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The hippocampal formation is crucial for learning and memory, with submodule
CA3 thought to be the substrate of pattern completion. However, the underlying
synaptic and computational mechanisms of this network are not well understood.
Here, we perform circuit reconstruction of a CA3module using three dimensional (3D)
electronmicroscopy data and combine this with functional connectivity recordings and
computational simulations to determine possible CA3 network mechanisms. Direct
measurements of connectivity schemes with both physiological measurements and
structural 3D EM revealed a high connectivity rate, multi-fold higher than previously
assumed. Mathematical modelling indicated that such CA3 networks can robustly
generate pattern completion and replay memory sequences. In conclusion, our data
demonstrate that the connectivity scheme of the hippocampal submodule is well suited
for efficient memory storage and retrieval.

connectomics | CA3 | electron microscopy | pattern completion | memory

Despite the well-known role of the hippocampus in learning andmemory, the underlying
mechanisms of how these functions are executed remain unclear. Theoretical work has
long hypothesised that the pyramidal cells in the hippocampal CA3 region possess
strong recurrent connectivity and, thus, could form an autoassociative network capable
of pattern completion, and thereby, memory recall (1–13); see also ref. 14. Anatomical
evidence for intrinsic CA3 connections has been described as far back as the seminal work
from Ramón y Cajal (15) and Lorente de Nó’s detailed depictions of the cerebral cortex
(16). Since these early descriptions, a number of studies have found strong recurrent
connectivity in CA3 in both rats (17–22) and macaque (23). Together, this large body of
experimental and theoretical studies strongly suggest that the CA3 hippocampal region
plays a key role in memory recall.

A recent functional study brought into question much of what had previously been
assumed with regard to the CA3 network: Guzman et al. (24) found a very low
rate of connectivity among CA3 pyramidal neurons. These sparse connections were
often embedded in richly interconnected subnetworks exhibiting an overrepresentation
of disynaptic motifs. A computational model of a full-sized CA3 network showed
that, despite this low connectivity, pattern completion could be achieved thanks to
the underlying non-randomness and enrichment of disynaptic motifs. These findings
highlight how, in order to understand the specific functions of a brain region, it
is first essential to know how its individual components fit together. However, the
reproducibility of findings is also key to prevent future hypotheses from being overly
dependent on a single body of experimental evidence. Thus, we sought to readdress the
question of how the CA3 pyramidal network is organized using a dual experimental
technique approach.

Since the first full reconstruction of an entire nervous system in the C. elegans
(25), numerous technological advances have led to improved methods for study-
ing the precise wiring of neuronal networks, allowing the investigation of larger
connectomes (26). For structural anatomy, electron microscopy (EM) remains the
gold standard for observing synaptic contacts between neurons; meanwhile, paired
patch-clamp recordings provide the functional counterpart for evidence of synaptic
coupling. Here, we combine two state-of-the-art versions of these technologies—
multi-beam scanning three dimensional (3D) EM and multipatch electrophysiology
recordings—to perform a large-scale connectivity analysis of the CA3. We then
apply our experimental findings to a computational model to determine how the
network properties we describe may facilitate pattern completion and memory
replay.
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Results
3D Electron Microscopy of CA3 Pyramidal Networks.We
investigated the structural connectivity within CA3 of a P31
male mouse. For this, we acquired a 3D-EM dataset using
an automated tape-collecting ultramicrotome and multiple-
beam scanning EM (ATUM-multiSEM) (27–30). The 3D-EM
dataset was 965 ⇥ 808 ⇥ 62 �m3 in size at a resolution of
4 ⇥ 4 ⇥ (35 � 40) nm3, spanning all layers of CA3 (containing
n = 986 neuronal cell bodies, Fig. 1A). We then identified
seven pyramidal neurons with at least two axon collaterals and
reconstructed their complete axonal arbours throughout the
dataset (Fig. 1 B and C ). The average reconstructed axonal
path length per neuron was 1.7 mm (12 mm total). Along
these axons, we identified all outgoing synapses (n = 1,062)
and followed their postsynaptic dendrites either to the soma
(n = 304 whole cells, 362 synapses, example Fig. 1C ) or until
the border of the dataset (n = 643 dendrites, 700 synapses).
In our dataset, we did not observe any autapses (cells synapsing
onto themselves). However, in 10 % (96/947) of all connections,
we observed two cells connected by multiple synapses. Next, we
classified all postsynaptic neuronal cells based on their somato-
dendritic morphology and spininess into excitatory (n = 795)
and inhibitory (n = 152).

We then determined the number of synaptically connected
postsynaptic CA3 pyramids with their soma in a certain distance

A B D

C

Fig. 1. Structural connectivity analysis of CA3 pyramidal neurons using
electron microscopy. (A) 3D EM dataset of area CA3 from a P31 mouse ac-
quired using ATUM-multiSEM (dataset available in online viewer webknossos
(31): https://wklink.org/7823). (B) Dendritic reconstructions of 55 pyramidal
cells out of 986 neurons (gray spheres). All excitatory postsynaptic targets
of one axon shown (panel C). (C, Left) Reconstruction of five pyramidal
cells (dendrites and complete axons with all 744 outgoing synapses; five
of the seven reconstructed neurons are shown for better visibility) and all
of their targeted postsynaptic excitatory neurons in the dataset (somata
shown as spheres in blue hues); all neurons in the dataset (gray somata).
(Right) Example excitatory synapse made from presynaptic axon (ax) onto a
spine (sp) of a CA3 pyramidal neuron; the black arrow points to location of
that synapse. (D) Analysis of connection probability based on inter-somatic
distance. Histogram of the number of possible connections (Possible conn.)
from seven presynaptic pyramidal cells to all neurons in the dataset (top,
corrected for prevalence of inhibitory neurons; see Materials and Methods)
and the number of all identified postsynaptic targets (Found conn., Center).
Connectionprobability (Bottom) determined as the ratio of connections found
(all postsynaptic excitatory neuronswith soma in the dataset) and all possible
targets (soma map), plotted versus distance. Note that the proximal EM-
based connectivity ismore than 10-fold above previous reports for pyramidal
cells (purple dashed line) (24). Gray lines represent individual neurons; the
black line shows average of all seven fully reconstructed neurons. Scale bars,
200 �m (B and Left C). 1 �m (Right C).

range from the presynaptic soma and the total number of all
CA3 pyramids in that same distance range. This yielded the
CA3 pyramidal connection probability in dependence of inter-
somatic distance (Fig. 1D). We found a local connectivity of
11.2 % ± 2.7 % within 50 �m of the presynaptic soma that
dropped within 250 �m to 5.5 % ± 1.9 % (mean ± s.e.m.). To
our surprise, this exceeds the previously reported connectivity
by up to an order of magnitude (24). While the reduction of
connectivity with larger inter-somatic distance could be partly
caused by truncated axons at the border of our thin (62 �m) 3D
EM dataset, the more than 10-fold higher proximal connectivity
would likely further increase with additional axonal path length
reconstructed. Thus, our structural data indicate that connectiv-
ity within the CA3module is considerably higher than previously
reported.

Functional Connectivity of CA3PyramidalNetworks. In order to
test the functional connectivity withinCA3, we performed simul-
taneous whole-cell recordings of up to eight neurons (Fig. 2A and
B). Such octuple recordings offer a combinatorial advantage over
dual or quadruple recordings in that 56 connections can be tested
at once, thereby facilitating connectivity studies in brain areas
even where a low rate of connectivity is suspected (32). Synaptic
coupling was tested by driving presynaptic action potential firing
with somatic current injections leading to excitatory postsynaptic
potentials (EPSPs) in the case of coupling (Fig. 2 C andD). This
technique enabled us to analyse the connection probability and
synaptic properties among pyramids within the CA3. Neurons
were recorded at depths between 27 and 105 �m from the surface
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Fig. 2. Functional connectivity between CA3 pyramidal neurons. (A) sum-
mary of electrophysiology experiments and schematic demonstrating the
combinatorial advantage of octuple recordings. (Bi) example recording
showing firing patterns of 7 CA3 pyramids, (Bii) morphological reconstruction
of cells shown in Bi. (C, Left) histogram of EPSP amplitudes; inset, histogram
of log EPSP amplitudes and gaussian fit; and Right, boxplot of EPSP latencies.
(Di) representative example of a connectivity screen between 6 highly
interconnected CA3 pyramidal neurons. (Dii) schematic depicting location
and connections between the recorded neurons.
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of the slice (recording depth 61± 17 �m,mean± SD) and along
the proximal–distal axis of the CA3.

First, we studied the basal connectivity scheme: We identified
103 connections out of a possible 1,172 tested connections
between CA3 pyramidal neurons. This high connectivity rate
of 8.8% is in line with our EM data, thus, providing functional
evidence to support our structural findings of a highly intercon-
nected network. The median EPSP had an amplitude of 0.66
mV [0.33 to 1.08] and an onset latency of 1.2 ms [0.8 to 1.7]
Fig. 2C, median [IQR], which strongly suggests mono-synaptic
connections (24, 33, 34). As seen in other brain regions (35–
38), the amplitude of EPSPs followed a log-normal distribution
with many small-amplitude connections and a small number of
very large-amplitude connections. Furthermore, we assessed the
distance dependence of connectivity. In our electrophysiological
data, we did not find any distance dependence of connectivity
within the range tested (SI Appendix, Fig. S1; 0 to 430 �m;
P = 0.147, Cochran-Armitage Trend Test).

Next, we investigated whether specific motifs occur within
connected cells or whether connectivity was randomly distributed
throughout the network. First, we looked at pairs of neurons (Fig.
3Ai); we found that 6 pairs (out of 586 tested pairs) showed re-
ciprocal connections (Fig. 3A ii); this number is not significantly
higher (P = 0.301) than the expected number of 4.5 pairs given
a connectivity rate of 8.8%. We then looked at disynaptic motifs
within triads of neurons (Fig. 3Bi). In our recordings, we tested
464 neuron triplets. Within these data, we found instances of

divergent, convergent, and chain motifs (Fig. 3Bii). However,
we did not find that these motifs occurred more frequently than
chance, given our basal connectivity rate of 8.8%.

Thus, both our structural and functional data point toward a
high rate of interconnectivity within theCA3 pyramidal network.
We next looked at how this high connectivity may contribute to
the functional role of the CA3.

Computational Modelling of the CA3 Network.How do pattern
completion and memory replay depend on the recurrent excita-
tory connectivity within a neuronal module? Previous theoretical
work has shown how a network with sufficiently strong recurrent
connectivity could allow for pattern completion (1–14). In ref.
24, a low connection probability among CA3 pyramidal cells was
found, and using binary-neuron networks and binary synaptic
weights, it was argued that a higher-than-random distribution
of disynaptic motifs could be essential for pattern completion.
To readdress this question in light of our experimental findings,
we performed computational modelling in networks of spiking
neurons and realistic distributions of synaptic conductances to
study howpattern completion and the successful replay of a stored
sequence depend on connectivity and other network parameters.

We simulated spiking networks of N excitatory and N/4 in-
hibitory integrate-and-fire units. Excitatory cells formed random
recurrent connections with probability c, and the corresponding
synaptic weights were drawn from a log-normal distribution.
Within such a network, subgroups of M excitatory neurons
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Fig. 3. Connectivity motifs within the CA3 pyramidal network. (Ai) observed (Obs) and simulated (Sim) numbers of possible motifs between two pyramidal
neurons. The height and error of the simulated bars indicate the mean and SD of the outcome of 10,000 simulations, where neurons randomly connect with
a probability of 8.8 %. In each simulation (as in experiments), 586 neuron pairs were sampled. P-values indicate the probability that values as high as those
observed would occur in randomly distributed networks. (Aii, Left) biocytin labelling of two reciprocally connected pyramidal neurons in CA3, and Right, voltage
traces (black and gray colors encode neurons 1 and 2) showing reciprocal connection. (Bi) observed and simulated numbers of disynaptic motifs. Simulations
as in Ai, with 464 triplets being tested. (Bii, Left) biocytin labelling of three neurons connected via a chain motif and, Right, voltage traces (black, blue, and gray
colors for cells 1, 2, and 3, respectively) demonstrating a chain motif; cell 1 is presynaptically connected to cell 2, which is in turn the presynaptic partner of
cell 3.
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(M ⌧ N ) were defined as patterns (or assemblies) by increasing
the weights of synapses between the neurons within each
pattern. Furthermore, a sequence of patterns was embedded
in the network by increasing weights between neurons across
patterns (Fig. 4A; see Materials and Methods for details). This
configuration matches the random connectivity distribution
found in our experiments, as all neurons in our excitatory network
recurrently connect with the same probability c, and only a very
small fraction of weights are strengthened to embed the sequence.
Inhibitory weights were set to balance excitation such that the
network exhibits an asynchronous-irregular activity state (13, 39).

To test whether an embedded sequence can be replayed, we
perform a brief current injection to half of the neurons of the
first pattern. If the resulting activity pulse propagates through
the whole sequence without significant attenuation or spread to
other neurons, we consider that our “memory” was replayed and
pattern completion was successful (Fig. 4 B, Right). Otherwise,
the replay is considered to have failed (Fig. 4 B, Left).

In numerical simulations, we find that successful replay
requires a certain minimum connectivity, c, and that this
minimum depends primarily on the pattern size M , indicating
that the parameters c and M are most important (Fig. 4C ).
The dependence of replay on network size N is weaker, and
larger networks require either a slightly higher connectivity
or a slightly larger pattern size (Fig. 4 C and D). Finally,
larger sequence weights enable a lower pattern size (Fig. 4E).
Thus, our simulations on memory replay predict (for a given

connectivity) lower bounds for the sequence synaptic weight
and the pattern size M . For the experimentally observed high
connection probabilities within the CA3 pyramidal network,
pattern completion can occur for a wide range of parameters
without the need for a non-random distribution of disynaptic
motifs.

Discussion
Resolving local connectivity schemes is essential for addressing
the underlyingmechanisms of neuronal network processes. How-
ever, the gold-standard techniques for studying local connectivity
structurally and functionally come with the caveat of slicing
artifacts, rendering results likely an underestimation of neuronal
connectivity (40–42). Despite this underestimation, we find
remarkable corroboration between our structural and functional
datasets, observing high rates of connectivity in both our 3D
EM and electrophysiology data. These results are in line with the
abundance of literature describing the CA3 as a highly recurrent
network (1, 8, 10, 12, 43).

Our results present a stark contrast to those of Guzman et al.
(24) who saw a 0.9% connectivity rate between CA3 pyramidal
neurons of rats. We believe that this discrepancy is caused by
a combination of factors. First, our study is performed in mice
rather than rats. Connectivity may be influenced by species. In
particular, the gross architecture of the CA3 is different across
species, with species such as rabbits displaying a distinct reflected

A

C D E

B

Fig. 4. Connectivity and pattern size determine conditions for successful replay. (A) Network model of N/4 inhibitory cells (“I,” Left) and N excitatory cells (“E,”
Right) with connectivity c and a log-normal distribution of weights (Bottom). Spike-timing-dependent plasticity (STDP) in the “I”-to-“E” connections balances the
network. Ten patterns of sizeM are embedded and sequentially connected with enlarged weights as compared to background weights (for simplicity, only four
patterns sketched); for details, see Materials and Methods. (B, Top) raster plots (red: E cells in patterns, gray: E cells not in patterns, blue: I cells) and, Bottom,
population rate of the embedded sequence. Horizontal gray lines separate patterns (in sequence order from Bottom to Top). The first pattern in the sequence
is depolarized by a brief current injection (yellow shade and arrow) to a fraction of its cells, eliciting propagation of activity across the sequence. (Left) Activity
dies out; replay is unsuccessful. (Right) The sequence is successfully replayed. (C) percentage of successful replays (color coded) for two di�erent network sizes
N, as a function of connectivity c and pattern size M. For a given c, replay requires a minimum M, and vice versa. This relation is well fitted by the white dashed
line, which indicates M · c = const. Numbered magenta squares correspond to the examples in B. (D) percentage of successful replays for connectivity c = 8%
and sequence weight 50 pS, as a function of pattern size M and network size N. For larger networks, replay requires slightly higher connectivity. (E) percentage
of successful replays for connectivity c = 8% and network size N = 50,000. Larger synaptic weights allow for lower pattern size.
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blade within the curve of the dentate gyrus (44). In this respect,
mice and rats are similar, both lacking this feature. However,
a number of comparative studies and meta-analyses have shown
that, in the hippocampus, structural volume, cell number, and cell
densities vary considerably not just across species but even across
strains within a species (43, 45–47). Slicing will impact the num-
ber of surviving synaptic contacts differently in networks with
varying cell densities, which in turn, will impact the measurable
connectivity remaining in the slice. A second critical difference
between the two studies is the slice storage method. Here, we
store slices in an interface chamber which has previously been
shown to preserve more network activity than classical beaker
storage (48). In contrast, Guzman et al. (24) use classical beaker
storage. We, therefore, believe that a combination of the above
factors may contribute to the large difference in connectivity rates
seen between our study and that of Guzman et al.

We consider our results to provide a more realistic represen-
tation of excitatory recurrent connectivity in the CA3 network
in behaving animals than previous experimental work: While
the preparation of acute slices may induce some processes
that alter synaptic connectivity, samples prepared for EM are
fixed during perfusion. This immediate fixation preserves the
structure as it was in its last in vivo state, and therefore, gives
a representation of the network with as close-to-real likeness as
possible. Although our EM data come from a single mouse, the
results of our multi-beam 3D scanning EM and multi-patch
whole cell recordings demonstrate remarkable harmony with one
another, thus boosting their validity and serving as a control for
each other. In this study, the functional data (from 52mice) were
first collected. Following this, the structural data were collected
in a second laboratory, independently from the functional data.
The corroboration of high connectivity, therefore, strengthens
the results coming from our two-stranded approach. This study
further represents the first time such a large-scale high-resolution
3D reconstruction has been performed on the CA3 region of
the hippocampus. Our EM and electrophysiological data do
show one contrasting result: Our structural data show a distance
dependence of connectivity while this relationship is not seen in
our functional data. We attribute this disparity to the difference
in slice thicknesses used across the two techniques. EM data were
acquired from a 62 �m sample, over 4 times thinner than slices
used for functional recordings. Therefore, it is likely that axons
are less preserved across the entire area of the sample in the thinner
slices, leading to this apparent connectivity distance dependence.
Despite the thin slice section, it is remarkable that such a high
level of connectivity was still found. Meanwhile, the lack of
distance-dependent functional connectivity we find is consistent
with the result of Guzman et al. (24) despite the several-fold
higher connectivity that we observe. These data indicate that,
within the cross-sectional axis of the CA3, connectivity may be
spatially uniform.

By performing computational modeling, we further demon-
strate how our experimental findings can underlie the processes
of pattern completion and memory retrieval, functions often
attributed to the CA3 region. Through this modeling, we are
able to confirm that given the basal rate of connectivity between
CA3 pyramids seen in our experimental data, pattern completion
can be successfully achieved without the need for connectivity to
be embedded in rich disynaptic motifs.

In summary, we present a multi-technique portrait of the local
excitatory microcircuit within the CA3 region of the hippocam-
pus and embed our experimental findings in a computational
model to demonstrate how this network may execute memory
functions.We find a high level of connectivity between pyramidal

neurons in the CA3, supporting much of the previous literature
to suggest that this brain region represents an auto-associative
network.

Materials and Methods

Electrophysiology.
Ethics approval statement. Animal maintenance and experiments were in
accordance with the respective guidelines of local authorities (Berlin state
government, T0073/04) and followed the German animal welfare act and
the European Council Directive 2010/63/EU on protection of animals used
for experimental and other scientific purposes.
Slice preparation. Mice (P25+, average age: P35, both sexes)weredecapitated
following isofluraneanesthesia.Brainswere removedandtransferred to ice-cold,
sucrose-based artificial cerebrospinal fluid (sACSF) containing (in mM) 50 NaCl,
150sucrose,25NaHCO3,2.5KCl,1NaH2PO4,0.5CaCl2,7.0MgCl2,10glucose,
saturatedwith 95%O2, 5%CO2, pH7.4. Slices (400�m)were cut in a horizontal
plane on a vibratome (VT1200S; Leica) and stored in an interface chamber at
32 to 34 �C (SI Appendix, Fig. S2). These storage conditions were chosen since
they have been previously shown to preserve network integrity (48, 49). Slices
were perfused at a rate of ⇠1 ml/min with artificial cerebrospinal fluid (ACSF)
containing (in mM) 119 NaCl, 26 NaHCO3, 10 glucose, 2.5 KCl, 2.5 CaCl2, 1.3
MgCl2, 1 NaH2PO4, and continuously oxygenated with carbogen. Slices were
allowed to recover for at least 1 h after preparation before they were transferred
into the recording chamber.
Connectivity. Recordings were performed in ACSF at 32 to 34 �C in a sub-
merged-type recording chamber. Cells in the CA3were identified using infrared
differential contrast microscopy (BX51WI, Olympus). We performed somatic
whole-cell patch-clamp recordings (pipette resistance 2.5 to 4 M⌦) of up to
eight cells simultaneously. One cell was stimulated with a train of four action
potentials at 20 Hz, elicited by 1 to 2 ms long current injections of 2 to 4 nA. For
characterization, increasing steps of current were injected (1 s, increment: 50
pA). In few experiments, hyperpolarizing or depolarizing holding current was
applied to keep the membrane potential at�60 mV. The intracellular solution
contained (in mM) 135 potassium-gluconate, 6.0 KCl, 2.0 MgCl2, 0.2 EGTA, 5.0
Na2-phosphocreatine, 2.0 Na2-ATP, 0.5 Na2-GTP, 10 HEPES buffer, and 0.2%
biocytin. The pH was adjusted to 7.2 with KOH. Recordings were performed
using Multiclamp 700A/B amplifiers (Molecular Devices). Signals were filtered
at 6 kHz, sampled at 20 kHz and digitized at 16 bit resolution using the Digidata
1550 and pClamp 10 (Molecular Devices).
Data analysis—connectivity. Cells with a membrane potential less negative
than �50 mV and a series resistance higher than 30 M⌦ were discarded.
The connectivity screen underwent a quality control step such that only sweeps
where presynaptic action potentials reversed above 0 mV and the membrane
potential did not deviate by more then 10% within a sweep or with reference
to the first sweep, were kept. Synaptic connections were identified when there
was a postsynaptic potential corresponding to the presynaptic stimulation in the
averaged trace from 40 to 50 sweeps. A baseline period (2 ms) just prior to the
stimulation and the averaged postsynaptic peak during the first action potential
was used for the analysis of the EPSP amplitudes and synaptic delays. Only those
pairs in which the first postsynaptic peak was clearly discernible were used for
analysis. To determine if connectivity was randomly distributed, we analysed
the statistical distribution of disynaptic motifs in our recorded data set, which
consisted of 586 tested pairs and 464 tested triplets. Given the experimentally
determined value of 8.8% for network connectivity, we analytically estimated
the randomprobability that each of themotifs would occur in a sampled neuron
pair or triplet. We then performed 10,000 simulations, each of them counting
how many motifs occurred in the number of tested pairs and triplets, given
random connectivity. P values correspond to the fraction of simulations where
the number of counted motifs was at least as high as in the experimental data.
Dataanalysis—immunohistochemistry andneuroanatomyof principal cells.
After recording, slices were transferred into a fixative solution containing 4%
paraformaldehyde in 0.1 M phosphate buffer. Biocytin labelling was revealed
by incubating slices in streptavidin conjugated to Alexa 488 (diluted 1:500)
overnight in a solutionof PBS containing2.5%normalgoat serumand1%Triton.
The slices were then mounted in Fluoroshield (Sigma-Aldrich). Image stacks of
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specimens were imaged on an Olympus BX61 FV1000 confocal microscope
(Leica Microsystems). Images were taken using a 30X objective with a pixel size
of 0.414 �m and a z-step size of 0.69 �m. Reconstructions were performed in
Neutube (50). The distance between recorded cells was calculated post-hoc as
the Euclidean distance between cell soma, measured in images of the biocytin
labelling.

Electron Microscopy.
Animal experiments. All experimental procedures were performed in accor-
dance with the law of animal experimentation issued by the German Federal
Government under the supervision of local ethics committees, approved by
the Regierungspräsidium Darmstadt, AZ: F126/1028, in compliance with the
guidelines of the Max Planck Society.
Tissue extraction and staining. The EM dataset was collected from a single
male mouse (C57BL/6J), which was born in-house and kept with littermates (6
males and 5 females in total) until weaning at P20. After weaning, the mouse
was kept in a cage with 2 to 5 of its male siblings, until it was perfused. Themice
had a red nesting box and nestingmaterial in their cage. The room temperature
was22 �C; relativehumiditywas set to55%(±10%)and lightswere set to a12-h
light–dark cycle. Food andwaterwere provided ad libitum (autoclavedwater and
Sniff standardmousebreeding or husbandry pellets). Themalewild-typemouse
used for experiments was perfused at P31. Themouse was injected with general
analgesia, anesthetized, and transcardially perfused as describedbyKarimi et al.
(51). The animalwas decapitated, and theheadwas kept overnight in EMfixative
composed of 2.5% paraformaldehyde (Sigma), 1.25% glutaraldehyde (Serva),
and 2 mM calcium chloride (Sigma) in 80 mM cacodylate buffer adjusted to
pH 7.4 with an osmolarity ranging from 700 to 800 mOsmol/kg at 4 �C, (52).
Next, submerged in cold EM fixative, the right hemisphere was cut into 500-�m
thick horizontal slices with a vibratome (VT1200S Vibratome, Leica, Germany).
Then, samples from the intermediate hippocampus spanning the whole CA3
region (i.e., all CA3 subregions, a, b, and c) were extracted using a 3.5-mm
diameter biopsy punch and prepared for electron microscopy using the en-bloc
staining method described previously (51). After dehydration, an Epon-based
infiltration and embedding procedure was applied as in Loomba et al. (27). In
brief, the sample was infiltrated with a 3:1, 1:1, and 1:3mixture of acetone and
resin (Epon hard mixture: 5.9 g Epoxy, 2.25 g DDSA, 3.7 g NMA, 205 �l DMP;
Sigma-Aldrich, USA) for 4 h,⇠12 h, and 4 h, respectively. The sample was then
immersed in pure resin for 24 h, switching to fresh resin three times (after 4 h,
⇠12 h at 4 �C, and another 4 to 5 h at room temperature). Finally, the sample
was embedded in freshly prepared pure resin onto an aluminum pin, and the
Epoxy resin was polymerized in a pre-heated oven at 60 �C for 2 to 3 d (UN30pa
paraffin oven, Memmert, Germany).
ATUM-MultiSEM experiment. The cured samplewas trimmed into anelongated
hexagon shape (size 3.4-mm by 1.6-mm, Leica EM TRIM2, Leica Microsystems,
Wetzlar, Germany). Using a custom ATUM setup, 1702 ultrathin sections
were collected onto plasma-treated, carbon-coated Kapton tape (DuPont,
coating by Fraunhofer FEP, Dresden, Germany). Cutting was performed with
a diamond knife (4-mm ultra 35�, DiATOME, Nidau, Switzerland) at a nominal
thickness of 35 to 40 nm (corresponding to an extent of 62 �m) and a
cutting speed of 0.3 mm/s. After section collection, the ATUM tape was
mounted onto silicon wafers (p-doped, one side polished; Science Services,
Germany)withdouble-sidedadhesivecarbontape(P77819-25,ScienceServices,
Germany). For targeted MultiSEM imaging, light microscopy–based overview
images were acquired (Axio Imager.A2 Vario, Carl Zeiss Microscopy GmbH,
Oberkochen). Per section, a rectangular field-of-view of size 965 �m ⇥
808 �m was imaged in a 61-beam MultiSEM (MultiSEM, 505, Carl Zeiss
Microscopy GmbH, Oberkochen) at a pixel size of 4 nm, a dwell time per
pixel of 50 ns, and a landing energy of 1.5 kV. Alignment of MultiSEM
images into a 3D volume was performed using routines described in Scheffer
et al. (53) and https://github.com/billkarsh/Alignment_Projects, with custom
modifications and MATLAB (Mathworks, USA) based supplements to apply
image transformations and splitting the data into cubes sizes 1,024 ⇥ 1,024
⇥1,024voxel each (https://github.com/scalableminds/webknossos-wrap). Five
sections were left out due to focus instabilities. These data were then uploaded
to the online annotation software webKnossos (31) for in-browser distributed
data visualization, neurite skeletonization, and synapse identification. The final

samplecamefromanintermediatesectionof thehippocampus,andtheanalyzed
region contained CA3a and CA3b subregions.
Axon reconstructions and annotation of synapses. Analyses reported in Fig.
1, were conducted as follows. The axon initial segment of seven pyramidal cells,
positioned inCA3aandb,were identified. Then, the trajectoriesof theaxonswere
followed throughout the whole dataset, and comments were added at outgoing
synapses. Synapse identification was performed as described by Loomba et al.
(27): First, vesicle clouds in the axon were identified as accumulations of
vesicles. Subsequently, the most likely postsynaptic target was identified by the
following criteria: direct apposition with vesicle cloud; presence of a darkening
and slight broadening of the synaptic membrane; vesicles at close proximity
to the plasma membrane at the site of potential synaptic contact. Synapses
were marked as uncertain whenever the signs of darkened postsynaptic density
could not be clearly identified. All analyses in this study were conducted only
on synapses that had been classified as certain. All synapses were annotated
by an expert annotator; for unclear cases, these were re-annotated for expert
consensus between two or three experts. Presynaptic cells were confirmed as
excitatorybasedontwocriteria:1)Completedendritic treeswerereconstructedto
ensurepyramidalmorphology, including the identificationof aprominent apical
dendrite; 2) randomly chosen dendritic segments were exemplarily checked for
high density of spines (similar to ref. 54).

The post-target of each synapse (n = 1,062) was reconstructed by an expert
annotatorby following their trajectoryeither to thesoma (n = 304)or theborder
of the dataset (n = 643) as described previously (54). Identified postsynaptic
targets were classified as excitatory (n = 795) or inhibitory (n = 152) based
on their somato-dendritic morphology and spininess.

Inter-somatic distance was calculated as the Euclidean distance between two
somata. The rate of non-pyramidal neurons was determined by classifying all
somata in a bounding box of 50-�mwidth (n = 52 somata, spanning all layers
of CA3 and the full dimension in z) into pyramidal (n = 47) and other (n = 5).
For connectivity rate computation, the number of all possible connections was
corrected for the presence of non-pyramidal neurons.
Somamap. To identify all cell bodies of theCA3 regionof thedataset (n = 986),
one node was placed in each soma using webKnossos by two experts until
consensus was reached.

Computational Modelling.
Basic setup. Using spiking network models, we simulate the activity of a
hippocampal module and its ability to replay a stored sequence of patterns.
In networks of leaky integrate-and-fire (LIF) neurons that contain both excitatory
and inhibitory cells, we embed excitatory assemblies (or patterns)—subgroups of
cells whose recurrent connections are distinctly stronger than the average. We
also strengthen the feed-forward connections across the embedded assemblies
such that they formasequence. This setupallowsus tostudy theconditionsunder
which that sequence can be replayed. Below, we provide a detailed description
on how this structure is created and the tests we have performed on it.

Network simulations and analyses of the spiking network data were
performed in Python (www.python.org), with the neural network being
implemented with the package Brian (55).
Neuron and synapse model. To keep our model of the network as simple as
possible, neurons are described as conductance-based LIF units. Excitatory (but
not inhibitory) neurons receive an additional output-driven adaptation current,
toprevent themfromexcessiveburstingwheninput is toohigh.Thesubthreshold
membrane potential Vj(t) of excitatory cell j obeys

C
dVj
dt

= gleak(V rest � Vj) + gEj (t)(V
E � Vj)

+ gIj(t)(V
I � Vj) + IBG + Ij � wj,

⌧w
dwj
dt

= �wj,

[1]

where C is themembrane capacitance, gleak is the leak conductance, V rest is the
resting membrane potential, VE and VI are the reversal potentials of excitation
and inhibition, respectively, IBG and Ij are external currents, and ⌧w is the time
constant of the adaptation current wj. Inhibitory cells’ subthreshold membrane
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potential is described solely by the first equation in Eq. 1, but without the
adaptation current wj. To elicit activity in the network, a constant background
current IBG is injected to all neurons. To test for replay, some excitatory neurons
receive additional brief current pulses Ij. Every time a neuron’s membrane
potential reaches the threshold V thr, a spike is emitted and Vj is reset to the
reset potential (for simplicity, it equals V rest), where it is clamped for a refractory
period ⌧refr.When an excitatory cell spikes, its adaptation currentwj is increased
by a constant amount b. See Table 1 for numerical values of parameters.

The time-dependent variables gEj (t) and g
I
j(t) describe the total synaptic

conductances resulting from incoming inputs to neuron j. The conductance
dynamics are described by

dgEj
dt

= �
gEj
⌧E

+
X

k,f

gJEjk �(t � t(f)k � ⌧l),

dgIj
dt

= �
gIj
⌧ I

+
X

k,f

gJIjk�(t � t(f)k � ⌧l), J 2 {E, I},
[2]

where�(t� t(f)k �⌧l) is the contributionof the f -th incoming spike fromneuron

k at time t(f)k , with � being the Dirac delta function and ⌧l the latency between a
presynapticspikeandthepostsynaptic responseonset.ThequantitiesgJKjk denote
the unitary conductance increase resulting from a single spike in presynaptic
neuron k of population K connected to postsynaptic neuron j of population J,
where J, K 2 {E, I}, with E corresponding to the excitatory synapses and I to the
inhibitory ones. The conductances decay exponentially with time constants ⌧E
and ⌧ I.

Table 1. Standard parameters for the spiking network

Parameter Value Unit Definition

C 200 pF Membrane capacitance
g leak 10 nS Leak conductance
V rest �60 mV Resting potential
V thr �50 mV Voltage threshold
⌧refr 1 ms Refractory period
VE 0 mV Excitatory reversal potential
V I �80 mV Inhibitory reversal potential
IBG 200 pA Constant background current
⌧E 2 ms Excitatory synaptic time constant
⌧ I 4 ms Inhibitory synaptic time constant
⌧l 1 ms Synaptic latency
⌧w 20 ms Adaptation time constant
b 100 pA Adaptation strength
gEEseq 50 pS Sequence synaptic weight
gIE 50 pS E-to-I synaptic weight
gII 200 pS I-to-I synaptic weight
gEI0 200 pS I-to-E initial synaptic weight
cIE 0.01 E-to-I connection probability
cII 0.04 I-to-I connection probability
cEI 0.04 I-to-E connection probability
⌘ 0.01 STDP learning rate
⌧STDP 20 ms STDP time constant
⇢0 5 spikes/s STDP target firing rate
Values are the same in all simulations, except for synaptic weights gJK , which are all scaled
in the same proportion for Fig. 4E. The standard value for gEEseq is chosen so as to allow for
replay in a wide range of parameters and network sizes—larger synaptic weights make
the network harder to balance (Fig. 4 E, Upper Right). Connectivities and weights of the
synapses to- and from- inhibitory cells are chosen purely for computational e�iciency.
Thus, values for cJK are chosen to be as low as possible, while still allowing for network
balancing, with gJK then adjusted to make the balancing as easy as possible.

Network and connectivity models. A networkmodel containsN excitatory cells
and N/4 inhibitory cells, each cell a LIF unit, as described above. The network
size N is varied to span from in vitro-like (⇠ 103 to 104) to in vivo-like CA3
networks (⇠ 106). We connect all N excitatory cells with connection probability
c, creating roughly c · N2 excitatory synapses. The N/4 inhibitory cells have
recurrent connections with probability cII. The excitatory-to-inhibitory connec-
tions occur with probability cIE , and inhibitory-to-excitatory connections with
probability cEI.

Synaptic weights in biological neuronal networks follow a log-normal
distribution (35, 56), which has also been observed in recurrent connections
among CA3 pyramidal cells in ref. 57 and in our data. In such a distribution, the
vastmajorityof synapticweightsarevery small andpotentiallynegligible,whilea
minority ismuch larger andmostly responsible for governingnetworkdynamics.
Thus, the values of the unitary conductance increase gEEjk in our computational
networkmodel (eachcorresponding to thestrengthof theexcitatory-to-excitatory
k-to-j synapse) are drawn from a log-normal distribution.

To embed in such a homogeneous network assemblies and sequences, the
weights of a small fraction (typically < 1%, see below for details) of excitatory
synapsesare increased.Wechose toset theseweights toavaluecorresponding to
the99-thpercentile of the log-normal distribution. In thatway, thedistribution is
only marginally changed. A high enough signal-to-noise ratio of the embedded
assemblies and sequences requires that the corresponding weights are much
larger than the median weight, and thus we assumed that the median is 50
times smaller than the 99-th percentile. These conditions lead to a log-normal
distribution whose SD equals 4 times the mean. In experiments, synapses
with weights below the noise level cannot be identified. Thus, the reported
coefficient of variation (CV) of weights is lower, CV ⇡ 1 in Fig. 2C and in
Ikegaya et al. (57).

To test pattern completion in our model, we embed 10 non-overlapping
assemblies in the excitatory population (13). Each assembly is createdbypicking
M excitatory cells and setting the weights of their recurrent synapses to gEEseq,
which is larger (99-th percentile) thanmost synaptic weights in the distribution.
Weights of the feed-forward connections across assemblies are set to the same
value gEEseq such that theM neurons of the ith assembly are strongly connected
to the M neurons of the (i + 1)th assembly, thus generating a unidirectional
sequence. The total expected number of connections that shape the sequence
[c ·M2 ⇥ (10+ 9)] is small compared to the total average number of excitatory
synapses in the network [c · N2] if the number of assemblies is small compared
to (N/M)2, which is fulfilled in all our simulations. For network size N > 106

in CA3 in vivo and putative assembly sizes in the order ofM = 103, thousands
of sequences could be embedded; see Leibold and Kempter (7) for estimates of
memory capacity.
Balancing the network. Inhibitoryneurons areused to stabilize andbalance the
network activity, i.e., prevent the excitatory network structure described above
from generating oscillatory or irregular bursts of activity. Recurrent inhibitory
connections are assumed to have the synaptic weight gII, and excitatory-to-
inhibitory (E ! I) synapses are assumed to have the synaptic weight gIE . The
inhibitory-to-excitatory weights are subject to a plasticitymechanism that allows
for excitatory cells to receive different amounts of inhibition in order to balance
the network, allowing it to reach an asynchronous irregular (AI) state.

Webalance the network using an inhibitory-plasticity rule (39): All inhibitory-
to-excitatory synapses are subject to spike-timing-dependent plasticity (STDP),
with near coincident pre- and postsynaptic firing potentiating the synapse and
lonepresynaptic spikesdepressing it. To implement thisplasticity rule,weassign
a synaptic trace variable xj to every neuron j, such that xj is incremented with
each spike of that neuron and decays with a time constant ⌧STDP:

xj ! xj + 1, if neuron j fires,

⌧STDP
dxj
dt

= �xj, otherwise.
[3]

The synaptic weight gEIjk from inhibitory neuron k to excitatory neuron j is

initialized with the same value gEI0 for all I ! E synapses. The conductances
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are then updated at the times of pre/post-synaptic events in the following
manner:

gEIjk ! gEIjk + ⌘gEI0 (xj � ↵), for a presynaptic spike

in neuron k,

gEIjk ! gEIjk + ⌘gEI0 xk, for a postsynaptic spike

in neuron j,

[4]

where ⌘ is the learning-rate parameter, and the bias ↵ = 2⇢0⌧STDP is
determined by the desired firing rate ⇢0 of the excitatory postsynaptic neurons.
Quantifying replay of the embedded sequence. To test whether a sequence
can be replayed, we first initialize the network with all its synaptic connections,
includingtheembeddedsequencewewishtoreplay.Wethenlet thenetworkrun
with STDP of the I ! E synapses, in order to balance the activity of the neuronal
populations. Once the network reaches an AI state (which typically occurs after
10 s of simulation), the plasticity is turned off. Finally, a brief current is injected
(150 pA for 5 ms) to 50% of the neurons of the first assembly in the sequence,
which becomes activated. If this activity of the first assembly propagates quickly
enoughthroughout thesequencewithout considerableattenuation,weconsider
it a successful replay event. Otherwise, the replay is considered to have failed.
For a replay event to be successful, we require that the peak of the population
activity of eachassembly (with aGaussianfilterwithwidth1ms)bewithin60and
360 spikes/s. Furthermore, we require that the peaks of consecutive assemblies
must be within 1 and 20 ms of each other.

For each simulated parameter configuration, we perform 5 attempts on 5
different pseudo-random instantiations of the network. The fraction of successful
replays (out of 25) gives us a percentage of success for each point in parameter
space.

Data, Materials, and Software Availability. The electronmicroscopy dataset
is publicly available for browsing at WEBKNOSSOS (58). Sample code to
reproduce the results of the computational model is available on GitHub (59).
All other data are included in the article and/or SI Appendix.
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