

1	
2	Fractionation of stable carbon isotopes during formate consumption in
3	anoxic rice paddy soils and lake sediments
4	
5 6	Ralf Conrad ¹ , Peter Claus ¹
7 8 9	¹ Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
10 11	Correspondence to: Ralf Conrad (<u>Conrad@mpi-marburg.mpg.de</u>)
12	
13	Running head: Isotope fractionation by anaerobic formate consumption
14 15	

16 Abstract.

17	Formate is energetically equivalent to hydrogen and thus, is an important intermediate during
18	the breakdown of organic matter in anoxic rice paddy soils and lake sediments. Formate is a
19	common substrate for methanogenesis, homoacetogenesis and sulfate reduction. However,
20	how much these processes contribute to formate degradation and fractionate carbon stable
21	isotopes is largely unknown. Therefore, we measured the conversion of formate to acetate,
22	CH_4 and CO_2 and the $\delta^{13}C$ of these compounds in samples of paddy soils from Vercelli
23	(Italy) and the International Rice Research Institute (IRRI, the Philippines) and of sediments
24	from the NE and SW basins of Lake Fuchskuhle (Germany). The samples were suspended in
25	phosphate buffer (pH 7.0) both in the absence and presence of sulfate (gypsum) and of
26	methyl fluoride (CH3F), an inhibitor of aceticlastic methanogenesis. In the paddy soils,
27	formate was mainly converted to acetate both under methanogenic and sulfidogenic
28	conditions. Methane was only a minor product and was mainly formed from the acetate. In
29	the lake sediments, the product spectrum was similar, but only under methanogenic
30	conditions. In the presence of sulfate, however, acetate and CH4 were only minor products.
31	The isotopic enrichment factors (ε_{form}) of formate consumption, determined by Mariotti plots,
32	were in the low range of -8‰ to -2.5‰ when sulfate was absent and formate was mainly
33	converted to acetate and CH4. However, no enrichment factor was detectable when formate
34	was degraded with sulfate to mainly CO ₂ . The δ^{13} C of acetate was by about 25-50‰ more
35	negative than that of formate indicating acetate production by chemolithotrophic
36	homoacetogenesis. Hence, formate seems to be an excellent substrate for homoacetogenesis
37	in anoxic soils and sediments, so that this process is competing well with methanogenesis and
38	sulfate reduction.

39

40 **1 Introduction**

41 Formate is energetically almost equivalent to H₂ (Schink et al. 2017) and thus, is an 42 important intermediate in the anaerobic degradation of organic matter. Formate is a product 43 of microbial fermentation, where it is for example produced in pyruvate cleavage by pyruvate 44 formate lyase (Thauer et al., 1977) or by reduction of CO₂ (Schuchmann and Müller, 2013). 45 Formate can also be produced in secondary fermentation, such as oxidation of butyrate or propionate (Dong et al., 1994; Sieber et al., 2014). In fact, formate and H₂ may equivalently 46 47 be used as electron shuttles between secondary fermenting bacteria and methanogens 48 (Montag and Schink, 2018; Schink et al., 2017) 49 Formate can serve alternatively to H₂ as a substrate for methanogenesis (Zinder, 1993), 50 (homo)acetogenesis (Drake, 1994) or sulfate reduction (Widdel, 1988), i.e.: 51 4 HCOOH \rightarrow CH₄ + 3 CO₂ + 2 H₂O (1) $4 \text{ HCOOH} \rightarrow \text{CH}_3\text{COOH} + 2 \text{ CO}_2 + 2 \text{ H}_2\text{O}$ 52 (2)

2

53	$4 \text{ HCOOH} + \text{SO}_4^{2-} + \text{H}^+ \rightarrow \text{HS}^- + 4 \text{ CO}_2 + 4 \text{ H}_2\text{O} $ (3)
54	Formate may also be a substrate for syntrophic bacteria, which live from the little Gibbs free
55	energy ($\Delta G^{0'}$ = -3.4 kJ mol ⁻¹) that is generated by the conversion of formate to H ₂ plus CO ₂
56	(Dolfing et al., 2008; Kim et al., 2010; Martins et al., 2015), i.e.
57	HCOOH \rightarrow CO ₂ + H ₂ (4)
58	Formate can also be enzymatically equilibrated with H ₂ and CO ₂ without energy generation.
59	This reaction happens in any organism possessing the suitable enzymes, such as formate
60	hydrogen lyase or hydrogen-dependent carbon dioxide reductase, and in anoxic sediments
61	(DeGraaf and Cappenberg, 1996; Peters et al., 1999; Schuchmann et al., 2018):
62	$HCOOH \leftrightarrow CO_2 + H_2 \tag{5}$
63	Formate has been identified as an important substrate for methanogenesis,
64	homoacetogenesis or sulfate reduction in lake sediments (DeGraaf and Cappenberg, 1996;
65	Lovley and Klug, 1982; Phelps and Zeikus, 1985), soils (Kotsyurbenko et al., 1996; Küsel
66	and Drake, 1999; Rothfuss and Conrad, 1993), mires (Hausmann et al., 2016; Hunger et al.,
67	2011; Liebner et al., 2012; Wüst et al., 2009) and marine sediments (Glombitza et al., 2015).
68	However, it is not very clear to which extent formate-dependent methanogenesis,
69	homoacetogenesis and sulfate reduction are actually operative and to which extent formate
70	affects stable carbon isotope fractionation. The δ^{13} C values of compounds involved in the
71	degradation process of organic matter provide valuable information on the metabolic
72	pathways involved (Conrad, 2005; Elsner et al., 2005; Hayes, 1993). However, for correct
73	interpretation the knowledge of the enrichment factors (ε) of the major metabolic processes is
74	also important. The ε values of methanogenesis or homoacetogenesis from H ₂ plus CO ₂ are
75	large (Blaser and Conrad, 2016). However, our knowledge of carbon isotope fractionation
76	with formate as substrate is scarce. In cultures of homoacetogenic bacteria the carbon in the
77	acetate produced from formate was strongly depleted in ${}^{13}C$ ($\varepsilon = -56.5\%$) almost similarly as
78	with CO ₂ as carbon source (Freude and Blaser, 2016). However, it is not known which
79	enrichment factors operate in methanogenic or sulfidogenic environmental samples.
80	Therefore, we measured isotope fractionation in methanogenic and sulfidogenic rice paddy
81	soils and lake sediments amended with formate. We recorded the consumption of formate
82	along with the production of acetate, CH ₄ and CO ₂ and measured the δ^{13} C of these
83	compounds. We also used the treatment with methyl fluoride (CH ₃ F) to inhibit the
84	consumption of acetate by methanogenic archaea (Janssen and Frenzel, 1997). We used the
85	same environmental samples as for the study of carbon isotope fractionation during
86	consumption of acetate (Conrad et al., 2021) and propionate (Conrad and Claus, 2023), i.e.,
87	rice paddy soils from Vercelli, Italy and the International Rice Research Institute (IRRI, the
88	Philippines) and sediments from the NE and SW basins of Lake Fuchskuhle (Germany). The
89	molecular data characterizing the microbial community compositions in these samples are
90	found in Conrad et al. (2021).

91

92 2 Materials and Methods

- 93 2.1 Environmental samples and incubation conditions
- The soil samples were from the research stations in Vercelli, Italy and the International Rice research Institute (IRRI) in the Philippines. Sampling and soil characteristics were described before (Liu et al., 2018). The lake sediments (top 10 cm layer) were from the NE and SW basins of Lake Fuchskuhle (Casper et al., 2003). They were sampled in July 2016
- 98 using a gravity core sampler as described before (Kanaparthi et al., 2013).

The experimental setup was exactly the same as during previous studies of acetate
consumption (Conrad et al., 2021) and propionate consumption (Conrad and Claus, 2023).
For methanogenic conditions, paddy soil was mixed with autoclaved anoxic H₂O (prepared

- 102 under N₂) at a ratio of 1:1 and incubated under N₂ at 25°C for 4 weeks. In a second
- 103 incubation, for sulfidogenic conditions, paddy soil was mixed with autoclaved anoxic H₂O at
- 104 a ratio of 1:1, was amended with 0.07 g CaSO₄.2H₂O, and then incubated under N_2 at 25°C
- 105 for 4 weeks. These two preincubated soil slurries were sampled and stored at -20°C for later
- 106 molecular analysis (see data in Conrad et al. (2021)). The preincubated soil slurries were also
- 107 used (in 3 replicates) for the following incubation experiments. Two different sets of
- 108 incubations were prepared. In the first set (resulting in methanogenic conditions), 5 mL soil
- 109 slurry preincubated without sulfate was incubated at 25°C with 40 mL of 20 mM potassium
- 110 phosphate buffer (pH 7.0) in a 150-mL bottle under an atmosphere of N_2 . The bottles were
- 111 the amended with (i) 5 mL H₂O; (ii) 5 mL H₂O + 4.5 mL CH₃F; (iii) 5 mL 200 mM sodium
- formate; (iv) 5 mL 200 mM sodium formate + 4.5 mL CH₃F. In the second set (resulting in
 sulfidogenic conditions), 5 mL soil slurry preincubated with sulfate was incubated at 25°C
- 114 with 40 mL of 20 mM potassium phosphate buffer (pH 7.0) in a 150-mL bottle under an
- atmosphere of N_2 . The amendments were the same as above, but with the addition of 200 μ l
- 116 of a CaSO₄ suspension corresponding to a concentration of 2.5 M (giving a final
- 117 concentration of 10 mM sulfate).

For lake sediments under methanogenic conditions, 5 ml sediment was incubated in 3 replicates at 10°C (which is close to the in-situ temperature) with 40 ml of 20 mM potassium phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N₂. The bottles were the amended with (i) 5 ml H₂O; (ii) 5 ml H₂O + 4.5 ml CH₃F; (iii) 5 ml 200 mM sodium formate; (iv) 5 ml 200 mM sodium formate + 4.5 ml CH₃F. For sulfidogenic conditions, lake sediments were preincubated with sulfate by adding 0.1 g CaSO₄.2H₂O (gypsum) to 50 ml sediment and incubating at 10°C for 4 weeks. For sulfidogenic conditions, 5 ml of the

- 125 preincubated sediment was incubated in 3 replicates at 10°C with 40 ml of 20 mM potassium
- 126 phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N_2 . The bottles were
- 127 amended as above, but in addition also with 200 μ l of a CaSO₄ suspension giving a final
- 128 concentration of 10 mM sulfate. Samples for later molecular analysis were taken from the

- 129 original lake sediment and from the lake sediment preincubated with sulfate. The samples
- were stored at -20°C (see data in Conrad et al. (2021)). 130
- 131
- 132 2.2 Chemical and isotopic analyses
- 133 Gas samples for analysis of partial pressures of CH₄ and CO₂ were taken from the 134 headspace of the incubation bottles after vigorous manual shaking for about 30 s using a gas-135 tight pressure-lock syringe, which had been flushed with N₂ before each sampling. Soil slurries were sampled, centrifuged and filtered through a 0.2 µm cellulose membrane filter 136 137 and stored frozen at -20°C for later fatty acid analysis. Chemical and isotopic analyses were 138 performed as described in detail previously (Goevert and Conrad, 2009). Methane was 139 analyzed by gas chromatography (GC) with flame ionization detector. Carbon dioxide was analyzed after conversion to CH₄ with a Ni catalyst. Stable isotope analyses of ${}^{13}C/{}^{12}C$ in gas 140 141 samples were performed using GC-combustion isotope ratio mass spectrometry (GC-C-142 IRMS). Formate and acetate were measured using high-performance liquid chromatography 143 (HPLC) linked via a Finnigan LC IsoLink to an IRMS. The isotopic values are reported in the 144 delta notation (δ^{13} C) relative to the Vienna Peedee Belemnite standard having a ${}^{13}C/{}^{12}$ C ratio 145 (R_{standard}) of 0.01118: δ^{13} C = 10³ (R_{sample}/R_{standard} - 1). The precision of the GC-C-IRMS was 146 \pm 0.2‰, that of the HPLC-IRMS was \pm 0.3‰.
- 147
- 148 2.3 Calculations

149 Millimolar concentrations of CH₄ were calculated from the mixing ratios (1 ppmv = 10^{-6} 150 bar) measured in the gas phase of the incubation bottles: 1000 ppmv CH₄ correspond to 0.09 151 μ mol per mL of liquid. Note, that this is the total amount of CH₄ in the gas phase relative to 152 the liquid phase.

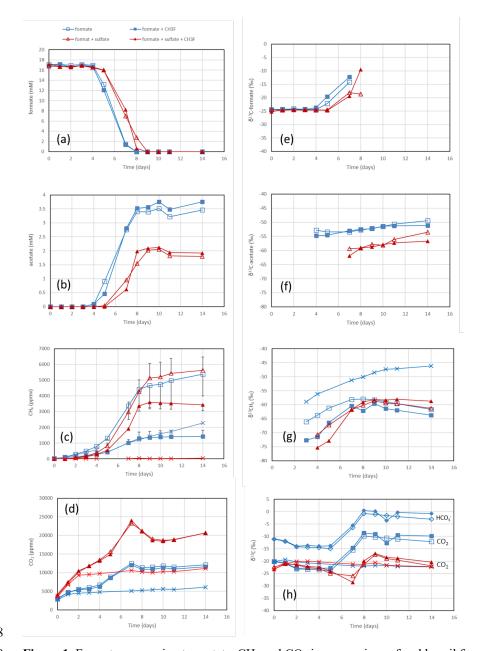
153 Fractionation factors for reaction A \rightarrow B are defined after Hayes (Hayes, 1993) as:

154
$$\alpha_{A/B} = (\delta_A + 1000)/(\delta_B + 1000)$$

155 also expressed as $\varepsilon \equiv 1000 (1 - \alpha)$ in permil. The carbon isotope enrichment factor $\varepsilon_{\text{form}}$

associated with formate consumption was calculated from the temporal change of $\delta^{13}C$ of 156

```
157
       formate as described by Mariotti et al. (Mariotti et al., 1981) from the residual reactant
                                                                                    (8)
```


```
158
                                \delta_{\rm r} = \delta_{\rm ri} + \varepsilon \left[ \ln(1 - f) \right]
```

- 159 where δ_{ri} is the isotopic composition of the reactant (formate) at the beginning, and δ_r is the
- isotopic composition of the residual formate, both at the instant when f is determined. f_{form} is 160
- 161 the fractional yield of the products based on the consumption of formate $(0 < f_{form} < 1)$.
- Linear regression of δ^{13} C of formate against ln(1 f) yields $\varepsilon_{\text{form}}$ as the slope of best fit lines. 162
- The regressions of δ^{13} C of formate were done for data in the range of $f_{\text{form}} < 0.7$. The linear 163
- regressions were done individually for each experimental replicate (n = 3) and were only 164
- accepted if $r^2 > 0.7$. The ε values resulting from the replicate experiments were then averaged 165
- (± SE). 166
- 167

(7)

169 Figure 1. Formate conversion to acetate, CH4 and CO2 in suspensions of paddy soil from 170 Vercelli (Italy) after addition of formate without sulfate (blue squares) or formate plus sulfate

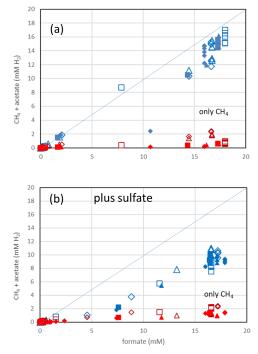
171 (gypsum) (red triangles) without CH₃F (open symbols) or with CH₃F (closed symbols).

172 Controls with addition of only water (blue or red X crosses) are only shown occasionally. The

173 panels show the temporal change of (a) concentrations of formate, (b) concentrations of

acetate, (c) mixing ratios of CH₄ (1 ppmv = 10⁻⁶ bar), (d) mixing ratios of CO₂, (e) δ^{13} C of formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH₄, and (h) δ^{13} C of CO₂. Means ± SE. 174

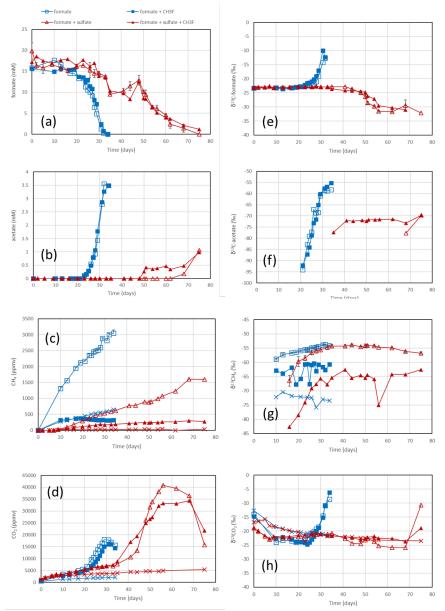
¹⁷⁵


176 3 Results

177	3.1 Conversion of formate under methanogenic and sulfidogenic conditions
178	The rice paddy soils were submerged and preincubated to create methanogenic or
179	sulfidogenic conditions. Samples of these soils were suspended in buffer at pH 7 and
180	amended with formate. In the Vercelli soil, formate was consumed after a lag phase of 4 days
181	under methanogenic and 5 days under sulfidogenic conditions (Fig. 1a). During this time the
182	pH increased from pH 7 up to pH 8 despite buffering. Formate consumption was not inhibited
183	by CH ₃ F (Fig. 1a). Similar results were obtained with IRRI soil (Fig. S1). Acetate was
184	produced concomitantly with formate consumption, again without effect by CH ₃ F (Fig. 1b).
185	The production of acetate under sulfidogenic conditions was smaller than under
186	methanogenic conditions. Methane was also produced under both methanogenic and
187	sulfidogenic conditions concomitantly with formate consumption (Fig. 1c; S1c). It is
188	noteworthy that CH ₃ F inhibited the production of CH ₄ (Fig. 1c; S1c). Finally, CO ₂ was
189	produced under all conditions without lag phase and without effect by CH ₃ F (Fig. 1c). In
190	Vercelli soil, CO ₂ production was about twice under sulfidogenic than under methanogenic
191	conditions (Fig. 1c). In IRRI soil, it was only slightly larger (Fig. S1c). The accumulation of
192	acetate plus CH4 was equimolar to the consumption of formate in terms of electron
193	equivalents, while the accumulation of CH4 alone accounted only for <30%, in the presence
194	of CH ₃ F even less (Fig. 2a; S2a). Hence, acetate was the more important product of formate
195	consumption. Under sulfidogenic conditions, accumulation of acetate plus CH4 was less than
196	equimolar, especially in Vercelli soil (Fig. 2b), probably since formate was instead converted
197	to CO ₂ . However, acetate formation was still substantial accounting for 60-80% of formate
198	consumption (Fig. 2b; S2b).
199	The sediments from Lake Fuchskuhle were methanogenic in-situ so that preincubation of
200	the samples was not required. However, sulfidogenic conditions were created analogously to
201	the paddy soils by preincubtion with sulfate (gypsum). Substantial formate depletion did not
202	start before about 20 days of incubation both in sediments from the NE basin (Fig. 3) and the
203	SW basin (Fig. S3). Again, CH ₃ F only inhibited the production of CH ₄ but not that of acetate
204	or CO ₂ (Fig. 3; S3). The main difference to the paddy soils was that CH ₄ was not produced
205	concomitantly with formate consumption, but started right from the beginning. However, the
206	amounts of CH ₄ produced were only small and were apparently due to the little formate that
207	was consumed in the beginning of incubation (i.e., before day 20), as seen by the fact that
208	CH ₄ production in the water control (not amended with formate) was negligible (Fig. 3c;
209	S3c). Production of CO ₂ started without lag phase but accelerated together with formate
210	consumption (Fig. 3d; S3d). In the lake sediments, CH_4 accounted only for <10% of formate
211	consumption, while acetate was the main product when sulfate was absent (Fig. 4a, S4a). In
212	contrast to the paddy soils, formate consumption in both lake sediments was much slower
213	under sulfidogenic than under methanogenic conditions (Fig. 3a; S3a). In the sediment from

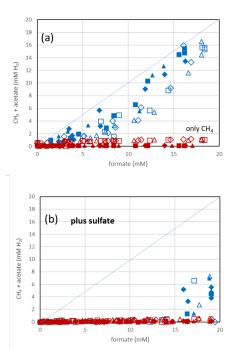
- 214 SW basin, formate consumption was very slow so that less than half of the formate was
- 215 consumed during 80 days of incubation and consumption was not completed until the end of
- the experiment (Fig. S3a). Very little acetate was produced and no CH₄ was formed from 216
- 217 formate in both lake sediments, when sulfate was present (Fig. 4b, S4b).

218 219

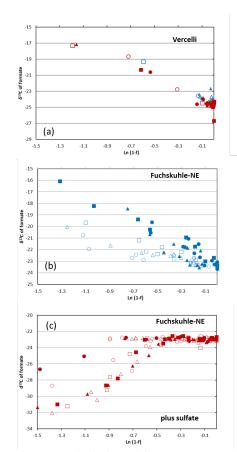

Figure 2. Balance of produced acetate plus CH_4 (blue symbols) and of only CH_4 (red 220 symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in 221 paddy soil from Vercelli (Italy). The open and closed symbols denote conditions in the 222 absence and the presence of CH₃F, respectively. The different symbols indicate three 223 different replicates. The line indicate equimolarity (in terms of reducing equivalents between 224 substrate and product.

225 3.2 Isotope fractionation during formate consumption

In the rice paddy soils values of δ^{13} C increased when formate was being consumed 226 227 indicating discrimination against the heavy carbon isotope. This process was not affected by 228 CH₃F and was similar without and with sulfate (Fig. 1e; S1e). The same was the case with the 229 sediment from the NE lake basin, but only in the absence of sulfate (Fig. 3e). With sulfate, the δ^{13} C of formate slowly decreased with time (Fig. 3e). In the sediment from the SW basin, 230 δ^{13} C of formate slowly decreased (without sulfate) or stayed constant with time (with sulfate) 231 232 (Fig. S3e). Note that formate was not completely consumed in the SW sediment when sulfate 233 was present (Fig. S3a). 234

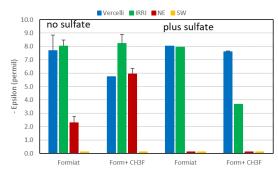


235 236 Figure 3. Formate conversion to acetate, CH₄ and CO₂ in suspensions of sediment from the 237 NE basin of Lake Fuchskuhle after addition of formate without sulfate (blue squares) or 238 formate plus sulfate (gypsum) (red triangles) without CH₃F (open symbols) or with CH₃F 239 (closed symbols). Controls with addition of only water (blue or red X crosses) are only shown 240 occasionally. The panels show the temporal change of (a) concentrations of formate, (b) concentrations of acetate, (c) mixing ratios of CH₄ (1 ppmv = 10^{-6} bar), (d) mixing ratios of CO₂, (e) δ^{13} C of formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH₄, and (h) δ^{13} C of CO₂. Means ± 241 242 243 SE.


244 245 Figure 4. Balance of produced acetate plus CH4 (blue symbols) and of only CH4 (red 246 symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in sediment from the NE basin of Lake Fuchskuhle. The open and closed symbols denote 247 248 conditions in the absence and the presence of CH₃F, respectively. The different symbols 249 indicate three different replicates. The line indicate equimolarity (in terms of reducing 250 equivalents between substrate and product.

Mariotti plots of δ^{13} C of formate as function of f_{form} resulted in negative slopes (Fig. 4; 251 252 S5). Hence, the enrichment factors (ε_{form}) for the paddy soils, both without and with sulfate, 253 and for the sediments from the NE basin of Lake Fuchskuhle without sulfate showed that the 254 light isotope of formate carbon was preferred. Values of ε_{form} were in the range of -8.5 to -255 2.5‰ (Fig. 6). Under sulfidogenic conditions, however, the Mariotti plots of the sediments 256 from the NE basin (Fig. 5) did not show a negative slope and ε_{form} could not be determined. The same was the case for the sediments from the SW basin (Fig. 6). 257

258 The negative $\varepsilon_{\rm form}$ indicates that products of formate should be depleted in ¹³C. Indeed the δ^{13} C of acetate and CH₄ were generally more negative than the δ^{13} C of formate. This was the 259 case in the paddy soils from Vercelli (Fig. 1f) and the IRRI (Fig. S1f) as well as in the 260 sediments from the NE basin (Fig. 3f) and the SW basin (Fig. S3f) of Lake Fuchskuhle. In the 261 262 sediment of the NE basin, the δ^{13} C of acetate increased from very low -95‰ to finally about -263 57‰ in parallel with formate consumption (Fig. 3f). CO₂ was also produced during formate 264 degradation to various extent (equ.1, 2 and 3). Since the pH was in a range of pH 7 to pH 8, CO_2 was also converted to bicarbonate. The $\delta^{13}C$ of bicarbonate is generally by about 10% 265

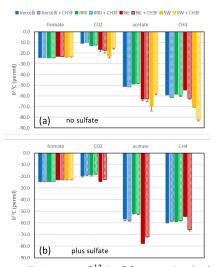


266 267

Figure 5. Mariotti plots of formate consumption in (a) paddy soil from Vercelli and (b, c)

268 sediment from the NE basin of Lake Fuchskuhle under methanogenic (blue symbols) and 269 sulfidogenic (red symbols) conditions both in the absence (open symbols) and in the presence 270 (closed symbols) of CH₃F. The different symbols indicate three different replicates.

271



275

276	more positive than the δ^{13} C of CO ₂ (Stumm and Morgan, 1996). The δ^{13} C of the gaseous CO ₂
277	was always close to the δ^{13} C of formate or was more positive. In the paddy soils and the NE
278	basin of Lake Fuchskuhle, the $\delta^{13}C$ of CO ₂ increased in parallel with the increasing $\delta^{13}C$ of
279	formate (Fig. 1h, 3h; S1h). The δ^{13} C of the gaseous CO ₂ produced from the formate-amended
280	samples was initially more negative than that from the unamended samples, but eventually
281	the δ^{13} C increased above these values when formate was completely consumed (Fig. 1h, 3h;
282	S3h).
283	The δ^{13} C values of the initial formate were about -24‰ (Fig. 5). When formate was
284	completely consumed, the $\delta^{13}C$ values of the products acetate and CH_4 were always more
285	negative. The average $\delta^{13}C$ values of the products after complete consumption of formate are
286	shown in Fig. 7. In the absence of sulfate, $\delta^{13}C$ of acetate was in a range of -51‰ to -49‰
287	and -70‰ to -63‰, in the paddy soils and lake sediments, respectively (Fig. 7). In the
288	presence of sulfate, $\delta^{13}C$ of acetate was in a range of -57‰ to -52‰ and -78‰ to -72‰, in
289	the paddy soils and lake sediments (only NE basin), respectively (Fig. 7). The $\delta^{13}C$ of CH ₄
290	was in a range of -70‰ to -54‰ and -60‰ to -54‰, in the absence and presence of sulfate,
291	respectively (Fig. 7). The δ^{13} C of gaseous CO ₂ (for bicarbonate plus 10‰) was in a range of -
292	23‰ to -11‰ and -24‰ to -19‰, in the absence and presence of sulfate, respectively (Fig.
293	7).

294

295 296 Figure 7. Average $\delta^{13}C$ of formate (at the beginning of incubation) and of CO₂, acetate and

297 CH4 (after the depletion of formate) in soils or sediments from Vercelli (blue), the IRRI

298 (green), the NE basin (red) and the SW basin (yellow) in the absence (filled bars) and the

299 presence (dotted bars) of CH_3F . Means \pm SE.

300	
301	4 Discussion
302	4.1 Formate degradation under acetogenic/methanogenic conditions
303	In rice paddy soils formate was consumed within <10 days. The absence of sulfate did not
304	allow sulfidogenic (equ.3) degradation, but allowed the operation of methanogenic (equ.1),
305	homoacetogenic (equ.2) or syntrophic (equ.4) degradation. Syntrophic degradation is still
306	disputed, since many microorganisms are able to enzymatically equilibrate H ₂ and formate
307	and thus prohibit generation of energy (Montag and Schink, 2018; Schink et al., 2017).
308	Syntrophic formate degradation generates only a few kilojoules of Gibbs free energy per
309	mole and requires the coupling with methanogenesis or other efficient hydrogen (electron)
310	scavengers. Although formate-driven CH4 production was observed in our study, the
311	production was sensitive to inhibition by CH ₃ F indicating that CH ₄ was predominantly
312	produced from acetate rather than from H ₂ . Therefore, syntrophic formate oxidation coupled
313	to CH ₄ production was probably not a major pathway.
314	Acetate was the most important product of formate degradation in the paddy soils as well
315	as in the lake sediments. Methane also was a product, but was much less important than
316	acetate. Furthermore, it was predominantly produced from acetate as shown by the inhibition
317	by CH ₃ F and the concomitant decrease of δ^{13} C of CH ₄ , which is characteristic for
318	hydrogenotrophic methanogesis that is not inhibited by CH ₃ F (Conrad et al., 2010). Hence,
319	formate was apparently primarily degraded by homoacetogenesis (equ.1). Only part of the
320	produced acetate was immediately used by aceticlastic methanogenesis generating CH4 as
321	secondary product. Although formate is a perfect substrate for homoacetogenic bacteria
322	operating the Wood-Ljungdahl pathway (WLP) (Drake, 1994), the yield of Gibbs free energy
323	per mole formate is less for homoacetogenic than for methanogenic degradation (Dolfing et
324	al., 2008). Thus, it is surprising that formate-driven homoacetogenesis prevailed over
325	methanogenesis. Nevertheless, simultaneous operation of homoacetogenesis and
326	methanogenesis from formate has been observed before in a fen soil (Hunger et al., 2011).
327	Homoacetogenesis prevailing over methanogenesis has also frequently been observed with
328	H ₂ /CO ₂ as substrate (Conrad et al., 1989; Nozhevnikova et al., 1994), indicating that
329	homoacetogens can take particular advantage from low temperatures (Conrad, 2023) or the
330	availability of secondary substrates (Peters et al., 1998).
331	The δ^{13} C of the produced acetate was by about 24-33‰ lower than that of formate. This
332	isotopic discrimination between formate and acetate is similar to that measured in a culture of
333	the homoacetogen Thermoanaerobacter kivui (Freude and Blaser, 2016). However, this
334	discrimination is much larger than the isotopic enrichment factors ($\varepsilon_{\text{form}}$ of -8‰ to -2.5‰)
335	determined from the change of $\delta^{13}C$ during formate consumption. There are two conceivable
336	explanations for this observation. (1) Formate is disproportionated to CO ₂ and acetate. In the
337	WLP three formate are oxidized to CO ₂ , one formate is reduced to the methyl group of

338	acetate and one of the produced CO2 is reduced to the carboxyl group of acetate. The
339	disproportionation of formate to acetate and 2 CO ₂ is possibly a branch point (Fry, 2003;
340	Hayes, 2001), at which the carbon flow is split into the production of 13 C-enriched CO ₂ and
341	¹³ C-depleted acetate, which together result in the $\varepsilon_{\text{form}}$ observed. (2) Formate first is
342	completely converted to CO_2 plus H_2 (equ.5) or other electron equivalents This reaction
343	displays the ε_{form} determined by the Mariotti plots. Acetate is then produced via the WLP by
344	the chemolithotrophic reduction of 2 CO ₂ to acetate, of which the isotopic enrichment factor
345	is typically on the order of about -55% (Blaser and Conrad, 2016). In any case, it is plausible
346	to assume that acetate was formed via the WLP. In the WLP, oxidation of formate is
347	catalyzed by a formate dehydrogenase, which provides CO2 to the carboxyl branch of the
348	WLP. The methyl branch of the WLP normally starts with formate being converted to
349	formyl-THF. However, it can also start with the reduction of CO ₂ to formate with a
350	hydrogen-dependent carbon dioxide reductase (HDCD). Homoacetogens (e.g., Acetobacter
351	woodii, T. kivui) contain such a HDCD, which allows the interconversion of formate and H ₂
352	plus CO ₂ (Jain et al., 2020; Schuchmann et al., 2018). The isotope discrimination in our
353	experiments indicates that the CO ₂ produced from formate has been enriched in ¹³ C rather
354	than depleted, thus supporting the first explanation. The δ^{13} C of CO ₂ produced from formate
355	was initially lower than that of the unamended soil or sediment being on the order of -20‰ to
356	-10‰ (Fig. 1h, 3h, S1h, S3h). Eventually, however, $\delta^{13}C$ of CO ₂ reached values of -25‰ to -
357	10‰ (Fig. 7). The δ^{13} C of bicarbonate is 10‰ more positive than that of CO ₂ . This mixed
358	inorganic carbon would be the CO ₂ substrate for WLP, which together with formate generates
359	the acetate having a δ^{13} C of about -70‰ to -50‰ (Fig. 7).
360	Methane was a minor product of formate degradation in all soils and sediments. Since CH4
361	formation was strongly inhibited by CH ₃ F, it was most likely produced from acetate by
362	aceticlastic methanogens. Since CH4 production from the soils or sediments was much lower
363	without formate amendment, the CH4 must have primarily been produced from the acetate
364	that was generated from formate. The $\delta^{13}C$ of CH ₄ in the soil incubations was more negative
365	than that of acetate (Fig. 7). The difference between the $\delta^{13}C$ of CH ₄ and the $\delta^{13}C$ of acetate
366	indicated an isotopic enrichment factor of $\varepsilon_{ac-CH4} = -10\%$ to -8‰, which is close to the
367	enrichment factor of aceticlastic Methanosaeta (Methanothrix) concilii (Penning et al., 2006).
368	In the lake sediments, the $\delta^{13}C$ of CH ₄ and acetate were not much different indicating that
369	acetate was instantaneously consumed by methanogens as it was produced by homoacetogens
370	so that carbon isotopes were not discriminated. Both, paddy soils and lake sediments
371	contained mcrA genes (coding for a subunit of methyl CoM reductase) of Methanosaetaceae
372	(Methanotrichaceae) (Conrad et al., 2021).
373	

374 4.2 Formate degradation under sulfidogenic conditions

375	In the rice paddy soils, formate was consumed within ten days when sulfate was present,
376	not quite as fast as without sulfate. In the lake sediments, however, sulfidogenic formate
377	consumption was much slower. Formate degradation by sulfate reduction normally results in
378	complete oxidation to CO ₂ (equ.3). In the lake sediments, CO ₂ was indeed the main
379	degradation product. However, in the paddy soils substantial amounts of acetate and even
380	CH4 were also produced. The homoacetogenic bacteria in these soils apparently competed
381	well with the sulfate reducing bacteria, although the soils had been adapted by preincubation
382	in the presence of sulfate. The production of acetate and CH4 was dependent on formate
383	degradation, since no production was observed in the unamended control. Production of CH ₄
384	was inhibited by CH ₃ F indicating that aceticlastic methanogenesis was the main process of
385	CH4 production. The carbon isotope fractionation of formate was similar as under non-
386	sulfidogenic conditions, exhibiting a small ε_{form} of -8‰ to -3.5‰ (Fig. 5) and displaying a
387	strong isotope effect with the formation of acetate ($\delta^{13}C = -5752\%$) and CH_4 ($\delta^{13}C = -60$
388	58‰). The mechanism of fractionation is probably the same (see above).
389	In the lake sediments, however, sulfidogenic degradation of formate was much slower
390	than methanogenic/acetogenic degradation. In the sediment of the SW basin, formate was not
391	even completely degraded within 80 days. In the sediments of both lake basins, neither
392	acetate nor CH4 was a major product of sulfidogenic formate degradation. Hence, formate
393	was apparently degraded according to equ.3 forming CO2 as main carbon product. This
394	formation process displayed no depletion of the heavy carbon isotope, as the Mariotti plots of
395	$\delta^{13}C$ of formate did not exhibit a negative slope. The $\delta^{13}C$ of the CO_2 slowly decreased with
396	increasing fraction of formate consumed (Fig. 3h; 5c), probably involving isotope exchange
397	between formate and CO ₂ (DeGraaf and Cappenberg, 1996). The little acetate, which was
398	formed, displayed a δ^{13} C of -77‰ (Fig. 7b) indicating that it was produced by a similar
399	mechanism as in the absence of sulfate, presumably via the WLP.
400	The strong differences between rice paddy soils and lake sediments were possibly caused
401	by their different microbial communities (Conrad et al., 2021). The differences were seen in
402	the composition of the mcrA and dsrB genes coding for methyl CoM reductase and
403	dissimilatory sulfate reductase, respectively, as well as the gene coding for the 16S rRNA.
404	The composition of these genes was similar whether the soils and sediments were amended
405	with sulfate or not. However, they were strongly different between soils and sediments
406	(Conrad et al., 2021). Unfortunately, these data do not allow to discriminate for particular
407	taxa of homoacetogenic bacteria. Nevertheless, it is possible that formate-consuming
408	homoacetogens were more prevalent in the soils than in the sediments and accordingly
409	competed more or less with the formate-consuming sulfate reducers.
410	

411 4.3 Conclusions

412	Formate was found to be an excellent substrate for acetate formation in the paddy soils as
413	well as in the lake sediments, confirming and extending similar observations in a fen soil
414	(Hunger et al., 2011). In the anoxic soils, acetate was the major product even in the presence
415	of sulfate, which would have allowed sulfate reduction. The acetate was strongly depleted in
416	¹³ C relative to formate, but the consumption of formate itself displayed only a small isotopic
417	enrichment factor. Therefore, it is likely that formate was disproportionated to ¹³ C-depleted
418	acetate and ¹³ C-enriched CO ₂ . The δ^{13} C of CO ₂ was indeed slightly higher than that of
419	formate. Acetate was most likely produced by homoacetogenesis via the WLP. The produced
420	acetate was then used by aceticlastic methanogens (probably by Methanothrix), but only to
421	minor extent, resulting in further depletion of ¹³ C. The homoacetogenic bacteria in the paddy
422	soils apparently competed well with both methanogenic and sulfate-reducing
423	microorganisms, when formate was the substrate. The preference of homoacetogenesis as
424	degradation pathway is unexpected, since other substrates, such as acetate and propionate, are
425	in these paddy soils degraded by methanogenesis or sulfate reduction (Conrad et al., 2021)
426	(Conrad and Claus, 2023). Only in the lake sediments, formate oxidation by sulfate reduction
427	was more prevalent than homoacetogenesis.
428	
429	Supplement link
430	
431	Author contribution: RC designed the experiments, evaluated the data and wrote the
432	manuscript. PC conducted the experiments.
433	
434	Conflicting interests: The contact authors has declared that neither of the authors has any
435	competing interests.
436	
437	Financial Support
438	This research has been supported by the Fonds der Chemischen Industrie (grant no. 163468).
439	
440	

440 441

442	References
443	
444	Blaser, M. and Conrad, R.: Stable carbon isotope fractionation as tracer of carbon
445	cycling in anoxic soil ecosystems, Curr. Opinion Biotechnol., 41, 122-129,
446	2016.
447	Casper, P., Chan, O. C., Furtado, A. L. S., and Adams, D. D.: Methane in an
448	acidic bog lake: The influence of peat in the catchment on the biogeochemistry
449	of methane, Aquat. Sci., 65, 36-46, 2003.
450	Conrad, R.: Quantification of methanogenic pathways using stable carbon
451	isotopic signatures: a review and a proposal, Org. Geochem., 36, 739-752,
452	2005.
453	Conrad, R.: Complexity of temperature dependence in methanogenic microbial
454	environments, Front. Microbiol., 14, 1232946-
455	doi:10.3389/fmicb.2023.1232946, 2023.
456	Conrad, R., Bak, F., Seitz, H. J., Thebrath, B., Mayer, H. P., and Schütz, H.:
457	Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic
458	methanogenic bacteria in anoxic paddy soil and lake sediment, FEMS
459	Microbiol. Ecol., 62, 285-294, 1989.
460	Conrad, R. and Claus, P.: Fractionation of stable carbon isotopes during microbial
461	propionate consumption in anoxic rice paddy soils, Biogeosciences, 20, 3625-
462	3635, 2023.
463	Conrad, R., Klose, M., Claus, P., and Enrich-Prast, A.: Methanogenic pathway,
464	¹³ C isotope fractionation, and archaeal community composition in the sediment
465	of two clearwater lakes of Amazonia, Limnol. Oceanogr., 55, 689-702, 2010.
466	Conrad, R., Liu, P., and Claus, P.: Fractionation of stable carbon isotopes during
467	acetate consumption by methanogenic and sulfidogenic microbial communities
468	in rice paddy soils and lake sediments, Biogeosciences, 18, 6533-6546, 2021.
469	DeGraaf, W. and Cappenberg, T. E.: Evidence for isotopic exchange during
470	metabolism of stable- isotope-labeled formate in a methanogenic sediment,
471	Appl. Environ. Microbiol., 62, 3535-3537, 1996.
472	Dolfing, J., Jiang, B., Henstra, A. M., Stams, A. J. M., and Plugge, C. M.:
473	Syntrophic growth on formate: a new microbial niche in anoxic environments,
474	Appl. Environ. Microbiol., 74, 6126-6131, 2008.
475	Dong, X. Z., Plugge, C. M., and Stams, A. J. M.: Anaerobic degradation of
476	propionate by a mesophilic acetogenic bacterium in coculture and triculture
477	with different methanogens, Appl. Environ. Microbiol., 60, 2834-2838, 1994.
478	Drake, H. L.: Acetogenesis, acetogenic bacteria, and the acetyl-CoA
479	"Wood/Ljungdahl" pathway: past and current perspectives, in: Acetogenesis,
480	edited by: Drake, H. L., Chapman & Hall, New York, 3-60, 1994.
481	Elsner, M., Zwank, L., Hunkeler, D., and Schwarzenbach, R. P.: A new concept
482	linking observable stable isotope fractionation to transformation pathways of
483	organic pollutants [review], Environ. Sci. Technol., 39, 6896-6916, 2005.
484	Freude, C. and Blaser, M.: Carbon sotope fractionation during catabolism and
485	anabolism in acetogenic bacteria growing on different substrates, Appl.
486	Environ. Microbiol., 82, 2728-2737, 2016.
487	Glombitza, C., Jaussi, M., Roy, H., Seidenkrantz, M. S., Lomstein, B. A., and
488	Joergensen, B. B.: Formate, acetate, and propionate as substrates for sulfate
489	reduction in sub-arctic sediments of Southwest Greenland, Frontiers
490	Microbiol., 6, 846-doi: 10.3389/fmicb.2015.00846, 2015.

491	Goevert, D. and Conrad, R.: Effect of substrate concentration on carbon isotope
492	fractionation during acetoclastic methanogenesis by Methanosarcina barkeri
493	and <i>M. acetivorans</i> and in rice field soil, Appl. Environ. Microbiol., 75, 2605-
494	2612, 2009.
495	Hausmann, B., Knorr, K. H., Schreck, K., Tringe, S. G., DelRio, T. G., Loy, A.,
496	and Pester, M.: Consortia of low-abundance bacteria drive sulfate reduction-
497	dependent degradation of fermentation products in peat soil microcosms,
498	ISME J., 10, 2365-2375, 2016.
499	Hayes, J. M.: Factors controlling ¹³ C contents of sedimentary organic
500	compounds: principles and evidence, Mar. Geol., 113, 111-125, 1993.
501	Hunger, S., Schmidt, O., Hilgarth, M., Horn, M. A., Kolb, S., Conrad, R., and
502	Drake, H. L.: Competing formate- and carbon dioxide-utilizing prokaryotes in
503	an anoxic methane-emitting fen soil, Appl. Environ. Microbiol., 77, 3773-
504	3785, 2011.
505	Jain, S., Dietrich, H. M., Müller, V., and Basen, M.: Formate is required for
506	growth of the thermophilic acetogenic bacterium Thermoanaerobacter kivui
507	lacking hydrogen-dependent carbon dioxide reductase (HDCR), Frontiers
508	Microbiol., 11, 59-doi: 10.3389/fmicb.2020.00059, 2020.
509	Janssen, P. H. and Frenzel, P.: Inhibition of methanogenesis by methyl fluoride -
510	studies of pure and defined mixed cultures of anaerobic bacteria and archaea,
511	Appl. Environ. Microbiol., 63, 4552-4557, 1997.
512	Kanaparthi, D., Pommerenke, B., Casper, P., and Dumont, M. G.:
513	Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial
514	subdivision lineage TM3, ISME J., 7, 1582-1594, 2013.
515	Kim, Y. J., Lee, H. S., Kim, E. S., Bae, S. S., Lim, J. K., Matsumi, R.,
516	Lebedinsky, A. V., Sokolova, T. G., Kozhevnikova, D. A., Cha, S. S., Kim, S.
517	J., Kwon, K. K., Imanaka, T., Atomi, H., Bonch-Osmolovskaya, E. A., Lee, J.
518	H., and Kang, S. G.: Formate-driven growth coupled with H2 production,
519	Nature, 467, 352-U137, 2010.
520	Kotsyurbenko, O. R., Nozhevnikova, A. N., Soloviova, T. I., and Zavarzin, G. A.:
521	Methanogenesis at low temperatures by microflora of tundra wetland soil, Ant.
522	Leeuwenhoek, 69, 75-86, 1996.
523	Küsel, K. and Drake, H. L.: Microbial turnover of low molecular weight organic
524	acids during leaf litter decomposition, Soil Biol. Biochem., 31, 107-118, 1999.
525	Liebner, S., Schwarzenbach, S. P., and Zeyer, J.: Methane emissions from an
526	alpine fen in central Switzerland, Biogeochem., 109, 287-299, 2012.
527	Liu, P. F., Klose, M., and Conrad, R.: Temperature effects on structure and
528	function of the methanogenic microbial communities in two paddy soils and
529	one desert soil, Soil Biol. Biochem., 124, 236-244, 2018.
530	Lovley, D. R. and Klug, M. J.: Intermediary metabolism of organic matter in the
531	sediments of a eutrophic lake, Appl. Environ. Microbiol., 43, 552-560, 1982.
532	Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and
533	Tardieux, P.: Experimental determination of nitrogen kinetic isotope
534	fractionation: some principles; illustration for the denitrification and
535	nitrification processes, Plant and Soil, 62, 413-430, 1981.
536	Martins, M., Mourato, C., and Pereira, I. A.: Desulfovibrio vulgaris growth
537	coupled to formate-driven H2 production, Environ. Sci. Technol., 49, 14655-
538	14662, 2015.

539	Montag, D. and Schink, B.: Formate and hydrogen as electron shuttles in terminal
540	fermentations in an oligotrophic freshwater lake sediment, Appl. Environ.
541	Microbiol., 84, e01572-18-https://doi.org/10.1128/AEM .01572-18, 2018.
542	Nozhevnikova, A. N., Kotsyurbenko, O. R. and Simankova, M. V.: Acetogenesis
543	at low temperature, in: Acetogenesis, edited by: Drake, H. L., Chapman &
544	Hall, New York, 416-431, 1994.
545	Penning, H., Claus, P., Casper, P., and Conrad, R.: Carbon isotope fractionation
546	during acetoclastic methanogenesis by Methanosaeta concilii in culture and a
547	lake sediment, Appl. Environ. Microbiol., 72, 5648-5652, 2006.
548	Peters, V., Janssen, P. H., and Conrad, R.: Efficiency of hydrogen utilization
549	during unitrophic and mixotrophic growth of Acetobacterium woodii on
550	hydrogen and lactate in the chemostat, FEMS Microbiol. Ecol., 26, 317-324,
551	1998.
552	Peters, V., Janssen, P. H., and Conrad, R.: Transient production of formate during
553	chemolithotrophic growth of anaerobic microorganisms on hydrogen, Curr.
554	Microbiol., 38, 285-289, 1999.
555	Phelps, T. J. and Zeikus, J. G.: Effect of fall turnover on terminal carbon
556	metabolism in Lake Mendota sediments, Appl. Environ. Microbiol., 50, 1285-
557	1291, 1985.
558	Rothfuss, F. and Conrad, R.: Vertical profiles of CH ₄ concentrations, dissolved
559	substrates and processes involved in CH4 production in a flooded Italian rice
560	field, Biogeochem., 18, 137-152, 1993.
561	Schink, B., Montag, D., Keller, A., and Müller, N.: Hydrogen or formate:
562	Alternative key players in methanogenic degradation [review], Environ.
563	Microbiol. Reports, 9, 189-202, 2017.
564	Schuchmann, K., Chowdhury, N. P., and Müller, V.: Complex multimeric [FeFe]
565	hydrogenases: biochemistry, physiology and new opportunities for the
566	hydrogen economy [review], Frontiers Microbiol., 9, 2911-doi:
567	10.3389/fmicb.2018.02911, 2018.
568	Schuchmann, K. and Müller, V.: Direct and reversible hydrogenation of CO2 to
569	formate by a bacterial carbon dioxide reductase, Science, 342, 1382-1385,
570	2013.
571	Sieber, J. R., Le, H. M., and McInerney, M. J.: The importance of hydrogen and
572	formate transfer for syntrophic fatty, aromatic and alicyclic metabolism,
573	Environ. Microbiol., 16, 177-188, 2014.
574	Stumm, W. and Morgan, J. J.: Aquatic Chemistry, 3. ed. Wiley, New York, 1996.
575	Thauer, R. K., Jungermann, K., and Decker, K.: Energy conservation in
576	chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100-180, 1977.
577	Widdel, F.: Microbiology and ecology of sulfate- and sulfur-reducing bacteria, in:
578	Biology of Anaerobic Microorganisms, edited by: Zehnder, A. J. B., Wiley,
579	New York, 469-585, 1988.
580	Wüst, P. K., Horn, M. A., and Drake, H. L.: Trophic links between fermenters
581	and methanogens in a moderately acidic fen soil, Environ. Microbiol., 11,
582	1395-1409, 2009.
583	Zinder, S. H.: Physiological ecology of methanogens, in: Methanogenesis.
584	Ecology, Physiology, Biochemistry and Genetics, edited by: Ferry, J. G.,
585	Chapman & Hall, New York, 128-206, 1993.

- 586
- 587

588	Figure legends
589	
590	Figure 1. Formate conversion to acetate, CH ₄ and CO ₂ in suspensions of paddy soil from
591	Vercelli (Italy) after addition of formate without sulfate (blue squares) or formate plus sulfate
592	(gypsum) (red triangles) without CH ₃ F (open symbols) or with CH ₃ F (closed symbols).
593	Controls with addition of only water (blue or red X crosses) are only shown occasionally. The
594	panels show the temporal change of (a) concentrations of formate, (b) concentrations of
595	acetate, (c) mixing ratios of CH ₄ (1 ppmv = 10^{-6} bar), (d) mixing ratios of CO ₂ , (e) δ^{13} C of
596	formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH ₄ , and (h) δ^{13} C of CO ₂ . Means ± SE.
597	Figure 2. Balance of produced acetate plus CH4 (blue symbols) and of only CH4 (red
598	symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in
599	paddy soil from Vercelli (Italy). The open and closed symbols denote conditions in the
600	absence and the presence of CH ₃ F, respectively. The different symbols indicate three
601	different replicates. The line indicate equimolarity (in terms of reducing equivalents between
602	substrate and product.
603	Figure 3. Formate conversion to acetate, CH ₄ and CO ₂ in suspensions of sediment from the
604	NE basin of Lake Fuchskuhle after addition of formate without sulfate (blue squares) or
605	formate plus sulfate (gypsum) (red triangles) without CH ₃ F (open symbols) or with CH ₃ F
606	(closed symbols). Controls with addition of only water (blue or red X crosses) are only shown
607	occasionally. The panels show the temporal change of (a) concentrations of formate, (b)
608	concentrations of acetate, (c) mixing ratios of CH ₄ (1 ppmv = 10^{-6} bar), (d) mixing ratios of
609	CO ₂ , (e) δ^{13} C of formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH ₄ , and (h) δ^{13} C of CO ₂ . Means ±
610	SE.
611	Figure 4 Delence of graduard acetate glue CIL (blue avgulate) and of agiv CIL (red
612	Figure 4. Balance of produced acetate plus CH ₄ (blue symbols) and of only CH ₄ (red symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in
613	sediment from the NE basin of Lake Fuchskuhle. The open and closed symbols denote
614	conditions in the absence and the presence of CH_3F , respectively. The different symbols
615	indicate three different replicates. The line indicate equimolarity (in terms of reducing
616	equivalents between substrate and product.
617	Figure 5. Mariotti plots of formate consumption in (a) paddy soil from Vercelli and (b, c)
618	sediment from the NE basin of Lake Fuchskuhle under methanogenic (blue symbols) and
619	sulfidogenic (red symbols) conditions both in the absence (open symbols) and in the presence
620	(closed symbols) of CH ₃ F. The different symbols indicate three different replicates.
621	Figure 6. Isotopic enrichment factors (ε_{form} , given as negative values) in paddy soils without
(22	

 $622 \qquad \text{and with addition of sulfate (gypsum) and CH_3F. Means} \pm SE.$

 623 624 625 626 627 628 	Figure 7. Average δ^{13} C of formate (at the beginning of incubation) and of CO ₂ , acetate and CH ₄ (after the depletion of formate) in soils or sediments from Vercelli (blue), the IRRI (green), the NE basin (red) and the SW basin (yellow) in the absence (filled bars) and the presence (dotted bars) of CH ₃ F. Means ± SE.
629	Legends of the supplemental figures
630 631 632 633 634 635 636 637	Fig. S1: Formate conversion to acetate, CH ₄ and CO ₂ in suspensions of paddy soil from the International Rice Research Institute (IRRI) after addition of formate without sulfate (blue squares) or formate plus sulfate (gypsum) (red triangles) without CH ₃ F (open symbols) or with CH ₃ F (closed symbols). Controls with addition of only water (blue or red X crosses) are only shown occasionally. The panels show the temporal change of (a) concentrations of formate, (b) concentrations of acetate, (c) mixing ratios of CH ₄ (1 ppmv = 10^{-6} bar), (d) mixing ratios of CO ₂ , (e) δ^{13} C of formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH ₄ , and (h) δ^{13} C of CO ₂ . Means ± SE.
638 639 640 641 642 643	Fig. S2: Balance of produced acetate plus CH ₄ (blue symbols) and of only CH ₄ (red symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in paddy soil from the IRRI. The open and closed symbols denote conditions in the absence and the presence of CH ₃ F, respectively. The different symbols indicate three different replicates. The line indicate equimolarity (in terms of reducing equivalents between substrate and product.
644 645 646 647 648 649 650 651	Fig. S3: Formate conversion to acetate, CH_4 and CO_2 in suspensions of sediment from the SW basin of Lake Fuchskuhle after addition of formate without sulfate (blue squares) or formate plus sulfate (gypsum) (red triangles) without CH_3F (open symbols) or with CH_3F (closed symbols). Controls with addition of only water (blue or red X crosses) are only shown occasionally. The panels show the temporal change of (a) concentrations of formate, (b) concentrations of acetate, (c) mixing ratios of CH_4 (1 ppmv = 10 ⁻⁶ bar), (d) mixing ratios of CO_2 , (e) $\delta^{13}C$ of formate, (f) $\delta^{13}C$ of acetate, (g) $\delta^{13}C$ of CH_4 , and (h) $\delta^{13}C$ of CO_2 . Means \pm SE.
652 653 654 655 656 657	Fig. S4: Balance of produced acetate plus CH ₄ (blue symbols) and of only CH ₄ (red symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in sediment from the SW basin of Lake Fuchskuhle. The open and closed symbols denote conditions in the absence and the presence of CH ₃ F, respectively. The different symbols indicate three different replicates. The line indicate equimolarity (in terms of reducing equivalents between substrate and product.

658	Fig. S5: Mariotti plots of formate consumption in (a) paddy soil from the IRRI and (b, c)
659	sediment from the SW basin of Lake Fuchskuhle under methanogenic (blue symbols)
660	and sulfidogenic (red symbols) conditions both in the absence (open symbols) and in the
661	presence (closed symbols) of CH ₃ F. The different symbols indicate three different
662	replicates.