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Paying attention to natural scenes in area V1

Andreea Lazar,1,2,* Liane Klein,1,2 Johanna Klon-Lipok,1,2 Mihály Bányai,3 Gerg}oOrbán,3,4 andWolf Singer1,2,4,5,*

SUMMARY

Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by
contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy.
We hypothesized that attentional and contextual signals interact in V1 in a manner that primarily benefits
the representation of natural stimuli, rich in high-order statistical structure. Recording from twomacaques
engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity
frompopulation responses evoked by natural scenes, but not by synthetic stimuli lacking higher-order sta-
tistical regularities. Population analysis revealed that neuronal responses converged to a low-dimensional
subspace only for natural stimuli. Critically, we determined that the attentional enhancement in stimulus
decodability was captured by the natural-scene subspace, indicating an alignment between the atten-
tional and natural stimulus variance. These results suggest that attentional and contextual signals interact
in V1 in a manner optimized for natural vision.

INTRODUCTION

Neuronal circuits across the visual hierarchy make efficient use of limited resources to encode complex natural scenes by exploiting their

structural regularities.1,2 Growing evidence suggests that during perceptual inference the visual system employs a hierarchical internal

model of the visual environment that integrates current sensory evidence with previously acquired knowledge of natural scene

statistics.3,4

When visual attention is directed toward a specific spatial location, it is thought to facilitate the perception of the targeted sensory input by

prioritizing its processing. The signatures of this process can already be observed in primary visual cortex (V1). In this area, spatial and object-

centered attention modulate the firing rates of neurons responding to the selected stimuli.5–9 Responses of V1 neurons are also shaped by

regularities in visual stimuli extending beyond the receptive field of the neuron. These regularities reflect either complex visual structures10,11

or in more general, the statistics of natural images4,12–15 processed in ventral areas downstream of V1.16 These modulations of V1 population

activity by higher-order regularities can be summarized as contextual signals. Contextual signals that convey information stored in the hier-

archically organized internal model of the world are essential for the parsing of visual scenes.17,18 Thus, attentional mechanisms must interact

with these other sources of top-down influences, raising the key question: how do these two processes — one that reflects the current

allocation of attention and the other conveying information about higher-order regularities in natural environments — cooperate in modu-

lating responses in V1.

Here we performed parallel recordings of neuronal responses in the primary visual cortex of two macaque monkeys engaged in an atten-

tion task. In this paradigm, attention was directed to one of two identical images by a spatial cue that was delayed from the stimulus onset. By

measuring the multiunit activity of a population of neurons with receptive fields overlapping with one of the images, we tracked the contri-

bution of the top-down effect of attention on the distributed stimulus representation. We found convincing enhancements in natural scene

encoding with attention and hypothesized that these enhancements rely on refinements of the responses to high-level features present in

natural images, such as regularities in spatial, contrast, and frequency structures or texture properties. To test this hypothesis, we indepen-

dently manipulated a second form of top-down modulation, arising from the statistical structure of the input images. We constructed

synthetic stimuli that lacked the higher-level features characteristic of natural scenes and found that, for these stimuli, the attentional benefits

in stimulus encoding vanished; however, they could be recoveredwhen the synthetic stimuli weremodified to contain structured contours. To

understand how attentional modulations might interact with the representation of stimuli, we investigated the geometry of population

responses using a combination of dimension reductionmethods and decoding analysis. Our analysis revealed that the evoked neuronal pop-

ulation responses to natural scenes converged to a compact low-dimensional representation, which coincided with the subspace where the

dominant attentional signal could be identified.
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RESULTS

Attention-induced enhancement of natural scene representation

We obtained parallel multisite recordings of multi-unit activity (MUA) (example trials in Figure 1A) and local field potentials (LFP) (32 chan-

nels, chronically implanted microdrive, Figure 1B) from area V1 of two awake behaving macaques (Macaca mulatta), while they performed a

spatial attention task. Trials were initiated by a lever press while the monkey maintained fixation. After 500 ms two identical stimuli were

presented at symmetrical locations on either side of the vertical meridian (distance from fixation spot 2.3–3.2! of the visual angle), one of
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Figure 1. Neuronal population recordings from primary visual cortex during an attention task with natural scene stimuli

(A) Multi-unit responses to the same stimulus in two example trials, corresponding to the attention in and attention out conditions. Colored lines represent timing

of stimulus onset (yellow), attention cue (red) and stimulus change (purple).

(B) Top: Chronic implantation device with movable electrodes (GrayMatter probe). Bottom: Receptive field locations of multiunits in the two monkeys shown in

red. Cross indicates the fixation point.

(C) Grand average firing rates in the attention-in and attention-out conditions (baseline substracted, 18 sessions). Data aligned on stimulus onset or time of

change (TC). Colored lines as in A.

(D) Spectrogram of the change of LFP power between the attention-in and attention-out conditions (baseline substracted). A gradual shift in power from low to

high frequencies starts z 300 ms after the attentional cue (marked by vertical line).

(E) Stimulus discriminability along the trial, quantified by population d0 (200 ms sliding windows, baseline substracted, 18 sessions). Data aligned on stimulus

onset or time of change (TC). Shading indicates standard error of the mean.

(F) Effects of attention on stimulus discriminability shown across sessions (reported in % change). Left panel: trials are separated based on cue information. Right

panel: trials from the attention-in condition are sorted based on reaction time (RT) and separated in two-halves. y axis shows percent increase in d0 for in vs. out

trials (Cue) or fast vs. slow trials (RTs). (* p-val < 0.05, ** p-val < 0.01, *** p-val < 0.001).
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which covered the receptive fields (RFs) of the recorded units (example of RF centers in the two monkeys in Figure 1B). The fixation spot

changed color, 700 ms after stimulus onset, cueing the monkey toward the ‘‘target’’ stimulus. Monkeys were rewarded if they responded to

the rotation of the target stimulus, which occurred 1900–2400 ms after stimulus onset. If they responded to the rotation of the non-cued

stimulus, the distractor, reward was withheld and the trial was aborted. We performed analysis in 200 ms long sliding windows (100 ms

sliding resolution) for the response interval from stimulus onset to 1900 ms (stimulus-aligned data) and for the 500 ms interval preceding

the stimulus change (change-aligned data, time of change (TC)), thus excluding any activity evoked by the stimulus rotation or the motor

response (further details in STAR Methods).

We found that attention increased the average firing rates only modestly in V1, and the changes were significant only for the change-

aligned and not the stimulus aligned data (Figures 1C and S1, Wilcoxon signed-rank test; [1700-1900 ms], p = 0.1330 n.s.; [TC-200, TC],

p = 0.0279; n = 18 sessions in 2 monkeys). In spite of the small firing rate changes, we observed a strong shift in LFP power from low to

high frequency oscillations with attention, which started " 300 ms after the cue and increased gradually with the expectancy of the stimulus

change (Figure 1D, individual animals in S4). Across trials, reaction times in the attention-in condition were positively correlated with the LFP

power in the theta and beta bands and negatively correlated with the LFP power in the gamma band (Spearman correlation; theta r = 0:18,

p = 1e # 11 ; beta r = 0:08, p = 0:002 ; gamma r = # 0:12, p = 1e # 05), suggesting a strong task-related effect.

Our initial goal was to examine the impact of attention on the stimulus specificity of the sustained population responses to natural scenes.

Few electrophysiology studies have focused on the representation of natural stimuli in primary visual cortex,15,19,20 and how attention affects

the decodability of natural scenes in V1 is still unclear. We quantified the stimulus-specificity of V1 neuronal population responses by

measuring the differences in spiking patterns evoked by different stimuli compared to their variability across trials (population d0, STAR

Methods). We found a significant increase in population d0 with attention, i.e., responses evoked by different stimuli were more differentiable

when the stimuli had been cued (attention-in) than when they had not (attention-out), particularly in the time windows preceding the stimulus

change (Figures 1C and 1D, Wilcoxon signed-rank test; [1700-1900 ms], p = 0.0012; [TC-200, TC], p = 0.00023; n = 18 sessions in 2 monkeys).

These attentional benefits in natural scene discriminability were significant in individual animals and occurred both in the presence (monkey A)

and absence (monkey I) of average firing rate changes (Figure S2). Importantly, a significant difference in stimulus discriminability was not only

elicited by the cue, but also by intrinsic attention-related factors: when the trials from the attention-in condition were sorted based on the

monkeys’ reaction times (RTs), we found that trials with faster RTs had higherd0 values compared to thosewith slower RTs (Figure 1F,Wilcoxon

signed-rank test; [1700-1900 ms], p = 0.0043; [TC-200, TC], p = 0.0123; n = 18 sessions in 2 monkeys). The relationship between d0 and RTs

points to a graded improvement in stimulus decodability proportionate to the intensity of the attentional allocation, suggesting a link be-

tween the modulatory signals identified in V1 and behavior.

Differential effects of attention for natural images and synthetic controls

The response properties of neurons at higher levels of the processing hierarchy are known to capture the higher-order regularities of natural

scenes.16 Indeed, when gauging V2 activity by using natural texture images, specific removal of high-level statistics was shown to result in

dampened responses of V2 neurons.21 Given the reciprocally connected structure of the visual cortex, information extracted and encoded

at higher levels of the processing hierarchy can constrain activity at lower levels of processing through feedback. Consequently, such contex-

tual feedback modulation of V1 responses is likely more effective when natural high-level features are present in stimuli.4 We hypothesized

that if contextual modulation and attention share top-down pathways, then the presence of high-level features constitutes a prerequisite for

attentional enhancements in stimulus encoding across neuronal populations in V1.

To test this hypothesis,wematched thenatural scenestimuli inevery recording sessionwithanequalnumberof synthetic control images. The

synthetic images were constructed in twoways. First, by filter-scrambling, to remove spatial correlations between low-level features (Figure 2A,

details in STARMethods), which was previously shown to reduce top-down influences on V1 responses 4. Second, by phase-scrambling, to re-

move high-level regularities from images while leaving the spectral content intact (Figure 2B), which was previously shown to reduce both the

intensity and specificity of responses of V2 neurons.21 By construction, the synthetic controls containednohigh-level features, but retainedbasic

image properties: either the low-level structure preferred by V1 cells or the spectral content of the original natural scenes.

The synthetic controls matched the natural scenes in luminance contrast and evoked, on average, similar firing rate responses across the

recorded neuronal populations in V1 (Figure S3). Synthetic stimuli were characterized by a task-related shift in LFP power from low to high

frequencies with attention, of similar magnitude to that observed for natural stimuli (Figure S4). LFP power in the gamma band was higher

for natural scenes compared to synthetic images (Figure S4), supporting previous suggestions that visual stimuli with higher structural pre-

dictability result in stronger gamma oscillations.20 Attentional modulation of LFP power in the gamma bandwas not consistent across animals

and was therefore difficult to interpret (Figure S4). However, the shift in LFP power from slow to high frequencies with attention was strong,

consistent across animals, and characterized the responses to both natural and synthetic stimuli, indicating attentional effects in V1 irrespec-

tive of the stimulus type (Figure S4). Similar to the natural image condition, reaction times across trials in the attention-in condition for

synthetic stimuli were positively correlated with the LFP power in the theta and beta bands and negatively correlated with the LFP power

in the gamma band (Spearman correlation; theta r = 0:11, p = 3e # 5 ; beta r = 0:07, p = 0:008 ; gamma r = # 0:11, p = 3e # 04)

and were indistinguishable from reaction times to natural stimuli (Wilcoxon signed-rank test; p = 0.3, n.s.; n = 18 sessions in 2 monkeys), sug-

gesting a similar level of engagement. We found no differences in the frequency of saccadic eye movements between natural scenes and

synthetic stimuli, or with attentional allocation (Figure S5). The task performance of the animals was also not significantly affected by the stim-

ulus type (Wilcoxon signed-rank test; p = 0.42, n.s.; n = 14 sessions in 2 monkeys).
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In agreement with our hypothesis, we found that the discriminability of natural stimuli, but not that of synthetic stimuli, was enhanced by

attention (Figures 2A–2D, Wilcoxon signed-rank test; [TC-200, TC]; natural images p = 0.0078, Gabors p = 0.25 n.s.; n = 8 sessions in 2

monkeys; natural images p = 0.0039, scrambled p = 0.375 n.s.; n = 10 sessions in 2 monkeys). In spite of the fact that the overall response

amplitudes to natural and synthetic stimuli were very similar (Figure S3), the spike-count vectors evoked by synthetic stimuli were less

discriminable than those evoked by natural scenes (compare green and blue in Figures 2A and 2B). To limit these differences, we pulled

together all pairs of natural and synthetic stimuli from all recording sessions and selected a subset of natural and synthetic stimulus pairs

that were at similar levels (0.5–1.5 d0 units above the baseline) in the attention-out condition (Figures 2E and 2F, shaded areas). Also in this

case, attention increased the discriminability of neuronal responses to natural stimuli, but not to synthetic stimuli (insets in Figure 2E

Wilcoxon rank-sum test; p = 0.03, natural pairs, p = 0.35 n.s., synthetic pairs; and F, p = 0.0001, natural pairs, p = 0.87 n.s., synthetic pairs).

Finally, when responses of all recorded units were sorted by amplitude of rate change with attention and grouped into quartiles, we found

that equally strong increases in firing rates resulted in d0 enhancements for natural but not for synthetic stimuli (Figure 2E, 256 units; and F,

315 units), suggesting a dissociation between the strength of the attentional modulation of firing responses and the resulting gains in stim-

ulus specificity (Figure S3).
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Figure 2. Attentional modulation depends on stimulus content

(A) Stimulus discriminability d0 for natural scenes (green) and synthetic images composed of independent Gabor filters (blue), shown along the trial (200ms sliding

windows, baseline substracted). Shading indicates standard error of the mean.

(B) Stimulus discriminability d0 for natural scenes (green) and phase-scrambled images (blue).

(C and D) Attentional effects on d0 for natural (green) and synthetic images (blue) in the time window preceding the stimulus change (circles depict individual

sessions).

(E and F) Scatterplot of d0-values across all natural and synthetic stimulus pairs, with and without attention. Smaller inset: attentional modulation of d0-values for

the stimulus pairs marked by the shaded area, selected to increase overlap between stimulus types in the attention-out condition (* p-val < 0.05, *** p-val < 0.001,

n.s. p-val > 0.05).

(G and H) Change in d0 as a function of change in firing rate with attention. Analysis performed across all recorded units. Responses were sorted by amplitude of

rate change and grouped into quartiles (marked on x-axis). Large increases in firing rate with attention result in larger positive changes in d0 for natural (green),

compared to synthetic stimuli (blue). Error bars indicate the standard error of the mean.
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Overlapping representational spaces for stimulus and attention

These findings raise the question of why responses to natural scenes profit more from attentional refinement than responses to manipulated

stimuli, or, in other words, what is special about natural scenes? Previous research has shown that natural images are statistically redundant

since light-intensities at neighboring locations are likely to be correlated and consequently, they can be efficiently compressed.22,23 Struc-

tured compressible visual stimuli are well captured by neuronal population dynamics in low-dimensional manifolds,20,24–26 but see.27 How

could such low-dimensional collective representations of natural images in V1 be further optimized by the allocation of top-down attention?

To answer this question, we contrasted the low-dimensional subspace accommodating the presented images with the space affected by

the attentional signal. Given that, in the current task, the stimuli precede the attentional cue, we could directly inquire whether the variance

added by attention was orthogonal to or belonged to the same dimensions as the variance produced by the stimulus. Specifically, in each

recording session, we projected the activity from the time window preceding the stimulus change (1700–1900 ms) into the principal compo-

nent space defined by activity recorded after the stimulus onset but before the presentation of the attentional cue (500–700ms).We reasoned

that if the attentional variance was largely aligned to the stimulus variance, the attentional differences in stimulus decodability would become

apparent in the low-dimensional space described by the first components. This is indeed what we found (examples in Figures 3A and S6).

We quantified the attentional differences in natural-scene representations in principle component space by applying a decoding tech-

nique. Specifically, a cross-validated Bayesian decoder was trained to predict stimulus identity based on data projections (spike-count vec-

tors over the 1700–1900 ms interval) into the pre-cue PCA space described by the first k principal components, and test performance was

estimated in this same space based on unseen trials (Figure 3B, 5-fold validation, details in STAR Methods). We found that a small number

of components captured the majority of variance produced by natural stimuli before the onset of the cue, allowing natural scenes to be well

distinguished in principle component space (Figure 3B, green lines denote decoding performance, range 61:8 # 75:13% for kR 2, pre-cue

PCA space constructed based on responses to natural scenes). Importantly, the same components captured a large fraction of the attentional

effects, as reflected by the significant modulation of population responses in low-dimensional subspaces (Figure 3B, Wilcoxon signed-rank
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Figure 3. Effects of attention on stimulus encoding in principle component space

(A) Example session depicting population responses to two natural scene stimuli (red and blue) for the two attentional conditions in the space described by the

first 2 principal components (200 ms spike-count vectors, 1700–1900 ms from stimulus onset; each point represents a trial).

(B) Stimulus decoding performance in principle component space for natural scenes (green) was higher than for synthetic stimuli (blue) and was modulated by

attention (based on 1700–1900 ms spike count vectors; PCA was performed on pre-cue activity 500–700 ms window, separately for natural and synthetic stimuli).

The shaded areas indicate the standard error of the mean. Attentional differences in stimulus decoding are apparent from a low number of PCs, suggesting an

alignment between attentional and stimulus variance.

(C) Impact of attention on performance scores in low-dimensional projections (first 3 PCs) depends on stimulus type. Scatterplot shows performance scores for

natural scenes (green) and synthetic controls (Gabors, blue squares; scrambled, blue circles; markers represent stimulus pairs n = 71; 18 recording sessions, 2

monkeys). Differences in performance with attention are significant for natural stimuli (top histogram, ** p-val < 0.01) but not controls (bottom histogram, n.s.

p-val > 0.05).

(D) Contour stimuli are compared to synthetic controls (n = 30 stimulus pairs from 5 recording sessions in 1monkey). Differences in performance with attention are

significant for contour stimuli (p-val < 0.01), not for controls (p-val > 0.05).
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test; p < 0.015 for k R 2; Holm-Bonferroni correction showed significance for all k R 2; n = 71 stimulus pairs, 18 sessions, 2 monkeys; scat-

terplot and histogram of attentional effects for k = 3 are shown in Figure 3C). In comparison, the synthetic images performed more poorly

(Figure 3B, blue lines denote decoding performance, range 51:7 # 63:3% for kR 2, pre-cue PCA space constructed based on responses to

synthetic stimuli) and showed no attentional modulation (Figures 3B and 3C,Wilcoxon signed-rank test p > 0.05 for all k; n = 71 stimulus pairs,

18 sessions, 2 monkeys), in spite of residing in principle component spaces with similar levels of overall variance (Figure S7B).

In a final set of experiments, we generated synthetic images that combined Gabor functions into simple contour-like patterns, thus intro-

ducing the kindof higher-level structureexpected to elicit differential responsesat higherprocessing stages. In these additional datasets, both

main effects described previously were reproduced: the structured contour stimuli were well distinguished in principle component space,

while the unstructured controls were not (decoding performance range contour stimuli 66:4 # 74:7% and synthetic Gabors 54:9 # 60:4%

for kR2, Figure S7) and the attentional effects were specific to the contour stimuli and captured already by a low number of components (con-

tour stimuli Wilcoxon signed-rank test; p < 0.05 for all k R 2; n = 30 stimulus pairs, in 1 monkey; control images p > 0.05 for all k, Figure S7;

scatterplot and histogram of attentional effects for k = 3 Figure 3C). Interestingly, trial-shuffling within stimulus condition reduced the atten-

tional differences in decoding performance for the contour stimuli and the original natural scenes, suggesting that in these low-dimensional

projections, decoders benefited from the intact correlation structure present in the data (Figure S7). Overall, by constructing synthetic images

with controlled statistical structure, we confirmed that the attentional benefits in stimulus encoding across collective neuronal responses in V1

were specific to images containing higher level structural regularities. Such images aremore likely to engage structured feedback from higher

levels of processing.

Critically, we found that the dimensions that captured themajority of variance produced by natural stimuli also captured a large fraction of

the attentional effects. To control for the specificity of this alignment, we constructed three alternative projections of the same spike-count

vectors preceding stimulus change (1700-1900 ms) and assessed how these spaces captured both the natural stimulus and the attention

signal. We considered a random orthogonal basis (Figure 4A, yellow), a PC space constructed based on pre-stimulus spontaneous activity

(Figure 4A, orange), and a PC space based on early evoked activity (Figure 4A, purple). The minimum number of principal components

required to reach 90%of peak performance accuracy for the attention in condition was significantly higher for the three projections compared

to the original pre-cue projection (Figure 4B, compare yellow, orange, purple to green; Wilcoxon signed-rank test, p < 0.001). A direct

examination of the first principal components describing the natural scene space revealed highly distributed representations across units,

making a simple selectivity-based explanation unlikely (example Figure 4C). In addition, we found that all three alternative projections yielded

weaker attentional differences in decoding performance for both the first three and five components (Figure 4D; Wilcoxon signed-rank test,

p < 0.01). Most interesting was the difference between the projections constructed from the early and late evoked responses, which were

compared directly in Figure 4E. Session-by-session comparison of attention-in and attention-out decodability in these two projection spaces,

revealed a dual effect: 1, Decoding of stimulus was more efficient in the basis constructed based on late responses (green) than that based on

early responses (purple), irrespective of the attentional state (Wilcoxon signed-rank test, p < 0.001 attention-in; p < 0.001 attention-out); 2,

Attention made a significant contribution to decoding in the basis constructed using late responses (Figure 4E, green histogram; Wilcoxon

signed-rank test, p = 0.000014). Note that neither of these two projections had information about which stimulus to attend, since both are pre-

cue; therefore, it is striking that a precise alignment developed later in the trial. This result indicates that during stimulus presentation, the

population response is transformed into the space in which attention can be effectively deployed.

DISCUSSION

In this study, we found that attention improves the representation of natural scenes across neuronal population vectors in area V1. By con-

structing synthetic stimuli with controlled statistical structure, we could link the attentional benefits of stimulus encoding to the presence

of higher-order regularities that are known to be abundant in natural images and are primarily represented at higher-level areas of the ventral

stream. Population analysis revealed that the attentional signal was aligned with the compact subspace carrying information about stimulus

identity. Temporal evolution of the stimulus-representing subspace revealed that alignment was not present in early responses to natural

stimuli, but it emerged later, still preceding the delivery of the attentional modulation. Taken together, attentional enhancement of V1 rep-

resentation of natural stimuli harnesses high-level statistical structure represented in higher visual cortical areas and is carefully and specifically

aligned with the activity carrying information about natural structure.

In our experiments, animals were trained to respond swiftly to the rotation of the cued stimulus, not to recognize particular features in the

image. Thus, our task was a classical spatial attention task. In agreement with previous studies allocating spatial attention caused moderate

increases in discharge rate, reduced power of low-frequency oscillations, and enhanced power in the high-frequency bands of local field

potentials. As expected, these effects did not depend on the stimulus structure. In agreement with psychophysical and previous electrophys-

iological investigations, this indicates that spatial attention enhances the salience of responses.28 However, allocating spatial attention had

the additional effect of selectively enhancing the decodability of population responses of V1 to the attended stimulus, provided that the stim-

ulus contained higher order statistical regularities characteristic of natural scenes.

Natural scenes are evaluated by comparing sensory evidence with previously acquired priors about the statistical structure of natural

environments.1 These internal priors are stored in the functional architecture of cortical circuits at all levels of the visual processing hierarchy

and some of these circuits get refined by experience to capture characteristic properties of the visual environment.2,3,29 Recombination of

feedforward connections renders neurons selective for increasingly complex constellations of features,30–32 and the abundant horizontal

intra-areal and feedback connections between processing levels allow for contextual modulation of these feature selective responses.10,33
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These modulations impact stimulus saliency34 and perceived brightness,35,36 support perceptual grouping,37 and figure-ground segrega-

tion.38–41 The electrophysiological correlates of these interactions consist of changes in discharge rate and/or synchrony, and these effects

tend to have longer latencies than the initial phasic responses. Therefore, context-sensitive processes are thought to be mediated by
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Figure 4. Geometry of population activity in response to natural scenes

(A) Spike-count vectors from the post-cue interval (1700–1900 ms) are projected in four different bases: a random projection space (yellow), a PC-space based on

spontaneous activity (orange, interval -200-0 ms), a PC-space based on early evoked activity (purple, 100–300 ms window), and a PC-space based on late evoked

activity (green, pre-cue, 500–700 ms window, same as Figure 3B). When using PC decompositions, the dimensions correspond to the first PCs of the PCA basis.

Average performance of the stimulus decoder, across all stimulus pairs, from all recording sessions, shown as a function of the number of dimensions used to

reconstruct population activity. Attention-in (solid line) and attention-out trials (dashed line) are decoded separately. Shading indicates the standard error of the

mean.

(B) Number of dimensions necessary to reach 90 % of peak decoding accuracy, shown across recording sessions. The late evoked projection space (green),

requires fewer than five components. Interestingly, the early evoked projection space (purple) requires up to 15 components to reach the same decoding

accuracy, suggesting a higher dimensional encoding space. (*** p-val < 0.001).

(C) Composition of first principal components for the space describing responses to natural scene stimuli in an example session.

(D) Attentional difference in decoding accuracy (attention in - attention out), using a three or five-dimensional decoding space, shown across sessions. Differences

are significant in the projection space defined based on late evoked activity (** p-val < 0.01), but not the alternative projection spaces (n.s. p-val > 0.05).

(E) Direct comparison of post-cue activity in the early (purple) and late evoked (green) projection spaces. A projection of the post-cue activity is used to decode

stimulus identity from attention-in and attention-out trials. Dots indicate individual sessions, data pulled for the first 5 components. Marginals of decoding

performances along the axes (solid lines) show overall decoding performance differences for early vs. late responses, indicating differences in the

dimensionality of the population responses. Difference of attention-in and attention-out decoding performance (histogram perpendicular to the identity line)

indicates differences in the alignment of the attentional modulation with the dominant activities in early and late responses (*** p-val < 0.001). Both stimulus

decoding and the attentional benefits are stronger in the PC space constructed on late evoked activity.
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recurrent interactions within cortical areas and top-down signaling across processing stages. Here, we argued that the overlap between

contextual and attentional signals for the late responses to natural stimuli makes the inter-areal top-down account plausible. Our interpre-

tation gained further support from the systematic changes we observed with the removal and reintroduction of higher-order statistical struc-

ture in synthetic stimuli.

In the following, we discuss how the allocation of spatial attention, which is also supposed to be mediated by top-down connections, in-

teracts with these feature-sensitive mechanisms.

Attentional influences on visual processing have traditionally been divided into spatial42–44 and object/feature-based attention45,46 and it

has been proposed that both contribute in complementary ways to the parsing of image content.47,48 Our results support this notion and

provide some indications as to the mechanisms underlying these complex interactions, in the context of natural stimulation. In the present

task, the allocation of spatial attention contributed additional variance in the first principal components of responses to natural but not to

manipulated images, and thereby enhancing the decodability of the former. The finding that spatial attention had no effect on the decod-

ability of manipulated stimuli indicates that spatial attention has per se no refining effect on distributed stimulus representations in V1, but

selectively improves representations of stimuli characterized by the higher order regularities of natural scenes. Abundant evidence indicates49

that these higher order regularities are evaluated by downstream areas of the visual processing hierarchy. Therefore, the enhanced decoda-

bilty of responses to natural images is likely to have beenmediated by top-down signals from these areas. This raises the question, why these

high-level processes weremore involvedwhen spatial attention was allocated to the stimulus. One possibility is that higher level processes do

not engage by default evenwhen stimuli match high-order priors but get involved only for stimuli to which spatial attention is allocated. In this

case, spatial attention would be a prerequisite for the engagement of mechanisms that provide top-down signals commonly attributed to

feature or object-specific attention, suggesting some hierarchy in the interactions between spatial and object centered or feature-specific

attention. An alternative possibility is that higher level processes engage by default when stimuli match high-order priors and work cooper-

atively alongside spatial attention. In this case, the visual system performs a search that attempts to infer task-relevant features of an image

based on both the spatial aspects of the visual scene and the low-level and high-level structural regularities. Thus, spatial and object-based

attention act in unison and share an internal representation of features, with the inference slowly unfolding over reciprocal interactions across

multiple hierarchical levels of processing.

The latter interpretation is supported by the observation that the natural scenes could be discriminated against surprisingly well, given the

relatively low number of units and their location in area V1 (Figures 2 and 3), regardless of the attentional cue. The fact that the discriminability

of natural stimuli was high even when attention was directed away from the stimulus implies that the natural scenes were efficiently encoded,

irrespective of the attentional state. Previous studies found that an efficient encoding of global scene statistics remained possible in situations

associated with reduced visual attention.50 In such cases, the visual cortex is thought to extract a compressed ‘‘summary’’ code that does not

capture the full distribution of local details yet provides a good representation of group features. Since natural scenes are structured, redun-

dant, low-dimensional images, they are compressible. In comparison, the low-level synthetic images are difficult to compress and must be

represented exhaustively without the help of internally generated or previously acquired priors on summary statistics. Thus, the resulting

neuronal activity vectors for synthetic stimuli are likely to inhabit higher-dimensional or more variable substates, potentially accounting for

the overall poorer performance of the classifier.

Principal component analysis was used to capture the efficient encoding of natural scenes across neuronal populations in V1. In principle

component space, the late response vectors to natural stimuli reflected their low-dimensionality and could be well described by a few prin-

cipal components. The higher-order stimulus structure, characteristic of natural scenes, was thus well-separated by low-dimensional sub-

spaces. In a sense, these subspaces reflect some of the higher-order selectivity normally associated with the responses of individual neurons

at higher levels of processing.51,52 The early responses dominated by feedforward information were shown to differ from the late responses

dominated by top-down information in parallel recordings of V1, V2, and V4 from macaque monkeys viewing grating stimuli.53 This finding

appears congruent with the transformation in response geometry between early and late responses to natural scenes observed here in V1.

Moreover, we found that spatial attention enhanced the encoding of natural scenes along the dominant representational dimensions. Earlier,

behavioral studies hinted at interactions between attentional effects and regularities beyond the simple features represented in lower visual

areas.54 Here, the match between representational and attentional signals in V1 shows a remarkable alignment, likely advantageous for effi-

cient processing. This match appears compatible with earlier results highlighting similarities between the effects of representational learning

and attention in downstream area V4.55 Interestingly, previous theoretical arguments suggested that attentional effects are a consequence of

resource optimization and result in task-dependent forms of modulation.56 Our results provide an additional critical insight: since attentional

effects were absent for synthetic stimuli, resource optimization appears to be most effective for the types of stimuli that the internal circuitry

was optimized to process.

Recently, it has been shown that the receptive fields of V1 neurons are more complex than earlier described.57 Thus, it is possible that the

receptive fields of the recorded neurons matched the natural scenes better than the synthetic stimuli, which could also explain the higher

discriminability of natural scenes. However, the low-dimensional neuronal representation for natural stimuli and its alignment with the

attentional signals were not present for the early evoked responses, suggesting that processing time was required. The late emergence

of low-dimensional neuronal representation for natural stimuli may arise through top-down feedback, as considered by our hypothesis,

but alternatively through intra-areal recurrent interactions. Our V1 recordings cannot decisively determine the interactions taking place in

this attention task. However, we designed synthetic stimuli based on evidence that the statistics we manipulated were characteristic of the

secondary visual cortex, and therefore such manipulations are expected to affect the information that is fed back to V1, even when the
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targeted responses are complex. For example, in a psychophysics study, it has been shown that the spatial scale on which phase scrambling

disrupts perceptual processes is more compatible with the involvement of V2 than V1.16 Further, phase scrambling had substantial effects on

V2 activity.21 Synthetic imagemanipulation was shown to contribute to population-level phenomena in V1,15 and was confirmed in these data

by the wide participation of the recorded population in the dominant PCA components. Thus, network-level changes are responsible for the

enhanced representation of natural scenes across V1 responses. A parsimonious interpretation of the stimulus statistics-specificity of atten-

tional effects and the tight overlap between subspaces is that a shared mechanism underlies the shaping of both stimulus-related responses

and attention.

Spatial attention modulated the dynamics of responses, as reflected by changes in the frequency distribution of LFP power. A shift in LFP

power from low to high frequencies built up gradually from the onset of the cue to the temporal window preceding the stimulus change, for

both natural and synthetic stimuli (Figures 1 and S4). This kinetics resembled a hazard function reflecting the increasing probability of having

to execute a response, suggesting that the reduced power of the low frequency oscillations was probably related to the increased readiness

to act. In agreement with this interpretation, the oscillatory power in the theta and beta bands of responses to the target stimulus was posi-

tively correlated with reaction times in the attention-in condition. These results are consistent with previous reports. Beta oscillations have

been shown to decrease during the preparation of a motor response58 and theta band power has been shown to decrease with attention.59

In agreement with previous work is also the finding that attention enhances the power of the broad-band high-frequency activity, which likely

reflects increased spiking and synaptic activity.60 In addition to these attention-dependent effects on dynamics, we observed a build up of

gamma oscillations for natural but not for synthetic stimuli, over the course of the trial (Figure S4). The synchronization of discharges in

the gamma frequency range increases for responses to features that are well predicted by the embedding context.20,61,62 Here, natural scenes

induce more gamma oscillations than the synthetic stimuli, likely because they contain more compressible features and better match the

priors resident in the synaptic weight distribution of cortical networks. However, previous studies on the attentional modulation of gamma

oscillations in V1 have reported mixed results63 and this heterogeneity was also reflected here, across the two monkeys.

Onepuzzling aspect of our findings is the confinement of the attentional benefits of stimulus encoding to the temporal interval preceding a

change in the cued stimulus. Since the task requires only a suppression of reflexive responses to distractor change, no enhancements in

encoding for the natural scenes are necessary or even expected. Yet these enhancements in stimulus discriminability occurred close to

the anticipated stimulus change and were more pronounced in trials with short reaction times (Figure S1B). It is conceivable that these states

are particularly favorable to permit refinement of stimulus representations by structured top-down signals, suggesting that in a different task

context they may carry behavioral relevance.

In summary, we showed that the spatial allocation of attention toward a natural stimulus can engage mechanisms that exploit the higher

order statistical regularities of natural images, resulting in enhanced decodability of neuronal population responses in area V1. The alignment

between the attentional and natural stimulus variance in low-dimensional projections of V1 activity vectors, which was absent for synthetic

low-level stimuli, suggests that attention can involve mechanisms optimized for the processing of natural images in order to refine stimulus

representation in V1. These results highlight the importance of using natural stimuli when studying sensory processing and provide important

insights into how such factors as natural image statistics and the animals’ internal models of the visual world are central to visual processing

even at early levels.

Limitations of the study

Here we provided evidence that attention enhances the specificity of neuronal population responses to natural stimuli in area V1 by modu-

lating the distributed responses to higher-order features present in natural images. Our work, however, has several limitations. First, the atten-

tion task employed here is a classical spatial attention task. Extensions of this work should consider training animals to respond to finer

changes in image content. In such a setup, enhancements in stimulus representation could result in stronger behavioral consequences. Other

potential extensions could targetmanipulations of rewards. Second, the observed enhancement in natural scene encodingwas restricted to a

small temporal window preceding the stimulus rotation. A variation in the expected timing interval of the change would allow for a more in-

depth exploration of the alignment between contextual and attentional feedback. Thirdly, a larger image set and a thorough characterization

of its properties in terms of structural predictability and compressibility would allow for additional insights into the alignment of attentional

signals and contextual signals arising from inter- and intra-areal recurrent interactions. Finally, our results were based on recordings of neural

activity solely in V1. A more thorough assessment of top-down computations will require multi-site recordings of task-engaged animals.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Wolf Singer (wolf.singer@esi-

frankfurt.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

$ All data reported in this paper will be shared by the lead contact (W.S.) upon request.
$ Software and packages used for the analysis include FieldTrip.64 This paper does not report original code.
$ Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The data was obtained from two adult rhesus macaque monkeys, one male (monkey A) and one female (monkey I), aged 8 and 12 years,

respectively, during the time of the study. All experimental procedures were approved by the local authorities (Regierungspräsidium, Hessen,

Darmstadt, Germany) andwere in accordancewith the animal welfare guidelines of the EuropeanUnion’s Directive 2010/63/EU. Animals were

housed in rooms with outdoor access to a play area and had regular veterinary care and balanced nutrition. The recording chamber was im-

planted under general anesthesia over the primary visual cortex, the exact location was determined based on stereotactic coordinates

derived from MRI and CT scans.

Electrophysiological recordings

Signals were recorded using a chronically implantedmicrodrive containing 32 independently movable glass-coated tungsten electrodes with

impedance between 0.7 and 1.5 M U and 1.5 mm inter-electrode distance (SC32; Gray Matter Research65), amplified (Tucker-Davis Technol-

ogies, PZ2 pre-amplifier) and digitized at a rate of 24.4 kHz. The signals were filtered between 300 and 4,000 Hz and a threshold was set at 4SD

above noise level to extract multi-unit activity. LFP signals were obtained by low-pass filtering at 300 Hz and downsampling to 1.5 kHz.

Behavioral paradigm

Animals were seated in a customprimate chair at a distance of 64 cm in front of a 4773 298mmmonitor (Samsung SyncMaster 2233RZ; 120Hz

refresh rate; gamma-corrected). Stimulation protocols were written using MATLAB (MathWorks) and Psychophysics Toolbox. At the start of

each recording week, the receptive fields and orientation preferences of the recorded units weremapped with a moving light bar drifting in a

randomized sequence in eight different directions.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque Medical Research Council NA

(Macaca mulatta) Center for Macaques, Porton

Down, Salisbury, SP4 0JQ

Software and algorithms

MATLAB Mathworks www.mathworks.com

FieldTrip FieldTrip64 www.fieldtriptoolbox.org

Psychophysics Toolbox Psychophysics Toolbox www.psychtoolbox.org

Other

Microdrive 32 electrodes Gray Matter Research65 www.graymatter-research.com

Pre-amplifier (PZ2) Tucker-Davis Technologies www.tdt.com

Eye tracker (ET-49) Thomas Recording www.thomasrecording.com
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The two monkeys performed an attention-modulated change detection task. During the task, eye tracking was performed using an

infrared-camera eye-control system (ET-49; Thomas Recording). To initiate a trial, the monkey maintained fixation on a white spot (0.1! visual

angle) presented in the center of a black screen and pressed a lever. After 500 ms, two identical visual stimuli appeared in an aperture of 2.8–

5.1! at a distance of 2.3–3.2! from the fixation point. One of the stimuli covered the receptive fields of the recorded units, which were situated

in the right hemifield, the other stimulus was placed at the mirror symmetric site in the left hemifield. After an additional 700 ms, the fixation

spot changed color fromwhite to either red or blue, cuing themonkey to covertly direct its attention to one of the two stimuli (red, right hemi-

field; blue, left hemifield). When the cued image was rotated (20!), the monkey released a lever in a fixed time window (600 ms for monkey A;

900ms for monkey I) to receive a reward. A break in fixation (fixation window, 1.5! diameter) or an early lever release resulted in the abortion of

the trial, which was announced by a tone signal.

Eye movements

The percentage of saccadic eye movements that exceeded the fixation window (1.5! diameter) over the course of the trial is shown in

Figure S5A. These breaks in fixation occurred less frequently in the time interval preceding a stimulus change (1700-1900 ms, marked in

gray) compared to the baseline (-200-0ms, marked in gray). This difference was highly significant (Figure S5B, Wilcoxon signed-rank test,

p = 0.00018, n = 18 sessions in 2 monkeys), suggesting that the eyes were very stable in the time interval of interest. Additionally, we found

no differences in the frequency of saccadic eye movements between natural and synthetic stimuli (Figure S5C). Finally, we found no differ-

ences in the frequency of saccadic eye movements with attention for neither natural scenes (Figure S5D) nor synthetic stimuli (Figure S5E).

Taken together, these results suggest that eye movements are unlikely to be strong contributors to the differences observed in our data.

Visual stimulus design

Stimuli were static, black and white images, presented in a square or circular aperture. Within each recording session, all natural scenes and

control images had equal luminance and contrast.

Control images were generated in two ways:

(1) Filter-scrambling: synthetic stimuli generated from an image model. Filter scrambling was realized by permuting Gabor filter activa-

tions elicited by a natural image across the elements of the complete filter bank. The filter bank was composed of a large set of Gabor

functions, fitted to the receptive field (RF) characteristics of the recorded neurons. The positions and orientations of the Gabor func-

tions covered the image uniformly, while their size wasmatched to the RFs of visual cortical neurons recorded at the same eccentricity.

An activation variable determined the level of contribution of each particular Gabor function to the image. The synthetic images were

generated by linearly combining the activation-scaled Gabor functions. For each synthetic image, the activations of 500–3,000 Gabor

functions were sampled from the empirical distribution of Gabor filter responses to a particular natural image. The resulting control

images lacked the higher-order structure of natural scenes but matched their low-level statistical properties.

(2) Phase-scrambled images. The 2D fast Fourier transform (FFT) of each natural image was computed to obtain a complex magnitude-

phase map. The phase values were scrambled by assigning a random value to each element taken from a uniform distribution across

the range (# p, p). An inverse FFT was then applied to the resulting magnitude-phase maps to produce scrambled versions of the

original natural images. These control images lacked the higher-order structure of natural scenes but matched their frequency spec-

trum.

In a second experiment, recorded in one monkey (monkey I), we contrasted synthetic stimuli with and without higher-order structure.

These synthetic images were generated similarly to the control images described in (1) and matched the low-level statistical properties of

natural scenes. To add higher-order structure, a subset of Gabor functions were arranged in a manner that produced simple contour-like

patterns (example of contour synthetic image in Figure 3D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis

Data analysis was performed using custom code in MATLAB (MathWorks) and the Fieldtrip toolbox.64 Data analysis was based on completed

correct trials (mean number per session 967 trials for monkey A; 720 trials for monkey I).

We applied non-parametric statistical tests to avoid assumptions about the distributions of the empirical data. Information about sample

variables and size is reported in the results section. Critical results and statistics are reported separately for individual animals in the supple-

mentary materials.

Discriminability index

The unit d’, also known as Cohen’s effect size,66 for a pair of stimuli, was calculated as:

d0
i = ðm1 # m2Þ

!
s (Equation 1)

wherem1 andm2 are the mean spike-counts across trials of unit i to the two stimuli and s = ðs1 +s2Þ=2 is the mean standard deviation. This

measure was used in Figures 2G, 2H, S3C and S3D.

ll
OPEN ACCESS

iScience 27, 108816, February 16, 2024 13

iScience
Article



The population d’was calculated similarly, except in this casem1,m2 and s are n-dimensional vectors of spike-counts, where n is the num-

ber of simultaneously recorded units in a session. Distances in vector space were calculated using the Euclidean distance. The population d’

was used in Figures 1, 2, S1, and S2.

Principal component analysis and stimulus classification

PCA was applied on population spike-count vectors calculated over a 200 ms time window in the trial, 500–700 ms after stimulus onset (pre-

cue) and included trials fromboth attentional conditions. The control stimuli and contour stimuli were analyzed separately, in a similarmanner.

Thus, the projection space obtained via PCA was different for natural scenes and control stimuli. A comparison of the percentage of variance

explained by an increasing number of principal components, for natural scenes and controls recorded in the same sessions, can be found in

Figure S7.

To test alignement between the stimulus and the attentional variance (Figure 3), spike-counts over the 1700–1900 ms interval (post-cue)

were projected into the PCA space constructed pre-cue. Stimulus classification was performed based on projected data, separately, for trials

belonging to the attention in/out conditions. For each attentional condition, Naive Bayes classifiers were trained to decode the stimulus iden-

tity based on data pointsmapped in the space describedby the first nprincipal components, with n = 1 to 16. Cross-validationwas performed

by randomly subsampling the data (k # 1 data partitions used for training, 1 used for test, k repetitions; k = 5). This meant that, for each pair

of stimuli and each n, we ran classifiers k = 5 times, on each iteration randomly sampling the population response to the two stimuli. The

unseen trials were then used to assess test performance. The performance values reported in Figure 3B are mean validation scores pulled

across all stimulus pairs and all recording sessions, with shaded areas representing the standard error of the mean. Chance level was 50 %.

To enquire whether stimulus decoders benefit from knowledge on correlated variability across trials, stimulus classification for variable

numbers of PCs was compared for shuffled and unshuffled data in Figure S7. In this case, shuffling was performed across trials, within

each stimulus condition (i.e., signal correlations were not affected), after the construction of the PCA projection space, but before the training

of the Bayesian classifier. Test data was unshuffled, so that the distribution of original spike-counts was not affected.

Three additional projection spaces were considered for the analysis presented in Figure 4. First, a random orthogonal basis space was

generated with the same number of dimensions as the original population space. Second, PCAwas computed either on spontaneous activity

(spike-count vectors over the -200-0 ms window) or early evoked activity (spike-count vectors over the 100–300ms window). These projections

were performed in individual sessions and averaged over sessions.

LFP analysis

Power spectra were computed using a frequency-dependent window length (5 cycles per time window). This approach decreases the tem-

poral smoothing at higher frequencies and increases the sensitivity to brief effects. The time-windowsweremoved in steps of 10ms andHann-

tapered to avoid spectral leakage.

LFP power differences between trials in the attention-in and attention-out conditions are captured in Figure 1D (18 sessions, precue base-

line substracted). A more extensive analysis of attentional differences and stimulus-type differences was performed in individual animals

(Figure S4).

Stimulus classification (Naive Bayes) based on LFP power in various frequency bands, was applied in individual animals, following a similar

cross-validation procedure as the one described above for the PCA projections (Figure S8).
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