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In this paper, we show that three different generalized similarities enclose all unitary

and anti-unitary symmetries that induce exceptional points in lower-dimensional non-

Hermitian systems. We prove that the generalized similarity conditions result in a

larger class of systems than any class defined by a unitary or anti-unitary symme-

try. Further we highlight that the similarities enforce spectral symmetry on the

Hamiltonian resulting in a reduction of the codimension of exceptional points. As a

consequence we show that the similarities drive the emergence of exceptional points in

lower dimensions without the more restrictive need for a unitary and/or anti-unitary

symmetry.
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I. INTRODUCTION

In recent years non-Hermitian (NH) Hamiltonians have attracted increasing attention,

and one active branch of research focusses on the role of symmetries in NH systems.1 A

complete classification in terms of 38 symmetry classes was derived by Kawabata et al,2

and the topological features of these classes as well as the connection between some of

them is studied in the literature.2,3 Further it is generally recognized that certain unitary

and anti-unitary symmetries lower the codimension of exceptional points (EPs), which are

degeneracies where the eigenvalues and the corresponding eigenvectors coalesce.2,4–7 The

generic appearance of EPns, where n is the order of the EP set by the number of coalescing

eigenvectors, is determined by the codimension of the EP. As such unitary and anti-unitary

symmetries, which are local in parameter space—namely, parity-time (PT ) and particle-

hole (CP) symmetry, pseudo-Hermitian symmetry, as well as sublattice symmetry, chiral

symmetry and pseudo-chiral symmetry8—inflict symmetries on the spectrum, and therefore

reduce the codimension of the EPs.8–12 The (anti-)unitary symmetries can be grouped into

three pairs based on the type of constraint they enforce on the set of eigenenergies.8,13

In this work, we show that the spectral symmetries already come about in the presence

of similarity relations and not just in the presence of more restrictive symmetries. These

similarity relations, namely pseudo Hermiticity, chirality and skew self-similarity, naturally

pair the anti-unitary and unitary symmetries, cf. Fig. 1, and enforce the spectral symmetry.

The symmetries appear as special cases of these three EP-inducing generalized similarities.

The relation of PT symmetry and pseudo Hermiticity, which denotes the similarity of H

and its adjoint H†, is well established. Quantum mechanics formulated on the basis of PT -

symmetric operators was investigated by Bender et al.,14–16 and has been related to pseudo-

Hermitian operators. For diagonalizable PT -symmetric operators Mostafazadeh proofed

pseudo Hermiticity by explicitly showing the similarity between H and H†.17–20 Later this

was extended to any finite PT -symmetric Hamiltonian by Zhang et al..21 In Section II we

summarize and expand upon their results by showing a further connection to Hermitian and

pseudo-Hermitian symmetric matrices, where we note the subtle difference between pseudo

Hermiticity and pseudo-Hermitian symmetry. Pseudo Hermiticity alone already enforces

symmetries on the spectrum, and thus lowers the codimension of EPs, while PT symmetry

and pseudo-Hermitian symmetry constitute two special cases. Further we include Hermitian
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FIG. 1. Pairing of all EP inducing symmetries as special cases of generalized similarities. The

three generalized similarity relations that lower the codimension of EPs are given. The different

(anti-)unitary symmetries enclosed by the generalized similarities are shown. Trivial cases of the

symmetries, where the generator is the identity, included in the overview.

Hamiltonians as a special case of pseudo-Hermitian symmetric systems, which has additional

spectral symmetry that naturally prevents EPs from emerging. We also comment on real

Hamiltonian as a special case of PT -symmetry.

We find a similar structure for CP-symmetric and chiral-symmetric systems. Both sym-

metries enforce chirality on the systems, which we define in Section III. We prove that all

CP-symmetric and chiral-symmetric systems are chiral. We show the spectral constraint fol-

lows from chirality, and relate anti-Hermiticity to chirality. We compare pseudo Hermiticity

and chirality, which have a resembling effect on the spectrum, and point out the similarities

and differences between them.

In Section IV we follow the same approach for pseudo-chiral symmetry and sublattice

symmetry, where we find that in both cases the Hamiltonian exhibits self skew-similarity.

This skew self-similarity is the origin of the spectral symmetry. We note that self skew-

similarity behaves differently from pseudo-Hermiticity and chirality, because it does not

relate the Hamiltonian to its adjoint, but instead is a property of the Hamiltonian itself.

This results in differences in the treatment of self skew-similarity.

We provide a conclusion in Section V.
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II. PSEUDO-HERMITIAN SYSTEMS

We start from the definition of pseudo-Hermiticity. A Hamiltonian is called pseudo-

Hermitian if there exists an invertible Hermitian matrix η such that

H = ηH†η−1, (1)

where H† denotes the conjugate transpose of H.

Theorem 1.1. For a matrix H ∈ Cn×n, H is pseudo-Hermitian if and only if there exist

a nonsingular Hermitian matrix η and a Hermitian matrix A such that H = ηA.

Proof. Insert H = ηA in the definition of pseudo-Hermiticity using η as the similarity

matrix.

We give this theorem here to provide a general decomposition of pseudo-Hermitian ma-

trices, and to highlight a method of generating generic pseudo-Hermitian matrices.

For a pseudo-Hermitian matrix H with the eigenstate |ψ⟩, defined by H |ψ⟩ = ϵ |ψ⟩, it

follows from Eq. (1) that

η−1H |ψ⟩ = ϵ
(
η−1 |ψ⟩

)
= H† (η−1 |ψ⟩

)
, (2)

thus η−1 |ψ⟩ is an eigenstate of H† with the eigenvalue ϵ, and the eigenvalues of H are either

real or appear in complex conjugate pairs, i.e., {ϵ} = {ϵ∗}.

Theorem 1.2. For a matrix H ∈ Cn×n, H is pseudo-Hermitian if and only if it is similar

to its complex conjugate H∗.

The proof of Theorem 1.2 can be found in Ref. 21. They show that the necessity follows

from the definition of pseudo Hermiticity and the similarity of every matrix to its transpose.

The proof of sufficiency is shown explicitly. The similarity of H and H∗ results in real

eigenvalues or pairs of complex conjugate eigenvalues. By ordering the Jordan canonical form

of H in real Jordan blocks and block structures of complex conjugate Jordan blocks, Zhang

et al. are able to construct the Hermitian similarity transformation η for any Hamiltonian

that is similar to its complex conjugate. Theorem 1.1 and 1.2 are equivalent criteria for

pseudo Hermiticity.

We establish a connection between pseudo Hermiticity and (anti-)unitary symmetries in

non-Hermitian systems. PT symmetry is defined by

H = AH∗A−1 , (3)
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with A−1 = A† and AA∗ = 1. A different symmetry of non-Hermitian systems is pseudo-

Hermitian symmetry defined by

H = ςH†ς−1 , (4)

where ς−1 = ς† and ς2 = 1. We emphasize the subtle difference between pseudo Hermiticity

and pseudo-Hermitian symmetry.

Theorem 1.3. For finite-dimensional systems, a PT -symmetric or pseudo-Hermitian

symmetric Hamiltonian H is necessarily pseudo-Hermitian.

Proof. By the definition of pseudo-Hermiticity and pseudo-Hermitian symmetry this is

clear for the later statement. For a PT -symmetric system Eq. (3) shows that H is similar to

H∗. Therefore, according to Theorem 1.2 the Hamiltonian is pseudo Hermitian. This was

already realized by Zhang et al. in Ref. 21.

Theorem 1.4. For any H ∈ C2×2, if H is pseudo-Hermitian it is necessarily PT -

symmetric and pseudo-Hermitian symmetric. For finite-dimensional systems with dimension

n > 2, pseudo-Hermiticity does not imply either symmetry of the Hamiltonian.

Proof. H has a certain symmetry if and only if there exists a unitary matrix U fulfilling

Eq. (3) or (4) with the symmetry specific additional condition on U . Note that the case

n = 1 is trivial due to the fact that H reduces to a real number. We show first whether

a unitary similarity U between H and H∗ or H† exists in general and then investigate the

properties of U . For the proof we make use of Specht’s criterion.22

Specht’s criterion The matrices A,B ∈ Cn×n are unitarily similar, i.e., A = UBU †

with U unitary, if and only if

tr
[
w
(
A,A†)] = tr

[
w
(
B,B†)] (5)

for ever finite word w in two letters.

This criterion is useful, because an upper bound on the length of the words w was

introduced by Pearcy in Ref. 23 and was later refined.24–29 For small n the sets of non-

redundant words one has to check is given in Ref. 30. We make use of n = 2 and n = 3,

where the non-redundant words w(X,X†) are given by

n = 2 : X, X2, XX† , (6)

n = 3 : X, X2, XX†, X3, X2X†, X2
(
X†)2 , X2

(
X†)2 , XX† . (7)
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For n = 2 we use that the traces of the three non-redundant words of H, H∗ and H† are

equal due to the pseudo-Hermiticity constraint. Thus H and H∗ as well as H and H†

are unitarily similar. The first condition from Eq. (3) for PT -symmetry and from Eq. (4)

for pseudo-Hermitian symmetry is therefore fulfilled. The special properties of the unitary

similarity matrices A and η can be shown by

H = AH∗A−1 =⇒ H∗ = A∗H
(
A−1

)∗
=⇒ AA∗ = 1 , (8)

H = ςH†ς−1 =⇒ H† = ςHς−1 =⇒ ς2 = 1 . (9)

Therefore pseudo-Hermiticity implies PT -symmetry and pseudo-Hermitian symmetry for

any H ∈ C2×2.

For any n ≥ 3 to find unitary similarity it is necessary that the traces of the words for

n = 3 have to be equal, while there are more non-redundant words for n > 3. However,

for non-normal H, i.e., [H,H∗] ̸= 0, equality of the word traces of H and H∗ as well as of

H and H† does not follow from pseudo-Hermiticity. Thus for n ≥ 3 pseudo-Hermiticity is

more general and not equivalent to PT -symmetry or pseudo-Hermitian symmetry.

We note that normality of H restores the equivalence of similarity and symmetry, which

can be shown from the diagonalisability of H and the pseudo-Hermitian spectral properties.

For any normal H pseudo Hermiticity is equivalent to both PT -symmetry and pseudo-

Hermitian symmetry. However, normality prohibits the emergence of EPs altogether, be-

cause the Hamiltonian must be diagonalizable in the whole parameter space. Therefore, we

consider non-normal Hamiltonians in the following for which the pseudo Hermiticity is more

general then any of the two symmetries.

Theorem 1.5. For any H ∈ Cn×n, if H is pseudo-Hermitian the codimension of an EPn

is reduced to n− 1.

Proof. It has been shown in Ref. 8 that the 2(n − 1) real constraints for the emergence

of an EPn can be cast as det[H] =
∏

i ϵi = 0 and tr
[
Hk

]
=

∑
i ϵ

k
i = 0 for 2 ≤ k < n with

the eigenvalues ϵi of H. The determinant and the traces are in general complex. Pseudo-

Hermiticity implies the spectral symmetry {ϵ} = {ϵ∗}, which results in
{
det[H], tr

[
Hk

]}
∈

R. This reduces the codimension of the EPn to n− 1.

For PT -symmetry and pseudo-Hermitian symmetry this was shown in Ref. 8, but the

symmetries are special cases of pseudo-Hermiticity according to Theorem 1.3. From Theorem

1.4 we know that pseudo-Hermiticity is more general than the two symmetries, and it already
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induces the EPs in lower dimension without the need of symmetry. Thus we have shown that

not symmetry but similarity drives the emergence of exceptional points in lower dimensions.

Further the spectral structure surrounding the similarity-induced EPs is fully determined

by the similarity even in the presence of the more restrictive PT -symmetry or pseudo-

Hermitian symmetry. This spectral structure is discussed in detail in previous papers on

symmetry-induced EPs. Symmetry-protected EP2 rings were found,1 and the rich spectral

features surrounding symmetry-induced EP3s, EP4s and EP5s in two dimensions have also

been analyzed.13,31

In addition to PT -symmetry and pseudo-Hermitian symmetry, pseudo-Hermiticity en-

closes two more special cases, namely Hermitian and real matrices. We note that a Hermitian

matrix is a special case of a pseudo-Hermitian symmetric systems, and a real Hamiltonian

a special case of PT -symmetric systems, with the symmetry generator being the identity

operation in both cases. Our results concerning EPs are applicable to real matrices, while

Hermiticity does not allow for EPs.

III. CHIRAL SYSTEMS

To define chirality we first define skew-similarity. Two matrices A,B ∈ Cn×n are said to

be skew-similar to each other if there exists an invertible matrix S such that

A = −SBS−1 . (10)

We define chirality as Hermitian skew-similarity between the Hamiltonian H and its adjoint

H†. A Hamiltonian H is called chiral if there exists an invertible Hermitian matrix Γ such

that

H = −ΓH†Γ−1 . (11)

Theorem 2.1. For a matrix H ∈ Cn×n, H is chiral if and only if there exists a nonsin-

gular Hermitian matrix Γ and a Hermitian matrix C such that H = iΓC.

Proof. To prove this Theorem insert H = iΓC in the definition of chirality Eq. (11) and

take Γ as the similarity matrix.

With Theorem 2.1 we show a decomposition of chiral matrices, which can be implemented

to obtain generic chiral Hamiltonians.
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For any chiral Hamiltonian, we find constraints on the spectrum. Consider a chiral

Hamiltonian H and an eigenstate |ϕ⟩ to the eigenvalue ϵ. From Eq. (11) follows

−Γ−1H |ϕ⟩ = −ϵ
(
Γ−1 |ϕ⟩

)
= H† (Γ−1 |ϕ⟩

)
. (12)

Therefore the spectrum of H is mirrored across the real axis, and the eigenenergies fulfill

{ϵ} = {−ϵ∗}.

Theorem 2.2. For a matrix H ∈ Cn×n, H is chiral if and only if it is skew-similar to its

complex conjugate H∗.

Proof. The necessity in the statement is easy to prove. If a Hamiltonian H is chiral it is

by definition skew-similar to its adjoint H†. It is well known that any matrix is similar to

its transpose and therefore H† = PHTP−1 for some nonsingular matrix P . With S = ΓP

this proves the skew-similarity of H and H∗.

We explicitly construct the Hermitian matrix Γ to prove the sufficiency of the theorem.

Using its Jordan canonical form J the Hamiltonian H can be written by

H = QJQ−1 , (13)

where Q is a reversible matrix. The Jordan canonical form consists of Jordan blocks that

have the form

J(ϵ) =


ϵ 1

. . .
. . .

ϵ 1

ϵ


m×m

, (14)

where m is the size of the Jordan block and m = 1 reduces to ϵ. Because H is skew-similar to

H∗ the eigenvalues are symmetric with respect to the imaginary axis. Thus the eigenvalues

are either purely imaginary ϵ = ib or come in pairs of the form ϵ = a+ ib and −ϵ∗ = −a+ ib,

where a, b ∈ R. We define two kinds of matrix blocks

K1 = J(ib)m×m , (15)

K2 =

J(a+ ib) 0

0 J(−a+ ib)


2l×2l

, (16)

and express the Jordan canonical form as the block diagonal matrix J = diag(M1, ...,Mk)

with each block MJ being either of the form K1 or K2. We can prove explicitly that the
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Jordan form constructed in this ordered form is chiral. Both types of matrix blocks satisfy

Mj = −GjM
†
jG

−1
j with the Hermitian matrix

Gj =


0 . . . 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 . . . 0

 . (17)

From these Gj we construct the Hermitian matrix G = diag(G1, ..., Gk), and this satisfies

J = −GJ†G−1 , (18)

which shows that the Jordan canonical form is chiral if H is skew-similar to H∗. We insert

this in Eq. (13) and we obtain

H = QJQ−1

= −QGJ†G−1Q−1

= −QG
(
Q−1HQ

)†
G−1Q−1

= −
(
QGQ†)H† (QGQ†)−1

.

(19)

Because G is Hermitian, Γ = QGQ† is Hermitian as well. This completes the proof that H

is chiral.

We now show the connection between chirality and CP-symmetry and chiral symmetry.

We define CP-symmetry by

H = −ΘH∗Θ−1 , (20)

where Θ−1 = Θ† and ΘΘ∗ = 1. We note that CP-symmetry is sometimes called anti-PT -

symmetry due to the structure of the symmetry constraint. Chiral symmetry is defined

as

H = −γH†γ−1 , (21)

with γ−1 = γ† and γ2 = 1. The subtle difference in the properties of the similarity matrix

between chirality and chiral symmetry is emphasized here.

Theorem 2.3. For finite-dimensional systems, a CP-symmetric or chiral-symmetric

Hamiltonian H is necessarily chiral.
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Proof. A CP-symmetric Hamiltonian H is by the definition in Eq. (20) skew-similar to

its complex conjugate H∗. Chirality follows directly from Theorem 2.2. By the definition of

chiral symmetry it is clear that chiral symmetry entails chirality.

Theorem 2.4. For any H ∈ Cn×n, if n = 2 and H is chiral it is necessarily CP-

symmetric and chiral symmetric. For finite-dimensional systems with dimension n > 2,

chirality does not imply either symmetry of the Hamiltonian.

Proof. For n = 1 the statement is obvious, because H is restricted to be an imaginary

number. For H ∈ C2×2 the traces of the three non-redundant words from Specht’s refined

criterion are equal for H, −H∗ and −H†. This follows from the spectral symmetry of the

chiral Hamiltonian. Hence, there is a unitary similarity transformation between H and −H∗,

and H and −H†, respectively. To prove that this unitary similarity is in fact a symmetry

of the system, we show the properties of the different similarity matrices by

H = −ΘH∗Θ−1 =⇒ −H∗ = Θ∗H
(
Θ−1

)∗
=⇒ ΘΘ∗ = 1 , (22)

H = −γH†γ−1 =⇒ −H† = γHγ−1 =⇒ γ2 = 1 . (23)

Thus chirality implies both CP symmetry and chiral symmetry for any H ∈ C2×2.

For a Hamiltonian H ∈ Cn×n with n ≥ 3 we find that the traces of the words in Specht’s

criterion do not vanish in general for non-normal H. Therefore, chirality does not imply

unitary similarity between H, −H∗ and H†. For n ≥ 3 chirality is not necessarily equivalent

to CP-symmetry or chiral symmetry.

The equivalence of chirality and CP-symmetry as well as chiral symmetry can be restored

by enforcing normality on the Hamiltonian H. However, this would disallow exceptional

points to emerge in the systems as already mentioned before.

Theorem 2.5. For any H ∈ Cn×n, if H is chiral the codimension of an EPn is reduced

to n− 1.

Proof. We consider the complex conditions det[H] = 0 and tr
[
Hk

]
= 0 for 2 ≤ k < n. The

spectral symmetry {ϵ} = {−ϵ∗}, which is a consequence of the chirality, reduces the number

of constraints, because the determinant of H and each of the traces of Hk is either real or

purely imaginary. This reduces the codimension of the EP to n−1. For the two symmetries

enclosed by chirality according to Theorem 2.3 this was shown in Ref. 8. However, from

Theorem 2.4 it is clear that chirality is more general than either CP-symmetry or chiral

symmetry. Chirality already induced EPs by lowering their codimension without the need

10



of symmetries of the Hamiltonian. Further, the spectral structure surrounding a chirality-

induced exceptional point is fully determined by the skew-similarity of the Hamiltonian. For

EP3s in two dimensions the spectral structure is equivalent to the structures described in

Ref. 13 for CP-symmetry and chiral symmetry.

Besides CP-symmetric and chiral-symmetric systems there are two notable special cases

of chiral systems. The first case is anti-Hermiticity of H, meaning H = −H†, which can be

interpreted as chiral symmetry with the identity as generator. Because anti-Hermiticity im-

plies normality no exceptional points can emerge in anti-Hermitian systems. The other case

are imaginary matrices H = −H∗, which are CP-symmetric with the identity as generator.

Our results are thus also applicable for imaginary matrices.

IV. SELF SKEW-SIMILAR SYSTEMS

With skew-similarity defined in Eq. (10) any Hamiltonian H is self skew-similar if it

fulfills

H = −SHS−1 (24)

for an invertible hermitian matrix S.

Theorem 3.1. A Hamiltonian H is self skew similar if and only if there exists an

invertible Hermitian matrix S such that {H,S} = 0.

Proof. This follows immediately from the definition of self skew-similarity.

The self skew-similarity constraints the spectrum to {ϵ} = {−ϵ}. This can be shown

by considering an eigenstate |χ⟩ of the self skew-similar Hamiltonian H with eigenvalue ϵ.

Applying the definition Eq. (24) yields

−S−1H |χ⟩ = −ϵ
(
S−1 |χ⟩

)
= H

(
S−1 |χ⟩

)
, (25)

and this shows the spectral symmetry.

The two symmetries that enforce the same spectral constraint on the system are sublattice

symmetry and pseudo-chiral symmetry. Sublattice symmetry is defined by

H = −SHS−1 , (26)

with S−1 = S† and S2 = 1. We define pseudo-chiral symmetry as

H = −XHTX−1 , (27)
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where X−1 = X† and XX∗ = 1.

Theorem 3.2. For finite-dimensional systems, a sublattice-symmetric or pseudo-chiral

symmetric Hamiltonian H is necessarily self skew-similar.

Proof. By the definition of sublattice symmetry it is clear that a sublattice-symmetric

Hamiltonian is self skew-similar. Because every matrix is similar to its transpose, pseudo-

chiral symmetry entails self skew-similarity.

Theorem 3.3. For any Hamiltonian H ∈ Cn×n, self skew-similarity does not imply

either symmetry of the Hamiltonian for n ≥ 2.

Proof. For any H ∈ Cn×n with n ≥ 3 Specht’s criterion is not fulfilled for a generic

self skew-similar matrix. For H ∈ C2×2 Specht’s criterion is always fulfilled, however, the

additional properties enforced on the unitary operator to be a symmetry generator are not

fulfilled for either sublattice symmetry or pseudo-chiral symmetry. Note that n = 1 is a

special case, because the self skew-similarity implies H = 0, which has arbitrary unitary and

anti-unitary symmetries.

Theorem 3.4. For any H ∈ Cn×n, if H is self skew-similar the codimension of an EPn

is reduced to n if n is even and to n− 1 if n is odd.

Proof. We consider the complex conditions det[H] = 0 and tr
[
Hk

]
= 0 for 2 ≤ k < n.

For any odd k the trace tr
[
Hk

]
vanishes for any self skew-similar Hamiltonian due to the

spectral constraint {ϵ} = {−ϵ}. For odd n the determinant always vanishes, because

det[H] = det[S] det[−H] det
[
S−1

]
= (−1)n det[H]

n∈odd
=⇒ det[H] = 0 . (28)

This reduces the codimension in the case of odd n to n− 1 and for even n the codimension

of EPns is reduced only to n.

For the two symmetries that realize self skew-similar Hamiltonians this was shown in

Ref. 8. From Theorem 3.3 it is clear that self skew-similarity is more general than either of

the two symmetries. According to Theorem 3.4 self skew-similarity already induces EPns

by lowering their codimension. Because the spectral symmetry is enforced by the similarity,

symmetry of the Hamiltonian is not needed. Further the spectral structure accompanying

the similarity-induced EPs is determined by the self skew-similarity, and also not affected

by the additional constraints of pseudo-chiral symmetry or sublattice symmetry.

A special case of self skew-similarity are anti-symmetric Hamiltonians H = −HT , which

are pseudo-chiral symmetric with the identity as generator. All our results are applicable
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for anti-symmetric matrices.

V. CONCLUSIONS

It was previously shown that PT -symmetry entails pseudo Hermiticity for finite dimen-

sional systems. In this paper we show that this relation can be generalized to all unitary and

anti-unitary symmetries, which lower the codimension of exceptional points. We proof that

each of these symmetries is a special case of one of three generalized similarities, namely

pseudo Hermiticity, chirality and self skew-similarity. Each similarity encompasses two sym-

metries, and in the case of pseudo Hermiticity and chirality for finite-dimensional systems

of size n > 2 the similarities are more general than the respective symmetries. In the case

of self skew-similar Hamiltonians this even holds for n ≥ 2.

Overall we find that the spectral features of non-Hermitian systems and the emergence of

stable EPs is linked to the relevant similarity, and not the symmetry of the system contrary

to previous assumptions. The similarities are far less restrictive compared to unitary or

anti-unitary symmetries. As such, the presence of similarities may lead to the robustness of

symmetry-stabilized non-Hermitian features to symmetry-breaking perturbations.
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