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ABSTRACT

An explosion of work in language is leading to ever-increasing numbers of avail-
able natural language processing models, with little understanding of how new
models compare to better-understood models. One major reason for this difficulty
is saturating benchmark datasets, which may not reflect well differences in model
performance in the wild. In this work, we propose a novel framework for compar-
ing two natural language processing models by revealing their shared invariance to
interpretable input perturbations that are designed to target a specific linguistic ca-
pability (e.g., Synonym-Invariance, Typo-Invariance). Via experiments on models
from within the same and across different architecture families, this framework of-
fers a number of insights about how changes in models (e.g., distillation, increase
in size, amount of pre-training) affect multiple well-defined linguistic capabilities.
Furthermore, we also demonstrate how our framework can enable evaluation of
the invariances shared between models that are available as commercial black-box
APIs (e.g., InstructGPT family) and models that are relatively better understood
(e.g., GPT-2). Across several experiments, we observe that large language mod-
els share many of the invariances encoded by models of various sizes, whereas
the invariances encoded by large language models are only shared by other large
models. Possessing a wide variety of invariances may be a key reason for the re-
cent successes of large language models, and our framework can shed light on the
types of invariances that are retained by or emerge in new models.

1 INTRODUCTION

A key reason for the tremendous progress and adoption of natural language processing (NLP) models
has been the ready availability of models that can be effectively adapted to diverse downstream
tasks and datasets (Wolf et al., 2019). However, with the increasing number of new models, it is
difficult to know how new models compare to better-understood ones. This is complicated by the
fact that standard benchmark datasets are saturating (Dehghani et al., 2021; Owen, 2023), and small
differences on these datasets may in fact correspond to large differences in model performance in
the wild (Tay et al., 2022; Zhang et al., 2022; Liu et al., 2023).

To enable more comprehensive model comparisons, we propose a novel framework for comparing
two natural language processing models by investigating their shared invariance to specific input
perturbations. We focus specifically on evaluating invariances that are shared between models, as the
invariances encoded by a model implicitly define the features of data that the model deems important
and is consequently sensitive to, as well as delineate the features it finds irrelevant. Understanding
the shared invariances of two NLP models can reveal finer-grained similarities and differences of
the instance properties utilized by the two models for their predictions (Shah et al., 2023).

While evaluating shared invariance is important, not all invariances are created equal: some invari-
ances may be desirable (e.g., invariance to synonym substitution for machine translation systems)
while others may be undesirable (e.g., invariance to word order of image captioning systems). There-
fore, we enable the evaluation of specific shared invariances via interpretable input perturbations that
are designed to target a specific linguistic capability (e.g., Synonym-Invariance, Typo-Invariance).
A linguistic capability evaluates a model’s competence on a particular aspect of knowledge and
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understanding required to solve an NLP task by validating its input-output behavior under the corre-
sponding scenario. For instance, the linguistic capability ‘Synonym-Invariance’ evaluates whether
a sentiment analysis model changes its prediction if the positive verb is replaced by its synonym.
Hence, the generated perturbations along specific linguistic capabilities enable us to measure shared
model invariances along different linguistic capabilities.

We demonstrate the utility of our proposed framework in deriving novel insights about how changes
in models such as distillation and increase/decrease in size affect shared invariances along multiple
well-defined linguistic capabilities. We also show how our framework can be used to compare
how invariances along different linguistic capabilities evolve over the course of pre-training for
a particular model. Additionally, we also demonstrate how our framework can enable evaluation
of the invariances shared between models that are available as commercial black-box APIs (e.g.,
InstructGPT family) and models that are relatively better understood (e.g., GPT-2). Across several
experiments, we find that while larger language models share many of the invariances encoded by
models of varying scale, invariances encoded by large language models are only shared by other
large models of similar sizes.

Our main contributions can be summarized as follows: (1) We propose a novel framework for defin-
ing linguistic capabilities w.r.t a reference NLP model to generate interpretable invariant perturba-
tions. (2) We propose two novel measures: Hard-SCoPE and Soft-SCoPE to measure the degree of
shared (behavioral) invariances between two models along a particular linguistic capability. Both
measures evaluate the extent to which a target model behaviorally aligns with the reference model
along linguistic capabilities. (3) Using this framework, we uncover several insights, such as: dis-
tilling BERT leads to loss of shared-invariances along certain linguistic capabilities (such as Typo-
Invariance) more than others (Synonym-Invariance); models (within an architecture family) tend to
have a higher (or similar) degree of shared-invariances with models of larger sizes compared to other
models of similar sizes. Moreover, using our framework we are also able to evaluate the shared in-
variances between task-specific finetuned models and generalist instruction-tuned models (from the
InstructGPT family) that are available as black-box APIs.

2 RELATED WORKS

Representations: Numerous works have proposed methods for analyzing and comparing represen-
tations of NLP models (Morcos et al., 2018; Saphra & Lopez, 2019; Liu et al., 2019; Durrani et al.,
2021). Most notably, Wu et al. (2020) investigate the representational similarity of NLP models at
multiple levels (i.e. at both neuron and layer-level output) to quantify the effects of different de-
sign choices across models from both across and within architectural families. Along similar lines,
Phang et al. (2021) explore the effects of fine-tuning a neural language encoder by comparing rep-
resentations of a fine-tuned language encoder with its pre-trained counterpart across layers. Most
similar to our work, Nanda et al. (2022) proposed a novel measure (STIR) to quantify the similarity
between representations of two models via measuring their shared invariances. They achieve this
by first generating a set of perturbations that don’t change the representations of one model and
consequently measuring the extent to which the other model’s representations are invariant on them.
However, this setup is not directly applicable to NLP due to the discrete nature of language input,
where representation inversion would lead to perturbations along arbitrary directions in the input
space and consequently linguistically inconsistent samples (La Malfa & Kwiatkowska, 2022). We
address this by generating invariant perturbations (for a particular model) along well-characterized
and interpretable linguistic capabilities by using discrete optimization techniques. Finally, while
a central theme of our work is also comparing the similarities and differences between two NLP
models, we present an orthogonal approach that focuses on behavior instead of representations.

Behavior: Many works compare the behavioral similarity between two models (trained for a given
task) by evaluating the difference between their average performances on the held-out “test-set”
(e.g., IID accuracy, perplexity, etc). For example, previous work has used IID accuracy to evaluate
the effect of well-defined design choices such as model architecture and training scheme (Ding et al.,
2021), training time constraints (Geiping & Goldstein, 2022), and latency and memory (Sanh et al.,
2019). However, in recent years many researchers have highlighted the limitations of IID test-sets
in identifying different failure modes (Hooker et al., 2019; 2020) and have consequently proposed
alternative approaches for rigorous evaluation (Rychalska et al., 2019; Prabhakaran et al., 2019;
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Ribeiro et al., 2020; Ribeiro & Lundberg, 2022). Most relevant to our work, Ribeiro et al. (2020)
proposed CheckList–a methodology for evaluating the behavior of NLP models along general lin-
guistic capabilities that are applicable for most NLP tasks. More recently, La Malfa & Kwiatkowska
(2022) defined linguistic capabilities as symbolic perturbations of an input sentence for a particular
task, and evaluated whether a model’s predictions for this sentence align with human annotators.
While the above approaches can highlight differences between the two models’ ability to generalize
under the perturbations introduced by a linguistic capability, they perform an indirect behavioral
comparison via the human annotators. In this work, we provide a complementary approach that di-
rectly evaluates shared behavioral invariances between two models by defining linguistic capabilities
with respect to an NLP model instead of a human annotator.

3 METHODOLOGY

One way to evaluate a model’s linguistic capabilities is via perturbations i.e., perturbing the input
and evaluating whether the model’s prediction on the perturbed input aligns with human judgment.
However, in contrast to computer vision, where perturbed inputs can be optimized directly in an end-
to-end manner, constructing perturbations for discrete language inputs involves deciding on many
different factors (e.g., type of perturbation, constraints on perturbation, etc). Hence in this work,
we leverage key insights from the NLP adversarial robustness literature to decompose perturbations
corresponding to a linguistic capability C in terms of four independent components: transforma-
tion, constraints, goal function and search method. Thus, perturbations along each capability (e.g.
Synonym-Invariance) attempt to manipulate an input text (‘I love watching movies.’) to produce its
perturbed counterpart (‘I love watching films.’) using well-defined transformations (WordNet syn-
onym swapping) and constraints (disallowing stopword modifications) to satisfy the goal function
(i.e., reference model m remains behaviorally invariant).

3.1 GOAL FUNCTION AND SEARCH METHOD

To effectively quantify measures such as shared invariances (defined in Sec. 3.3) between a ref-
erence and a target NLP model, we enforce that the reference model is invariant to the perturba-
tion introduced by the linguistic capability. The behavioral invariance serves as the goal function
while generating perturbations with respect to the reference NLP model, ensuring that the perturba-
tion generation process interacts with the reference NLP model. This formulation is important as
invariance-based measures are otherwise difficult to measure using purely observational data (Nanda
et al., 2022). Additionally, this also lends directionality to our shared-invariance measures as the per-
turbations generated w.r.t two different reference models would be different, allowing us to delineate
invariances unique to any model and measure their degree of overlap with others.

We define the goal of behavioral invariance at the level of the output softmax probabilities i.e., the
reference model m is behaviorally invariant if there is a negligible difference between the predicted
probability distribution on the base and perturbed sample. More formally, consider an NLP model
m that outputs probability distribution m(x) for an input text x. A linguistic capability C perturbs
x ∈ X s.t. m is invariant to the perturbed text x′ ∈ X ′

C(x;m) = argmin
x′

L(m(x),m(x′)), (1)

where L is an objective function that guides the optimization process. Since x is a sequence
of tokens, we use discrete optimization techniques (e.g., greedy search) for finding x′ that mini-
mizes L(m(x),m(x′)) in the finitely large transformation space. In our experiments, we define
L(m(x),m(x′)) = ∥m(x)−m(x′)∥1. In practice, we observe that minimizing this objective leads
to X ′ that are at least invariant in argmax predictions. We provide more details in the supplementary
Sec. E. Note that the objective function can take other forms as long as it captures differences in
both direction and magnitude between m(x) and m(x′). We present additional experiments with
KL-divergence as the objective function and report results in the supplementary Sec. I. We observe
minimal effect on the overall takeaways when using different objective functions.
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3.2 TRANSFORMATIONS AND CONSTRAINTS

Once the goal function and search method are specified, we can fully formalize different linguis-
tic capabilities by specifying the corresponding transformations and constraints. In this work, we
primarily focus on two such linguistic capabilities: Synonym-Invariance and Typo-Invariance that
perform perturbations at multiple levels (i.e., character-level transformations to word-level substitu-
tions). Synonym-Invariance – Synonym-Invariance perturbs words in the input text by replacing
them with their synonyms. More specifically, we adopt the transformation strategy proposed by Ren
et al. (2019) that determines candidate synonyms for a particular word based on WordNet (e.g., A
man laughs out loud. → A man laughs out loudly.). Typo-Invariance – Typo-Invariance perturbs
a word in the input text by swapping their middle characters (i.e., all characters in a word except
the first and last one). Thus, while Synonym-Invariance perturbs input text at a word level, Typo-
Invariance produces transformations at a character level (e.g., A man laughs out loud. → A man
laughs out luod.). For both linguistic capabilities, we use a greedy search-based method to traverse
through candidate transformations and constraint modifications of words that are stopwords, have
lengths less than four, or are already perturbed. We focus on these two capabilities because there is
a rich literature studying them, albeit from an adversarial robustness perspective as they concern the
reliability of many real-world systems, such as spam detection, toxicity classification, and fake news
detection (Lee & Ng, 2005; Pruthi et al., 2019; Ren et al., 2019). We perform experiments along one
additional linguistic capability: Fairness and report our insights in the supplementary Sec. C due to
space constraints. We would like to emphasize that the list of linguistic capabilities (e.g., negation,
word order) can be easily expanded by defining the specific transformation and constraints.

3.3 METRICS FOR QUANTIFYING BEHAVIORAL-SIMILARITY

We perform experiments with a number of popular metrics (such as accuracy and agreement-rates)
as well as propose novel ones (behavioral shared invariances). These metrics can be broadly cate-
gorized into three classes: performance-based (Gap in IID accuracy), agreement-based (IID / OOD
agreement), and invariance-based (Hard-SCoPE, Soft-SCoPE). The invariance-based metrics offer
a complementary lens on the behavioral similarity between two NLP models as we empirically ob-
serve that the existing metrics often fail to adequately capture them for many kinds of models one
would want to investigate. While some of these metrics have been used in the computer-vision lit-
erature, their role in determining behavioral similarity has been underexplored in NLP. Hence, we
discuss all of them in detail below.

Notation: Let (Xtest, ytest) ∼ Dtest denote the IID test-set for a task T . A pair of models
M = {m1,m2} are finetuned on training samples of task T . A model maps an input x to out-
put a probability distribution m(x) ∈ Rc over the possible labels (i.e., c denotes the number of
unique labels/vocabulary for T ). The model’s prediction ym(x) is defined as: ym(x) = argmax

k

m(x)k where m(x)k denotes the probability score for kth label. We aim to evaluate the behavioral
similarity between m1 & m2 along a particular linguistic capability C. Given a set of base samples
X (usually Xtest) , C perturbs every x ∈ X to generate a set of perturbed samples X ′ that are
behaviorally invariant with respect to the reference NLP model m1 i.e., X ′ = {C(x;m1) ∀ x ∈ X}

3.3.1 PERFORMANCE-BASED METRICS

Comparing the gap between aggregate performance-based measures is one of the most common
ways to characterize behavioral similarity between two models as models with lower performance
gaps are generally thought of as more behaviorally similar (Ding et al., 2021; Klabunde et al., 2023).
Since we are primarily investigating text-classification tasks in the main paper, we choose accuracy
as the performance measure and consequently evaluate the gap between accuracies of two models
on the test-set of their finetuning task. We present results on language modeling with auto-regressive
models in the supplementary Sec.- G.

The Gap in IID accuracy is simply the absolute difference in the accuracies of the reference and
target models, i.e. Gap in IID Accuracy: |acc(m1) − acc(m2)|, where accuracy of a model m is
defined as acc(m) = Ex,y∼Dtest1[y = ym(x)].
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IID-Agreement: 0

OOD-Agreement: 0

Hard-SCoPE: 1
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OOD-Agreement: 0

Hard-SCoPE: 1

Soft-SCoPE ~ 1

Figure 1: Left: Probability vectors for three models (m1, m2, and m3) trained on a binary classifi-
cation task. For perturbation (x → x′) defined w.r.t m1, both m2 and m3 satisfy the Hard-SCoPE
criteria. However, the effect of the perturbation is more aligned for m1 & m3 (blue and purple)
compared to m1 & m2 (blue and brown). Right: 2-D Soft-SCoPE surface for a pair of base and
perturbed samples, where the reference model BERT is compared with DistilBERT and GPT-2.

3.3.2 AGREEMENT-BASED METRICS

Instead of focusing on the average differences in performance, the agreement rates (between m1 &
m2) explore the behavioral similarity directly at the instance level. We calculate model agreements
on both IID/Base (X) and OOD/Perturbed (X ′) samples.

IID Agreement:Ex∈X1[ym1
(x) = ym2

(x)] OOD Agreement:Ex′∈X′1[ym1
(x′) = ym2

(x′)]

3.3.3 PROPOSED INVARIANCE-BASED METRICS

While agreement rates quantify whether two models have similar behavior on a particular sample,
shared invariances can reveal finer-grained similarities of the instance properties utilized by the
two models for their predictions. For instance, if a model becomes variant to perturbations (e.g.,
replacing words with synonyms) that it was originally invariant to after a particular design choice
(e.g., distillation), it indicates heightened sensitivity towards perturbed aspects of data. Agreement
rates are ill-equipped for such investigations as they compare the similarity between predictions of
two models (one sample at a time). However, measuring shared invariances requires evaluating
the effect of a perturbation within each model individually and subsequently comparing if both
models exhibit invariance. Thus, measuring behavioral shared invariances amounts to quantifying
the extent to which a target model is invariant on perturbations that do not cause any change in the
reference model’s behavior (ref Eq. 1). Since behavior itself can be measured at different granularity
i.e., with respect to exact class prediction or predicted softmax probabilities, we propose two novel
notions (Hard and Soft) of measuring behavioral shared-invariance: SHared-Capabilities-thrOugh-
Perturbed-Examples (SCoPE)

Hard-SCoPE: We want to measure to what degree does m2’s prediction remain invariant to a
change in the input (i.e. x → x′) for the base-perturbed sample pair (x, x′) ∈ (X,X ′) that the
reference model m1 was invariant on. We label this quantity as Hard-SCoPE as it considers the
‘hard’ argmax predictions to determine behavioral shared-invariances.

Hard-SCoPE(m2 | m1) = E(x,x′)∈(X,X′)1[ym2(x) = ym2(x
′) | ym1(x) = ym1(x

′)]. (2)

Note that the Hard-SCoPE is not calculated between two models (like agreement-rates), but rather
between the base and perturbed samples (x, x′) for a particular target model m2. For a binary-
classification setup, Hard-SCoPE can be seen as “agreement between agreement-rates” i.e. Hard-
SCoPE would be 1 if either both IID and OOD agreement are 0 or both are 1 for a particular
base-perturbed sample pair. We discuss the relationship between IID-, OOD-agreements and Hard-
SCoPE in more detail in the supplementary Sec. E.
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Soft-SCoPE: A softer (and perhaps more informative) notion of shared-invariances is to look
beyond argmax predictions and investigate whether the perturbation in input space (i.e. x → x′)
produces the same effect (change) in the output probability distributions of both models. We present
an intuition of when a softer notion of shared invariance can be useful in Fig. 1 (left).

In Fig. 1 (left), we visualize the predicted probability distributions of three models m1, m2, and m3

trained on a binary classification task on both base (m1(x), m2(x), m3(x)) and perturbed samples
(m1(x

′), m2(x
′), m3(x

′)) . While the input perturbation (x → x′) generated with reference model
as m1 qualifies as a (hard) shared invariance for both (m2 | m1) and (m3 | m1) since both m2

and m3 remain invariant in their argmax predictions; the effect (i.e., change in the predicted output
probability distribution) of the perturbation is much more aligned for one pair (i.e. m3 | m1) than
the other (m2 | m1). Thus, the reliance on (argmax) predictions to quantify shared-invariances by
Hard-SCoPE could obscure key differences between the effect of the perturbation.

As motivated by this example, a desiderata for the soft shared-invariance metric is to obtain high-
values if the change in both models (∆m⃗1 , ∆m⃗2 ) is similar (in both direction and magnitude) and
low-values otherwise. Thus, we define Soft-SCoPE(m2 | m1) as:

E(x,x′)∈(X,X′)decay(dist(∆m⃗1 ,∆m⃗2 ))1[ym2(x) = ym2(x
′) | ym1(x) = ym1(x

′)], (3)
where decay(dist(∆m⃗1 ,∆m⃗2 )) is an additional term that weighs the contribution of each pair
of base and perturbed samples by a function of the corresponding changes in model probabilities
∆m⃗1 and ∆m⃗2 . More specifically, the function is composed by two functions: a function dist that
computes the difference between the changes in model probabilities, and a decay function decay,
which has a range [0, 1] i.e., 0 ≤ decay(dist(∆m⃗1 ,∆m⃗2 )) ≤ 1 and has a downward slope to
ensure lower dist values correspond to higher similarity, as in all the previous metrics. In our
experiments, we chose dist(∆m⃗1 ,∆m⃗2 ) = ∥∆m⃗1 −∆m⃗2 ∥1 and decay as a linear function. In
order to visualize the variation in Soft-SCoPE values between different model pairs i.e., (m2 | m1)
and (m3 | m1) we plot the 2-D plane spanned by vectors v⃗1 = ∆m⃗2 −∆m⃗1 and v⃗2 = ∆m⃗3 −
∆m⃗1 . Here, ∆m⃗1 corresponds to BERT (reference model), and ∆m⃗2 & ∆m⃗3 refer to DistilBERT
and GPT-2 respectively. We note that unlike Hard-SCoPE that can only take binary values i.e., either
0 or 1, Soft-SCoPE varies smoothly. We also observe that models from the same architectural family
(BERT and DistilBERT) have higher Soft-SCoPE compared to models from different architectural
families (BERT and GPT-2). We expand on the insight in supplementary Sec. F.

3.4 CORRELATION BETWEEN METRICS

0.90 0.95
OOD-Agreement

0.5

0.6

0.7

0.8

So
ft

-S
Co

PE

BERT-Base

0.90 0.95
OOD-Agreement

BERT-Tiny Figure 2: Correlation between proposed
invariance-based metrics (Soft-SCoPE)
and existing metrics (OOD-Agreement)
for different reference and target model
pairs. Existing metrics poorly corre-
late with invariance-based metrics as the
size of the reference model is reduced.

Here, we explore whether the proposed invariance-based measures are tightly coupled with metrics
previously explored in the literature such as agreement rates. We evaluate the Pearson correlation
between OOD-agreement and Soft-SCoPE for different reference and target model pairs from the
BERT architecture family and plot the results in Fig. 2. Each column consists of results for different
target-reference model pairs for a particular reference model – BERT-Base or BERT-Tiny. We ex-
periment with multiple different target models varying in size with BERT-Base being the largest and
BERT-Tiny the smallest. We find that OOD-agreement and Soft-SCoPE are poorly correlated when
using comparatively smaller models as reference models i.e., r=0.011 for BERT-Tiny, whereas they
are positively correlated when using relatively larger models as reference models i.e., r=0.97 for
BERT-Base. Thus, the invariances shared between two NLP models are not necessarily explained
by existing metrics. Importantly, the finding that existing metrics are especially poor at capturing
shared invariance when the reference model is smaller than the target model further highlights the
need for separately evaluating shared-invariances as smaller models are more amenable to controlled
analysis (such as circuit analysis (Wang et al., 2022)) and hence likely to be used as reference mod-
els. We present results for correlations with other metrics such as IID-agreement and Gap in IID
accuracy in the supplementary Sec. J.
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4 EFFECT OF MODEL DESIGN CHOICES ON SHARED-INVARIANCES

In this section, we investigate the effect of different design choices on the invariances shared by
two models. Thus, we experiment with a range of NLP models varying in training (BERT Devlin
et al. (2019), DistilBERT (Sanh et al., 2019)), and size (BERT-Tiny, Mini, Small, Medium, Base).
Unless otherwise stated, we finetune all architectures for 5 epochs on Stanford Sentiment Treebank
(SST2 a binary sentiment classification dataset) (Socher et al., 2013). We present additional results
for different datasets (AG-News) and tasks (language modeling) in the supplementary Sec. B and
Sec. G. We build upon the ”textattack” library (Morris et al., 2020) to implement several linguistic
capabilities based on our requirements. For each capability and reference-model pair we generate
the perturbed examples (X ′) three times and report the average results with standard errors.

4.1 DIFFERENT LINGUISTIC CAPABILITIES

Hard-SCoPE Soft-SCoPE0.0

0.2

0.4

0.6

0.8

1.0

Synonym-Invariance Typo-Invariance Figure 3: [Reference Model: BERT, Target
Model: DistilBERT]. Comparing shared-
invariances between DistilBERT and BERT
on Synonym-Invariance and Typo-Invariance
defined w.r.t BERT. Distillation hurts some
capabilities (Typo-Invariance) substantially
more than others (Synonym-Invariance).

In this section, we aim to investigate whether a design choice (i.e., distillation) that has a nomi-
nal impact on the IID accuracy, preserves shared invariances along different linguistic capabilities.
Specifically, we fix BERT as the reference model & DistilBERT as the target model and compare
shared capabilities along Synonym-Invariance and Typo-Invariance.

Gap in IID accuracy may overestimate the degree of shared invariances: Both BERT and Dis-
tilBERT achieve high accuracies on the SST2 test-set i.e. 93% and 89.45% respectively (3.55% Gap
in IID accuracy). However, in Fig 3, we note that a low gap in generalization performance on the
IID test-set doesn’t necessarily ensure high shared invariances. For instance, DistilBERT is substan-
tially less aligned to BERT along Typo-Invariance. Thus, Gap in IID accuracy may overestimate the
degree of shared invariances between two models along a linguistic capability.

Distilling BERT affects some linguistic capabilities more than others: In Fig. 3, we also ob-
serve that DistilBERT is significantly more similar to BERT along Synonym-Invariance compared
to Typo-Invariance. Thus not only is there a decrease in shared-invariances after distillation, but
distillation also affects different linguistic capabilities to varying degrees. We posit that this trend
can be attributed to the Masked Language Modelling (MLM) pre-training procedure that is common
to both BERT and DistilBERT. The MLM objective optimizes the model to predict masked words
in a sentence correctly, it’s plausible that during pre-training a model develops invariances to di-
verse in-context word-substitutions. Since, both DistilBERT and BERT are pre-trained on the same
corpus (i.e. concatenation of English Wikipedia and Toronto Book Corpus, Sanh et al. (2019)), it’s
highly likely that the learnt word-invariances are shared between them. Similarly, the lower values
for Typo-Invariance may be explained by the lack of misspelled words in the training corpus.

4.2 ROLE OF INDUCTIVE BIASES

So far we have discussed the effect of a particular design choice (i.e., distillation) on shared-
invariances along different linguistic capabilities. In this section, we explore the effect of changes
in architectural inductive biases on a model’s behavior along a linguistic capability i.e., Synonym-
Invariance. Specifically, we investigate the role of increasing/decreasing the depth and width of
hidden-layers on the shared-invariances. To control for potential confounders we finetune a wide
array of models (released by Turc et al. (2019)) belonging to the same architecture family (BERT)
varying significantly in both number (L) and size (H) of the hidden layers. Specifically, we inves-
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b) Reference Model: BERT-Basea) Reference Model: BERT-Tiny c) Averaged over all possible Reference Models

Figure 4: [Linguistic-Capability: Synonym-Invariance] Analyzing the effect of size on shared-
invariances within the BERT architecture family. We observe that OOD-agreement is higher for
target models in similar size ranges as the reference model. However, shared-invariances are higher
for target models of larger size irrespective of the reference model.

tigate BERT-Tiny (L=2, H=128), BERT-Mini (L=4, H=256), BERT-Small (L=4, H=512), BERT-
Medium (L=8, H=512), and BERT-Base (L=12, H=768).

Different trends across different metrics: In Fig. 4-a, with BERT-Tiny (smallest model in our
investigation) as the reference model, we observe that the OOD agreement-rate indicate that models
in similar in size to BERT-Tiny (i.e., BERT-Mini, BERT-Small) have higher similarity with BERT-
Tiny than other larger models (i.e., BERT-Medium, BERT-Base). In contrast, the shared-invariances
metrics don’t follow the same trend as Hard-SCoPE values tend to increase for larger model sizes,
and there isn’t a substantial difference between the Soft-SCoPE values across different target models.

Larger models share more invariances with models of any size: In Fig. 4-b, we repeat the same
experiment with the largest model in our investigation–BERT-Base–as the reference model. Sur-
prisingly, we observe that all metrics indicate that models become less similar to BERT-Base as
their size decreases. This is in contrast to previous results with BERT-Tiny (smallest model) as
the reference model where larger models had poor OOD-agreement and higher (or similar) shared-
invariances. Thus, we hypothesize that even though larger models don’t agree with the behavior of
smaller models from an agreement perspective, they still share the invariances generated by smaller
models. Interestingly, the opposite is not true i.e. smaller models don’t necessarily share invariances
generated w.r.t larger models as well as other larger models. To understand this more generally,
we report the average results for all models (as target models) by marginalizing them over all the
different reference models. We expect that metrics depending on model size (i.e., agreement rates)
should have uniform values across different target models. In contrast, metrics that are tied to larger
model sizes (i.e., shared-invariances) should peak for larger models even after averaging. We report
the result in Fig. 4-c, which are consistent with our proposition. It’s especially interesting that larger
models are able to share a more diverse set of invariances (both from other larger models and smaller
models) even when they are pretrained/finetuned on the same corpus as the smaller models.

5 RELATIONSHIP OF FAMILIAR MODELS WITH BLACK BOX APIS

In the previous sections we discussed specialist models that are tuned to perform well on a specific
task (e.g., sentiment analysis on SST2). However, in recent years the NLP community has shifted
focus towards building more generalist models that can perform a diverse set of tasks when prompted
with appropriate instructions and exemplars. Importantly, these models don’t need to update their
weights on downstream task-data as the instructions and exemplars can be directly provided in-
context during inference (Brown et al., 2020; Wei et al., 2022). However, the state-of-the-art of
these models are primarily available in the form of black-box APIs released by industrial research
labs, with little information available about their training. We explore how one can quantify the
behavioral similarity between models released via black-box APIs (InstructGPT family) and models
that are widely adopted in practice (e.g. GPT-2). We follow the methodology of Cheng et al. (2023)
for estimating output probability distribution over the task-labels (positive and negative sentiment)
from InstructGPT models. Specifically, we sample the output multiple times for each input and take
the mode as the final prediction and its frequency as the probability score for that particular label.

Firstly, we explore the effect of the size of the target model on the behavioral similarity along
Synonym-Invariance defined w.r.t GPT-2 and report the results in Fig. 5 (left). We use InstructGPT
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Figure 5: [Reference Model: GPT-2, Capability: Synonym-Invariance]. Comparing shared-
invariances between GPT-2 and various OpenAI models differing in size and finetuning along
Synonym-Invariance. Larger InstructGPT models (even with same IID accuracy) share more in-
variances with GPT-2. Also, state-of-the-art models finetuned with reinforcement learning (text-
davinci-003) share more invariances than their supervised finetuned counterparts (text-davinci-002).

models text-ada-001, text-babbage-001, text-curie-001, text-davinci-001 that roughly correspond to
model sizes: 350M, 1.3B, 6.7B, and 175B respectively (Gao et al., 2021). We perform all experi-
ments in a zero-shot manner. To reduce costs, we perform experiments on 100 randomly selected
samples from the SST2 test-set. The finetuned GPT-2 achieves 96% accuracy on this subset.

Larger InstructGPT models share more invariances with GPT-2: We note that there’s a sub-
stantial difference in IID performance between the smaller models (text-ada-001) and larger models
(text-curie-001, text-davinci-001). Moreover, text-ada-001 is not only less agreeable to the GPT-2
model, but also seems to be substantially less invariant to perturbations that GPT-2 is invariant on i.e.
low Hard-SCoPE and Soft-SCoPE. Interestingly, even though text-curie-001 and text-davinci-001
achieve similar IID accuracy (i.e. 94%) there’s substantial differences in their shared-invariances.
Thus, even though both models seem equivalent based on IID performance, using text-davinci-001
would ensure higher behavioral similarity from the perspective of shared-invariances. Also, this re-
sult ties back to our previous observations in Sec. 4.2 about larger models sharing more invariances.

RL based finetuning may retain more invariances: We explore the effect of different finetun-
ing methods for instruction following on shared-invariances in Fig. 5 (right). For this, we perform
experiments on text-davinci-001, text-davinci-002, and text-davinci-003 models released by Ope-
nAI. text-davinci-001 is finetuned using supervised learning on human and selected model written
demonstrations. While, text-davinci-002 utilizes the same objective function, it’s pretrained on a mix
of text and code. text-davinci-003 differs from text-davinci-002 by using reinforcement learning for
finetuning instead of supervised learning. We note that both text-davinci-002 and text-davinci-003
have similar performances across IID accuracy, agreement rates, and Hard-SCoPE. Interestingly,
there’s a substantial gap in their Soft-SCoPE values, indicating that even though both models re-
main invariant on an equivalent number of samples (similar hard-scope), text-davinci-003’s output
probability distribution is more invariant to perturbations generated along Synonym-Invariance.

6 CONCLUSION

We propose a framework for evaluating interpretable shared-invariances between two NLP models
by evaluating the degree to which a target model shares behavioral similarity on a linguistic capa-
bility defined with respect to a reference model. We conduct extensive experiments to highlight the
implications of different design choices (e.g. distillation) and find that shared-invariances tend to be
affected more along certain linguistic capabilities than others. Furthermore, we also analyze models
of different sizes and find that larger target models in general tend to share more invariances. Lastly,
we demonstrate the use of our framework in analyzing relationships between black-box APIs and
familiar models. One limitation of our current work is inefficient search methods as they need many
queries to generate X ′. Efficient search methods are necessary for generating perturbed samples
with reference to a black box APIs. Additionally, while we adopt the approach of Cheng et al.
(2023) for estimating predicted probabilities for instruction-tuned models, it would be interesting to
evaluate whether our insights vary across different probability estimation methods.
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Appendix for:
“Perturbed examples reveal invariances shared by

language models”

A ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide an overview of our implementation details. For all our experiments, we
use two NVIDIA A40 GPUs with 48GB of memory each. We use the standard model implementa-
tions provided by the huggingface transformers library (Wolf et al., 2019). We finetune all models
for 5 epochs with a batch size of 64 using Adam optimizer and a linear-drop learning rate schedule
with initial value of 2e-5.

B ADDITIONAL DATASET: AG’S NEWS

In this section, we present results on an additional dataset – AG’s news topic classification dataset
(Zhang et al., 2015). It’s a multi-class text classification task, where the goal is to classify text from
an article into one of four categories i.e., World, Sports, Business, and Sci / Tech. It contains 120, 000
training samples and 7, 600 test samples. Due to compute and time constraints, we randomly sample
a subset of 2, 000 samples from the test-set and conduct our experiments on them as base samples
(instead of the full test-set). We train models using the same hyper-parameters (learning rate, epochs,
etc) as SST2 on the full training set. We repeat the experiments from the main paper and plot the
results in Fig. 6 and Fig. 7. We note that the results are qualitatively similar across both the datasets.

Hard-SCoPE Soft-SCoPE0.0

0.2

0.4

0.6

0.8

1.0

Synonym-Invariance Typo-Invariance Figure 6: [Dataset: AG’s News,
Reference Model: BERT, Target
Model: DistilBERT]. Comparing
shared-invariances between Distil-
BERT and BERT on Synonym-
Invariance and Typo-Invariance de-
fined w.r.t BERT trained on AG’s
news dataset. Similar to our ob-
servations for SST2 in the main
paper, we observe that distilla-
tion hurts some capabilities (Typo-
Invariance) substantially more than
others (Synonym-Invariance).

b) Reference Model: BERT-Basea) Reference Model: BERT-Tiny c) Averaged over all possible Reference Models

Figure 7: [Dataset: AG’s News, Linguistic-Capability: Synonym-Invariance] Analyzing the effect
of size on shared-invariances within the BERT architecture family. Similar to results on the SST2
dataset in the main paper, we observe that larger target models tend to share higher invariances
irrespective of the reference model.
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Figure 8: Left: [Reference Model: BERT, Target Model: DistilBERT]. Comparing shared-
invariances between DistilBERT and BERT on Synonym-Invariance∗, Typo-Invariance∗, and Fair-
ness defined w.r.t BERT. While there isn’t a substantial difference between shared-invariances
along Synonym-Invariance∗ and Fairness, Typo-Invariance∗ is lower than both. Right: [Linguistic-
Capability: Fairness] Analyzing the effect of size on shared-invariances within the BERT archi-
tecture family. Similar to results on Synonym-Invariance in the main paper, we observe that larger
target models share more invariances irrespective of the reference model. Whereas OOD-agreement
is higher for models in similar size ranges.

C ADDITIONAL LINGUISTIC CAPABILITY: FAIRNESS

In the main paper, we performed experiments along two linguistic capabilities i.e., Synonym-
Invariance and Typo-Invariance. In this section, we explore an additional linguistic capability i.e.,
Fairness. Fairness perturbs the input text (“Men love sports.”) by substituting words correspond-
ing to protected categories (such as men) with protected categories (e.g. ‘women’ ≈ ”Women love
sports.”) from within the same stereotype domain (i.e. Gender). We use a greedy search approach
for efficiently finding suitable transformations. We do not adopt any additional constraints on this
linguistic capability.

Synonym-Invariance and Typo-Invariance are agnostic to the domain of base samples x ∈ X i.e.,
they can be evaluated on any arbitrary set of base samples. In contrast, Fairness is only well defined
if x contains words corresponding to different protected categories. Thus, we use the corpus released
by Sotnikova et al. (2021) containing sentences with words corresponding to 71 protected categories
from 6 different stereotype domains as base-samples X for experiments pertaining to evaluation of
Fairness capability. Note, previous work on evaluating linguistic capabilities for a particular model
(Ribeiro et al., 2020) also perform a change in base samples (i.e., use samples not necessarily from
the test-split) for evaluating certain capabilities in order to decouple testing from implementation.
Additionally, We control for the change in base samples (X) by conducting additional experiments
on previously studied capabilities, such as Synonym-Invariance and Typo-Invariance, using the new
set of base samples. We label them Synonym-Invariance∗ and Typo-Invariance∗ respectively. This
allows us to draw meaningful comparisons across different capabilities.

In Fig. 8 (left), we first investigate the differences between different linguistic capabilities for a
particular design choice. Thus, similar to Sec. 4.1 in the main paper, we fix BERT as the refer-
ence model and DistilBERT as the target model. We observe that while Fairness has lower OOD-
agreement rate compared to Synonym-Invariance∗, there isn’t a substantial difference between the
shared-invariances (Hard-SCoPE & Soft-SCoPE). Thus, even though DistilBERT disagrees in its
predictions with BERT for Fairness more (compared to Synonym-Invariance∗), DistilBERT is in-
variant in its behavior on perturbations generated along Fairness to a similar degree as Synonym-
Invariance. Additionally, we also note that Typo-Invariance∗ shares invariances to a lower degree
compared to both Synonym-Invariance∗ and Fairness further highlighting the role of MLM based
training objective as word-substitution is a common perturbation in both Fairness and Synonym-
Invariance∗. In Fig. 8 (right), we report the shared-invariances between models across different
sizes belonging to the same architecture family. Specifically, for each target model we report the av-
eraged results over all possible reference models. Similar to our observations in Sec. 4.2 and Sec. 5
in the main paper for Synonym-Invariance, we observe that larger target models seem to share more
invariances (with models of any size) on perturbations generated along Fairness.
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Figure 9: [Reference Model: final-checkpoint
i.e. 100% pre-training, Target Model: mt for t%
pre-training, Linguistic-Capability: Synonym-
Invariance] Comparing different metrics to ana-
lyze how intermediate-checkpoints share capabili-
ties on Synonym-Invariance defined w.r.t the final-
checkpoint. Even though the initial-checkpoint
(0% pre-training) is not much better than a
random-baseline, it shares a high-degree of Hard-
SCoPE and IID/OOD-Agreements. Whereas
Soft-SCoPE grows in a gradual manner over the
course of pre-training.

D PRETRAINING DYNAMICS

In the main paper we focused on evaluating shared capabilities between two models differing in de-
sign choices along different linguistic capabilities. Additionally, we can also utilize our framework
to empirically understand the dynamics of these linguistic capabilities over the course of pre-training
of a language model. This line of analysis can help us probe questions such as: Which linguistic
capabilities are learnt earlier during pre-training?, How does a linguistic capability evolve over the
course of pretraining?, etc. To probe such questions effectively, we utilize 21 (equally-spaced) inter-
mediate pre-training checkpoints for BERT released by Sellam et al. (2022). Since, we are primarily
interested in quantifying the effect of pre-training (up to a particular checkpoint) in capturing differ-
ent linguistic capabilities, we refrain from finetuning the full model (on SST2) and rather only train
the linear probe layer on top of the frozen base network.

The curious case of 0% pretraining: In Fig. 9, we report values for all the checkpoints evaluated
along Synonym-Invariance capability defined with the final-checkpoint (i.e., 100% pretraining) as
the reference model (e.g. Soft-SCoPE (mt | m100% for tth timestamp). We note that the model cor-
responding to 0% pre-training (finetuned using random initialization) behaves as a random baseline
≈ 0.5 (or 50%) IID accuracy. We find that even though the network is akin to a random baseline,
during prediction it outputs only one label: ‘positive’ (in contrast to predicting both classes with
equal probabilities) irrespective of the input. Surprisingly, this model has high IID and OOD agree-
ment rates (≈ 0.8 or 80%) and the highest possible Hard-SCoPE value i.e. 1 with respect to the
final-checkpoint. On a deeper look, we find that the prediction distribution for the final distribu-
tion is also biased towards the ‘positive’ label. In contrast, the Soft-SCoPE measure increases in a
monotonically sublinear fashion over the course of pre-training, indicating that even though the pre-
dictions in both IID and OOD states might be similar (high IID/OOD-Agreement rates) and invariant
(high Hard-SCoPE) the change in output probability vectors between the IID and OOD predictions
varies significantly for the 0% and 100% (final) checkpoints. These observations further reinforce
the importance of evaluating a wide range of metrics to gain a holistic understanding of the behav-
ioral similarities between models as certain metrics can be especially deceptive in the low-accuracy
regime due to larger possible variance in the underlying model structure.

Invariances for some capabilities are acquired earlier than others: Next in Fig. 10 we look at
differences in evolution of different linguistic-capabilities over the course of pre-training. Firstly, in
Fig. 10 (left), we observe that Soft-SCoPE (shared-invariances) along Synonym-Invariance is signif-
icantly higher compared to Typo-Invariance for the major chunk of pre-training. Note, both of them
converge to 1 at 100% pretraining as the Soft-SCoPE of a model with itself is 1 (irrespective of the
linguistic-capability). Similar to our observations in Sec. 4.1, we posit that the shared pre-training
objective (i.e. MLM) and training corpus leads to a higher degree of shared invariances much earlier
in the pre-training for Synonym-Invariance compared to Typo-Invariance, which remains stagnant
during most of the pretraining, with a sudden increase towards the end.

Retaining previously accquired invariances: Till now our discussions have revolved around an-
alyzing shared-invariances across different metrics (for a particular capability) and different capa-
bilities (for a particular metric) with the final-checkpoint (i.e. 100% pre-training) as the reference-
model. Thus, the central question for previous experiments has been: How (behaviorally) similar
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Figure 10: Left: [Reference Model: final-checkpoint i.e. 100% pre-training, Target Model: mt

for t% pre-training, Metric: Soft-SCoPE] Comparing the evolution of soft shared-invarinces (i.e.
Soft-SCoPE) for different linguistic-capabilities (i.e. Synonym-Invariance, Typo-Invariance) during
pre-training. While all trends grow at a monotonically sub-linear pace, invariances for some are
acquired earlier than others. Right [Reference Model: mt−1 for t% pre-training, Target Model:
mt for t% pre-training, Soft-SCoPE] Investigating the retention of previously acquired shared-
invariances for different linguistic-capabilities (i.e. Synonym-Invariance, Typo-Invariance) during
pre-training. Mild values indicate that many invariances are not retained during the first-half of pre-
training, whereas checkpoints become more similar to the final-checkpoint as well as their previous
counterparts during the end of pre-training.

is an intermediate checkpoint to the final checkpoint? (w.r.t a particular metric along a particular
linguistic capability). However, this setup provides little insight regarding whether the models retain
their behavioral similarity w.r.t their previous counterparts as well (e.g. Soft-SCoPE (mt | mt−1

for t% pre-training). Thus to probe questions such as: How (behaviorally) similar is an intermedi-
ate checkpoint to its previous counterpart?, we calculate values of Soft-SCoPE for each checkpoint
with the previous checkpoint as the reference-model and report the results in Fig. 10 (right). A low
value for a particular checkpoint indicates that the model has changed a lot w.r.t its predecessor
while a high value would indicate that the model has retained the previously acquired behavioral
invariances. We observe that the Soft-SCoPE values remain centered around mild values for most
of the pre-training, indicating that while models are becoming more similar to the final-checkpoint
they are only retaining a minor extent of their previously acquired behavioral shared invariances. We
note that the shared invariances show a linear increase only towards the very end of the pre-training.

E ADDITIONAL EXPLANATION FOR SHARED-INVARIANCES

E.1 GENERATING INVARIANT PERTURBATIONS

In this section, we analyze properties of perturbations generated along different linguistic capa-
bilities. While the primary goal of generated perturbations is to maintain behavioral invariance
with respect to the reference model, it is possible that the search method is unable to find can-
didates that fulfill this criterion in the finitely large transformation space. Thus, in order to ver-
ify whether the generated perturbations are truly behaviorally invariant for the reference model
we visualize the distribution of L(m(x),m(x′)) ∀ (x, x′) ∈ (X,X ′) (refer Fig. 11). Note,
L(m(x),m(x′)) = ∥m(x) − m(x′)∥1 is an objective function that penalizes the difference be-
tween reference model’s output softmax probabilities (behavior) on base and perturbed inputs i.e.,
lower L(m(x),m(x′)) implies more behavioral invariance (refer Eq. 1).
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a) Capability: Synonym-Invariance b) Capability: Typo-Invariance
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Figure 11: [Reference Model: BERT] Distribution of L(m(x),m(x′)) for x′ ∈ X ′ generated along
Synonym-Invariance and Typo-Invariance. We note that the distribution is skewed towards lower
L(m(x),m(x′)) values and most samples generated are at least invariant in predictions (argmax-
invariant).

In Fig. 11 (left) we note that for Synonym-Invariance, the distribution is highly skewed towards
lower L(m(x),m(x′)) values indicating that most generated perturbations have minimal difference
between the predicted probability distribution on the base and perturbed samples for the reference
model and all of them are argmax-invariant i.e., have same prediction on each base-perturbed sample
pair. While, for Typo-Invariance (Fig. 11 right), the L(m(x),m(x′) values are higher and there are
a few argmax-variant samples as well. Note, the argmax-variant samples would be ignored while
evaluating measures such as Hard-SCoPE and Soft-SCoPE (refer Eq. 2 & Eq. 3).

E.2 RELATIONSHIP BETWEEN AGREEMENT-RATES AND SHARED-INVARIANCES

In this section, we delve deeper into the relationship between agreement-based metrics i.e., IID-
agreement & OOD-agreement and invariance-based measures i.e., Hard-SCoPE & Soft-SCoPE.
While, Hard-SCoPE doesn’t solely depend on any one of IID-agreement or OOD-agreement, look-
ing at both of them together can give indications about the Hard-SCoPE value. For instance, consider
a binary classification setup with labels ‘Class-A’ and ‘Class-B’ and two models m1 and m2 that
have predictions ym1(x) & ym1(x

′) and ym2(x) & ym2(x
′) for a particular base-perturbed sample

pair (x, x′) ∈ (X,X ′).

In such a setup, the Hard-SCoPE can be seen as “agreement between agreement-rates” i.e., Hard-
SCoPE is 1 only when both agreement-rates are either 0 or both are 1. Hard-SCoPE reaches a
value of 1 when m2 has consistent predictions for both IID and OOD inputs (ym2(x) = ym2(x

′)),
on samples where m1’s predictions are invariant (ym1(x) = ym1(x

′)). In a binary classification
scenario where only two predictions are possible (Class-A or Class-B), achieving a Hard-SCoPE
value of 1 requires either both m1 and m2 to predict the same label, resulting in IID-Agreement and
OOD-Agreement both being 1, or they exhibit different predictions, leading to both IID-Agreement
and OOD-Agreement being 0 (row 1 and 4 in Tab. 1). In cases where m2 agrees with m1 for
IID(OOD) inputs but disagrees on OOD(IID) inputs, the Hard-SCoPE would be 0 as m2 must have
changed its prediction after the perturbation, given that m1 is invariant to the perturbation by design
(row 2 and 3 in Tab. 1). Importantly, this behavior does not hold for multi-class classification as it’s
possible for m2 to change its prediction even when both IID and OOD agreement are 0 (row-5 and
6 in Tab. 1).

We also discuss the relationship between Hard-SCoPE and Soft-SCoPE. Soft-SCoPE weighs the
contribution of each base-perturbed pair by a function of similarity in their changes in the ouput
softmax probability under a perturbation. Importantly, this weight lies between [0, 1]. Thus, Soft-
SCoPE is upper-bounded by Hard-SCoPE i.e., 0 ≤ Soft-SCoPE ≤ Hard-SCoPE.

F SHARED-INVARIANCES ACROSS ARCHITECTURE FAMILIES

In this section, we aim to investigate how differences in the architecture family of the reference
and target models affect their shared-invariances. Intuitively, one would expect a higher degree of
shared-invariances for models having similar architectures, courtesy of common inductive biases
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Setup
m1’s prediction m2’s prediction

IID-Agreement OOD-Agreement Hard-SCoPE
ym1(x) ym1(x

′) ym2(x) ym2(x
′)

Binary Classification

Class-A Class-A Class-B Class-B 0 0 1

Class-A Class-A Class-B Class-A 0 1 0

Class-A Class-A Class-A Class-B 1 0 0

Class-A Class-A Class-A Class-A 1 1 1

Multi-class Classification
Class-A Class-A Class-B Class-B 0 0 1

Class-A Class-A Class-B Class-C 0 0 0

Table 1: Relationship between IID-agreement & OOD-agreement (agreement-rates) and Hard-
SCoPE (shared-invariance). In a binary classification scenario, Hard-SCoPE can be seen as “agree-
ment between agreement-rates” as it’s 1 when either IID- and OOD- agreement are both 0 or both
1. However, this relationship doesn’t hold for multi-class classification setup.

induced by the architectural family. Thus, to validate this intuition we fix the reference model as
BERT and compare shared-invariances of target models both from the same architecture family
(DistilBERT) and a different one (GPT-2). We report the results in Fig. 12.

Models from same architecture family share higher behavioral similarity & invariances: We
observe that the difference between the IID-Accuracies (Gap in IID-Accuracy) is higher for Distil-
BERT compared to GPT-2 indicating that when evaluated conventionally, the gap between general-
ization ability of GPT-2 and BERT would perceived to be smaller than DistilBERT and BERT. How-
ever across both linguistic capabilities i.e., Synonym-Invariance and Typo-Invariance, DistillBERT
achieves higher IID and OOD agreement rates compared to GPT-2 highlighting when compared
at an instance level DistilBERT behaves more similarly to BERT. Interestingly, even though Dis-
tilBERT only slightly edges GPT-2 in Hard-SCoPE, there is a substantial difference between their
Soft-SCoPE values. This implies that DistilBERT is not only invariant on a large number of samples
(that BERT is invariant on), but also the change in the output probability between base and perturbed
predictions for DistilBERT is quite similar to that of BERT compared to GPT-2 and BERT.

a) Capability: Synonym-Invariance b) Capability: Typo-Invariance

Figure 12: [Reference Model: BERT, Linguistic-Capability (left): Synonym-Invariance,
Linguistic-Capability (right): Typo-Invariance] Even though the IID performance gap is smaller
between GPT-2 & BERT compared to DistilBERT & BERT. For Synonym-Invariance & Typo-
Invariance defined w.r.t BERT, DistilBERT (model from same architecture family) has a higher
degree of shared capabilities than GPT-2 (model from different architecture family)

G ADDITIONAL TASK: LANGUAGE MODELLING

In the main paper, we presented results across multiple linguistic-capabilities for different reference
and target model combinations for one particular task i.e., sentiment classification. In this section,
we present results on an additional task i.e., language modeling. More specifically, rather than fine-
tuning the pre-trained language models on a downstream task and defining a linguistic-capability

19



w.r.t them, we treat language modeling as a task in itself and define linguistic-capabilities w.r.t
the pre-trained language models. We use cosine-similarity for computing agreements as language
models have a large vocabulary with many tokens repeating with minor variations. We repeat the
experiments presented in the main paper with models from the GPT-2 language modeling architec-
ture family on the SST-2 dataset and plot the results in Fig. 13 and Fig. 14. We note that the results
are qualitatively similar to those observed with the BERT model in a classification setup in the main
paper highlighting that the effects design choices on linguistic-capabilities investigated in this paper
are beyond task-specificities.

Hard-SCoPE Soft-SCoPE0.0

0.2

0.4

0.6

0.8

1.0

Synonym-Invariance Typo-Invariance Figure 13: [Dataset: SST-2, Refer-
ence Model: GPT-2, Target Model:
DistilGPT-2, Task: Language Mod-
eling] Similar to results on sentiment-
classification, we note that distillation
affects shared-invariances across some
linguistic-capabilities more than others.

b) Reference Model: GPT-2 XLa) Reference Model: GPT-2 c) Averaged over all possible Reference Models

Figure 14: [Dataset: SST-2, Linguistic-Capability: Synonym-Invariance, Task: Languag Mod-
eling] Similar to results on sentiment-classification, we find that larger target models tend to share
higher invariances irrespective of the size of the reference model.

H SAMPLE COMPLEXITY FOR FRAMEWORK EFFECTIVENESS

In this section, we examine the impact of “number of base samples” on our proposed metrics and
report the results in Fig. 15. Specifically, we report the mean metric values and the 95% confidence
interval of this estimate computed over 100 trials for many values of base-samples count. We find
that our metrics provide tight confidence intervals for as low as 50 base samples. Please note that
for the previous experimental results in the main paper and the supplementary we utilize ≈ 1000
samples.

Figure 15: [Reference Model: BERT, Target Model: DistilBERT]. Examining the impact of base-
samples / instances (X) count on the proposed metrics i.e., Hard-SCoPE (left) and Soft-SCoPE
(right). We report an estimate of the mean metric values and the 95% confidence-interval (y-axis)
around this estimate computed over 100 trials for each base-sample count (x-axis). We find that the
both the metrics are stable for as low as 50 base-samples with tight confidence-intervals.
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I ADDITIONAL GOAL FUNCTION RESULTS

In the main paper we performed experiments with the L1 norm as the objective function described
in Eq. 1. However, it can take other forms as well as long as it captures differences in both direction
and magnitude between the reference model’s output on base and perturbed samples i.e., m(x) and
m(x′). In this section, we explore whether our insights are sensitive to the choice of the objective
function by employing KL-divergence as the objective function instead. We report the results for
one of the analyses in Fig. 16 and observe that there are minimal effects on the overall takeaway
when using different objective functions.

Figure 16: [Reference Model: BERT, Target Model: DistilBERT]. Analyzing the effect of different
objective functions (L) that guide the optimization process of the goal function while generating
perturbations for a given reference model. We observe that different objective functions (L1 norm
on the left, KL-divergence on the right) have minimal effect on the overall takeaway, i.e., distilling
BERT affects some capabilities more than others.

J ADDITIONAL CORRELATION RESULTS
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Figure 17: Correlation between proposed invariance-based metrics (Soft-SCoPE) and existing met-
rics (Gap in IID-Accuracy) for different reference and target model pairs. Similar to results noted int
he main paper with OOD-Agreement, Gap in IID-Accuracy also poorly correlate with invariance-
based metrics as the size of the reference model is reduced.
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Figure 18: Correlation between proposed invariance-based metrics (Soft-SCoPE) and existing met-
rics (IID-Agreement) for different reference and target model pairs. Similar to results noted int he
main paper with OOD-Agreement, IID-Agreement also poorly correlate with invariance-based met-
rics as the size of the reference model is reduced.
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