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Generative Artificial Intelligence (AI) models can propose solutions to scientific problems beyond
human capability. To truly make conceptual contributions, researchers need to be capable of un-
derstanding the AI-generated structures and extracting the underlying concepts and ideas. When
algorithms provide little explanatory reasoning alongside the output, scientists have to reverse-
engineer the fundamental insights behind proposals based solely on examples. This task can be
challenging as the output is often highly complex and thus not immediately accessible to humans.
In this work we show how transferring part of the analysis process into an immersive Virtual Reality
(VR) environment can assist researchers in developing an understanding of AI-generated solutions.
We demonstrate the usefulness of VR in finding interpretable configurations of abstract graphs,
representing Quantum Optics experiments. Thereby, we can manually discover new generalizations
of AI-discoveries as well as new understanding in experimental quantum optics. Furthermore, it
allows us to customize the search space in an informed way - as a human-in-the-loop - to achieve
significantly faster subsequent discovery iterations. As concrete examples, with this technology,
we discover a new resource-efficient 3-dimensional entanglement swapping scheme, as well as a 3-
dimensional 4-particle Greenberger-Horne-Zeilinger-state analyzer. Our results show the potential
of VR for increasing a human researcher’s ability to derive knowledge from graph-based generative
AI that, which is a common abstract data representation used in diverse fields of science.

Introduction

Virtual Reality (VR) describes the full im-
mersion of a human in a simulated environment,
most commonly via the use of a Head Mounted
Display, also known as a VR-Headset or VR-
Glasses. Modern headsets feature stereoscopic
rendering on top of the head and gaze tracking
combined with gesture controls by tracking
controllers in all spatial degrees of freedom.
The applications of immersive technology are
vast and varied [1], including but not limited
to entertainment, education [2–4], industry
and engineering [5–7], neuro- and medical sci-
ence and therapy [8–13] and data science [14, 15].

In the natural sciences, VR is used to visualize
and analyze complex, often three-dimensional
(3D), scientific data, such as molecular or ma-
terial data [16–20], microscopy data [21–24] or
astronomical data [25–27]. VR is also used to
better visualize neural network models [28–30] to
address the challenge of making Artificial Intel-
ligence (AI) explainable [31]. In addition, when
the AI output is compatible with existing VR
frameworks, it can be studied in an immersive
environment such as reviewing drug candidates
[32]. Beyond improved visualization, VR offers
natural ways of interacting with scientific re-
sults via intuitive gestures [33], which can be
exploited, for example in interactive molecular
simulations [34, 35]. Through this interactivity,

the VR platform enables a variety of ingenious
methods like using interactive simulations to
sample data for machine learning tasks [36, 37]
or even manipulating microscopic systems in
real-time via in-VR-interaction [38].

In this work, we show that modern VR
technology can be effectively applied to enhance
the interpretability and conceptualization of
scientific results discovered through AI. In
particular, we study AI-discovered quantum
optics experimental setups. By representing such
experiments as abstract colored graphs [39–41],
we can map complex setups into networks
which in turn benefit greatly in legibility and
interpretability when visualized n a true 3D
environment [15]. We demonstrate the unlocked
potential by showcasing (1) interpretable struc-
tures in AI discoveries and (2) generalizations
to new experiments derived from AI results by
exploiting their graph geometry.

To this end, we built AriadneVR1, a webVR
tool that allows us to visualize and edit experi-
mental graphs as well as to dynamically compute
their current state. AriadneVR is hosted online,
and does not require any additional hardware be-

1 In greek mythology Ariadne is Theseus wife, assisting
him discovering the way out of the labyrinth. AriadneVR
assists the Theseus algorithm [42] in discovery.
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FIG. 1. Virtual Reality (VR) assisted digital discovery workflow for obtaining insight from solutions discovered
by Artificial Intelligence (AI). AI results are studied in VR utilizing interactive 3D visualization to discover
interpretable structures. These are used to manually build new graphs or to direct the AI with smart initial
geometries for more efficient searches.

side of the VR headset and controllers. With it,
we discover previously unknown relations in the
construction of different state-generation experi-
ments for high-dimensional Greenberger-Horne-
Zeilinger (GHZ) states [43] and generalize AI-
discovered high-dimensional entanglement swap-
ping experiments to a new setup for high pair
counts. Furthermore, we extend to human-in-
the-loop AI-discovery by intelligently restricting
search space based on observed patterns in a re-
lated discovery in the case of a high-dimensional
GHZ-state analyzer to achieve the ability to mea-
sure a larger state. The methods used for these
discoveries are conceptually depicted in Fig. 1.
Our techniques are not limited to quantum op-
tics; they can also be applied to interpret any
generative AI outputs involving graph represen-
tations.

AI-driven Discovery in Quantum Physics

AI in Natural Science - In this work, we
leverage the potential of VR to augment the pro-
cess of extracting scientific understanding from

solutions to scientific problems discovered by
AI. Among other tasks, AI is used to efficiently
search vast configurational spaces to propose
testable answers to research questions [44, 45],
such as predicting protein folding patterns [46],
developing drug candidates [47], designing new
materials and molecules [48–51], quantum circuit
design [52] or discovering experimental setups
[53, 54].

Even though solutions discovered in this way
have value on their own, they might not generally
provide scientific understanding if their discovery
does not lead to new generalizable insights
[55–57]. Achieving such an understanding can be
very challenging when algorithms do not provide
conceptual reasoning alongside the output. In
such cases, the scientist has to deduce the
fundamental ideas behind results from examples
alone [57].

Discovery in Quantum Optics - In quan-
tum optics, algorithms are used to efficiently
discover new experiments. In its earliest itera-



3

tions, this is done by assembling a setup out of a
pre-defined toolbox of elements to solve a specific
task, e.g. designing experiments for quantum
state generation, tranformation or metrology
[53, 58, 59]. However, many setups can fulfill
the same task with minor differences between
them, which further expands the already vast
search space and decreases search efficiency.
This challenge is mitigated by choosing a more
efficient, abstract representation of quantum
optical setups as colored graphs, where a single
graph can represent different setups that yield
the same result [39–41]. Consequently, the
search space for experiments is reduced to the
space of graphs. Additionally, such graphs have
been shown to be interpretable, allowing the
development of conceptual understanding and
novel methods from AI solutions [42, 60].

The Graph Representation - Here, we
briefly explain the graph representation of
quantum optics for the specific question of
finding experimental setups for generating and
measuring photonic quantum systems. In this
representation, an experimental setup is encoded
as a colored, weighted graph by identifying ver-
tices as photon detectors and edges as correlated
photon-pair sources [39–41]. An edge linking
two vertices corresponds to the pair-photons
propagating to the corresponding detectors. The
complex edge weight encodes the amplitude
and phase of the respective pair. This way, the
weights also account for phase shifts and losses in
optical elements like beam splitters and mirrors,
as well as any occurring interference. The color
of the edge is used to specify the internal photon
mode, e.g. its polarization, path, spatial mode,
time-bin, or frequency.

Experimentally, quantum states are commonly
obtained by relying on simultaneous detection
events across all detectors, known as n-fold co-
incidence detection. In the graph picture, such
events correspond to subsets of edges containing
each vertex exactly once, called perfect match-
ings. As an example, a square graph decomposes
into two perfect matchings:

= + (1)

One such perfect matching corresponds to one
term contributing to the final quantum state.
The amplitude and phase associated with the
term are computed as the product of all edge
weights in the matching. Thereby, a coherent

superposition of all the perfect matchings in the
graph leads to the final post-selected quantum
state.

The colored, weighted graph contains the full
information of the quantum optical experiment
and can be translated into several different
realizations using different technologies. The
most straightforward way of translation is
using entanglement by path identity, a way of
creating superpositions of emission events by
perfectly aligning photon paths [61, 62]. Such
an example is shown in Fig. 2. Measurements
can be described in the same way using the
Choi-Jamio lkowski isomorphism [42, 54]. This
technique allows for a native translation of
experimental setups to abstract graphs and
has been practically implemented in recent
experimental works [63–66].

PyTheus - PyTheus is an open-source AI tool
for discovering new quantum optics experimental
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FIG. 2. Optimization flow for a 2-dimensional 4-
particle Greenberger-Horne-Zeilinger (GHZ) state of
the PyTheus-algorithm [54]. Starting from a fully
connected initial graph, PyTheus iteratively performs
continuous edge weight optimisation and subsequent
pruning of unnecessary edges until a minimal graph is
reached that fulfills the desired output. When trans-
lating the resulting graph to the experimental setup,
every vertex represents a detector, and every edge a
correlated photon-pair source emitting towards the
connected detectors. The terms contributing to the
final quantum state of the experiment are conditioned
on coincidence detection of all detectors. In the graph
picture, these terms correspond to perfect matchings,
subgraphs where each vertex is only reached by a sin-
gle edge (see equation (1)).
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setups [54]. It can discover a variety of different
types of experiments, such as state generation
setups, communication protocols, measurement
devices, or photonic quantum gates.

The initial step in searching for an experi-
ment is to define the desired experimental task.
Subsequently, one specifies the initial parameters
such as the number of detectors, incoming and
outgoing photons, and potential topological con-
straints. With these parameters, PyTheus con-
structs the largest possible setup in graph form.
The initial graph is then refined in two iterative
steps: (1) by minimizing the desired loss by opti-
mizing the graph weights, and (2) by performing
topological optimization to remove unnecessary
edges. In this way, PyTheus attempts to find the
sparsest graph realizing the experiment. The op-
timization loop is depicted in Fig 2.

Physical Background

We show graphs of experiments for the cre-
ation and measurement of GHZ-states as well as
high dimensional entanglement swapping. Both
topics are highly relevant to the fields of quantum
communication and quantum computing but are
also used to investigate the fundamental proper-
ties of quantum physics [67, 68]. Here, we briefly
introduce the quantum physical background of
these experiments.

GHZ-states and GHZ-analyzers - GHZ-
states are a class of highly entangled multi-
particle states originally conceived as a 3-particle
generalization of the well-known bell states [43].
Both classes of states form a multi-particle or-
thogonal basis set, where each particle is maxi-
mally entangled with all others. Since their orig-
inal proposal, they have been generalized both to
particle numbers larger than three and dimen-
sions higher than two [64, 67, 69–71]. In this
work, we discuss graphs relating to the GHZ-state
of n particles in d dimensions which is given as:

|GHZ⟩dn =
1√
d

d−1∑
i=0

|j⟩⊗n
. (2)

GHZ-state analyzers are setups distinguishing
one or more GHZ-states out of an unknown
input state [72]. We discuss binary analyzers
distinguishing between the presence or absence
of a specific GHZ state given by Equation (2).

High Dimensional Entanglement Swap-
ping - In its original form, entanglement swap-
ping refers to the preparation of two Bell pairs
and the subsequent projection of one particle of
each pair in a joined Bell state. This measure-
ment also collapses the remaining two particles
in a joined Bell state of their own, without them
ever having interacted [73, 74].
This process can be generalized to multipartite
entanglement generation using GHZ states as the
initial entangled states [75]. High-dimensional
entanglement swapping refers to non-locally cre-
ating d-dimensional Bell-pairs of the form:

∣∣Φ+
d

〉
=

1√
d

d−1∑
j=0

|jj⟩ . (3)

We show graphs creating n such pairs simulta-
neously between two parties and refer to it as
n-pair entanglement swapping.

Many experiments implementing the tasks
mentioned above require additional photons to
realize the desired output. These helper photons
are called ancillae, opposed state photons.

AriadneVR

Here we introduce AriadneVR2, our web-based
virtual reality application for visualizing and
analyzing colored graphs representing quantum
optics experiments. It is developed with the
open-source framework A-Frame3 using HTML
and JavaScript on an Oculus Quest 2. The
tool runs fully locally in the headset’s browser,
requiring neither installation nor a tether to a
computer for 3D rendering.

For preprocessing graphs, we use the igraph
Python library [76] and its pre-implemented
Kamada-Kawai-algorithm [77] to obtain a 3D-
mapping of vertices. This creates an initial
arrangement to be perfected manually in virtual
reality. The layout-generation step is performed
outside the tool and creates a file containing all
relevant information to be stored on the host
platform (e.g. GitHub for hosting via GitHub

2 https://github.com/artificial-scientist-lab/

AriadneVR
3 https://aframe.io/

https://github.com/artificial-scientist-lab/AriadneVR
https://github.com/artificial-scientist-lab/AriadneVR
https://aframe.io/
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Pages4). When running the tool, A-Frame then
uses the THREE.js 3D library5 under the hood
to construct a model from the graph information.
The VR environment is shown in Fig. 3.

Our tool allows the exploration of graph
representations of quantum optics experiments
through visualization and interaction, i.e. man-
ual sorting and editing the experimental setup in
its graph form. Beyond this, it supports the steer-
ing of PyTheus’ searches by generating instruc-
tion files based on constrained geometries defined
in VR. Graphs from the library can be spawned
alongside each other and investigated simultane-
ously. The vertex arrangements are changed by
simply grabbing and dragging them around as
desired. When a user makes functional changes
to a graph, e.g. adding a new edge by drawing
with the controller, the changing state is dynami-
cally tracked. The resulting perfect matchings of
a graph are available to be spawned as additional
3D models. To save the current form of a graph,
a file can be downloaded to the headset, which
can then be placed into the host library to make
it available for later sessions. Similarly, the user
can download a PyTheus instruction template,
where the current graph is set as the initial graph
for the search. To streamline this process, edges
can be drawn without defining their color, repre-
senting a connection where all possible edges are
in the initial graph. The framerate for displaying
a typical graph is about 40 per second with an
Oculus Quest 2.
While AriadneVR is built for analyzing quantum

optics experiments, its core functionality is visu-
alizing and editing small colored graphs, hence
can be applied to other graphs too, assuming
they are fed into the pre-processing pipeline in
an appropriate format. As AriadneVR is directly
processed at the computer of the VR glass, the
framerate will decrease for large graphs. For large
graphs, with more than 100 nodes (e.g. graphs
studied in social science) a powerful external com-
puter is necessary for rendering the structures. In
that case, different software such as VRnetzer [15]
are better suited.

4 https://pages.github.com/
5 https://threejs.org/

FIG. 3. Point of view of an exemplary PyTheus
graph analysis inside the environment of AriadneVR.
A PyTheus graph is shown with one perfect match-
ing subgraph on the right. A rendered version of this
graph is depicted in Fig.4(a).

Applications

We use VR in a threefold manner as shown in
Fig. 1. The basis of all our VR analysis is the
discovery and interpretation of structure in an
experimental graph. We provide interactive 3D
figures and basic VR environments for all graphs
mentioned in this work at the accompanying
website. Through manual sorting, the majority
of PyTheus graphs can be transformed into
visually clean structures, some of which are
immediately interpretable, revealing information
on how the respective graph achieves its task. If
the mechanism underlying a graph is understood,
we can manually generalize it to new experi-
ments. This is done directly in VR by drawing
new or extending existing graphs. However,
in some cases the underlying structure is not
immediately obvious, and it remains unclear how
to generalize the graph. Here we can use VR to
propose geometries of potential generalizations.
We then use PyTheus to search for solutions to
confirm or reject our candidates.

Finding interpretable structures in 3D
Graphs – In the following, we show three
selected examples from Ref. [54] and Ref. [60]
where interpretable 3D-representations were
found using AriadneVR. For better visual clarity,

https://pages.github.com/
https://threejs.org/
https://artificial-scientist-lab.github.io/AriadneVR/
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FIG. 4. Through interactive 3D visualization struc-
ture is easily revealed in complex graphs. (a)
I: 2D representation of a 3-particle 4-dimensional
GHZ-state analyzer and its discovered 3D geome-
try. (a) II: Interference loop example on the un-
desired |311⟩ ket. Interactive Figure. (b) I: 3-
particle 5-dimensional GHZ-state in 2D and 3D. (b)
II: 4-particle 4-dimensional GHZ state in 2D and
3D.Interactive Figure. (b) III: Common core sub-
graph highlighted in both previous graphs signifying
the nature of both graphs as generalizations of the
|GHZ⟩34 state. Interactive Figure. Ancillae are drawn
as squares/cubes, detectors as circles/spheres, and
input modes as triangles/tetrahedrons. Colors repre-
sent photon modes, indicators on edges their negative
weight.

we use renderings made with Blender 4.06

instead of screenshots of the VR environment for
depictions of 3D-graphs.

Fig. 4(a) shows a 3-particle 4-dimensional
GHZ-state analyzer. Beyond the striking sym-
metry of the discovered 3D structure, there is
a functional feature exemplified by this highly
complex solution. As a measurement graph,
it needs to ensure that all coincidence events
produce terms belonging to the desired state or
interfere destructively. A common way to achieve
this in the graph picture is by constructing loops
of even edge count with a total negative sign.
Such loops were discovered in this particular
graph in VR simply by superimposing the 3D
models of two interfering perfect matchings.

Fig. 4(b) shows (I) |GHZ⟩53 and (II) |GHZ⟩44
state creation graphs. Ancillae are described
by cube-shaped vertices and state photons by
spherical vertices. Through their 3D structure
discovered in VR, it is revealed, that both graphs
share the same triangular graph structure high-
lighted in the center of both graphs. The only
difference is the central vertex being an ancilla
in |GHZ⟩53 and a state photon in |GHZ⟩44. In
the latter, this core graph creates a 4-particle
3-dimensional GHZ state. The |GHZ⟩53-graph
declares one photon of this subgraph as an ancilla
(vertex 5 in Fig. 4(b) I) to reduce the state
photon count from four to three. Any remaining
photon modes are then added by the outer
ancilla structure for both graphs. The examples
shown here are representative of insights made
easily accessible just by moving to stereoscopic
rendering and intuitive manual sorting.

Manually discovering new AI-inspired
experiments in VR - AriadneVR allows the
user to modify and edit graph structures and
construct completely new ones. Geometric
understanding obtained through the superior
rendering in VR combined with the user’s
physical understanding of the experimental
mechanisms can then be used to manually
engineer new graphs.

This process is shown on an example in Fig.
5. Here, we show the discovery method in the

6 https://www.blender.org/

https://artificial-scientist-lab.github.io/AriadneVR/4d_3p_GHZ-analyzer
https://artificial-scientist-lab.github.io/AriadneVR/GHZ-358
https://artificial-scientist-lab.github.io/AriadneVR/GHZ-448
https://www.blender.org/
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FIG. 5. Manual discovery of new graphs assisted by VR for efficient high dimensional entanglement swapping.
PyTheus discovered graphs are watermarked. Through experimentation with graph edits, concepts can be easily
transferred and tested on new graphs.(a) Discovered extension mechanism for higher dimensions extracted
from efficient PyTheus discovered 2-dimensional entanglement swapping, represented by the graph for three
2-dimensional pairs and a single 3-dimensional pair in the center. Interactive Figure. (b) PyTheus discovered
solution for 2-pair 3-dimensional swapping. Interactive Figure.(c) Application of the mechanism from (a) to a
subgraph from (b) to obtain a new swapping graph for 4-pair 3-dimensional swapping. Interactive Figure.

case of resource-efficient high-dimensional multi-
pair entanglement swapping. The discovery is
based on the PyTheus-generated solution for
2-pair 3-dimensional entanglement swapping
without requiring a 3-dimensional Bell-state
measurement (graph 78 in Ref. [54]) shown in
Fig. 5(a). By combining it with an AI-inspired
construction method (see Fig. 5(b)) of generat-
ing high-dimensional non-locally entangled pairs
derived from a different AI-discovered graph
for 3-pair 2-dimensional entanglement swapping
(graph 77 in Ref. [54]) we can generalize to a
new, previously unknown 4-pair 3-dimensional
entanglement swapping graph. The result is
shown in Fig. 5(c). It effectively creates one
whole 3-dimensional pair with no additional
resource cost in ancillae by superimposing
additional creation processes from single-pair ex-
periments. It is an alternative setup to stacking
two of the 2-pair AI solutions showing the same
novel decrease in required ancillae. AriadneVR

assists this discovery process by firstly providing
easy access to graph structures and secondly
offering an intuitive method of defining new
graphs through manual drawing.

Steering AI discoveries through VR via
customized search spaces - Potentially useful

generalizations to quantum optical experiments
can involve the increase in particle count, dimen-
sionality, or both [67, 68]. Searching for such
generalizations from scratch can be inefficient as
the corresponding initial graphs, i.e. the search
spaces, quickly increase in size. For example,
the initial graph for 4-particle 2-dimensional
GHZ-state generation has 24 edges. Searching
for a 3-dimensional generalization more than
doubles this amount to 54 edges, and attempting
a 4-dimensional state without additional ancilla
raises the size to 96 edges.

We can use AriadneVR to customize our search
spaces and decrease the size of the initial graph to
steer PyTheus to more efficiently discover desired
solutions. We achieve this by analyzing existing
solutions for lower graph sizes and defining candi-
date geometries of extensions based on observed
patterns. In Fig. 6 we show this process for the
generalization of a 3-particle 3-dimensional to a 4-
particle 3-dimensional GHZ-state analyzer. The
3-particle analyzer is highly symmetric. Our can-
didate for a 4-particle geometry keeps this sym-
metry and follows the same patterns observed
in the smaller solution. By restricting the ini-
tial graph to this geometry, the search for the 4-
particle analyzer is reduced from 124 edges down

https://artificial-scientist-lab.github.io/AriadneVR/trid
https://artificial-scientist-lab.github.io/AriadneVR/2p_3d_ES
https://artificial-scientist-lab.github.io/AriadneVR/4p_3d_ES
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FIG. 6. Discovering graph generalizations by us-
ing AriadneVR to define initial graph geometries for
PyTheus searches based on preexisting discoveries.
I: Discover the structure in the PyTheus discovered
graph of a 3-particle 3-dimensional GHZ-state ana-
lyzer. Interactive Figure. II: Use AriadneVR to de-
fine a search geometry based on said structure. In-
teractive Figure.III: Use PyTheus on the restricted
Geometry to discover a 4-particle generalization. In-
teractive Figure

to 74. In this way, we can use human intelligence
to assist PyTheus in its discovery task, which in
turn can provide the human scientist with the
example cases needed for concept extraction.

Conclusion and Outlook

In this work, we presented ways to leverage
the unique potential of immersive technology in
the AI-driven discovery process for quantum op-
tics experiments using PyTheus and our purpose-
built VR-tool AriadneVR. By interactively ex-
ploring the graph representations of quantum op-
tics, a new approach to learning from AI to de-
velop new experiments and insight is opened. Be-
yond furthering the understanding of existing so-
lutions for GHZ-state creation and measurement,
we achieved substantial machine-inspired discov-
eries with our tool. We engineered a new alterna-
tive 4-pair 3-dimensional entanglement swapping
setup, where one pair is created at no additional
photon cost with knowledge derived from AI dis-
coveries. We also showed the human-assisted
AI discovery of a 4-particle 3-dimensional GHZ-
state analyzer. To further exploit the potential of
VR our prototype could be expanded to include
multi-user support for cooperative analysis and
direct access to PyTheus within VR. Addition-
ally, a variety of potential visualization features
and tools could be added to streamline the analy-
sis process. Examples include computational op-
erations on vertices as well as support for more
post-selection conditions. Beyond PyTheus’ dis-
coveries, the methods developed here can poten-
tially also prove useful in other AI-discovery fields
where graph-based representations are used, such
as in quantum computing (quantum circuits [52],
especially ZX-graphs [78]), material or protein
design (involving crystal structures and molecu-
lar graphs [79]) and DNA-origami design [80, 81]
in material science and biochemistry. We believe
that enhancing human researchers’ capabilities to
comprehend complex data with technologies like
VR is crucial to fully utilize the power of AI for
scientific discovery. Beyond task-specific applica-
tions, immersive technologies also have the po-
tential to fundamentally transform the scientific
workspace by allowing remote collaboration and
experimental control [82].

∗ ph.s.schmidt@protonmail.com
† soeren.arlt@mpl.mpg.de
‡ mario.krenn@mpl.mpg.de

[1] E. H. Korkut and E. Surer, Visualization in vir-
tual reality: a systematic review, Virtual Reality
27, 1447 (2023).

https://artificial-scientist-lab.github.io/AriadneVR/3d_3p_GHZ-analyzer
https://artificial-scientist-lab.github.io/AriadneVR/3d_4p_GHZ-ana_top
https://artificial-scientist-lab.github.io/AriadneVR/3d_4p_GHZ-ana_top
https://artificial-scientist-lab.github.io/AriadneVR/3d_4p_GHZ-ana
https://artificial-scientist-lab.github.io/AriadneVR/3d_4p_GHZ-ana
mailto:ph.s.schmidt@protonmail.com
mailto:soeren.arlt@mpl.mpg.de
mailto:mario.krenn@mpl.mpg.de
https://doi.org/10.1007/s10055-023-00753-8
https://doi.org/10.1007/s10055-023-00753-8


9

[2] Z. Duer, L. Piilonen, and G. Glasson, Belle2VR:
A Virtual-Reality Visualization of Subatomic
Particle Physics in the Belle II Experiment,
IEEE Computer Graphics and Applications 38,
33 (2018).

[3] C. Porter, J. Smith, E. Stagar, A. Simmons,
M. Nieberding, C. Orban, J. Brown, and A. Ay-
ers, Using virtual reality in electrostatics instruc-
tion: The impact of training, Physical Review
Physics Education Research 16, 020119 (2020).

[4] S. Seritan, Y. Wang, J. E. Ford, A. Valentini,
T. Gold, and T. J. Mart́ınez, InteraChem: Vir-
tual Reality Visualizer for Reactive Interactive
Molecular Dynamics, Journal of Chemical Edu-
cation 98, 3486 (2021).

[5] J. Wolfartsberger, Analyzing the potential of
Virtual Reality for engineering design review,
Automation in Construction 104, 27 (2019).

[6] S. Qin, Q. Wang, and X. Chen, Application of
virtual reality technology in nuclear device de-
sign and research, Fusion Engineering and De-
sign 161, 111906 (2020).

[7] Z. Guo, D. Zhou, Q. Zhou, X. Zhang, J. Geng,
S. Zeng, C. Lv, and A. Hao, Applications of vir-
tual reality in maintenance during the industrial
product lifecycle: A systematic review, Journal
of Manufacturing Systems 56, 525 (2020).

[8] J. Yuan, S. S. Hassan, J. Wu, C. R. Koger,
R. R. S. Packard, F. Shi, B. Fei, and Y. Ding, Ex-
tended reality for biomedicine, Nature Reviews
Methods Primers 3, 1 (2023).

[9] C. J. Bohil, B. Alicea, and F. A. Biocca, Virtual
reality in neuroscience research and therapy, Na-
ture Reviews Neuroscience 12, 752 (2011).

[10] W. Usher, P. Klacansky, F. Federer, P.-T. Bre-
mer, A. Knoll, J. Yarch, A. Angelucci, and
V. Pascucci, A Virtual Reality Visualization Tool
for Neuron Tracing, IEEE Transactions on Visu-
alization and Computer Graphics 24, 994 (2018).

[11] Y. Wang, Q. Li, L. Liu, Z. Zhou, Z. Ruan,
L. Kong, Y. Li, Y. Wang, N. Zhong, R. Chai,
X. Luo, Y. Guo, M. Hawrylycz, Q. Luo, Z. Gu,
W. Xie, H. Zeng, and H. Peng, TeraVR em-
powers precise reconstruction of complete 3-D
neuronal morphology in the whole brain, Nature
Communications 10, 3474 (2019).

[12] B. S. Steiniger, H. Pfeffer, S. Gaffling, and
O. Lobachev, The human splenic microcircula-
tion is entirely open as shown by 3D models
in virtual reality, Scientific Reports 12, 16487
(2022).

[13] D. R. Glowacki, R. R. Williams, M. D. Wonna-
cott, O. M. Maynard, R. Freire, J. E. Pike, and
M. Chatziapostolou, Group VR experiences can
produce ego attenuation and connectedness com-
parable to psychedelics, Scientific Reports 12,
8995 (2022).

[14] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang,
J. Zhang, E. Lawler, S. Yeh, A. Mahabal,
M. Graham, A. Drake, S. Davidoff, J. S. Nor-
ris, and G. Longo, Immersive and collaborative
data visualization using virtual reality platforms,

in 2014 IEEE International Conference on Big
Data (Big Data) (2014) pp. 609–614.

[15] S. Pirch, F. Müller, E. Iofinova, J. Pazmandi,
C. V. R. Hütter, M. Chiettini, C. Sin, K. Boz-
tug, I. Podkosova, H. Kaufmann, and J. Menche,
The VRNetzer platform enables interactive net-
work analysis in Virtual Reality, Nature Com-
munications 12, 2432 (2021).
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State of the Art of Molecular Visualization
in Immersive Virtual Environments, Computer
Graphics Forum 42, e14738 (2023).

[17] M. O’Connor, H. M. Deeks, E. Dawn,
O. Metatla, A. Roudaut, M. Sutton, L. M.
Thomas, B. R. Glowacki, R. Sage, P. Tew,
M. Wonnacott, P. Bates, A. J. Mulholland, and
D. R. Glowacki, Sampling molecular conforma-
tions and dynamics in a multiuser virtual reality
framework, Science Advances 4, eaat2731 (2018).
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