced	by	glycolysis	can	either	enter	the	citric	acid	cycle	and	be	catabolized	by	OxPhos,	or	
converted	into	lactate	by	Ldha.	The	latter	phenomenon,	known	as	aerobic	glycolysis	or	the	Warburg	
effect,	 results	 in	 lower	ATP	yields.46	 In	 chick,	 aerobic	glycolysis	 activity	 is	higher	 in	NMPs	and	 their	
mesodermal	 derivatives.34	 The	 resulting	 lactate	 production	 establishes	 a	 pH	 gradient,	 favoring	 the	
mesodermal	over	neural	 lineage	choice,	primarily	through	the	activation	of	WNT	signaling.35	In	vitro	
PSM	differentiation	tied	this	to	non-enzymatic	β-catenin	acetylation.	Such	regulation	downstream	of	β-
catenin	stabilization	might	explain	 the	observed	 inter-structure	variation	 in	WNT	signaling	pathway	
activity	despite	an	initial	pulse	with	WNT	activator	CHIR	(an	inhibitor	of	GSK3-β	which	phosphorylates	
β-catenin	and	targets	it	for	degradation47).	

During	the	embryonic	stages	modeled	here,	the	embryo	develops	under	hypoxia	(1.5-8%48).	One	aspect	
of	the	hypoxic	response	involves	a	transition	in	cellular	metabolism,	from	OxPhos	to	glycolysis.49	We	
recently	reported	that	in	hypoxic	gastruloids	the	relative	fraction	of	NMPs	and	their	somitic	progeny	is	
increased.50	Hence,	a	hypoxia-induced	shift	from	OxPhos	to	glycolysis	could	be	a	physiological	means	to	
balance	neural	versus	mesodermal	decision-making	of	NMPs.	We	speculate	that	small	variations	in	size	
could	set	the	stage	for	such	divergent	metabolic	activity.		

Recent	work	investigated	the	role	of	glucose	metabolism	during	mouse	peri-gastrulation	stages	using	
(st)embryos.51,39	 One	 study	 showed	 that	 during	 early	 gastrulation	 (~E6.5	 -	~E7.25)	mesoderm	 fate	
acquisition	 and	 maintenance	 is	 governed	 by	 glucose	 metabolism	 via	 the	 Hexosamine	 Biosynthetic	
Pathway	(HBP),	but	mesoderm	migration	and	lateral	expansion	requires	glycolysis.51	Complementary	
work	in	gastruloids	suggested	that	mannose,	but	not	glycolysis,	is	crucial	for	the	early	induction	of	T.39	
While	at	first	glance	some	of	these	findings	seem	at	odds	with	our	discoveries,	most	of	the	effects	we	
report	 here	 relate	 to	 later	 developmental	 stages	 (embryo	 equivalent:	 ~E7.5-E94),	 during	 which	
mesoderm	and	neural	cells	are	specified	from	a	pool	of	NMPs.	Hence,	our	data	could	reflect	the	idea	that	
late-stage	glycolysis	mostly	becomes	relevant	after	(neuro)mesoderm	specification	from	the	primitive	
streak.	Alternatively,	or	additionally,	 lactate	 induced	mesoderm	specification	(via	regulation	of	WNT	
signaling)	could	act	on	top	of	mannose	metabolism.39					
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An	 intriguing	 phenomenon	 in	 a	 subset	 of	 structures	 comprised	 balanced	 somitic	 and	 neural	 tissue	
formation	in	an	"inside-out"	configuration,	with	neural	tubes	enveloping	non-segmented	somitic	tissue.	
This	uncoupling	of	cell	state	composition	and	morphogenesis	challenges	the	classification	process	based	
on	 end-state	 BF	 images,	 resulting	 in	 substantial	 overlap	 of	 end-states	 in	 the	 PLSR	 latent	 spaces,	
ultimately	 impinging	 on	 accuracy	 scores.	 Further	 advancing	 the	 framework	 by	 incorporating	
longitudinal	 confocal	 instead	 of	 wide-field	 imaging,	 thereby	 extending	 the	 feature	 space	 with	 e.g.	
detailed	 spatial	 distribution,	 progenitor	 field	 appositions,	 and	 cellular	 geometry,	 could	 significantly	
enhance	predictive	capabilities.	However,	this	will	pose	challenges	related	to	throughput,	phototoxicity,	
and	real-time	predictions	and	interventions.	
	
Finally,	 our	 study	 underscores	 that	while	 integrated	molecular-phenotypic	 profiling	 is	 essential	 for	
identifying	 processes	 driving	 phenotypic	 variation,	machine	 learning	 applied	 to	 sparse	 longitudinal	
imaging	data	suffices	to	predict	phenotypic	end-states.	This	is	further	emphasized	by	a	recent	preprint	
employing	machine	learning	to	predict	endoderm	end-state	morphology.52	Such	predictive	power	can	
be	leveraged	to	discover	design	principles	that	govern	developmental	canalization	(as	we	show	here),	
and	enhances	the	potential	of	stembryos	for	applications	that	require	high	reproducibility,	 including	
disease	 modeling	 and	 reproductive	 toxicity	 studies.	 For	 example,	 our	 strategy	 is	 useful	 to	 stratify	
samples	across	experimental	conditions	 to	ensure	a	balanced	representation	of	predicted	outcomes,	
thereby	 reducing	 false	 positive	 and	 false	 negative	 rates.	 Moreover,	 the	 possibility	 to	 obtain	 (semi-
)paired	measurements	 (by	 subjecting	overlapping	 samples	 in	 the	predictive	 state	 space	 to	different	
treatments)	could	reveal	state-specific	effects.	

We	employed	the	integrated	molecular-phenotypic	profiling	to	identify	biological	processes	underlying	
(phenotypic	variation	in)	coordinated	formation	of	somitic	and	neural	tissue.	However,	our	dataset	and	
strategy	 can	 be	 (re)-employed	 to	 investigate	 the	 roots	 of	 many	 (variable)	 outcome	 measures,	 e.g.	
elongation	or	curvature.	While	these	will	comprise	correlations,	the	high	throughput	and	potential	for	
global	and	personalized	interventions	make	stembryos	an	excellent	system	for	investigating	causality,	
dissecting	feedback	loops,	and,	ultimately,	controlling	shape	and	patterning.	
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METHODS	

Mouse	Embryonic	Stem	Cell	Culture		

Mouse	 Embryonic	 Stem	 Cells	 (mESCs)	 carrying	 a	 T::H2B-mCherry	 and	 Sox2::H2B-Venus	 reporter10		
were	cultured	under	standard	Serum+LIF+feeder	conditions	(400	mL	Knockout	Dulbecco’s	Modified	
Eagle’s	Medium	(DMEM)	(4500	mg/ml	glucose,	w/o	sodium	pyruvate)	(Gibco)	supplemented	with		75	
mL	ES	cell	tested	FCS,	5	ml	100x	L-glutamine	(200	nM)	(Lonza	#BE17-605E),	5	mL	100x	penicillin	(5000	
U/ml)/	 streptomycin	 (5000	μg/ml),	5	ml	100x	non-essential	 amino	acids	 (Gibco	#11140-35),		 1	mL	
500x	β-mercaptoethanol	(5mM,	1000x	Invitrogen),		5	mL	100x	nucleosides	(Chemicon)	and	5µl	10000x	
of	Murine	 Leukemia	 Inhibitory	 Factor	 (LIF)	 (Sigma-Aldrich,	 #ESG1107)	 on	 6cm	 plates	 (Sarstedt,	 #	
83.3901.300)	coated	with	0.1%	gelatin	and	a	layer	of	mitotically	inactive	fibroblasts.	Culture	medium	
was	 refreshed	 every	 24h	 and	mESCs	were	 split	 using	Trypin-EDTA	 (Thermofisher,	 #ESG1107)	 in	 a	
dilution	of	1:10	every	48h.	The	cells	were	passaged	twice	before	proceeding	to	TLS	formation.		

Generation	of	Gastruloids	&	Trunk-Like-Structures	

Gastruloids	 and	 TLSs	 for	were	 generated	 following	 the	 previously	 published	 protocol.10,15	 In	 short,	
mESCs	were	 feeder-freed	by	sequential	plating	of	 the	cells	on	0.1%	gelatin-coated	6-well	plates	and	
incubating	 the	cells	at	37ºC	 for	25’,	20’	and	15’	respectively.	Cells	were	 then	washed	with	5mL	pre-
warmed	PBS	supplemented	with	MgCl2	+	NaCl	(PBS+/+)	(Sigma,	#D8662-500mL),	spun	down	for	5’	at	
300g,	followed	by	a	second	wash	with	5mL	of	pre-warmed	NDiff227	medium	(Takara).	After	pelleting	
(5’,	300g)	and	gentle	trituration	in	500µl	NDiff227,	cells	were	counted	using	an	automatic	cell	counter	
(Invitrogen™	Countess™	3	FL	Automated	Cell	Counter)	and	diluted	in	NDiff227	to	a	final	concentration	
10	cells/µl.	30µl	of	the	cell	suspension	(~300	cells)	were	then	plated	into	individual	wells	of	a	ultra-low	
attachment	 U-bottom	 96	well	 plate	 (Costar,	 #7007)	 using	 a	multichannel	 pipette,	 and	 placed	 in	 an	
incubator	(37ºC,	5%	CO2).	After	48h,	the	aggregates	were	pulsed	with	3μM	CHIR99021	(CHIR)	(Tocris,	
#4423)	diluted	 in	 150µl	 NDiff227	 per	 sample.	 At	 72h,	 150µl	medium	was	 refreshed	with	 new	 pre-
incubated	NDiff227.	Between	92h-96h	(96h	for	all	samples	used	for	integrated	molecular-phenotypic	
profiling),	TLS	formation	was	initiated	by	supplementing	the	gastruloids	with	5%	(final	v/v)	Growth-
factor-Reduced	Matrigel	(Corning	#356231)	diluted	in	NDiff227	medium.		

In	the	case	of	the	rotenone	and	2-DG	treatment,	inhibitors	were	added	for	24h	from	72h	to	96h	or	96h	
to	120h.	The	drugs	were	diluted	 in	the	Ndiff227.	 In	the	case	of	rotenone,	a	1mM	working	stock	was	
generated	by	diluting	rotenone	(Sigma-Aldrich,	#R8875-1G)	in	DMSO	(Sigma-Aldrich,	#41639-100ML).	
The	calculated	volume	of	1mM	rotenone	solution	was	then	mixed	with	NDiff227	media	to	reach	the	final	
concentration	of	10nM	and	20nM.	The	equivalent	volume	of	DMSO	was	added	to	the	control.	Similarly,	
2-DG	 (Sigma-Aldrich,	 #D8375-1G)	 was	 weighted	 using	 a	 precision	 balance	 and	 diluted	 in	 the	
corresponding	volume	of	NDiff227	to	reach	the	desired	concentration	of	2mM	and	5mM.		

Whole-mount	Immunofluorescence	(WIFC)	

Structures	were	harvested	using	a	wide-boar	p200	pipette	tip	and	transferred	to	an	8-well	glass-bottom	
plate	 (Ibidi	 #80827).	 The	 structures	 were	 then	 washed	 three	 times	 with	PBS++/BSA	 (PBS	
supplemented	with	MgCl2	and	CaCl2	(Sigma-Aldrich,	#D8662-6X500ML)	supplemented	with	0.5%	BSA)	
and	three	times	with	PBS.	Thereafter	the	structures	were	fixed	with	4%	PFA	for	1h	at	4ºC,	followed	by	
3	washes	with	PBS.	The	structures	were	then	permeabilized	with	PBS-T	(PBS	supplemented	with	0.05%	
(v/v)	Triton-X)	and	subsequently	blocked	overnight	with	blocking	solution	(PBS	supplemented	with	
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0.05%	(v/v)	Triton-X	and	10%	FCS).	TLSs	were	then	incubated	with	the	primary	antibodies	at	a	dilution	
of	1:250	for	72h	to	96h.	Subsequently,	structures	were	washed	three	times	with	PBST-X	and	left	in	the	
Blocking	solution	overnight.	The	next	day,	the	secondary	antibody	at	a	dilution	of	1:500	was	added	and	
incubated	for	24h.	TLSs	were	then	washed	three	times	with	blocking	solution,	once	with	PBST-X	and	
then	post-fixed	with	4%	PFA	for	20’	to	1h.	Then,	samples	were	washed	with	0.02M	Phosphate	Buffer	
(PB)	(25mM	NaH2PO4	+	75mM	Na2HPO4,	pH	7.4)	twice	and	embedded	in	a	drop	of	low-melting	agarose	
to	stabilize	them	for	imaging.	Finally,	the	structures	were	cleared	using	RIMS	(133%	(w/v)	Histodenz	
(Sigma-Aldrich,	 #D2138)	 diluted	 in	 0.02M	 Phosphate	 Buffer	 supplemented	 with	 0.01%	 Tween)	
overnight.	A	list	of	all	the	antibodies	used	in	this	manuscript	can	be	found	in	Table	S2.	

Imaging	

Wide-field	Imaging	

Widefield	imaging	of	live	samples	was	performed	using	Zeiss	CellDiscoverer7	(CD7)	at	48h,	72h,	96h	
and	120h.	 The	 temperature	 and	CO2	levels	were	 kept	 constant	 at	 37°C	 and	5%	 respectively	 for	 the	
entire	duration	of	the	imaging.	The	samples	were	imaged	in	situ,	in	a	96-well	ultra-low	attachment	U-
bottom	plates	using	a	Plan-Apochromat	5x/0.35	objective,	a	TL	LED	Lamp	and	LED-Module	590nm	light	
source	with	 adequate	 emission	 filters.	 The	 images	were	 acquired	 at	 8-bit	 depth	 and	 the	 image	was	
scaled	to	101.36mm	x	65.35mm.		

Spinning	Disk	Imaging		
	
Fixed	 and	 stained	 structures	were	 imaged	 on	 a	 spinning	 disc	microscope	 (Olympus	 IXplore	 SpinSR	
using	Yokogawa	W1	with	Borealis	laser	source,	iXon	Ultra	888	camera,	Olympus	10x/0.4	U	Plan	SApo	
Air	objective	and	appropriated	laser/filters	for	405,	488,	568	and	640nm	emission	fluorophores).	A	Z-
stack	of	approx.	250μm	was	taken	with	a	z-step	of	9μm	and	all	images	were	acquired	with	a	pixel	size	
of	0.65x0.65μm2.			
		
Imaging	processing	and	analysis	

Manual	classification	of	TLSs	based	on	bright-field	imaging	

Criteria	for	classification	were	the	same	as	applied	in	Veenvliet	et	al.,	2020.10	Structures	were	classified	
as	“successful”	when	at	least	four	neighboring	segments	had	developed	along	the	antero-posterior	axis	
at	 120h.	 Segments	 were	 defined	 as	 sub-structures	 that	 displayed	 i)	 indentations,	 and	 ii)	 opposite	
curvatures	at	segment	borders.	Structures	that	displayed	two	or	more	axes	were	classified	as	“multiple	
axes”	(multipolar),	others	as	“one	axes”	(unipolar).	

Confocal	imaging	processing	

For	confocal	 image	processing,	multi-channels	and	multi-slice	 images	were	used.	Adjustments	to	the	
channels’	colors	and	intensities	and	contrast	enhancement	for	the	thumbnails	were	made	based	on	the	
user.	A	user-drawn	initial	crop	box	is	repeated	by	FIJI	for	all	subsequent	structures,	while	the	suggested	
position	of	the	crop	box	can	be	optionally	readjusted	by	the	user.	Channels	of	interest	can	be	selected	
for	creating	a	3D	Projection	(3DP)	of	the	image.	The	cropped	z-stack	is	saved	as	TIFF	only,	while	the	
resulting	projections	and	each	projected	individual	channel	(in	grayscale)	are	saved	as	TIFF	and	JPEG	
files.	Finally,	a	scale	bar	of	100μm	is	applied	to	the	final	images.	All	image	processing	was	executed	using	
Fiji	v1.54f.	
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Mean	Intensity	quantification	

For	quantifying	volume	 fractions,	multi-channel	and	multi-slice	 images	were	used.	The	 images	were	
processed	with	background	subtraction	of	the	modal	value	for	each	slice	in	the	image	stack	to	remove	
background	noise.	For	each	channel,	the	thresholds	are	set	based	on	the	user-provided	parameters	for	
lower	and	upper	thresholds.	The	appropriate	channel	is	then	renamed	according	to	the	user-provided	
channel	names.	Particles	 (regions	of	 interest)	 are	analyzed	 in	 the	 image	using	 the	Analyze	Particles	
function	and	a	summary	of	the	z-stack’s	results	is	generated.	The	results	are	then	saved	as	a	CSV	file	in	
the	 specified	 output	 directory,	 with	 a	 filename	 based	 on	 the	 channel	 name	 and,	 if	 applicable,	 the	
condition	name.	All	image	analysis	was	executed	using	Fiji	v1.54f.	

Volume	and	Overlap	Volume	Fraction	quantification	

For	quantifying	overlap	volume	fractions,	multi-channel	and	multi-slice	images	were	used.	Bio-Formats	
Importer	was	utilized	to	open	the	image	files	and	process	them	as	grayscale	hyperstacks.	The	images	
were	processed	with	background	subtraction	of	 the	modal	value	 for	each	slice	 in	 the	 image	stack	to	
remove	background	noise.	The	appropriate	channel	number,	lower	threshold	and	name	is	provided	for	
four	different	channels	(A,	B,	C,	and	D)	(NOTE:	the	lower	threshold	was	kept	unchanged	with	respect	to	
the	one	used	to	quantify	intensities).	The	JACoP	plugin53	performs	colocalization	analysis.	Channels	can	
be	combinatorially	compared,	allowing	users	to	assess	colocalization	and	interaction	patterns	between	
different	 channels	 in	 the	microscopy	 images.	 The	 results	 of	 each	 channel	 comparison	 are	 saved	 as	
separate	results	 files	 (Results.csv)	 in	 the	specified	output	directory.	All	 image	analysis	was	executed	
using	Fiji	v1.54f	

Data	processing	and	Statistics	

The	SoxVE+,	TmCH+	and	SoxVE+	and	TmCH+	Overlap	Volume	were	calculated	by	computing	the	sum	of	the	
area	of	each	individual	channel	over	the	total	amount	of	z-stacks	of	a	structure.	The	Volume	Fraction	
was	calculated	by	dividing	the	Volume	of	each	individual	channel	by	the	total	Volume	of	the	respective	
structure	(DAPI	Volume).	The	TmCH+	and	SoxVE+	Ratio	was	computed	by	dividing	the		TmCH+	volume	by	the	
respective	SoxVE+	per	each	structure.	Z-scores	were	calculated	across	all	conditions	on	a	per	experiment	
basis	using	the	formula:		

𝑧	 = 	 (𝑋	 − 	𝜇)	/	𝜎	
	

where	𝑋	is	the	sample	value,	𝜇	is	the	population	mean,	and	𝜎	is	the	standard	deviation.		

The	statistical	analysis	was	carried	out	using	commercial	software	GraphPad	Prism	(v.	9.5.1	(528)).		

The	following	statistical	tests	were	performed:	

Figure	1C:	Unpaired	two-tailed	t-test	
Figure	3E-J:	Two-way	ANOVA	with	Tukey	HSD	test	for	multiple	comparisons	
Figure	5F,G,J,K,	Figure	6F:	One-way	ANOVA	with	Tukey	HSD	test	for	multiple	comparisons	
Figure	7C,E:	One-way	ANOVA,	Dunnet	multiple	comparison	correction.	
Figure	S1C,D:		Unpaired	two-tailed	T-test.	
Figure	S1F:	Two-way	ANOVA,	Tukey’s	multiple	comparison	correction.		
Figure	S5D:	Two-way	ANOVA	with	Tukey	HSD	test	for	multiple	comparisons	
Figure	S6D,E:	one-way	ANOVA	with	Tukey	HSD	test	for	multiple	comparisons	
Figure	S7F,H:	One-way	ANOVA,	Dunnet’s	multiple	comparison	correction.	
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Figure	S7J:	Two-way	ANOVA,	Tukey’s	Multiple	comparison	correction.	
	

Somite	quantifications	

The	number	of	somites	was	quantified	in	20	random	selected	images	per	condition	manually	using	the	
pre-installed	Cell	Counter	plug-in	in	Fiji	v1.54f.	The	criteria	to	consider	a	structure	as	somite	was:	1)	the	
structures	need	to	be	round,	2)	show	a	single	internal	lumen	defined	by	phalloidin	staining,	3)	be	TmCH+	
and	Sox2VE-.	Only	when	all	three	criterias	were	met	the	structure	was	counted	as	somite.	We	did	not	
threshold	the	somitic	structures	according	to	size.		

Axis	Length	quantification	

To	determine	the	axis	length	of	structures	images	using	volumetric	imaging,	the	volumetric	images	were	
projected	to	2D	using	a	mean	projection.	These	images	were	then	segmented	using	a	pipeline	consisting	
of	 denoising	 (Gaussian	 blur),	 thresholding	 (Otsu	 Method54)	 and	 a	 binary	 fill	 holes	 operation	 (all	
implemented	 in	 scikit-image21).	 The	 segmented	 structures	 were	 then	 skeletonized	 using	 the	
skeletonization	 operation	 implemented	 in	 scikit-image.	 These	 topological	 skeletons	 were	 further	
processed	using	ToSkA55	to	determine	the	length	of	the	longest	path	within	the	topological	skeleton,	a	
proxy	for	axis	length.		

Image	Analysis	of	Widefield	Microscopy	Images	

To	 extract	 focused	 images	 from	 multi-focus	 image	 stacks,	 we	 employed	 the	 Gaussian-based	 stack	
focuser	implemented	in	Fiji19	for	both	the	bright-field	and	TmCH-Channels.	The	bright-field	(BF)	images	
underwent	 min-max	 scaling	 and	 were	 subsequently	 segmented	 using	 Cellpose	 256.	 Segmentation	
involved	the	use	of	two	custom-trained	models:	The	cyto2-model,	trained	iteratively	on	90	manually	
corrected	96h	masks,	was	employed	for	segmenting	the	72h	and	96h	images,	while	the	cyto2-model	
trained	on	27	manually	corrected	48h	masks	was	used	for	segmenting	the	48h	images.	This	resulted	in	
the	 BF	masks.	 For	 the	 segmentation	 of	 the	 TmCH	domain,	we	 used	scikit-image21.	 Initially,	 a	 global	
threshold	 was	 determined	 using	the	 Otsu	 method54	 for	 all	 96h	 images.	 Subsequently,	 the	 images	
underwent	denoising	via	Gaussian	blur	before	being	thresholded	using	the	global	threshold.	Lastly,	any	
TmCH	domain	regions	outside	of	the	BF	mask	were	removed,	resulting	in	the	final	TmCH	domain	masks.	To	
ensure	that	each	mask	image	contained	only	one	object,	a	filtering	step	was	implemented	to	retain	only	
the	object	with	an	area	closest	to	the	median	area	of	all	objects.	

To	 expand	 the	 feature	 space,	 we	 utilized	 several	 feature	 extraction	 methods.	 Firstly,	 simple	 shape	
features	of	the	BF	masks	were	calculated	using	scikit-image21.	Secondly,	the	BF	masks	were	straightened	
using	MOrgAna17,	to	remove	any	influence	of	curved	structures	and	subsequently	more	complex	shape	
features	implemented	in	MOrgAna	were	calculated,	resulting	in	straightened	shape	features	,which	have	
the	 prefix:	 str.	 The	 image	 straightening	 implemented	 in	MOrgAna	was	 also	 used	 to	 determine	 how	
polarized	the	TmCH	domain	was	along	the	major	and	minor	axis.	For	this	a	custom	feature	extraction	
method	was	used,	that	straightens	the	TmCH	image,	alongside	the	BF	mask	and	determines	the	distance	
between	the	BF	mask	centroid	and	the	TmCH	domain	centroid	along	both	the	major	and	minor	axes	of	
the	straightened	BF	mask.	Lastly,	to	calculate	TmCH	 features	cellprofiler57	was	used,	as	it	not	only	can	
measure	intensity,	but	also	intensity	distribution	features.	For	this	both	the	bright-field	mask	and	the	
TmCH	domain	mask	were	used.	Intensity	Features	measured	inside	the	TmCH	domain	mask	have	the	suffix	
TmCH(mCH)	 and	 intensity	 features	 measured	 in	 the	 BF	 mask	 have	 the	 suffix	 TmCH(BF).	 Additionally,	
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cellprofiler	was	used	to	measure	simple	shape	features	of	the	TmCH	domain	mask,	which	also	have	the	
suffix	TmCH.	An	overview	of	the	measured	features	can	be	found	in	Supplementary	Note	1.		

MULTI-Seq	sample	preparation	

The	multiplexed	single-cell	experiment	was	performed	as	previously	described.23,50	Briefly,	structures	
were	generated	as	described	above.	Following	wide-field	imaging,	72	structures	at	48h,	48	at	72h,	24	at	
96h	and	24	at	120h	were	picked	with	a	p200	cut	tip	and	transferred	in	a	new	well	of	a	96-well	plate.	
Next,	structures	were	washed	twice	with	ice	cold	PBS	and	trypsinized	in	20µl	TrypLE	Express	(Gibco)	
for	25	minutes	in	the	incubator	at	37°C,	pipetting	every	5	minutes	to	help	dissociation.	Multi-seq	labeling	
was	 then	 performed	 as	 previously	 described.23	 Briefly,	 single-cell	 suspensions	 of	 each	 sample	were	
incubated	with	a	unique	BC-Lipid	modified	oligonucleotide	“anchor”	mix	(200nM	each	final)	5	minutes	
on	 ice.	 Next,	 a	 200nM	 “co-anchor”	mix	was	 added	 to	 each	 sample	 and	 cells	were	 incubated	 for	 an	
additional	5	minutes	on	ice.	The	reaction	was	then	quenched	by	addition	of	200µl	1xPBS/1%BSA,	and	
cell	suspensions	were	then	washed	twice	with	1xPBS/1%BSA	in	the	plate.	Next,	all	samples	for	each	day	
were	pooled	in	a	1.5	ml	DNA	lowBind	tube	in	1xPBS/1%BSA,	and	cells	pelleted	by	centrifugation.	The	
recovered	cells	were	resuspended	in	1xPBS/0.4%BSA,	counted	and	then	subjected	to	10x	single-cell	
RNA-seq	using	the	10x	Genomics	Chromium™	Single	Cell	3’	v3.1	(one	reaction	for	gastruloid	pool	at	48,	
72,	and	96h;	two	reactions	for	TLS	pool	at	120h)	(see	section	below	for	10x	processing).	MULTI-seq	
oligonucleotides’	sequences	are	listed	in	Table	S3.	

Single-cell	RNA	sequencing		

Following	MULTI-seq	barcode	labeling,	single-cell	RNA-seq	(scRNA-seq)	experiments	were	performed	
as	previously	described23,50.	Briefly,	single-cell	suspensions	were	subjected	to	GEMs	encapsulation	and	
libraries	generated	according	to	the	manual	to	recover	the	cDNA	fraction.	Quality	and	concentration	of	
the	obtained	libraries	were	measured	using	Agilent	High	Sensitivity	D5000	ScreenTape	on	an	Agilent	
4150	 TapeStation.	 Libraries	were	 sequenced	with	 a	minimum	of	 400	million	 paired	 end	 fragments	
according	to	parameters	described	in	the	manual.	To	recover	the	Multi-seq	barcodes,	two	modifications	
were	 introduced	 in	 the	 standard	 workflow:	 (i)	 during	 the	 cDNA	 amplification	 step	 1µl	 of	 an	
oligonucleotide	 to	 enrich	 for	 the	 MULTI-seq	 BCs	 was	 added	 to	 the	 reaction	 and	 (ii)	 after	 cDNA	
amplification	 and	 incubation	 with	 SPRIselect	 beads,	 the	 Multi-seq	 BCs	 containing	 supernatant	 was	
collected	and	subjected	to	further	SPRIselect	beads	incubation	in	order	to	recover	the	Multi-seq	BCs	as	
previously	 described.23	 Multi-seq	 BCs	 recovery	 and	 integrity	 were	 measured	 using	 Agilent	 High	
Sensitivity	D5000	ScreenTape	on	an	Agilent	4150	TapeStation.	The	obtained	material	was	then	used	as	
input	for	Multi-seq	BCs	library	preparation	(see	section	below).	

	

Multi-seq	barcodes	library	preparation	from	scRNA-seq	

Multi-seq	BCs	libraries	were	prepared	as	previously	described.	23	Briefly,	10ng	input	material	obtained	
from	the	10x	cDNA	purification	(see	section	above)	was	used	to	perform	library	PCR	using	KAPA	HiFi	
HotStart	ReadyMix	(Roche,	KK2601)	in	50µl	reaction	with	the	following	steps:	95ºC	5	minutes/	98ºC	
15sec	 –	 60ºC	 30sec	 –	 72ºC	 30sec	 (13	 cycles)/	 72ºC	 1	minutes/	 4ºC	 hold.	 Next,	 AMPure	 XP	 beads	
(Beckman,	 A63881)	 cleanup	 (1.6X)	was	 performed	 to	 purify	 the	Multi-seq	 BC	 libraries.	 Quality	 and	
concentration	of	the	obtained	libraries	were	measured	using	Agilent	High	Sensitivity	D5000	ScreenTape	
on	an	Agilent	4150	TapeStation.	Libraries	were	then	sequenced	using	asymmetric	end	sequencing	(150	
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cycles	 kit;	 28/91	 FC-410-1002)	 on	 a	 Novaseq	 platform	 at	 a	minimum	 of	 50	million	 fragments	 per	
sample.	Oligonucleotides	sequences	used	for	library	preparations	are	listed	in	Table	S3.		

	
Computational	Analysis	

Pre-processing	and	demultiplexing	

Cell	Ranger	pipeline	version	3	(10x	Genomics)	was	used	to	de-multiplex	the	raw	base	call	files,	generate	
fastq	 files,	map	 to	 the	mouse	reference	genome	mm10,	 filter	 the	alignment	and	count	barcodes	and	
unique	molecular	identifiers.	To	de-multiplex	samples	within	our	single	MULTI-Seq	scRNA-seq	dataset,	
we	used	the	deMULTIplex	R	package	(version	1.0.2).23	In	short,	sample	IDs	were	assigned	to	cells.	Cells	
with	 no	 associated	 sample	 barcode	 (unassigned	 (unable	 to	 provide	 a	 sample	 identity	 using	 the	
deMULTIplex	 algorithm)	 and	 negative	 (cells	without	 barcode),	 as	well	 as	 cells	with	more	 than	 one	
barcode	(doublets)	were	removed	for	downstream	analysis	(Figure	S3A,B).	

Quality	Control	(QC),	clustering	and	cell	type	annotations	

After	preprocessing,	the	two	scRNA-seq	runs	for	time-point	120h	were	merged	into	one	single	object.	
Initial	QC	was	performed	with	Seurat	(version	4.3.0).58	Single-cell	data	generated	were	loaded	with	a	
minimum	requirement	of	3	cells	and	200	features	(default	parameters).	Subsequently,	cells	with	unique	
feature	counts	<	2,000	&	>	80,000	(48h	and	120h);	<	500	&	>	80,000	(72h	and	96h)	and	a	mitochondrial	
fraction	above	5%	were	discarded	from	the	analysis.	The	Seurat	objects	after	QC	were	then	used	for	
cluster	determination.	This	procedure	was	performed	individually	per	each	time-point.	Subsequently,	
the	expression	data	were	 independently	normalized,	and	variable	 features	within	the	three	datasets	
were	detected,	log-normalized	and	scaled	to	10,000	(default	settings).	A	list	of	cell	cycle	markers	was	
used	to	score	for	cell	cycle	stage	and	to	subsequently	scale	the	data	with	regression	out	(var.to.regress)	
of	S	and	G2M	phase-related	genes59.	For	downstream	analysis	and	visualization	of	the	datasets,	a	PCA	
followed	 by	 a	 UMAP	 (dims=1:30,	 n.neighbors=10)	were	 run,	 and	 clusters	were	 identified	 using	 the	
Louvain	 algorithm.	 Next,	 we	 manually	 inspected	 the	 distribution	 of	 UMI	 counts,	 total	 RNA	 counts,	
mitochondrial	and	ribosomal	fraction	for	each	cluster	at	individual	time-points.	Based	on	this	additional	
QC	step	we	removed	spurious	clusters.	Specifically,	for	48h,	two	clusters	(one	with	low	n	cells	(<10)	&	
one	with	low	mitochondrial	fraction)	were	removed,	followed	by	reclustering;	for	96h	a	small	cluster	
was	removed	with	a	low	mitochondrial	and	high	ribosomal	fraction,	followed	by	reclustering;	for	120h,	
a	 putative	 doublet	 cluster	 (shown	 by	 almost	 double	 amount	 of	 total	 RNAs	 counts	 and	 UMIs)	 was	
removed.	The	remaining	clusters	were	then	further	annotated	using	a	combination	of	classifiers	and	
manual	curation	to	ensure	most	accurate	and	reliable	annotation	of	cell	states.	While	for	48h,	96h	and	
120h	the	clusters	 identified	by	the	Louvain	algorithm	were	readily	 interpretable	 in	terms	of	marker	
genes,	this	proved	more	challenging	for	the	72h	samples.	We	therefore	first	used	a	publicly	available	
mouse	reference	atlases	(E6.5	to	E8.5)	to	predict	the	in	vivo	cell	ID	using	scmap26,60.	In	short,	a	table	of	
the	top	variable	features	across	the	reference	dataset	was	obtained,	and	relevant	markers	were	chosen	
with	a	criterion	of	passing	the	threshold	of	log	fold	change	of	0.5,	and	a	p-value	of	1e-5.	Following	the	
curation	of	the	relevant	marker	table,	 the	top	200	markers	were	chosen	in	each	reference	cluster	to	
train	a	classifier.	The	query	dataset	was	then	converted	to	an	sce	(SingleCellExperiment)	object,	and	the	
classifier	was	applied	to	the	query	atlas	–	after	filtering	to	include	only	the	relevant	stages	(E6.5	and	
E7.5).	Finally,	the	72h	object	was	re-clustered	using	a	list	of	the	top	20	marker	genes	(obtained	using	
the	FindAllMarkers	function	in	Seurat	with	default	settings,	except	for	pseudocount.use=0.1)	for	all	in	
vivo	cell	types	identified	by	the	classifier	(FindNeighbors,	dims=1:10	and	FindClusters,	resolution=0.4).	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=7088555&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11129215&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=179739&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5027065,6483449&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19	
	

To	subcluster	the	120h	cluster	with	a	pluripotency	signature,	the	cluster	was	subsetted	and	re-clustered	
(FindNeighbors,	dims=1:10	and	FindClusters,	resolution=0.05).	Gene-sets	used	to	calculate	EPCs	and	
PGCLCs	module	scores	were	 [Upp1,	Klf4,	Klf9,	Tbx3,	Zfp42,	Dnmt3l]	and	 [Rhox6,	Rhox9,	Dnd1,	Prdm1,	
BC048679]	respectively.		

Pseudotime	inference	

Pseudotime	inference	of	Seurat	objects	was	conducted	using	the	Monocle	3	package	(version	1.3.1).61	
Initially,	 Seurat	 objects	 were	 converted	 into	 cell	 data	 sets	 (cds)	 within	 the	 Monocle	 framework.	
Subsequently,	cells	were	clustered	using	a	time-point	specific	resolution,	and	a	trajectory	graph	was	
learned	to	capture	the	temporal	relationships	among	cells.	Cells	were	ordered	along	the	trajectory	with	
specified	root	cells	(based	on	cluster	annotations)	to	establish	a	pseudo-time	continuum.	To	analyze	
pseudotime	 distribution	 per	 sample,	 we	 integrated	 Monocle-derived	 pseudotime	 values	 into	 the	
metadata	of	 the	Seurat	object.	We	then	filtered	the	samples	by	their	occurrence	frequency,	selecting	
only	those	with	more	than	20	cells.	Plotting	was	then	conducted	using	ggplot2.		

Calculation	of	CV2	for	cell	type	composition	

First,	we	filtered	the	samples	by	their	occurrence	frequency,	selecting	only	those	with	more	than	20	
cells.	Subsequently,	we	calculated	cell	type	proportions	based	on	the	Seurat	clusters.	To	quantify	the	
variability	within	each	cell	state,	we	computed	the	squared	coefficient	of	variation	(CV2)	for	each	cluster:	

𝐶𝑉2 = (𝑠𝑑(𝑥)/𝑚𝑒𝑎𝑛(𝑥))2	
	

where	sd(x)	is	the	standard	deviation	of	the	values	in	x,	and	mean(x)	is	the	mean	of	the	values	in	x.	

For	the	merged_cluster	plot,	we	merged	the	three	clusters	with	a	neural	signature.		

Identification	of	genes,	processes	and	pathways	with	high	inter-embryo	variation	

For	each	timepoint,	single-cell	RNA-Seq	data	were	pseudo-bulked	on	a	per-structure	basis,	and	pseudo-
bulk	data	were	normalized	to	counts	per	million	(CPM).	Genes	with	no	expression	in	any	sample	were	
filtered	out,	followed	by	the	removal	of	genes	with	low	mean	expression	(<	0.1)	across	all	samples.	After	
computing	the	CV2,	a	generalized	linear	model	was	fitted	to	the	data	to	capture	the	relationship	between	
mean	 and	 variance.	 Highly	 variable	 genes	 were	 identified	 based	 on	 this	 model.	 	 Subsequently,	 a	
winsorization	 process	 was	 applied	 to	 mitigate	 extreme	 values.	 Most	 variable	 genes	 were	 then	
recalculated	 using	 the	 winsorized	 data.	 Finally,	 a	 chi-squared	 goodness-of-fit	 test	 followed	 by	 FDR	
correction	 was	 applied	 to	 assess	 whether	 the	 variability	 in	 gene	 expression	 across	 samples	 is	
statistically	significant	(defined	as	Padj	<	1e-3).	

Visualization	and	statistical	comparison	of	cellular	composition	

For	visualization	in	the	form	of	stacked	boxplots,	we	used	the	dittoSeq	package	(version	1.6.0).62	To	test	
for	 statistically	 significant	 differences	 in	 cell	 type	 proportions	 between	 groups,	 we	 employed	 the	
propeller	function	as	part	of	the	speckle	package	(version	0.03)	using	default	settings	(ANOVA	with	BH	
FDR	correction).63	

Computation	of	module	scores	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=17045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10314148&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13527768&pre=&suf=&sa=0
https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20	
	

To	compute	somitic	and	neural	module	scores,	we	employed	the	FindMarkers	function	in	Seurat	to	find	
markers	specific	to	the	somitic	and	neural	cluster	(pseudocount.use=0.1,	min.pct.diff=0.25).	Next,	we	
extracted	the	top	25	markers	based	on	log-fold	change	values,	and	computed	module	scores	using	the	
AddModuleScore	function	in	Seurat	with	default	settings.	

To	compute	glycolysis	and	oxidative	phosphorylation(OxPhos),	gene	sets	associated	with	glycolysis	and	
OxPhos	were	extracted	from	Malkowska	et	al.,	2022.64	Module	scores	were	then	calculated	for	each	cell	
using	the	AddModuleScore	function	in	Seurat	with	default	settings.	To	compute	NMP-specific	scores,	we	
subsetted	the	96h	Seurat	object	to	only	contain	the	NMP	cluster.	

Correlating	features	with	module	scores	

Features	were	added	as	metadata	to	the	Seurat	object.	After	computation	of	somitic	and	neural	module	
scores,	we	aggregated	scores	based	on	a	per-structure	basis.	We	then	calculated	Pearson	correlations	of	
these	neural	and	somitic	module	scores	with	the	complete	feature	space	(after	removal	of	features	with	
a	standard	deviation	of	zero)	using	the	cor	function	in	the	stats	package.	To	obtain	confidence	intervals	
and	 p-values	 for	 correlations,	 we	 used	 the	 corr.test	 function	 in	 the	 psych	 package	 (version	 2.3.3).	
Significant	correlations	were	defined	as	Padj	(holm)	<	0.05	and	R	>	0.7	

Correlating	features	with	gene	expression	

To	compute	correlations	of	 features	of	 interest	with	gene	expression,	single-cell	RNA-Seq	data	were	
pseudo-bulked	on	a	per-structure	basis,	and	pseudo-bulk	data	were	normalized	to	counts	per	million	
(CPM).	We	then	computed	Spearman	correlations	using	the	corr.test	function	in	the	psych	package.	

Quartile	binning	

For	quartile	binning	of	samples	based	on	features	of	interest,	we	employed	the	quantile	function	in	R	to	
calculate	quantiles	at	five	equidistant	levels	(0%,	25%,	50%,	75%,	and	100%).		

Differential	Expression	Analysis	(DEG)	on	pseudo-bulk	transcriptomes	

First,	we	filtered	the	samples	by	their	occurrence	frequency,	selecting	only	those	with	more	than	20	
cells.	Subsequently,	we	pseudo-bulked	on	a	per-structure	basis,	and	pseudo-bulk	data	were	normalized	
to	counts	per	million	(CPM).		Next,	we	filtered	and	classified	structures	as	large	or	small	based	on	their	
Area	 (large,	>	67,500;	 small,	 <	62,500).	We	 then	used	EdgeR65	 (version	3.36.0)	 to	 compute	DEGs.	A	
DGEList	object	was	constructed,	and	differential	expression	analysis	was	performed	using	the	edgeR	
package.	 The	 design	 matrix	 was	 established	 for	 a	 simple	 comparison	 between	 "small"	 and	 "large"	
groups,	and	dispersion	estimation	and	negative	binomial	model	fitting	were	executed.	Genes	with	an	
FDR-corrected	p-value	<	0.05	were	considered	significant.		

Gene	Set	Enrichment	Analysis	(GSEA)	

For	 GSEA,	 we	 used	 the	WebGestaltR	 package.66	 Ranked	 gene	 lists	 based	 on	 descending	 correlation	
values	with	the	feature	of	interest	were	provided	as	input.	Analysis	was	conducted	for	both	Biological	
Processes	and	Molecular	Functions	from	gene	ontology,	as	well	as	KEGG	and	Panther	pathways,	using	
default	settings	with	few	modifications	(sigMethod	=	"fdr",	fdrMethod	=	"BH",	fdrThr	=	1,	topThr	=	10,	
reportNum	=	20,	perNum	=	250).		

Over	Representation	Analysis	(ORA)	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=14204251&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=673952&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4045666&pre=&suf=&sa=0
https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21	
	

For	ORA,	we	used	the	WebGestaltR	package.66	The	target	list	was	composed	of	all	HVGs	identified	for	
the	 time-point	 of	 interest,	 and	 the	 reference	 list	 comprised	 all	 genes	 expressed	 at	 that	 time-point.	
Analysis	was	conducted	for	both	Biological	Processes	and	Molecular	Functions	from	gene	ontology,	as	
well	as	KEGG	and	Panther	pathways,	using	default	settings	with	few	modifications	(sigMethod	=	"fdr",	
fdrMethod	=	"BH",	fdrThr	=	0.1,	topThr	=	10,	reportNum	=	20,	perNum	=	1000).		

Feature	Normalization	

To	mitigate	the	influence	of	plate-to-plate	variation,	normalization	prior	to	analysis	was	performed	in	
different	manners,	depending	on	the	feature	type.	Shape-based	features	were	z-score	normalized	across	
the	dataset.	 Intensity-based	features	were	z-score	normalized	on	a	per	plate	basis,	 to	mitigate	plate-
dependent	 signal	 differences.	 Lastly	 to	 visualize	 the	 radial	 distribution	 features	 a	 min-max	
normalization	approach	was	taken	on	a	per	plate	basis.	For	classification	and	dimension	reduction	z-
score	normalization	on	a	per	plate	basis	was	also	performed	for	the	radial	distribution	features.	

Dimensionality	Reduction	

Sparse	 PCA	 from	 scikit-learn	 performed	 on	 features	 z-score	 normalized	 across	 timepoints	with	 the	
sparseness	level	alpha	set	to	0.7	and	using	4	components.	The	PLSR	analysis	was	carried	out	using	the	
implementation	in	scikit-learn67,	using	2	latent	variables,	with	either	developmental	outcome	or	axis	
number	set	as	target	variables.	Input	features	were	z-score	normalized	per	feature	and	per	time-point	
using	 the	 normalization	 strategy	 described	 above.	 To	 transform	 the	 categorical	 annotations	 to	 a	 33	
numeric	variable,	successful	TLSs	or	single	axis	annotations	were	set	to	1	and	unsuccessful	or	multiple	
axis	annotations	set	to	0.		

Classification	

The	state	vector	classifier,	linear	discriminant	analysis,	random	grid	search,	cross-validation	and	scoring	
implementations	in	scikit-learn	were	used	and	the	XG-Boost	classifier	implemented	in	dmlc	XG	boost	
python	package	was	used.	Any	location	or	orientation-based	features	were	excluded	from	all	feature	
sets.	Features	were	then	z-score	normalized	per	feature	per	time-point	as	described	above.	For	the	PLSR	
selected	feature	set	used	for	axis	classification	all	features	within	the	outer	5th	percentiles	of	loading	
weights	of	the	PLSR	components	trained	for	axis	number	classification	were	selected.	The	correlation	
selected	feature	set	used	for	developmental	outcome	classification	included	all	features	correlating	with	
neural	or	somitic	module	scores	above	an	absolute	value	of	at	 least	0.7	and	corresponding	p-values	
below	1.0×10−5	were	chosen	for	classification.	To	avoid	test-train	split	bias	and/or	over-fitting	(as	can	
be	 the	case	 for	datasets,	 in	which	 the	 feature	number	 is	 close	 to	 the	sample	number68,	nested	cross	
validation	was	employed	with	stratified	K-fold	splits.	For	model	performance	scoring	a	10-fold	split	was	
used	and	for	hyper-parameter	tuning	a	3-fold	split	was	used.	Hyper-parameter	tuning	was	performed	
using	random	grid	search.	Lastly,	scoring	was	performed	using	the	balanced	accuracy	score,	to	avoid	
effects	due	to	unequal	morphotype	numbers	(Figure	1B).	

Data	visualization	of	dimension	reduction	and	classification	results	was	performed	using	seaborn	and	
matplotlib.69,70	

Code	and	data	availability	

We	are	in	the	process	of	depositing	all	sequencing	data	in	GEO,	and	all	imaging	and	related	source	data	
in	Zenodo.	We	will	update	the	preprint	as	soon	as	this	is	finished.	The	image-processing	and	phenotypic	
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data	 analysis	 can	 be	 reproduced	 using	 the	 code	 available	 in	 https://github.com/Team-
Stembryo/Integrated_Molecular-Phenotypic_Profiling_of_Stembryos	 and	 will	 require	 the	 functions	
implemented	in	the	library	https://github.com/Cryaaa/organoid_prediction_python	developed	for	this	
project.	Other	computational	code	is	available	at	https://github.com/Team-Stembryo.	
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Figure	1.	Divergent	differentiation	outcomes	in	trunk-like-structures		

(A)	Schematic	overview	of	TLS	formation	(see	Methods)	and	comparison	with	the	embryo.	Note	that	TLSs	model	
the	core	part	of	the	embryonic	trunk	(posterior	neural	tube	+	somites).		
(B)	Quantifications	of	indicated	morphological	features	in	TLSs	(scoring	criteria	in10)	.		
(C)	TmCH+	Volume	Fraction	quantification	of	 successful	 (n=41)	and	unsuccessful	 (n=34)	unipolar	TLSs.	***,	p	<	
0.001		
(D)	Histogram	showing	distribution	of	TmCH+	Volume	Fraction	in	TLSs.	
(E)		Representative	3D	maximum	intensity	projections	(3D-MIPs)	of	unipolar	TLSs	with	high	(A1-A3),	middle	(B1-
B3)	and	low	(C1-C3)	TmCH+	volume	fraction.	Scale	bar,	100µm.	
(F)	Representative	3D-MIPs	of	successful	or	unsuccessful	unipolar	and	multipolar	TLSs.	Scale	bar,	100µm.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=10158521&pre=&suf=&sa=0
https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30	
	

Figure 2 
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Figure	2.	Time-resolved	charting	of	the	stembryo	phenotypic	and	transcriptional	landscape		

(A)	Processing	pipeline	for	wide-field	data.	From	48h	onwards,	every	24	all	structures	are	imaged	and	selected	
structures	 are	 processed	 for	 single-cell	 RNA-sequencing	 (scRNA-seq).	 After	 pre-processing	 and	 segmentation,	
features	are	extracted	using	scikit-image,	CellProfiler	and	MOrgAna.	

(B,C)	Scatterplots	of	principal	components	determined	using	sparse	PCA	(sPCA)	with	BF	(B)	and	TmCH	(C)	features	
of	all	timepoints.	Timepoints	are	color-coded	to	visualize	the	phenodynamics	and	variation	in	the	dataset.	Top	and	
left	of	the	scatter-plot	density	plots	of	the	x-	and	y-axis	are	shown.	Example	structures	are	annotated	and	shown	
in	the	bottom	panels.		

(D)	Feature	 loadings	of	principal	 components	 shown	 in	B	and	C.	Top:	BF	 feature	sPCA	 loadings,	bottom:	TmCH	
feature	sPCA	loadings.		

(E,F)	Plots	of	individual	features	with	high	loadings	for	BF	feature	sPCA	(E)	and	[feature]-TmCH	sPCA	(F).	Bar	plot	
(top)	shows	CV2	of	features	at	each	timepoint;	raincloud	plot	(bottom)	shows	distribution	of	indicated	features	per	
time-point.	Errorbar	in	raincloud	plot	indicates	standard	deviation	and	white	center	shows	mean	value.		

(G)	[Radial	Distribution	of	CV]-TmCH(BF)	visualization.	Structures	are	approximated	as	ellipses	with	average	major	
and	minor	axes	at	the	respective	timepoints.	Concentric	ellipses	represent	the	radial	segments	in	which	CV	values	
are	colour-coded.		

(H)	Uniform	Manifold	Approximation	and	Projection	(UMAP)	visualisations	of	scRNA-seq	expression	profiles	of	
pooled	 individual	 stembryos	 at	 indicated	 time-points,	 coloured	 by	 cluster.	 (I)	 Bar	 plots	 showing	 CV2	 for	 cell	
composition,	computed	for	each	cluster	at	indicated	time-points.	Colour-coding	of	clusters	matches	H.		

(J-M,	left	panels)	Scatter	plot	showing	mean	and	variance	of	individual	genes	(black	dots)	at	indicated	time-points.	
A	generalized	linear	model	was	fitted	to	the	data	to	capture	the	relationship	between	mean	and	variance.	Highly	
variable	genes	(subset	shown	in	red)	were	 identified	based	on	this	model.	 (J-M,	right	panels)	Results	of	Over-
Representation	Analysis	(ORA).	Selected	terms	of	interest	are	highlighted	in	red.		

Sample	sizes:		B,E,F:	48h,	n=766;	72h,	n=662;	96h,	n=546,	C,G:	48h,	n=545;	72h,	n=546;	96h,	n=546.	In	B,C,E,F	only	
values	>	0.005th	quantile	and	<	0.995th	quantile	are	plotted.		
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Figure 3	
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Figure	3.	Identification	of	phenotypic	features	associated	with	stembryo	differentiation	outcome		

(A,B)	Scatterplots	of	PLSR	latent	variables.	To	the	top	and	right	of	the	plots	the	density	plots	of	the	x	and	y	axis	
values,	respectively	are	shown.	Suc,	Successful;	Unsuc,	unsuccessful.		

(C)	Loading	weights	of	features	shown	in	A	and	B	for	both	developmental	outcomes	(left:	Dev.	Dim	1,	Dev.	Dim	2)	
and	axis	number	latent	variables	(right:	Axes	Dim	1,	Axes	Dim	2).		

(D)	96h-[Radial	Distribution	of	CV]-TmCH(mCH)	visualization.	Outer	ellipses:	approximation	of	structure	shape	with	
average	major	and	minor	axes;	Inner	ellipses:	approximation	of	TmCH	domain	shape	with	average	major	and	minor	
axes.	 Inner	 concentric	 ellipses	 represent	 the	 radial	 segments	 in	 which	 the	 normalized	 intensity	 fraction	 is	
visualized	by	color.	Distribution	difference	visualization	-	Inner	concentric	ellipses	represent	the	radial	segments	
in	which	the	difference	between	morphotypes	is	visualized.		

(E-J)	Left	panels:	violin	plots	of	indicated	features.	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001,	****	p	<	0.0001.	Right	panels:	
example	 structures	 with	 values	 closest	 to	 the	 0.95	 quantile	 (top),	 median	 value	 (middle)	 and	 0.05	 quantile	
(bottom).	Images	show	composites	of	BF	(greyscale)	and	TmCH	(red).	Scale	bars,	200µm.		

Sample	sizes:	Sample	sizes	A:	Unsuccessful,	n=183,	Successful,	n=128.	Sample	sizes	B:	Multiple,	n=136;	Single,	
n=256.	D-J:	Unsuccessful,	n=183,	Successful,	n=129,	Multiple,	n=136;	Single,	n=257;	Multiple-Unsuccessful,	n=55;	
Multiple-Successful,	n=34;	Single-Unsuccessful,	n=128;	Single-Successful,	n=95.		
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Figure 4	
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Figure	4.	Integration	of	molecular	and	phenotypic	fingerprints	identifies	predictive	features	

(A)	Schematic	of	computational	strategy	to	identify	predictive	features	through	integration	of	imaging	and	scRNA-
seq	data.		

(B)	Raincloud	plot	showing	 the	distribution	of	computed	correlations	of	grouped	 feature	sets	 (on	y-axis)	with	
somitic	(left)	or	neural	(right)	module	scores.	BF,	brightfield.	

(C)	 Dot	 plots	 showing	 correlations	 for	 selected	 features.	 **	 padj	 <	 0.01,	 ***	 padj	 <	 0.001	 (Holm-Bonferroni	
correction	for	multiple	testing).	Top:	padj	 for	correlation	with	somitic	score,	bottom:	padj	 for	correlation	with	
neural	score.		

(D-F)	Cumulative	bar	plot	showing	the	fraction	of	cells	at	120h	in	each	color-coded	annotated	state	for	(D)	96h	
[Fraction]-TmCH	quartiles;	(E)	96h	[Intensity]-TmCH	quartiles;	(F)	72h	[Intensity]-TmCH	quartiles.	*	p<0.05,	**	p<0.01,	
***	p<0.001	(ANOVA	with	Benjamini-Hochberg	FDR	correction).		NMP,	neuro-mesodermal	progenitor.	

(G)	 Density	 plot	 showing	 distribution	 of	 [Intensity]-TmCH	 at	 72h	 for	 structures	 with	 successful	 (orange)	 and	
unsuccessful	(blue)	outcomes	at	120h.		

(H)	Simplified	 feature	space	showing	distribution	of	 [Intensity]-TmCH	and	[Fraction]-TmCH	at	96h	 for	structures	
with	successful	 (orange)	and	unsuccessful	 (blue)	outcomes	at	120h.	Example	structures	(annotated	 in	density	
plot)	are	shown	in	the	right	panel.	Scale	bars,	200	µm.			

(I)	Examples	of	 structures	 (annotated	 in	G	 and	H)	predicted	 to	 give	 rise	 to	unsuccessful	 (top)	 and	 successful	
(bottom)	unipolar	TLSs,	including	ground	truth	end-state.	Scale	bars,	200	µm.	A,	anterior;	P,	posterior;	D,	dorsal;	
V,	ventral.	
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Figure	5.	Early	activity	of	glycolysis	and	OxPhos	predicts	divergent	differentiation	outcome		

(A)	Scatter	plot	showing	distribution	of	96h	sequenced	structures	(black	crosses)	across	the	predictive	feature	
space.		

(B)	Matching	of	sequenced	structures	with	phenotypically	similar	structures	for	which	the	ground	truth	end-state	
was	captured.		

(C)	Computational	strategy	to	identify	biological	processes	associated	with	predicted	outcomes.		

(D,E)	Volcano	Plot	showing	biological	processes	at	96h	associated	with	the	predicted	somitic:neural	ratio	at	120h,	
using	[Fraction]-TmCH	(D)	or	[Intensity]-TmCH	(E)	as	a	proxy.	Horizontal	dotted	line,	Padj	>	0.05;	Vertical	dotted	
lines,	NES	<	-2	or	>	2.	

(F,G)	Raincloud	plots	showing	glycolysis	module	score	per	[Fraction]-TmCH	(F)	or	[Intensity]-TmCH	quartile	(G)	at	
96h.	*	padj<0.05,	**	padj<0.01,	***	padj<0.001.		

(H,I)	Volcano	Plot	showing	biological	processes	 in	96h	NMPs	associated	with	predicted	somitic:neural	ratio	at	
120h,	using	 [Fraction]-TmCH	(H)	or	 [Intensity]-TmCH	 (I)	 as	 a	proxy.	Horizontal	dotted	 line,	Padj	>	0.05;	Vertical	
dotted	lines,	NES	<	-2	or	>	2.	

(J,K)	Raincloud	plot	showing	Δ[glycolysis-OxPhos]	in	NMPs	per	[Fraction]-TmCH	(J)	or	[Intensity]-TmCH	quartile	(K)	
at	96h.		

(L)	Dot	plot	showing	average	expression	of	indicated	genes	encoding	glycolytic	pathway	genes	per	[Fraction]-TmCH	
quartile	at	96h	in	NMPs.		

(M)	Heatmap	showing	average	expression	of	indicated	genes	per	glycolytic	module	score	quartile.		

(N)	Dot	plots	showing	correlations	of	expression	of	indicated	genes	at	96h	in	all	cells	(top)	or	NMPs	(bottom).	Dot	
size	scales	with	R.	
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Figure 6	

	

Figure	6.	Divergent	metabolic	and	signaling	states	after	WNT	pulse	

(A,B)	Cumulative	bar	plot	showing	the	fraction	of	cells	in	each	color-coded	annotated	state	for	[Intensity]-TmCH	
quartiles	at	72h	(A)	and	96h	(B).	%	p=0.05,	*	p<0.05,	***	p<0.001	(ANOVA	with	BH	FDR	correction).		

(C)	Volcano	Plot	showing	pathways	and	processes	at	72h	associated	with	a	low	and	high	predicted	somitic:neural	
ratio	at	120h.	Horizontal	dotted	line,	Padj	>	0.05;	Vertical	dotted	lines,	NES	<	-1.5	or	>	1.5.	

(D)	Dot	plot	showing	average	expression	of	selected	genes	involved	in	“Glutathione	Metabolism”	per	[Intensity]-
TmCH	quartile	at	72h.		

(E)	Dot	plot	showing	average	expression	of	selected	genes	involved	in	“Developmental	Induction”	per	[Intensity]-
TmCH	quartile	at	72h.		

(F)	Raincloud	plot	showing	Δ[glycolysis-OxPhos]	in	NMPs	per	[Fraction]-TmCH	(J)	or	[Intensity]-TmCH	quartile	(K)	
at	72h.	*	padj<0.05,	***	padj<0.001.	

(G)	Violin	plot	showing	Ldha	expression	per	[Intensity]-TmCH	quartile	at	72h.		

(H)	 Scatter	 plot	 showing	 correlation	 of	 [Intensity]-TmCH	 quartile	 at	 72h	 and	 Glycolysis	 (magenta)	 or	 OxPhos	
(green)	module	score	at	96h.	Black	dots	are	individual	samples.	Grey	area	indicates	95%	CI.	
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(I)	Plot	showing	correlations	of	bright-field	morphometric	features	at	48h	(red)	and	72h	(blue)	with	96h	glycolysis	
module	score.	Dot	size	scales	with	-log10(Padj).		

(J)	Box	plot	showing	the	glycolysis	module	score	in	large	and	small	structures	at	72h	(p	<	0.05).	

(K)	Box	plots	showing	the	log2(expression)	of	all	genes	significantly	(Padj	<	0.05)	differentially	expressed	between	
large	and	small	structures	at	72h.		

(L)	Schematic	summarizing	the	findings.		
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Figure	7.	Metabolic	interventions	correct	derailed	differentiation	outcome	

(A)	Schematic	representation	of	central	carbon	metabolism.	The	metabolic	flux	of	glucose	can	be	modulated	using	
different	 inhibitors.	 Inhibitors	 in	 red	 designed	 to	 alter	 OxPhos-glycolysis	 balance	 (see	 text).	 For	 a	 detailed	
schematic	see	Figure	S7A.		

(B)	Representative	3D	maximum	 intensity	projections	 (3D-MIPs)	of	120h	 control	 and	Rotenone-treated	TLSs.	
Scale	bars,	100	µm.		

(C)	Quantifications	of	120h	TLSs	treated	with	Rotenone	10nM	(72h-96h,	n=69;	96h-120h,	n=53)	or	20nM	(72h-
96h,	n=46;		96-120h,	n=55),	and	their	respective	controls	(Control	for	10nM,	n=59,	Control	for	20nM,	n=63).	*,	
p<0.05,	**,	p<0.01,	***,	p<0.001,	****,	p<0.0001	.	

(D)	Representative	3D-MIPs	of	120h	control	or	2DG-treated	TLSs.	Scale	bars,	100	µm.		

(E)	Quantifications	of	120h	TLSs	treated	with	2-DG	2mM	(72h-96h,	n=100;	96h-120h,	n=105)	or	5mM	(72h-96h,	
n=100;		96-120h,	n=65),	compared	to	control	(n=220).	*,	p<0.05,	**,	p<0.01,	***,	p<0.001,	****,	p<0.0001.	
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Figure S1	
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Figure	S1.	Divergent	differentiation	outcomes	in	stembryos	

(A)	Single	planes	of	confocal	imaging	of	the	TLSs	shown	in	Figure	1E,	stained	with	Phalloidin	(F-Actin,	top)	or	DAPI	
(nuclei,	bottom).	Scale	bars,	100µm			
(B)	Composite	single	planes	of	confocal	imaging	of	four	TLSs	classified	as	unsuccessful	(based	on	bright-field)	that	
display	internalization	of	TmCH+	mesodermal	tissue	and	their	respective	zoom-in	images.	The	dashed	lines	indicate	
the	zoom-in	region.	Scale	bars,	100µm.		
(C)	Total	volume	quantification	of	successful	(Suc.,	n=41)	and	unsuccessful	(Unsuc.,	n=34)	unipolar	TLSs.	**,	p	<	
0.01		
(D)	 Intensity	 quantification	 of	 TmCH+	 and	 Sox2VE+	signal	 intensity	 in	 successful	 (Suc.,	 n	 =	 41)	 and	unsuccessful	
(Unsuc.,	n	=	34)	unipolar	TLSs.	**,	p	<	0.01		
(E)	 Representative	 3D	 maximum	 intensity	 projections	 (T::H2B-mCH/Sox2::H2B-VE/F-Actin	 composites)	 and	
single	confocal	planes	of	Phalloidin	 (F-Actin)	or	DAPI	 (nuclei)	 stained	successful	or	unsuccessful	unipolar	and	
multipolar	TLSs.	Scale	bars,	100µm.		
(F)	Total	volume	and	TmCH+	Volume	fraction	quantification	of	successful	(Suc.)	uni-	(n	=	9)	and	multipolar	(n	=	4)	
TLSs,	and	unsuccessful	(Unsuc.)		uni-	(n	=		8)	and	multipolar	TLSs	(n	=	7).			*,	p<0.05,	**,	p<0.01,	***,	p<0.001,	****,	
p<0.0001.	
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Figure S2	

	

Figure	S2.	Charting	of	(variation	in)	stembryo	phenodynamics	

(A,B)	Scatterplots	of	principal	components	determined	using	sparse	PCA	(sPCA)	with	BF	and	TmCH	features	of	all	
timepoints,	 respectively.	Timepoints	are	highlighted	to	visualize	 the	phenotypic	dynamics	and	variation	 in	 the	
dataset.	Top	and	left	of	the	scatter-plot	density	plots	of	the	x-	and	y-axis	are	shown.	For	a	discussion	of	Shape	PC3	
and	PC4	see	supplemental	Note	2.	Sample	sizes:	A:	48h	-	n	=	766;	72h	-	n	=	662;	96h	-	n	=546.	Sample	sizes	B:	48h	
-	n	=	545;	72h	-	n	=	546;	96h	-	n	=	546.		

(C)	Feature	loadings	of	all	principal	components	determined	for	the	BF	sPCA	calculation.	Only	features	that	have	
loadings	>	0.95	quantile	or	<	0.05	quantile	are	shown.		

(D)	Correlation	plot	of	the	features	shown	in	C.	Correlation	calculated	using	Pearson’s	correlation.		
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(E)	Plots	of	individual	features	with	high	loadings	for	BF	feature	sPCA.	Top	shows	CV2	of	features	at	each	timepoint,	
bottom	shows	combined	raincloud	and	violin	plot	of	feature	values	per	timepoint.	Errorbars	in	violin-plots	show	
standard	deviation	and	white	center	shows	mean	value.	Sample	sizes:	E:	48h	-	n	=	766;	72h	-	n	=	662;	96h	-	n	=546.		

(F)	TmCH	features	sPCA	loadings.	Only	features	that	have	loadings	>	0.95	quantile	or	<	0.05	quantile	are	shown.		

(G)	Correlation	plot	of	the	features	shown	in	F.	Correlation	calculated	using	Pearson’s	correlation.		

(I)	 Plots	 of	 individual	 features	 with	 high	 loadings	 for	 TmCH	 feature	 sPCA.	 Since	 intensity	 features	 have	 to	 be	
normalized	to	make	plates	comparable,	z-scores	are	plotted	instead	of	raw	intensities.	Sample	sizes:	48h	-	n	=	545;	
72h	-	n	=	546;	96h	-	n	=	546.		

(H)	[Radial	Distribution	Mean]-TmCH(BF)	visualization.	Structures	are	approximated	as	ellipses	with	average	major	
and	minor	axes	of	 the	respective	 timepoints.	Concentric	ellipses	represent	 the	radial	segments	 in	which	mean	
intensity	fraction	values	are	visualized	by	color.	Sample	sizes:	48h	-	n	=	545;	72h	-	n	=	546;	96h	-	n	=	546.	

A,B,E,I:	All	plots	visualize	values	where:	value	>	0.005	quantile	and	value	<	0.995	quantile	to	reduce	the	influence	
of	extreme	outliers	on	visualization.		
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Figure S3	
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Figure	S3.	Time-resolved	single-cell	RNA-sequencing	of	individual	stembryos	

(A)	 Plots	 showing	 clustering	 of	 sample	 barcodes	 before	 and	 after	 removal	 of	 cells	with	 no	 associated	 sample	
barcode	(unassigned	or	negative)	or	more	than	one	barcode	(doublets)	(see	Methods).		

(B)	 Stacked	barplot	 showing	percentage	of	 barcodes	 in	 indicated	 categories.	Note	 that	120h	 reaction	1	 and	2	
(rx1/2)	were	integrated	for	downstream	analyses	(see	Methods)		

[C)	Histogram	showing	distribution	of	number	of	sequenced	cells	per	structure	at	individual	time-points.	Dotted	
red	 line	 indicates	 the	median.	Solid	red	 line	represents	cut-off	 for	 including	sample	 in	downstream	variability	
analyses.		

(D)	Heatmaps	showing	cluster	marker	genes	at	48h	(D),	72h	(D’),	96h	(D’’)	and	120h	(D’’’).	For	120h,	an	additional	
heatmap	is	shown,	where	the	three	neural	clusters	were	pooled	(D’’’	right).		

(E)	Dot	Plot	showing	expression	of	established	naïve,	formative,	and	primed	pluripotency	genes,	as	well	as	lineage	
factors.		

(F)	Boxplot	showing	the	distribution	of	the	expression	of	cluster	marker	genes	at	the	indicated	time-points	in	the	
in	vitro	2D	ESC	to	EpiLC	differentiation	assay	(see	Methods).25		

(G)	48h	UMAP	with	cells	colored	by	pseudo-time.		

(H)	Expression	of	selected	genes	as	a	function	of	pseudo-time.		

(I)	Dot	Plot	showing	expression	of	established	pluripotency,	caudal	epiblast	(CE)	/	caudal	mesoderm	(CM),	caudal	
neuro-ectoderm	(CN)	and	primitive	streak	marker	genes.		

(J)	72h	UMAP	with	cells	colored	by	pseudo-time.		

(K)	Expression	of	selected	genes	as	a	function	of	pseudo-time.		

(L)	UMAPs	of	individual	time-points,	colored	by	partitions.		

(M)	 Dot	 Plot	 showing	 expression	 of	 pluripotency,	 mesodermal,	 neural	 and	 axial	 progenitor	 (NMP,	 neuro-
mesodermal	progenitor)	genes.		

(N)	96h	UMAP	with	cells	colored	by	pseudo-time	(only	partition	1).		

(O)	Dot	Plot	showing	expression	of	pluripotency,	somitic,	neural	and	NMP	genes.		

(P)	120h	UMAP	with	cells	colored	by	pseudo-time	(only	partition	1).		

(Q)	Sub-clustering	of	120h,	partition	2	(cyan	in	120h	UMAP)	reveals	two	distinct	cell	populations	(insert)		

(R)	Heatmaps	showing	distinct	transcriptomic	signatures	of	two	sub-clusters:	ectopic	pluripotent	cells	(EPCs)	and	
primordial	germ	cell	like	cells	(PGCLCs)		

(S)	Violin	Plots	showing	expression	of	in	vivo	naïve	pluripotency	and	PGC	markers25,71	in	EPCs	and	PGCLCs.		

(T)	UMAPs	of	individual	time-points,	colored	by	EPC	module	score	(blue),	PGCLC	module	score	(red)	or	combined.	
Inserts	show	clear	separation	of	both	populations	over	time	(for	calculation	of	module	scores,	see	Methods).									
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Figure S4 
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Figure	S4.	Profiling	of	inter-stembryo	variation	in	transcriptional	signatures 

(A-D)	Stacked	bar	plots	showing	cellular	composition	of	individual	structures	at	indicated	time-points.	

(E)	Pie	charts	showing	distribution	of	cell	states	in	successful	and	unsuccessful	TLSs.	*,	p	<	0.05	(ANOVA	with	BH	
FDR	correction).		

(F)	Plot	showing	top	100	HVGs	at	48h	(red	dots	in	full	plot	bottom	left).		

(G-I)	Plot	showing	top	100	HVGs	at	72h	(G),	96h	(H),	120h	(I).		

(J,K)	Boxplots	showing	distribution	of	CV2	values	for	marker	genes	of	indicated	clusters,	randomly	selected	or	all	
other	expressed	genes	at	96h	(J)	and	120h	(K).		

(L-O)	Boxplots	showing	distribution	of	pseudotime	values	in	individual	structures	at	indicated	time-points.		

(P-S)	Plots	showing	top	10	(48h	(P)	&	72h	(Q))	or	top	20	(96h	(R)	&	120h	(S))	genes	that	have	the	lowest	(blue)	
and	highest	(red)	correlation	with	average	pseudotime.			
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Figure S5 
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Figure	S5.	Identification	and	validation	of	features	predictive	of	stembryo	differentiation	outcome	

(A,B)	 Scatterplots	 of	 PLSR	 latent	 variables	 trained	 with	 developmental	 outcome	 and	 axis	 number	 as	 target	
variables,	respectively,	using	only	features	of	structures	at	48h	and	96h.	To	the	top	and	right	of	the	plots	the	density	
plots	 of	 the	 x	 and	 y	 axis	 values,	 respectively	 are	 shown.	 Successful	 TLS	 development:	 Suc;	 unsuccessful	 TLS	
development:	Unsuc.	Sample	sizes	A:	Unsuccessful	–	n	=	183,	Successful	–	n	=	128.	Sample	sizes	B:	Multiple	-	n	
=136;	Single	–	n	=	256.		

(C):	 072h-[Radial	 Distribution	 of	 CV]-TmCH(BF)	 visualization.	 Ellipses	 approximate	 the	 shape	 of	 structures	 with	
average	major	 and	minor	 axes	 of	 the	 respective	morphotypes.	 Inner	 concentric	 ellipses	 represent	 the	 radial	
segments	in	which	the	normalized	intensity	fraction	is	visualized	by	color.	Distribution	difference	visualization:	
inner	concentric	ellipses	represent	the	radial	segments	in	which	the	difference	between	morphotypes	is	visualized	
by	diverging	colors.	Sample	sizes:	Unsuccessful	–	n	=	183,	Successful	–	n	=	129,	Multiple	-	n	=136;	Single	–	n	=	257		

(D):	Individual	feature	plots,	plotted	for	all	combinations	of	morphotypes.	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001,	****	
p	<	0.0001.	[feature]-TmCH(BF):	z-scores	of	values	plotted	to	take	into	account	plate	to	plate	variation	(see	methods).	
Sample	sizes:	Multiple-Unsuccessful	–	n	=	55;	Multiple-Successful	–	n	=	34;	Single-Unsuccessful	–	n	=	128;	Single-
Successful	–	n	=95.		

(E)	Dot	Plot	showing	expression	of	top	25	somitic	(top)	and	neural	(bottom)	markers	in	all	120h	clusters.	These	
markers	were	used	to	calculate	somite	and	neural	module	scores	respectively		

(F,G)	Plot	showing	all	features	significantly	(Padj	<	0.05)	correlated	with	120h	somite	(F)	or	neural	(G)	module	
score.	Dot	indicates	correlation	with	bars	representing	Confidence	Interval.	Dot	size	scales	with	-log10(Padj).		

(H)	Dim	Plots	showing	distribution	of	120h	sequenced	cells	per	96h	[Intensity]-TmCH	quartile	(left)	or	[Fraction]-
TmCH	quartile	(right).	All	cells	are	shown	in	gray.	Contours	show	relative	frequency	of	data.		

(I)	Classifier	balanced	accuracy	scores	shown	developmental	outcome	prediction	using	several	feature	sets.	All	
Features:	complete	feature	set;	Corr.	Sel.	Features:	features	significantly	correlating	with	somitic	or	neural	module	
scores.	72h,	96h,	72h	&	96h	indicates	from	which	timepoint	features	are	included	in	the	set.	

(J)	 Classifier	 balanced	 accuracy	 scores	 for	 axis	 number	 prediction	 using	 several	 feature	 sets.	 All	 Features	 All	
Timepoints:	complete	feature	set;	PLSR	Selected	Features:	all	features	that	were	outside	of	the	90th	percentile	of	
loading	weights,	 the	 corresponding	 96h	 feature	 sets	 are	 identical	 but	 all	 non-96h	 features	 are	 removed	 (see	
methods	for	details	on	all	feature	sets).		
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Figure S6 
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Figure	S6.	Identification	of	biological	processes	underlying	phenotypic	variation		

(A,B)	 Cumulative	 bar	 plot	 showing	 the	 fraction	 of	 cells	 in	 each	 state	 for	 [Fraction]-TmCH	 quartiles	 (A)	 and	
[Fraction]-TmCH	quartiles	(B)	at	96h.	*	p<0.05,	**	p<0.01,	***	p<0.001	(ANOVA	with	BH	FDR	correction).		

(C)	Raincloud	plots	showing	distribution	of	glycolysis	module	score	in	indicated	cell	clusters.		

(D,E)	 Raincloud	 plots	 showing	 glycolysis	 module	 score	 (magenta)	 and	 OxPhos	 module	 score	 (green)	 per	
[Fraction]-TmCH	quartile	(D)	or	[Intensity]-TmCH	quartile	(E)	at	96h.		*	padj<0.05,	**	padj<0.01,	***	padj<0.001.	

(F)	Dot	plot	showing	average	expression	of	indicated	genes	encoding	glycolytic	pathway	genes	per	[Intensity]-
TmCH	quartile	at	96h	in	NMPs.		

(G,G’)	Scatter	plot	showing	correlation	of	expression	of	indicated	genes	and	glycolysis	module	score	at	96h	in	all	
cells	(top)	or	NMPs	(bottom).	Black	dots	are	individual	samples.	Grey	area	indicates	95%	CI.	

(H)	Scatter	plot	showing	correlation	of	T	expression	and	[Intensity]-TmCH	quartile	at	72h.		Black	dots	are	individual	
samples.		

(I)	Scatter	plot	showing	correlation	of	T	expression	and	[Intensity]-TmCH	quartile	at	72h.	 	Black	dots	represent	
individual	samples.		

(J)	Raincloud	plots	showing	glycolysis	module	score	(magenta)	and	OxPhos	module	score	(green)	per	[Intensity]-
TmCH	quartile	at	72h.		
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Figure S7	
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Figure	S7.	Identification	and	modulation	of	biological	processes	associated	with	divergent	differentiation	
outcomes	

(A)	Schematic	representation	of	glucose	metabolism	pathways.	The	metabolic	flux	of	glucose	can	be	modulated	
using	different	inhibitors.	Inhibitors	in	red	designed	to	alter	OXPHOS-glycolysis	balance	(see	text).		

(B,C)	Representative	3D	maximum	intensity	projections	(3D-MIPs)	of	DAPI	images	obtained	by	confocal	imaging	
of	120h	TLSs	treated	with	rotenone	(B)	or	2-DG	(C)	during	indicated	time	intervals,	and	their	respective	controls.	
Scale	bars,	100	µm.		

(D,E)	Example	of	threshold	used	to	establish	the	masks	to	quantify	TmCH+	and	Sox2VE+	intensity	(D)	and	(overlap)	
volumes	(E)	(See	Methods).		Scale	bars,	100	µm.		

(F)	Quantifications	of	Somite	Count	(n=20	TLSs	per	condition),	TmCH+	and	Sox2VE+	Volume	Fraction	of	120h	TLSs	
treated	with	Rotenone	10nM	(72h-96h,	n=69;	96h-120h,	n=53)	or	20nM	(72h-96h,	n=46;		96-120h,	n=55),	and	
their	respective	controls	(Control	for	10nM,	n=59,	Control	for	20nM,	n=63).	*,	p<0.05,	**,	p<0.01,	***,	p<0.001,	****,	
p<0.0001	.	

(G)	Representative	3D-MIPs	of	confocal	imaging	of	96h	gastruloids	treated	with	10nM	and	20nM	Rotenone	and	
their	respective	controls.	Scale	bars,	100	µm.		

(H)	Quantification	of	the	Total	Volume	and	TmCH+	and	Sox2VE+	Overlap	Volume	Fraction	of	96h	structures	treated	
with	10nM	(n=	12)	and	20nM	(n=14)	Rotenone	 from	72-96h,	and	their	respective	control	(n=8).	*,	p<0.05,	**,	
p<0.01,	***,	p<0.001,	****,	p<0.0001	.	

(I)	Representative	3D-MIPs	of	120h	TLSs	treated	with	2-DG	during	indicated	time	intervals,	and	controls.		Area	
indicated	by	white	dashed	is	shown	in	close-ups	to	highlight	somite	morphology	and	architecture	under	different	
2-DG	treatments.	Scale	bars,	100µm.		

(J)	Quantifications	of	Somite	count	(n=20	per	condition)	and	Major	(AP,	Anterior-Posterior)	axis	length	of	120h	
TLSs	treated	with	2-DG	2mM	(72h-96h,	n=100;	96h-120h,	n=105)	or	5mM	(72h-96h,	n=100;		96-120h,	n=965),	
compared	to	control	(n=220).	*,	p<0.05,	**,	p<0.01,	***,	p<0.001,	****,	p<0.0001.	

	

	

	

	

	

	

	

	

	

	

	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

56	
	

SUPPLEMENTARY	TABLES	

Supplementary	Table	1.	PLSR	Loadings	and	Feature	Correlation	Matrix	

PLSR	 Loadings	 (All	 Timepoints):	 Feature	 loadings	 of	 PLSR	 latent	 variables	 (Fig.	 3A,	 B).	 Features	
shown	are	in	the	top	95th	percentile	or	bottom	5th	percentile	of	loadings	for	either	the	developmental	
outcome	PLSR	latent	variables	or	axis	number	PLSR	latent	variables.	Loadings	colored	by	a	diverging	
colormap	to	aid	in	interpretability.	PLSR	Loadings	(Early	Timepoints):	Feature	loadings	of	PLSR	latent	
variables	for	PLSR	analysis	performed	using	only	early	features	(48h	and	72h	-	Fig.	S5A,	B).	Features	
shown	are	in	the	top	95th	percentile	or	bottom	5th	percentile	of	loadings	for	either	the	developmental	
outcome	PLSR	latent	variables	or	axis	number	PLSR	latent	variables	using	only	early	features.	Loadings	
colored	by	a	diverging	colormap	to	aid	in	interpretability.	Correlation	Matrix:	Correlation	Matrix	of	all	
features	shown	in	Tab:	PLSR	Loadings	(All	Timepoints).	Correlation	displayed	is	Pearssons	correlation.	
All	correlation	values	colored	by	a	diverging	colormap	to	aid	in	interpretability.		

Supplementary	Table	2.	List	of	Antibodies	used	in	this	study	

Primary	antibody	

Antibody	 Host	species	 Dilution	 Lot	number	 Catalog	number	 Company	

GFP	 chicken	 1:250	 1018753-1	 ab13970	 Abcam	

mCherry	 rabbit	 1:250	 -	 ab167453	 Abcam	

mCherry	 goat	 1:250	 1919-051222	 NBP3-05558-50ul	 NOVUS	

		
Secondary	antibody/Conjugated	dyes	

Antibody	 Wavelength	 Dilution	 Lot	number	 Catalog	number	 Company	
DAPI	 405	 1:20000	 28718-90-3	 10236276001	 Merck	Roche	

Donkey-
anti-chicken	

Alexa	488	 1:250	 162189	 703-545-155	 BIOZOL	

Donkey-
anti-goat	

Alexa	546	 1:500	 A11056	 2306813	 TFS	

Donkey-
anti-rabbit	

Alexa	568	 1:500	 2540901	 A10042	 TFS	

Phalloidin	 647	 1:250	 2431325	 A22287	 Invitrogen	

Phalloidin	 647+	 1:250	 2585754	 A30107	 TFS	
	

Supplementary	Table	3.	List	of	MULTI-seq	oligonucleotide	sequences	and	corresponding	sample	
IDs	
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SUPPLEMENTAL	NOTE	1	

Feature	descriptions	

To	 gain	 some	 intuition	 into	 what	 the	 features	 used	 during	 the	 analysis	 of	 wide-field	 microscopy	
describe,	we	have	compiled	some	short	descriptions	(Table		SN1,2)	and	selected	visualizations	(Figure	
SN1).	 In	 Tab.	 1	 short	 descriptions	 of	 shape-based	 features	 are	 shown,	 whereas	 Tab.	 2	 contains	
descriptions	of	intensity-based	features.	

Table	SN1.	Shape	Feature	Description:	Short	descriptions	of	shape	features.	

Name	 Description	
Area	 Sum	of	all	pixels	inside	of	the	mask	multiplied	by	the	area	of	one	

pixel.	
[Area	Fraction]-TmCH	 Fraction	of	the	TmCH	domain	occupying	the	complete	structure	

(Figure	SN1E)	
Aspect	Ratio	 Ratio	between	major	and	minor	axis	lengths	(Figure	SN1A):	

𝑚𝑖𝑛𝑜𝑟	𝑎𝑥𝑖𝑠	𝑙𝑒𝑛𝑔𝑡ℎ
𝑚𝑎𝑗𝑜𝑟	𝑎𝑥𝑖𝑠	𝑙𝑒𝑛𝑔𝑡ℎ

	

Axis	Major	Length	 Length	of	an	ellipse	fit	to	the	mask	(Figure	SN1A)	
Axis	Minor	Length	 Width	of	an	ellipse	fit	to	the	mask	(Figure	SN1A)	
Compactness	 	“The	mean	squared	distance	of	the	object’s	pixels	from	the	

centroid	divided	by	the	area.	A	filled	circle	will	have	a	
compactness	of	1,	with	irregular	objects	or	objects	with	holes	
having	a	value	greater	than	1”	(1,2)	

Eccentricity	 Eccentricity	of	the	fit	to	the	mask:	ratio	of	the	focal	distance	
(distance	between	focal	points)	over	the	major	axis	length	(3,4).	
When	assuming	the	value	0	the	ellipse	is	a	circle	and	for	elongated	
ellipses	it	assumes	values	>	0.	

Equivalent	Diameter	 The	diameter	of	a	circle	with	the	equivalent	area	of	the	
mask/object	

Extent	 Ratio	between	area	and	the	area	of	the	bounding	box	(a	square	

region	encapsulating	the	mask/object):	 𝑎𝑟𝑒𝑎𝑚𝑎𝑠𝑘
𝑎𝑟𝑒𝑎𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑏𝑜𝑥	

Feret	Diameter	Max	 The	longest	distance	between	points	that	are	located	on	the	
contour	of	the	convex	hull	(convex	hull	is	the	minimal	object	
surrounding	the	shape	without	concaves,	Figure	SN1B)	

Form	Factor	 Measure	of	shape	complexity/circularity,	taking	perimeter	
(Figure	SN1E)	of	the	equivalent	circle	and	perimeter	of	the	object	

into	account:	𝑓𝑜𝑟𝑚	𝑓𝑎𝑐𝑡𝑜𝑟	 = 	 $%&'(%)%&
2

4*∗,&%,
	

Inertia	Tensor	 Covariance	of	the	mask	image	intensity	(1	inside	mask	and	0	
outside	of	mask)	with	the	image	axes.	Tensor	0	0:	y-axis,	Tensor	0	
1	and	1	0:	xy-axis,	Tensor	1	1:	x-axis.	(5)	
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Inertia	Tensor	Eigvalues	 Eigenvalues	of	the	inertia	tensor.	Describe	the	ratio	of	major	
(eigenvalues	0)	and	minor	axis	(eigenvalues	1)	to	each	other	(3,4)	

LoCo	EFA	Coeff	(Lobe	
Contribution	Elliptic	
Fourier	Analysis	
Coefficient)	

Specialised	Elliptic	Fourier	Descriptor	Coefficients.	Ascending	
coefficient	numbers	describe	finer	shape	details.	In	contrast	to	
regular	elliptic	Fourier	analysis	a	high	contribution	of	the	nth	
coefficient	correlates	with	the	number	of	lobes	a	structure	has.	(6)	
(Figure	SN1D)	

Moments	Hu	 A	collection	of	scale,	rotation	and	translation	invariant	central	
moments.	Central	moments	are	calculated	as	follows:	

𝑐𝑒𝑛𝑡𝑟𝑎𝑙	𝑚𝑜𝑚𝑒𝑛𝑡(𝑖, 𝑗) 	= ?
-,/

(𝑥 − 𝑥)' ∗ (𝑦 − 𝑦)0	

	with	𝑥, 𝑦	representing	all	pixel	values	in	the	mask	and	𝑥, 𝑦	
representing	the	mean	x	and	y	values	of	the	mask.	

Orientation	 Angle	between	major	axis	and	y-axis	of	the	image	
Perimeter	 Length	of	the	contour	of	the	mask	(Figure	SN1E)	
Solidity	 Measure	of	shape	complexity	(See	Feret	diameter	and	Figure	

SN1B):	 𝑎𝑟𝑒𝑎𝑚𝑎𝑠𝑘
𝑎𝑟𝑒𝑎𝑐𝑜𝑛𝑣𝑒𝑥	ℎ𝑢𝑙𝑙	

str	Shape	Feature	 Features	with	the	str	prefix	are	measured	for	masks	which	have	
been	straightened	prior	to	measurement	using	the	MOrgAna	
library	(7).	This	avoids	variance	in	measurements	caused	by	the	
degree	of	curling	of	some	structures	(Figure	SN1C).	

[Shape	Feature]-BF	 Shape	features	with	the	-BF	suffix	have	been	measured	in	the	
mask	region	(Figure	SN1E)	

[Shape	Feature]-TmCH	 Shape	features	with	the	-TmCH	suffix	have	been	measured	in	the	
TmCH	domain	(Figure	SN1E)	

 	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569921doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

59	
	

	
Figure	SN1.	Visualization	of	Selected	Features:	A:	Visualization	of	major	and	minor	axis	lengths.	
Aspect	ratio	is	the	ratio	of	both.	B:	Convex	hull	of	a	mask.	C:	Image	straightening	implemented	in	
MOrgAna	shown	for	an	example	mask.	D:	Shape	of	an	object	reconstructed	using	the	first	n	LOCO-
EFA	coefficients.	Modified	from	(7)	under	a	Creative	Commons	3.0	license.	E:	Visualization	of	BF	
and	 TmCH	 domains,	 as	 well	 as	 the	 perimeter	 of	 the	 BF-domain.	 F:	 Visualization	 of	 the	 radial	
distribution	features.	G:	Visualization	of	major	and	minor	axis	polarization	metric.		

	

Table	SN2.	Intensity	Feature	Description:	Short	descriptions	of	intensity	features.		

Name	 Description	
Integrated	Intensity	 Sum	over	all	intensity	values	of	all	pixels	within	the	

mask/domain	
Lower	Quartile	Intensity	 Intensity	value	of	the	25th	percentile	
MAD	Intensity	 Median	Absolute	Deviation	calculated	inside	of	the	

mask/domain,	i.e.	the	average	difference	between	all	pixels	
and	the	Median	Intensity	

Mass	Displacement	 Distance	between	mask/domain	centroid	and	weighted	
centroid	(weighted	by	intensity	value)	inside	of	the	
mask/domain	(1,2)	

Max	Intensity	 Maximum	intensity	value	of	all	pixels	within	the	
mask/domain	

Mean	Intensity	 Mean	intensity	value	of	all	pixels	within	the	mask/domain	

Median	Intensity	 Median	intensity	value	of	all	pixels	within	the	mask/domain	

Min	Intensity	 Minimum	intensity	value	of	all	pixels	within	the	
mask/domain	
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Std	Intensity	 Standard	Deviation	of	all	pixel	intensity	values	within	the	
mask/domain	

Upper	Quartile	Intensity	 Intensity	of	the	75th	percentile	
Radial	Distribution	Sum	Nof9	 Fraction	of	the	summed	intensity	in	the	region	Nof9	(Figure	

SN1F)	to	the	integrated	intensity	of	the	whole	
mask/domain.	

Radial	Distribution	Mean	Nof9	 Radial	Distribution	Sum	normalised	by	the	area	of	the	
region	Nof9	(Figure	SN1F)	

Radial	Distribution	Radial	CV	
Nof9	

Coefficient	of	variation	calculated	inside	region	Nof9	
(Figure	SN1F)	

Major	Axis	Polarisation	 Distance	along	the	major	axis	between	the	centroid	of	the	
mask	and	the	weighted	centroid	of	the	region	of	highest	
intensity	(values	>=	95th	percentile	intensity)	(Figure	
SN1G)	

Minor	Axis	Polarisation	 Distance	along	the	minor	axis	between	the	centroid	of	the	
mask	and	the	weighted	centroid	of	the	region	of	highest	
intensity	(Figure	SN1G)	

Intensity	Feature	Edge	 Intensity	Feature	measured	for	pixels	belonging	to	the	
contour	of	the	mask/object	

[Intensity	Feature]-TmCH(BF)	 Intensity	Feature	measured	on	all	pixels	within	the	structure	
boundary	(Figure	SN1E)	

[Intensity	Feature]-TmCH(mCH)	 Intensity	Feature	measured	on	all	pixels	within	the	TmCH	
domain	boundary	(Figure	SN1E)	

	

SUPPLEMENTAL	NOTE	2	

In	our	SPCA	analysis	using	shape-based,	PC3	and	PC4	do	not	separate	timepoints,	yet	the	96h	structures	
seem	to	have	a	high	variance	for	these	components	(Figure	S2A).	The	loadings	for	these	components	
are	dominated	by	inertia	tensors,	hu	moments,	solidity,	extent	and	orientation	(Figure	S2D).	Especially	
in	PC4	we	observed	almost	exclusively	contributions	from	inertia	tensors	and	orientation.	Since	inertia	
tensors	 can	 be	 rotation	 invariant	 and	 share	 high	 loadings	 with	 orientation,	 this	 suggests	 that	 this	
component	is	capturing	arbitrary	variation,	possibly	due	to	distinct	positioning	under	the	microscope.	
PC3	on	the	other	hand	has	high	contributions	of	Hu	moments,	extent	and	solidity,	variation	in	which	
increases	upon	the	emergence	of	more	complex	shapes	(Figure	S2C,E).	

In	 our	 SPCA	 analysis	 using	 TmCH	 features,	 PC1	 separated	 72h	 and	 96h	 samples	 from	 48h	 samples	
assuming	values	between	the	two	timepoints	with	very	 little	variation	inside	the	48h	group	(Figure	
S2B).	 The	 loading	 for	 this	 component	 is	 clearly	 governed	 by	 radial	 distribution	 features	 (Radial	
Distribution	Mean	and	Sum,	which	highly	correlate	with	each	other	(Figure	S2F,G)).	When	inspecting	
[Radial	Distribution	Mean	9of9]-TmCH(BF)	more	closely	(Figure	S2H)	we	observed	that	an	initially	mostly	
uniform	distribution	of	intensity	at	early	time-points	becomes	more	polarized	towards	the	over	time.	It	
is	possible	that	the	high	loading	weight	of	[Radial	Distribution	Mean	7of9]-	TmCH(BF)	causes	the	peculiar	
separation	of	timepoints	as	for	this	region	values	in	48h	and	96h	samples	are	more	similar	than	in	72h	
and	96h	samples	(Figure	S2H).		
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