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Abstract

Pattern separation is a valuable computational function performed by neuronal circuits,

such as the dentate gyrus, where dissimilarity between inputs is increased, reducing noise

and increasing the storage capacity of downstream networks. Pattern separation is studied

from both in vivo experimental and computational perspectives and, a number of different

measures (such as orthogonalisation, decorrelation, or spike train distance) have been

applied to quantify the process of pattern separation. However, these are known to give con-

clusions that can differ qualitatively depending on the choice of measure and the parameters

used to calculate it. We here demonstrate that arbitrarily increasing sparsity, a noticeable

feature of dentate granule cell firing and one that is believed to be key to pattern separation,

typically leads to improved classical measures for pattern separation even, inappropriately,

up to the point where almost all information about the inputs is lost. Standard measures

therefore both cannot differentiate between pattern separation and pattern destruction, and

give results that may depend on arbitrary parameter choices. We propose that techniques

from information theory, in particular mutual information, transfer entropy, and redundancy,

should be applied to penalise the potential for lost information (often due to increased spar-

sity) that is neglected by existing measures. We compare five commonly-used measures of

pattern separation with three novel techniques based on information theory, showing that

the latter can be applied in a principled way and provide a robust and reliable measure for

comparing the pattern separation performance of different neurons and networks. We dem-

onstrate our new measures on detailed compartmental models of individual dentate granule

cells and a dentate microcircuit, and show how structural changes associated with epilepsy

affect pattern separation performance. We also demonstrate how our measures of pattern

separation can predict pattern completion accuracy. Overall, our measures solve a widely

acknowledged problem in assessing the pattern separation of neural circuits such as the

dentate gyrus, as well as the cerebellum and mushroom body. Finally we provide a publicly

available toolbox allowing for easy analysis of pattern separation in spike train ensembles.
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Author summary

The hippocampus is a region of the brain strongly associated with spatial navigation and
encoding of episodic memories. To perform these functions effectively it makes use of cir-
cuits that perform pattern separation, where redundant structure is removed from neural
representations leaving only the most salient information. Pattern separation allows
downstream pattern completion networks to better distinguish between similar situations.
Pathological changes, caused by Alzheimer’s, schizophrenia, or epilepsy, to the circuits
that perform pattern separation are associated with reduced discriminative ability in both
animal models and humans. Traditionally, pattern separation has been described along-
side the complementary process of pattern completion, but more recent studies have
focussed on the detailed neuronal and circuit features that contribute to pattern separa-
tion alone. We here show that traditional measures of pattern separation are inappropriate
in this case, as they do not give consistent conclusions when parameters are changed and
can confound pattern separation with the loss of important information. We show that
directly accounting for the information throughput of a pattern separation circuit can
provide new measures of pattern separation that are robust and consistent, and allow for
nuanced analysis of the structure-function relationship of such circuits and how this may
be perturbed by pathology.

Introduction

The hippocampus plays an important role in a number of crucial behavioural functions [1], in
particular encoding spatial information [2, 3] and episodic memories [4, 5]. To support this
functionality, a portion of the inputs to the hippocampus are first processed in the dentate
gyrus, a subfield consisting of large numbers of sparse-firing principal neurons, the granule
cells, arranged in a consistent laminar structure [6, 7]. The dentate gyrus is one of the few
brain regions to undergo adult neurogenesis [8–10], with adult-born cells displaying distinct
intrinsic, synaptic, and morphological properties [11, 12]. A number of functional roles have
been postulated for the dentate gyrus, but the most consistently studied and experimentally
supported is that of pattern separation: an increase in the dissimilarity of outputs compared to
inputs [13, 14].

Pattern separation

The idea of pattern separation as a desirable computational function arises from the work of
David Marr on the encoding of memories [15, 16]. Marr showed that a strongly recurrent neu-
ronal network could learn to reproduce complete patterns from fragmented inputs, but that
such fragments should be distinctive to avoid catastrophic interference between different pat-
terns. Although the theory was developed for the cerebellum, another site of pattern comple-
tion was proposed to be the CA3 hippocampal subfield, a region that displays the necessary
recurrent connectivity and receives strong inputs directly from the dentate gyrus [17, 18]. Fur-
ther theoretical work, in particular that of McNaughton and Morris [19] and Rolls [20],
showed that pattern completion would ideally be preceded by pattern separation, originally
envisioned as an orthogonalisation of input spiking vectors, and that this could take place in
the dentate gyrus. The theory of pattern separation, and its occurrence in the dentate gyrus,
has since been extensively developed in a large number of theoretical papers [21–26] and
observed in many experiments [27–31] (for reviews see [32, 14], and [33]). Pattern separation
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has been viewed both in terms of the spiking outputs of the dentate gyrus and the ability of an
experimental subject to discriminate between similar situations [34, 35]. Of particular clinical
relevance, the dentate gyrus undergoes relatively well-described physiological changes under
pathologies such as Alzheimer’s disease [36], schizophrenia [37], and epilepsy [38–40], and
these conditions have direct behavioural correlates in terms of the reduced ability of sufferers
to distinguish between similar situations [41–43].

A number of measures of spike train similarity have been used to assess pattern separation
in the literature. The original definitions of patterns separation considered orthogonalisation
as most beneficial in terms of reducing interference during pattern completion [19, 20]; this is
computed as the cosine distance between (normalised) discretised spike-train vectors. Decorr-
elation has also been used as a natural measure of similarity reduction [44, 45] and again is
computed on discretised spike-train vectors. Finally, different measures of distances between
spike trains can be used to assess pattern separation; the measures can be either discretised,
such as the Hamming distance [46–49], or calculated on raw spike times [50–53].

Despite being conceptually straightforward, the quantification of pattern separation in
terms of a network’s inputs and outputs can be surprisingly problematic. When considered as
part of a system preceding pattern completion, good pattern separation can be simply taken as
any procedure that reduces noise and enhances the storage capacity of the downstream net-
work [54]. When isolated from pattern completion, however, measurement of pattern separa-
tion efficacy can become more arbitrary. Different research questions, theoretical models, and
neural codes can lead to wildly different conclusions about pattern separation. This has
become particularly relevant as more detailed computational models have focussed on the
dentate gyrus in order to assess the contribution of different circuit components to pattern
separation [45, 46, 48, 49], and as new experimental techniques have allowed direct access to
the inputs and outputs of individual dentate granule cells [44, 55]. A contributing factor to the
number of different metrics is the gap between complex in vivo physiological studies which
focus on the mechanisms generating pattern separation [56, 57] and more computational stud-
ies that focus on the consequences of pattern separation [58]. The former tend to dominate the
literature. Different quantifications of the effect called pattern separation can lead to seemingly
inconsistent conclusions, a point already noted by Santoro [34], Vineyard et al [59], and Chav-
lis and Poirazi [33]. Madar et al [52] showed explicitly that different measures can produce dif-
ferent results on the same datasets. Myers and Scharfman [46] found that removing hilar cells
led to less sparse granule cell activity and improved pattern separation performance, as mea-
sured with the raw Hamming distance, a counterintuitive result given the theoretically positive
effects of sparsity on pattern separation [60, 61]. Later studies that used the Hamming distance
sought to correct for the relative sparsity of the outputs compared to the inputs in various ways
[47, 49]. Sparsity in general can be a problem for similarity metrics as firing rates can bias cor-
relations and cosine distances [51, 52, 62]. A particular issue arises in the choice of bin sizes to
move from spike times to the discretised spike-vectors necessary to compute orthogonalisa-
tions, decorrelations, or Hamming distances; Madar et al [52] also showed that choosing dif-
ferent bin sizes could qualitatively change the apparent behaviour of a system, with smaller
time bins typically showing pattern separation and larger time bins showing pattern conver-
gence on the same input and output sets of spike times.

Finally, making structured inputs less similar can be achieved by destroying structure and
this may degrade the ability of downstream networks, such as the CA3 subfield, to reconstruct
salient features from the inputs. Vineyard et al [59] and Madar et al [44] both note that stan-
dard pattern separation measures do not consider destruction of information. This has lead to
debates about the roles of different features of the dentate gyrus in pattern separation. Aimone
et al [63] and Sahay et al [64] took explicitly opposing views on the function of neurogenesis in
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the dentate gyrus, with the former arguing that ‘memory resolution’, the transfer of informa-
tion salient to memories, was the key role of more broadly-tuned adult-born neurons and the
latter arguing that more excitable adult-born neurons primarily drove recurrent inhibition
that increased sparsity and hence classical pattern separation. The two objectives, reliable
transmission and separation through sparsity, were considered to be largely antithetical.
Inconsistencies in the conception and measurement of pattern separation contribute to the
continuation of this debate; later arguments have been made that adult-born granule cells aid
pattern separation [59, 65, 66], hinder pattern separation [67], differentially separate the most
similar patterns [68], or independently carry out the entirety of pattern separation, with
mature cells responsible for behavioural pattern completion in behavioural tasks [69] (but see
[70] for criticism of this idea). Some studies consider the loss of signal explicitly. Guzman et al
[45], for example, trained an artificial neural network to identify input patterns from modelled
dentate gyrus outputs, whilst quantifying pattern separation itself by decorrelation until the
stage that inputs cannot be reliably identified by the artificial network. This is an effective solu-
tion to the problem of complete loss of signal, but leaves open questions about how close the
network is to failing, or, conversely, if a more complex artificial network could recover more
input patterns for a given level of decorrelation. We believe that a direct measurement of the
information contained in spike train ensembles going into and out of the dentate gyrus will
help to resolve these inconsistencies and be a valuable and robust assessor of dentate gyrus
functionality.

Information theory in neuroscience

Information theory is built upon the work of Shannon [71] and studies the ability of systems
to communicate reliably. There is a long history of the application of information theoretic
techniques to neuroscience, starting with MacKayand McCulloch [72], and a large number of
techniques have been developed to assess or estimate the informational content of neural
codes [73–76] (see [77] or [78], among many others, for reviews). Since information has a nat-
ural link to the functions of the hippocampus in terms of memory, navigation, and situational
discrimination, a number of studies have used techniques from information theory to analyse
hippocampal structure and function. Treves and Rolls [79] showed that the CA3 network
should receive two streams of input (from the dentate gyrus and directly from the upstream
entorhinal cortex) in order to both learn new patterns and reliably access stored memories.
Cerasti and Treves [80] found that the spatial representations induced in CA3 by dentate gyrus
activation potentially contain much information that is so high-dimensional that it cannot be
feasibly decoded. Petrantonakis and Poirazi [81] applied compressed sensing theory to show
that the firing activity of different hippocampal regions was consistent with taking random
projections to lower the dimensionality of a spike code and allow practical decoding perfor-
mance substantially above the deterministic limit. Fagihi and Moustafa [48] applied mutual
information as a measure to tune parameters of single neurons in a network model of schizo-
phrenia, but assessed the resulting pattern separation functionality of the model using a form
of Hamming distance. Vineyard et al [59] introduced a variety of loss-less coding strategies to
estimate the maximal amount of information that could be encoded by a model dentate gyrus,
and how this is increased by neurogenesis, but treated information maximisation as the ulti-
mate goal rather than pattern separation as typically described. Severa et al [82] expanded on
these ideas by describing a loss-less spike code for binary vectors that would increase sparsity
and reduce correlations through an abstracted dentate-gyrus layer. In the cerebellum, Billings
et al [58] studied how connectivity and cellular morphology support information throughput
despite increased sparsity, concluding that these two features should be balanced. No previous
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study has, however, applied information as a direct measure of pattern separation efficacy in
the dentate gyrus for arbitrary inputs.

We here introduce a set of techniques from information theory that allow pattern separa-
tion in the dentate gyrus to be rigorously quantified without the need to specify an accompa-
nying pattern completion algorithm. We first confirm that arbitrarily removing structure from
input spike train ensembles typically improves pattern separation as assessed by classical mea-
sures, but reduces the information content. We then show that mutual information [71], trans-
fer entropy [83], and redundancy [84] can be used as measures of pattern separation
performance and apply these to detailed compartmental models of individual granule cells and
a small network. We further demonstrate how information estimation techniques [76, 85] can
be adapted to spike train ensembles in order to reduce biases when data is scarce [86]. We
demonstrate how our new measures might better predict pattern completion accuracy in an
abstract auto-associative model. Finally, we demonstrate how structural changes of the dentate
circuit associated with epilepsy [38, 40] affect pattern separation performance as assessed by
our new measures and how they might apply to a larger network. We anticipate that informa-
tion-theoretic measures of pattern separation will be a useful tool in disentangling the struc-
ture-function relationships of different cell types, how these relationships arise from learning
and development, and how they are perturbed by pathology.

Results

Sparsity typically increases standard measures of pattern separation, but
decreases information transmission

Classical measures of pattern separation, such as orthogonalisation, decorrelation, or spike
train distance, are effective at analysing the measured behaviour of a neuronal system and
quantify the degree of difference between the inputs and outputs. In the dentate gyrus, outputs
are typically encoded by sparser activity than the inputs and sparsity is a major contributor to
pattern separation [21, 43, 44, 60, 82, 87, 88]. Increasing sparsity in a neural code, however,
may reduce the information it carries about the afferent signal [58]. We here introduce a set of
simple filters that arbitrarily increase the sparsity of an ensemble of spike trains and show both
that classical measures of pattern separation can be highly parameter-dependent and that an
arbitrary reduction in spike number typically leads to an increase in measured pattern separa-
tion performance.

Fig 1A (left) shows a raster of spike trains phase-locked to a periodic stimulus, and so dis-
playing correlations both within and between spike trains (see Methods). Activity patterns
consisting of ensembles of spike trains with different correlations within and between different
trains are used throughout this study. Sparse trains are produced using thinning filters that
remove spikes from the inputs in some way. Shown here is the independent uniform removal
of individual spikes with a fixed probability p (Fig 1A, right), but we also consider three more
structured filters: n-th pass—only every n-th spike in each train can pass, refractory—delete
every spike within t seconds of a previous spike in the same train, and competitive—delete
every spike within t seconds of another spike in any train in the ensemble (S1(B) Fig). These
different filters pick out different relationships in the input spike train ensemble. The first filter
destroys all structure in the ensemble as the deletion probability increases, the second and
third filters maintain order or temporal structure within trains, and the fourth corresponds to
competition between different trains in the ensemble.

We next apply five metrics that are regularly used to assess pattern separation in the litera-
ture to spike train ensembles filtered in these ways. Overall this study compares three novel
information-based and five existing measures of pattern separation. In all cases we use the

PLOS COMPUTATIONAL BIOLOGY Information theory for pattern separation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010706 February 20, 2024 5 / 38



letter Υ to refer to a measure of pattern separation; upper case latin subscripts denote the
information-based measures and lower case greek subscripts denote classical non-information
based measures. The classical measures are plotted in progressively lighter shades of red in Fig
1B. Orthogonalisation Υθ measures the reduction in pairwise cosine distance between normal-
ised spike trains (Eqs 4 & 5), scaling Υσ measures the change in differences in the norms of the
spike trains (Eqs 6 & 7), decorrelation Υρ measures the reduction in pairwise correlations
between spike trains (Eqs 8 & 9), Hamming distance Υη measures the increase in pairwise
Hamming distance between spike train vectors (Eqs 10 & 11), and Wasserstein distance Υδ

measures the increase in pairwise Wasserstein distance between spike trains (Eqs 12 & 13).

Fig 1. Sparsifying (filtering) spike train ensembles leads to increased classical measures of pattern separation, but reduced
information content. A Demonstration of filtering a phase-locked spike train ensemble (left) by random spike deletion (right). The
probabilities of spike deletion are p = 0.5, 0.75, 0.85, 0.95. B Standard measures of pattern separation as a function of discretisation
bin size on a randomly filtered spike train with p = 0.5. Solid, dashed, and dotted lines refer respectively to strong, medium, and weak
input similarities (phase-locked strengths of 0.75, 0.5, and 0.25, see Methods). From darkest to lightest, colours plot standard
measures of pattern separation: orthogonalisation Υθ, scaling Υσ, decorrelation Υρ, and Hamming distance Υη. Wasserstein distance
Υδ does not rely on discretisation and is not plotted. All values are normalised for comparisons, raw values are plotted in S1(C)–S1
(F) Fig. C Standard measures of pattern separation applied to filtered spike trains. Filtering methods and input similarities are as in
B. The x-axis gives the filtering parameter in each case. All values are normalised for comparisons, raw values are plotted in S1(G)–S1
(K) Fig. D Mutual information between input spike train ensembles and filtered spike train ensembles. Filtering methods and input
similarities are as in B. Colours correspond to different neuronal codes (see Methods): from darkest to lightest instantaneous spatial,
temporal, local rate, and ensemble rate. All values are normalised for comparisons, raw values are plotted in S2(A)–S2(D) Fig. E
Mutual information as a function of classical pattern separation measures. Mutual information was maximised over all spiking codes
and bin sizes for different input rates, correlation structures and strengths, and filter types and strengths. Clockwise from top left:
orthogonalisation Υθ, decorrelation Υρ, Wasserstein distance Υδ, and Hamming distance Υη. Shaded areas show one standard
deviation. Raw scatter plots and densities are shown in S2(E)–S2(H) Fig.

https://doi.org/10.1371/journal.pcbi.1010706.g001
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These measures are fully described in Methods and summarised in Table 1. Orthogonalisation
Υθ and scaling Υσ are complementary measures as orthogonalisation is computed on normal-
ised vectors and scaling compares norms. The first four (Υθ, Υσ, Υρ, and Υη) are computed on
discretised spike trains, whereas the Wasserstein distance Υδ is parameter-free and computed
on raw spike times. There are other ways to apply such metrics to pattern separation. The
Hamming distance, for example, can also be applied to differences between entire ensemble
patterns rather than individual spike trains in an ensemble [46, 49]; we take this form to keep
the measures used as consistent as possible.

Fig 1B plots the value of each measure (except the Wasserstein distance) normalised to its
highest value (S1 Fig plots the unnormalised values in separate panels) for a random thinning
with p = 0.5 as a function of the size of the discretisation bins used. In each case there is a
monotonic relationship between the size of the bin and the value of the measure. This confirms
the results of Madar et al [52] and means that it is very difficult to assign meaning to a given
value of pattern separation computed by one of these methods as the value will typically
depend on the choice of the binning parameter with no principled way to make this choice. It
may be possible to pick approximate bin sizes based on biologically relevant timescales in
some cases, potentially considering multiple different bins corresponding to multiple different
timescales, but the precise width of the bins would remain a potential confound for any
results.

Fig 1C plots the value of each measure normalised to its highest value (S1 Fig plots the
unnormalised values in separate panels) as a function of spike deletion probability p. In all
cases, each metric increases monotonically with the strength of the thinning filter and reaches
a maximum when the output spike train ensembles are almost empty. This trend also holds for
the other thinning filters (S1(G)–S1(K) Fig), with two exceptions: the Wasserstein distance
measure Υδ takes a maximum at an intermediate value of the refractory filter (S1(K) Fig), and
the decorrelation measure Υρ takes a maximum at an intermediate value of the competitive fil-
ter, where spike trains inhibit each other (S1(J) Fig). As the Wasserstein distance is rate-invari-
ant (normalised to the total number of spikes in each train), it appears that removing spikes
that lie close to other spikes can lead to lower measured distances [53]. For the decorrelation
measure, the competitive filter removes spikes close to others in all parts of the ensemble and
so can lead to very sparse vectors that are actually more correlated in the chosen time
windows.

The potential problem with such measures in isolation is illustrated clearly in Fig 1D, which
plots the normalised mutual information between input and output spike train ensembles (S2

Table 1. Table summarising classical pattern separation measures (top), and new information theoretic measures (bottom).

Symbol Definition Description Equations

Υθ Orthogonalisation Cosine distance between normalised discretised spike train vectors 4 & 5

Υσ Scaling Ratio between norms of discretised spike train vectors 6 & 7

Υρ Decorrelation Pearson correlation between discretised spike train vectors 8 & 9

Υη Hamming distance Hamming distance between discretised spike train vectors 10 & 11

Υδ Wasserstein distance Wasserstein distance between raw spike time vectors 12 & 13

ΥM Mutual information Sparsity weighted MI between input and output ensembles 1 & 14

ΥT Transfer entropy Sparsity weighted TE between input and output ensembles 2 & 15

ΥR Redundancy reduction Relative redundancy reduction between input and output ensembles 3 & 16

~ΥM
Estimated mutual information Estimated ΥM using a modified Kozachenko-Leonenko estimator 1 & 17 to 19

~ΥR
Estimated redundancy Estimated ΥR using a modified Kozachenko-Leonenko estimator 3 & 17 to 19

https://doi.org/10.1371/journal.pcbi.1010706.t001
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Fig plots the unnormalised values in separate panels). Different possible spiking codes (instan-
taneous spatial, temporal, local rate, and ensemble rate, see Methods) are plotted in different
shades of blue. Although many of these codes also depend on binning spikes, it is possible to
pick bin sizes in a principled way to maximise the information content. This is done separately
for each condition. Pattern separation using the above classical measures increases as informa-
tion is lost. This is a general trend and holds for different input correlation structures and
strengths, and mean firing rates. Fig 1E supports this point by plotting the maximum mutual
information over all spiking codes and bin sizes as a function of different classical measures
for general spike train ensembles and filters. There is a universal negative relationship, mean-
ing that increased classical measures of pattern separation typically imply an increased loss of
information about the input.

Information theoretic measures of pattern separation

To avoid the above weaknesses of classical measures, we introduce two types of information
theoretic measure of the ability of a neuronal system to separate patterns. The first type covers
the relationship between inputs and outputs; giving a measure of the efficiency of the feedfor-
ward information transmission. The second type covers the relationships within the sets of
inputs and outputs; giving a direct measure of the amount of information shared by an ensem-
ble of spike trains which is more equivalent to the traditional definitions of pattern separation
by orthogonalisation or decorrelation.

For the first type of measure, two related quantities are typically used to quantify the infor-
mation throughput of a neural system: the symmetric mutual information IX,Y between input
X and output Y ([71], Eq 14), and the directed transfer entropy TX!Y from input X to output Y
([83], Eq 15). Both have their advantages and a recent review found that the transfer entropy is
typically less biased when data is sparse [89].

The second type of measure is linked to a quantification of the redundancy within a spike-
train ensemble. The principle comes from the partial information decomposition of an ensem-
ble into information that is encoded synergistically, independently, and redundantly by differ-
ent components of that ensemble [90–92]. Removing redundancy between spike trains would
distinguish them in terms of the information they convey and improve pattern separation.
Whilst multiple measures of redundancy exist, we follow Williams and Beer [84] in defining it
as the minimum mutual information RX between different parts of a pattern X. Here this idea
is applied as the minimum mutual information between each individual spike train and the
rest of the ensemble (Eq 16).

The two types of informational measure can be used and combined to give robust measures
of pattern separation. The information theoretic measures of pattern separation below are cho-
sen to take a value of zero both in the limit of destroying all information between input and
output, and when inputs have not been differentiated at all. To directly adapt the first type of
measure to assess pattern separation, we take sparsity as a parameter-free proxy for pattern
separation when combined with mutual information (Eqs 1 and 2). It would also be possible to
take a traditional measure such as orthogonalisation or decorrelation and penalise this with
information loss. The simple sparsity measure is preferred to these classical measures as it
makes no assumptions on the pattern completion circuit, requires no discretisation of spike
times, and has a natural relationship to the metabolic costs of spiking. The sparsity weighted
measures therefore correspond to a more efficient coding of input patterns, likely using a
higher-dimensional coding space [81, 93] where patterns will likely be more separated [58, 61,
88]. These measures can take negative values in the cases where the output contains more
spikes than the input (ie the sparsity is ‘negative’), and can take similar values in cases where
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information throughput is high but sparsity is low and where information throughput is low
but sparsity is high. There can also be value in considering the two components separately to
see how far pattern separation performance is driven by maintenance of information through-
put and how far by reduction in input similarity (see Results below).

To adapt the second type of information theoretic measure to assess pattern separation, we
multiply the reduction in redundancy between the input ensemble and the output ensemble
with the mutual information between the pair of ensembles, balancing feedforward informa-
tion loss with reduced redundancy (Eq 3). All information-theoretic measures, as well as the
classical measures discussed here, can be computed by our accompanying Matlab pattern
separation toolbox. This toolbox combines both the calculation of the new metrics themselves,
which depend on choices of neural code and numerical parameters such as discretisation bin-
size, and the optimisation algorithms we use to identify the codes and parameters that allow
the maximum amount of information to be decoded.

Sparsity weighted mutual information ΥM. If the number of spikes in the input pattern
X is mX, the number in the output pattern Y is nY, and IX,Y (Eq 14) is the mutual information
between X and Y, then the sparsity weighted mutual information is

ΥM à
mX � nY

mX
IX;Y Ö1Ü

The reason for normalising the sparsity to the number of input spikes is to allow for the fact
that sparse input encodings have relatively less room to remove spikes. We note again here
that sparsity on its own is not a measure of pattern separation, but can be combined with
mutual information IX,Y to produce a useful proxy.

Sparsity weighted transfer entropy ΥT. Similarly, if TX!Y is the transfer entropy from X
to Y, then the sparsity weighted transfer entropy is

ΥT à
mX � nY

mX
TX!Y Ö2Ü

Relative redundancy reduction ΥR. Comparing the difference in redundancies between
the input and output ensembles gives a measure of the changes taking place within a pattern as
it passes through a neural system. This can be multiplied by the mutual information between
input X and output Y to measure the balance between redundancy reduction and information
throughput

ΥR à ÖRX � RYÜ IX;Y Ö3Ü

Redundancy reduction RX − RY alone can be seen as its own measure of pattern separation. It
is more analogous to the the classical measures described above as it only describes the rela-
tionships within the input and output spike train ensembles separately. It measures the reduc-
tion in input similarity in terms of the informational quantity of redundancy, instead of the
correlations or cosine or Wasserstein distances between spike trains in an ensemble. It also
shares the key issue of neglecting information throughput from the input to the output, so we
suggest that relative redundancy reduction ΥR should be taken as a better measure of pattern
separation performance.

Information theoretic measures of pattern separation and filtered spike ensembles.
Fig 2 shows the application of these measures to filtered spike train ensembles as in Fig 1. Fig
2A shows the sparsity weighted mutual information ΥM, Fig 2B the sparsity weighted transfer
entropy ΥT, and Fig 2C the relative redundancy reduction ΥR. In all cases there is a single
peak in each measure at an intermediate value of the thinning filters, and this also holds for the
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nth-pass, refractory, and competitive filters (S3 Fig). As before, different assumed spiking
codes lead to different relationships between sparsity and information transmission (different
shades of blue in panels A to C), but the principled approach is to take the codes that produce
the highest information throughput. For ΥM and ΥT, the measures are relatively independent
of the strength of the phase-locking within the input patterns (see S3 Fig for unnormalised val-
ues). ΥR, however, which accounts for the reduction in redundancy between input and output
patterns, is strongly dependent on the strength of input similarity (here the strength of the
phase-locking), with stronger similarities leading to higher measures of pattern separation at
all thinning filter values. Fig 2 plots the informational measures for a number of different spike
codings, with parameters chosen to maximise each amount of information for each code. The
optimal parameters, for both the inputs and outputs, differ for each datapoint, but the overall
trend in informational terms is preserved. In general, we will also optimise over a number of
different possible encodings; the goal is to identify the maximum amount of information that
could possibly be contained in a given signal and so correctly penalise the absolute loss of
information, however measured. This does not require an assumption that the spiking codes
used by the entorhinal cortex maximise information efficiency, merely that it might be possible
for a circuit to decode all of the information in a spike train ensemble.

ΥM is a simple to understand and easy to apply proxy for pattern separation; it can be
replaced by ΥT if desired or if data is sparse (but see below for a procedure to estimate the
mutual information in this case). ΥR provides a useful complementary measure with more
sensitivity to the strength and structure of input correlations.

Single cell pattern separation

Whilst full pattern separation likely relies on circuit structure [5, 45], features of single cells
embedded in their networks can contribute to the separation of patterns in time [44]. If a sin-
gle neuron is sequentially presented with similar input patterns and maps these to less similar

Fig 2. Information theoretic measures of pattern separation penalise pattern destruction (information loss). A Normalised
sparsity weighted mutual information ΥM applied to randomly filtered spike train ensembles. Solid, dashed, and dotted lines refer
respectively to strong, medium, and weak input similarities (see Methods). Colours correspond to different neuronal codes (see
Methods): from darkest to lightest instantaneous spatial, temporal, local rate, and ensemble rate. All values are normalised for
comparisons, raw values are plotted in S3(A) Fig. B Normalised sparsity weighted transfer entropy ΥT applied to filtered spike
train ensembles. Colours as in panel A. All values are normalised for comparisons, raw values are plotted in S3(B) Fig. C
Normalised relative redundancy reduction ΥR applied to filtered spike train ensembles. Colours as in panel A. All values are
normalised for comparisons, raw values are plotted in S3(C) Fig.

https://doi.org/10.1371/journal.pcbi.1010706.g002
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output patterns, then measures of pattern separation can be computed on the combined input
and output ensembles. This would be equivalent to a population of independent neurons
simultaneously receiving different elements of the input ensemble and simultaneously produc-
ing different elements of the output ensemble.

To demonstrate the application of these new measures to simulated data from physiologi-
cally realistic single cell models, we study the effects of changing parameters on the ability of a
detailed compartmental model of a single mouse granule cell [94] to separate patterns (Fig
3A). The cell receives informative synaptic input from the lateral perforant path (synaptic con-
tacts shown as large yellow markers in Fig 3A), and background input across the rest of its den-
dritic tree (brown markers in Fig 3A). Inputs are presented as repeated structured patterns
(rasters on the left of Fig 3A). Specifically, each spike train in the ensemble is presented
sequentially and the output of the neuron is recorded. These outputs are combined into an
output ensemble. Perforant path inputs to granule cells undergo stochastic short-term plastic-
ity (see Methods for details), and varying the timescales of depression and facilitation alters
both the sparsity-weighted mutual information ΥM and relative redundancy reduction ΥR

(Fig 3B, top two panels). Both measures show a consistent and robust peak in pattern separa-
tion at timescales of* 500ms for depression and* 300ms for facilitation, indicating an opti-
mal parameter value for separation of the input patterns. The experimentally estimated values

Fig 3. Information theoretic measures applied to a single cell provide consistent and robust assessment of pattern separation. A
Left panels: Example input spiking rasters. Right panel: Dentate gyrus granule cell morphology. Informative synaptic contacts are
shown by yellow and background synaptic contacts by brown markers. Example output voltage traces from the granule cell soma are
shown in S4(A) Fig. B. Sparsity weighted mutual information ΥM (left) and relative redundancy reduction ΥR (right) for the granule
cell model as a function of various physiological parameters. Spiking codes are chosen separately for the inputs and outputs to
maximise information. From top to bottom: timescale of synaptic depression, timescale of synaptic facilitation, and spatial
heterogeneity in ion channel densities (see Methods). Each input is presented 8 times. Solid lines represent the mean over 10
repetitions with different inputs and the shaded areas show one standard deviation above and below the mean. In general, input and
output measures were close to the mean. Blue shows a weak input similarity (phase-locked correlation strength of 0.25), and grey a
strong input similarity (phase-locked correlation strength of 0.75). Spike traces are two minutes long and consist of phase-locked
inputs with a phase rate of 0.6Hz and a spiking rate of 5Hz. C Components of pattern separation as a function of the timescale of
synaptic depression. From top to bottom: sparsity (mX − nY)/mX, mutual information IX,Y, and redundancy reduction RX − RY (see
Eqs 1 to 3).

https://doi.org/10.1371/journal.pcbi.1010706.g003
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for these timescales at lateral perforant path synapses in Madar et al [44] are* 500ms for
depression and* 9ms for facilitation. Similarly, the public Hippocampome.org dataset [95]
gives average recorded timescales of 563.9ms for depression and 8.33ms for facilitation at the
time of writing. The sparsity weighted mutual information measure ΥM is relatively unaffected
by changes in the similarities of the input patterns compared to the relative redundancy reduc-
tion measure ΥR, which shows higher values when input similarities are stronger. The peaks of
the curves are not affected by the strength of the input similarity when changing the depression
timescales, but stronger similarities seem to slightly favour slower facilitation, with a right-
wards shift in both the ΥM and ΥR curves. Using classical measures of pattern separation (see
S4 Fig) does not reveal a consistent peak in performance, with most measures being either flat
or monotonic across the range of timescales and usually giving results that depend on the size
of discretised bin used.

In contrast to synaptic properties, the pattern separation performance of the cell is relatively
unaffected by increasing intrinsic heterogeneity. The bottom row of Fig 3B shows pattern sepa-
ration performance as a function of spatial ion channel heterogeneity. This is implemented by
randomising the densities of the model’s ion channels around their mean in each 1μm section
of the neuron with a given coefficient of variation (see Methods). The lines for both measures
are relatively flat, with no substantial impact of spatial heterogeneity on either ΥM or ΥR.
Changing the spatial heterogeneity in this way does not, on average, affect the excitability of
the cell, but does alter the relative impacts of different synaptic contacts. In this model this
change is insufficient to significantly alter the pattern separation performance.

After assessing the overall pattern separation performance, it is possible to investigate how
the different components of our new measures may contribute. Fig 3C plots how sparsity, pure
mutual information, and pure redundancy reduction change as a function of the timescale of
synaptic depression. Sparsity is a purely increasing function, mutual information is a purely
decreasing function, and redundancy reduction itself takes a peak for relatively slow vesicle
recovery. Although such an analysis is helpful in identifying how a system is performing differ-
ent aspects of pattern separation, it is not typically possible to identify the parameters that
might give peak performance as shown by the combined measures ΥM and ΥR.

Synapses with stochasticity and short-term plasticity are believed to contribute to pattern
separation [44], gain modulation [96, 97], and energetically efficient information throughput
[98]. The new techniques introduced here show how altering the timescales of this plasticity
quantitatively changes the pattern separation performance of a single granule cell, and how
experimentally measured timescales appear to be highly effective for pattern separation by bal-
ancing reduction of redundancy with loss of mutual information.

Estimators for mutual information and performance on sparse data

A limitation of some informational measures is that they can require large amounts of data to
produce accurate estimates of information content [86, 89]. This issue has been addressed by
the development of estimators for informational quantities based on some measure of the dis-
tances between spike trains. In the Methods section we describe how to adapt the modified
Kozachenko-Leonenko estimator [85] described in Houghton [76] to account for spike train
ensembles and measurement of redundancy (Eqs 17 to 19). To apply the estimate consistently
we also sought to remove a key parameter of the original implementation, the number of seg-
ments a spike train is divided into. We found that this parameter was unnecessary by adapting
the technique Strong et al [75] introduced to estimate the limiting mutual information of infi-
nitely long spike trains. Fig 4A (left panel) shows that, for large numbers of segments (see
Methods), the mutual information estimate is a linear function of the number of segments. By
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extrapolating back to the case of 0 segments, which must therefore be infinitely long, we find
an estimate of the limiting mutual information of a spike train. A similar technique can be
used for redundancy estimates (Fig 4B (left panel)).

By replacing the exact quantities in Eqs 1 and 3 with their estimators, this leads to estima-

tors for sparsity weighted mutual information and relative redundancy reduction denoted ~ΥM

and ~ΥR respectively. These estimators have advantages when data is sparse. Fig 4 (right panels)
plots the distribution of estimates of mutual information and redundancy reduction using
both the explicit temporal code (blue) and the Kozachenko-Leonenko estimators (purple)
when only a single short trace over five spike trains is available. The standard deviation in
mutual information estimates using the estimator is consistently smaller than the explicit cal-
culation. Even when experimental data is sparse therefore, there are reliable ways to estimate
pattern separation efficacy using our new information theoretic techniques. In specific circum-
stances, with relevant preliminary data or good estimates of circuit features such as input pat-
terns and connectivity, it would be possible to use simulations such as this to constrain the
length of the experiments needed to produce accurate exact values of ΥM and ΥR.

The estimators ~ΥM and ~ΥR can be computed by our accompanying Matlab pattern
separation toolbox.

Information theoretic measures can predict pattern completion

A major strength of the information theoretic approach to measuring pattern separation is
that it allows one to remain agnostic about the nature of any mechanisms of pattern comple-
tion in downstream circuits. Nevertheless, it is possible to demonstrate that our new measures

Fig 4. Mutual information and redundancy can be estimated in situations of limited data. A Left: Example point Kozachenko-
Leonenko (KL) estimates (triangles) of mutual information (MI) for a spike train as a function of the number of segments (see
Methods) and the extrapolation to infinite length (solid line and arrow). Dashed lines show the 95% confidence interval of the
estimate. Right: Mean and standard deviation (shaded areas) in mutual information estimates for single-trial data as a function of
spike train length. Blue shows the exact calculation using a temporal code and purple the Kozachenko-Leonenko estimate. B Left:
Example point Kozachenko-Leonenko (KL) estimates (triangles) of redundancy (Red.) for a spike train as a function of the number
of segments and the extrapolation to infinite length (solid lines and arrows). Dark blue shows the input ensemble (in) and light blue
the output ensemble (out). Right: Mean and standard deviation (shaded areas) in redundancy reduction (RR) estimates for single-
trial data as a function of spike train length. Colours as in panel A.

https://doi.org/10.1371/journal.pcbi.1010706.g004
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have value in quantifying the ability of an abstract pattern completion circuit to accurately
recover inputs. The Hopfield network is a classical autoassociative network that is able to
reconstruct complete patterns from partial inputs once it has been trained [99]. Hopfield net-
works suffer from catastrophic interference when learning to reproduce multiple patterns, and
the extent of this interference typically depends on the degree of correlation between the
trained patterns [100].

To evaluate how well information theoretic measures of pattern separation might predict
pattern completion in this abstract model, we took the Kuzushiji-49 dataset of 49 handwritten
Japanese Hiragana characters that is widely-used as a benchmark for computer vision algo-
rithms [101]. The digits are encoded as 28 pixel by 28 pixel grayscale images, or as vectors of
length 784. This means that the digit is represented by a population code. As handwritten dig-
its, the elements of the dataset contain spatial correlations that impair the storage capacity of a
Hopfield network. To train the network, the patterns are binarised by thresholding the gray-
scale values, and an exemplar of each class is chosen at random (S5(B) Fig). A Hopfield net-
work with 784 nodes is then trained on the set of 49 exemplar patterns using the pseudo-
inverse learning rule [102]. To assess the recall accuracy of the trained network, it is presented
with each pattern in the full dataset and left to converge. The recalled class is then taken to be
the class of the exemplar that best matches (has the greatest dot product with) the converged
pattern. The initial recall accuracy is 16.83%, reflecting the problems caused by the correlated
patterns.

Whilst it is possible to apply a basis transformation to the dataset to achieve high pattern
completion performance, noise can also be used to separate the patterns. Noise is applied by
randomising a subset of the pixels at fixed locations in each class (Fig 5A). This provides a
noisy transformation on the input patterns; pattern separation metrics can be computed on
this transformation (see Methods). Increasing the number of randomised pixels initially

Fig 5. Information theoretic measures can predict pattern completion performance. A Example binary patterns from the
Kuzushiji-49 dataset (top to bottom) with increasing levels of pixel noise (left to right: 0, 200, 400, and 600 pixels). B Top:
Completion accuracy of a Hopfield network as a function of noise strength. Middle: Correlations between different classes of
pattern as a function of noise strength. Bottom: Relative redundancy reduction (ΥR) between classes of patterns as a function of
noise strength. Solid line shows the mean over 1000 repetitions and the shaded area shows the standard error. C Completion
accuracy of a Hopfield network against decorrelation Υρ. D Accuracy against ΥR.

https://doi.org/10.1371/journal.pcbi.1010706.g005
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increases the performance of the network, whilst reducing correlations (Fig 5B). Beyond a cer-
tain point, however, the noise dominates and completion accuracy falls quickly towards a
chance level. This is reflected in the relative redundancy reduction ΥR of the noisy pattern
transformation, which also takes a peak at an intermediate level of noise. As the patterns are
not encoded by spikes, the sparsity-weighted mutual information ΥM is not appropriate for
this system. Directly comparing Υρ and ΥR with the pattern completion accuracy (Fig 5C and
5D) shows that, in this abstract model, ΥR can be a useful predictor of subsequent pattern
completion performance but Υρ has poor predictive power.

This abstract model has a number of important qualitative differences from the real hippo-
campus. In particular, patterns are purely binary and presented instantaneously and separately
to the network, with no background interference from other processes. Further, training and
recall patterns pass through exactly the same transformation. In reality, hippocampal pattern
completion circuits receive two streams of input, through the dentate gyrus and directly from
the entorhinal cortex. These two streams likely have different roles in training and recall [1, 5,
79]. In addition, the model only covers one type of (population) code, and one type of pattern
completion circuit. Nevertheless, the model illustrates how reducing redundancy whilst main-
taining mutual information can be beneficial for storage and recall in a recurrent network and
provides further motivation for our new metrics.

Pattern separation in a network

Most studies of the dentate gyrus find that effective pattern separation in the dentate gyrus is
primarily a network phenomenon [5, 61] produced by effects such as unreliable expansion to
multiple principal cells, conditional reinforcement through lateral excitation, and competitive
inhibition by interneurons [45, 61]. In addition, heterogeneities in the response properties of
individual granule cells are likely to contribute [103]. We next show the applicability of our
information theoretic pattern separation measures to the output of a simple microcircuit
model of the mouse dentate gyrus. The full details are given in Methods, but overall we con-
sider a population of 40 mature granule cells, 10 adult-born granule cells, 5 mossy cells, and
one pyramidal basket interneuron (Fig 6A and 6B). The principal cells receive informative
inputs in the outer molecular layer undergoing stochastic short-term plasticity as above, 5
groups are formed by sets of 8 mature and 2 adult-born cells receiving the same informative
presynaptic spikes, but with independent stochastic synaptic dynamics. The output is taken to
be the ensemble of all granule cell spike trains.

We first apply our measures to evaluate the relative pattern separation performance of
mature and adult-born granule cells in the model. Fig 6C plots the sparsity weighted mutual
information ΥM and relative redundancy reduction ΥR for both populations as a function of
the strength of input similarities. All informational quantities are maximised over the relevant
numerical parameters and the set of possible spike codes we consider. By both measures the
pattern separation efficacy of the mature population is higher than that of the adult-born pop-
ulation in absolute terms, with a similar trend across both populations and measures in
response to increasing input similarities. The increase in ΥR with input similarity in the
mature population is due to the fact that higher levels of input similarity imply higher absolute
levels of input redundancy. The adult-born cells do not display any significant reduction in
input redundancies at any similarity level. The reason for this appears to be that the adult-born
cells in this model are more intrinsically excitable than the mature cells [94], and the modelled
perforant path inputs are not scaled down to match this. There is evidence that excitatory
inputs to adult-born cells in the real dentate gyrus are weaker to balance their higher intrinsic
excitability and maintain sparse activity [104, 105]. Ultimately, the scaling of afferent synapses
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Fig 6. Pattern separation in a network and under pathology. A Example of dentate gyrus microcircuit. Granule cells are in shades
of blue, mossy cells are in shades of brown, and the pyramidal basket cell is in red. B Example rasters of input patterns (left) and
driven microcircuit activity (right). Vertical rows show spiking activity of a single cell and colours correspond to panel A. Cells are
grouped into sets receiving the same inputs and sharing preferential lateral connections (see Methods). C. Sparsity weighted mutual
information ΥM (top) and relative redundancy reduction ΥR (bottom) for the mature (left) and adult-born (right) granule cell
populations as a function of input phase-locked correlation strength. Solid lines represent the mean over 10 repetitions and the
shaded areas show one standard deviation above and below the mean. Blue shows the response to input ensembles with a spiking rate
of 5Hz and grey to input ensembles at 10Hz. Spike traces are two minutes long and consist of phase-locked inputs with a phase rate of
0.6Hz. D. Sparsity weighted mutual information ΥM (top) and relative redundancy reduction ΥR (bottom) for the mature (left) and
adult-born (right) granule cell populations as a function of a scaling parameter for the informative lateral perforant path synapses.
Solid lines represent the mean over 10 repetitions and the shaded areas show one standard deviation above and below the mean. Blue
shows a weak input similarity (phase-locked correlation strength of 0.25), and grey a strong input similarity (phase-locked correlation
strength of 0.75). Spike traces are two minutes long and consist of phase-locked inputs with a phase rate of 0.6Hz and a spiking rate of
5Hz. E Simulations of epilepsy-related changes in synaptic input weights (horizontal axis) and Kir2 channel density (vertical axis).
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onto adult-born granule cells [106] and the extent of their integration into dentate gyrus
microcircuits [12] will determine their contribution to pattern separation in the brain.

Pattern separation under pathology

Next we provide a proof of principle and demonstrate the usefulness of our information theo-
retical measures for assessing the function of the dentate gyrus under pathological conditions,
when changes to input codes and pattern completion mechanisms are potentially unknown.
For this purpose, we apply our new measures to estimate the performance of the above net-
work under the types of changes associated with epilepsy. Epilepsy causes structural changes
in the dentate gyrus that increase granule cell activity and reduce behavioural discrimination
performance [43]. A notable structural change is a significant increase in the sizes of axonal
boutons and dendritic spine heads at perforant path synapses, and an associated increase in
synaptic strength [40]. This is likely to hinder pattern separation by increasing the reliability of
input responses by each principal cell [39]. In agreement with this expectation, scaling up the
informative synapses to the granule cells in the above networks shows a decrease in pattern
separation performance by both ΥM and ΥR (Fig 6D).

Another change in the epileptic dentate gyrus, is an increase in the expression of inward
rectifying potassium (Kir2) channels in granule cells [38]. This mechanism increases the con-
ductance of granule cells and so reduces their excitability, potentially compensating for
increased afferent synaptic strength. Measuring ΥM as a function of scaling parameters for
both the Kir2 channel densities and the informative synaptic strengths, reveals a region where
pattern separation performance could be maintained by upregulating Kir2 expression to coun-
teract increased synaptic weights (Fig 6E). To see exactly how this occurs, Fig 6F plots how
sparsity, pure mutual information, and pure redundancy reduction change as a joint function
of the synaptic scale and Kir2 conductance scale. Sparsity and redundancy reduction decrease
with synaptic strength, but increase with Kir2 conductance. Mutual information has a largely
inverse relationship to the other two measures, but not so much as to cancel out the region of
higher pattern separation seen in Fig 6E. These results show that the new information theoretic
measures of pattern separation produce reliable and intuitive results when applied to complex
compartmental models that seek to simulate real systems.

Pattern separation in a large network

The pattern separation measures defined here are not limited to small networks and can be
scaled up to larger systems. In Fig 7 we simulate networks of 50, 000 and 100, 000 granule cells
receiving 5, 000 or 10, 000 two minute long inputs that are generated from a grid cell-type fir-
ing pattern (Fig 7A). The granule cells are simplified to point neurons with adaptive exponen-
tial integrate-and-fire spiking properties fitted to the compartmental models above [107, 108].
In this model it is possible to explore a number of network features at larger scale and directly
compare the performance of the sparsity-weighted mutual information ΥM against a classical
measure, the Hamming distance Υη, for networks of very large size.

Sparsity weighted mutual information ΥM as a joint function of synaptic and Kir2 expression scaling parameters. The heatmap shows
the average over ten repetitions. Spike traces are two minutes long and consist of phase-locked inputs with a strength of 0.75, a phase
rate of 0.6Hz, and a spiking rate of 5Hz. The relative redundancy reduction ΥR is plotted in S5(B) Fig. F Components of pattern
separation as a joint function of synaptic and Kir2 expression scaling parameters. From left to right: sparsity (mX − nY)/mX, mutual
information IX,Y, and redundancy reduction RX − RY (see Eqs 1 to 3).

https://doi.org/10.1371/journal.pcbi.1010706.g006
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We varied the maximum firing rate of the inputs, and found an increase in ΥM with firing
rate (Fig 7B, using a population rate code), but not consistent changes in Υη (all brown lines in
Fig 7) at this scale. When varying the number of principal neurons innervated by each of the
100 or 200 inhibitory basket cells we found an intermediate peak in ΥM (Fig 7C), matching the
idea that a balanced level of recurrent inhibition is best for pattern separation. A similar result
was found for up- and -downscaling the strength of the inhibitory synapses from the basket
cells to each of their 500 efferent granule cells 7D). Finally, increasing the proportion of adult-
born granule cells led to a linear decrease in pattern separation performance 7E). This result is
consistent with our detailed compartmental simulations in Fig 6C, but again may change if the
integration of the adult-born cells into the feedforward and lateral connectivity of the network
is altered according to experimental data on their synapses as the adult-born cells provide
another source of network heterogeneity [12, 106]. There is also likely to be some interaction
between the proportion of more excitable adult-born cells and the optimal level of recurrent
inhibition in Fig 7C and 7D.

Fig 7. New pattern separation measures can be applied to larger network models. A Example of inputs to the large network
model. Top. Example path in space that generates grid cell-like firing. Colour gradient indicates time over 20s. Bottom: Input firing
rasters of 50 neurons over the shown path for 20s. Colours match the time above. B Pattern separation as measured by Hamming
distance Υη (top) and sparsity-weighted MI ΥM (bottom) as a function of the maximum firing rate of input cells. Dark lines
correspond to 5, 000 inputs to 50, 000 principal cells, and light lines to 10, 000 inputs to 100, 000 principal cells. Error bars show one
standard deviation over 24 repetitions. C Pattern separation as a function of the number of principal cells innervated by each of the
100 (50k network) or 200 (100k network) inhibitory basket cells. D Pattern separation as a function of the synaptic strength of the
inhibitory basket neurons. A scale of 1 corresponds to 1nS. E Pattern separation as a function of the proportion of principal neurons
that are adult-born. Other parameters are as described in Methods and colours and markers are as described in B.

https://doi.org/10.1371/journal.pcbi.1010706.g007
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Interestingly, doubling the size of the network from 50, 000 to 100, 000 principal cells con-
sistently leads to a slight increase in ΥM for all network parameters (dark blue lines against
light blue lines in Fig 7). This is driven by a slight increase in the mutual information of the
ensemble codes with size.

Discussion

Classical approaches to measuring pattern separation typically assume some form of pattern
completion [20, 54], and the performance of a circuit in pattern separation is intrinsically tied
to the complementary completion circuit; one separation-completion network performs better
than another if it has greater storage capacity and higher tolerance to noise. Taking classical
measures such as orthogonalisation, decorrelation, or increased spike train distances in isola-
tion, however, leaves them vulnerable to confounding improved pattern separation perfor-
mance with loss of information. Whilst healthy biological systems may be typically assumed to
maintain information flow [58], this cannot be assumed when assessing pathologies such as
epilepsy [38], or when artificially manipulating the system in question [109]. We have shown
explicitly that classical techniques can suffer from an unavoidable parameter dependence that
makes drawing conclusions about their meaning difficult, and that they indeed cannot distin-
guish pattern separation from pattern destruction. The major goal of this study is to describe
and promote the application of tools from information theory, in particular the sparsity-
weighted mutual information and relative redundancy reduction, to address these issues and
to consistently and reliably quantify the ability of the dentate gyrus to separate input patterns
whilst maintaining information throughput. The components of our measures echo the two
perspectives taken by Aimone et al [63] and Sahay et al [64] on the key features of dentate
gyrus function, decreasing similarity and maintaining information flow. Processes that
decrease input similarity typically decrease information flow; we believe that both must be
considered together to truly measure pattern separation. We have demonstrated our new tech-
niques on single cell models and shown that they allow more useful conclusions to be drawn
about the contribution of synaptic plasticity to pattern separation performance than classical
measures do. We have demonstrated in an abstract autoassociative network that our new mea-
sures can be predictive of pattern completion accuracy. We have further shown that our infor-
mation theoretic techniques allow nuanced analysis of the different pattern separation
behaviours of mature and adult-born granule cells in a network model, and that they can be
used to study network pathology and mechanisms that might maintain functional homeostasis
under epileptic changes.

There is space to develop the ideas of information theory for pattern separation further.

The spiking codes here, either explicitly or implicitly in the case of the estimators ~ΥM and ~ΥR,
do not assume a functional form for the probability distributions over the coding sample space
and infer these directly from the data. In reality, there is a body of experimental and theoretical
work on the expected distributions of activity in hippocampal cells. Leutgeub et al [110], for
example, showed sparse yet overlapping granule cell activity in response to changing spatial
environments, and Mizuseki and Buzsáki [111], found conserved lognormal distributions of
firing rates over both dentate gyrus granule cells and hippocampal pyramidal cells. Incorporat-
ing knowledge about the expected distributions of activity could allow conclusions about con-
tributions to pattern separation to be refined based on factors such as the assumed spatial
tuning of some granule cells, their different intrinsic excitabilities, or the frequency of input
signals [112, 113]. When pattern separation performance is believed to change over time, the
rate of information transmission at a given time (in bits/s) could be calculated instead of the
total mutual information (in bits) in our new measures. For specific spiking codes, it is also
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possible to identify precisely which parts of an input ensemble are redundant, and if they are
removed by a pattern separation circuit.

There is also the idea that neural codes may be multiplexed, with the same sets of spikes car-
rying multiple distinct information streams [52, 114]. For example, the spike rate might
encode one stimulus and the spike times within that rate might encode another. When a signal
is believed to be multiplexed, it would be possible to extend our information theoretic mea-
sures to capture the information found in different codes separately. The ‘indexing’ theory of
hippocampal memory [115, 116] is also worth mentioning here; if the role of the dentate gyrus
is to simply pass a unique index to CA3 for a specific pattern of cortical activity, then mutual
information alone would be a better measure of performance than either the weighted versions
here or any classical measure. The dentate gyrus might also play a role in ‘data stirring’ [117],
generating noise to allow neural representations to be better distributed between cell assem-
blies in the pattern completion circuit. In this case, the question arises as to whether informa-
tion passes through the dentate gyrus at all or through direct connections from the entorhinal
cortex to the hippocampus proper [1]. In the latter case it would be necessary to apply pattern
separation measures, whether classical or information theoretic to the entirety of the outputs
from the entorhinal cortex and the entirety of the inputs to CA3 and CA2.

The role of adult-born granule cells in pattern separation remains controversial, there are
demonstrated mechanisms by which they might contribute to both sparsity [64] and informa-
tion throughput [59, 63]. Implementing experimentally determined weights and densities for
modelled synapses onto adult-born granule cells [105, 106, 118] and adding details about the
integration of adult-born granule cells into the dentate gyrus microcircuitry [12, 119–121]
would facilitate the assessment of their specific contribution to pattern separation using our
new metrics.

Pattern separation is not a phenomenon associated only with the dentate gyrus. The cere-
bellar cortex and mushroom body both also contain circuits believed to differentiate input pat-
terns, but with different constraints on information throughput and different underlying
mechanisms [61]. Directly estimating the information content of separated patterns in these
different circuits could allow the roles of different circuit components to be better understood,
and a holistic theory of what precisely is necessary for pattern separation to be developed. An
interesting extension of this work would be to use the fact that mutual information can be
computed between sample spaces of different types to directly link pattern separation at the
circuit level to behavioural discrimination. Although Santoro [34] cautioned against the usage
of the phrase ‘pattern separation’ to refer to behaviour, there are established links between cir-
cuit changes in the dentate gyrus and behavioural outcomes [37, 38, 41–43]; computing infor-
mation between circuit activities and behavioural states would be an interesting step with
potential clinical relevance.

A precise assessment of pattern separation performance is particularly important for popu-
lation modelling of hippocampal cells and circuits and assessment of optimality (cf. [122]).
Many studies have shown that ion channel distributions can be highly degenerate, with many
different parameter combinations leading to similar functional behaviour [123–125]. It
remains an open question how well different potential combinations can be constrained by
further considerations, such as energy consumption or efficiency [126, 127]. A promising idea
in recent studies is the use of Pareto optimality to reduce and better understand the spaces of
parameters and functionalities spanned by populations of neurons [122, 128, 129]. The
assumption here is that evolution will tend to favour neurons and circuits whose performance
at one possible task cannot be improved without reducing their performance at some other
tasks; such neurons would be Pareto optimal. Neuronal systems that are fully optimal in a
given situation, using a specific balance of tasks, must then be drawn from the set of Pareto
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optimal cells. Effective application of these principles to population models of neurons requires
a robust and consistent way to assess their performance on different tasks. For neurons
believed to perform pattern separation, assessment of their functionality will be far more reli-
able with the information theoretic measures introduced here than with previous techniques.

We hope that the techniques highlighted here will become a standard way to quantify the
ability of a neuron or circuit to perform pattern separation, particularly when that neuron is
isolated from its pattern completion mechanism, or affected by pathology or experimental
manipulation. Our new techniques can be applied to both experimental and theoretical stud-
ies. We believe that such techniques have a natural place in assessing the functionality of pat-
tern separation circuits and can allow for robust and nuanced conclusions to be drawn about
the principles that constrain their structure and function.

Methods and models

Standard metrics of pattern separation

A number of measures have been used to quantify pattern separation in neuronal data. We here
use five existing measures of spike train dissimilarity for comparison with our new information
theoretic measures. These are designated with Υ and a lower-case greek subscript to differenti-
ate them from the upper-case latin subscripts used for the information theoretic measures. In
general, we consider metrics of pattern separation as the ratio of output similarity to input simi-
larity. This minimises input similarity as an additional source of variability and keeps the mea-
sures consistent, but is different from the approach of studies such as Madar et al [52] where the
difference between input and output similarities is used. Other studies consider the input and
output values separately [49], their decreased overlap [14], or the values integrated over a range
of different inputs [45]. The latter approach removes the influence of input similarity on the
measure, but requires more simulation time. Studies such as Yim et al [39] plot both input and
output similarities, whilst fitting ratios as here in order to quantify changes in pattern separation
performance. Such an approach retains the benefit of presenting both input and output similar-
ities separately for direct visual comparison, a common feature in pattern separation studies,
but also provides a single metric to directly measure changes in performance. For all measures
that require discretisation, a bin size of 10ms is used unless otherwise stated.

Orthogonalisation Υθ. Orthogonalisation can be quantified as a reduction in the cosine
distance between spike trains discretised into vectors. Increasing the cosine distance between
vectorised spike trains allows them to better span a given space. Orthogonalisation of spike
trains allows for pattern separation in the original and most fully-developed models [130]. If X
and Y are vectorised spike trains, the cosine distance θ(X, Y) between them is given by

yÖX;YÜ à X � Y
kXkkYk Ö4Ü

where X � Y is the dot product of X and Y and kXk is the euclidean norm of X. A cosine dis-
tance of 0 indicates perfectly orthogonal spike train vectors and a cosine distance of 1 indicates
perfectly collinear spike train vectors. Υθ is defined as the reduction in mean pairwise cosine
distance between input and output spike train ensembles. If there are N input spike train vec-
tors {X1, X2, . . ., XN} and M output spike train vectors {Y1, Y2, . . ., YM}, then

Υy à
MÖM � 1Ü

PN
i6àj yÖXi;XjÜ

NÖN � 1Ü
PM

i6àj yÖYi;YjÜ
Ö5Ü
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Scaling Υσ. Cosine distance (Eq 4) is defined for normalised vectors and is independent
of differences in vector magnitude. We follow Madar et al [52] in defining a complementary
scaling factor σ(X, Y) between vectorised spike trains X and Y such that

sÖX;YÜ à
kXk
kYk if kXk  kYk
kYk
kXk if kXk > kYk

8
<

: Ö6Ü

A scaling factor of 1 indicates spike trains with the same magnitude. Υσ is defined as the reduc-
tion in mean pairwise scaling factors between input and output spike train ensembles. If there
are N input spike train vectors {X1, X2, . . ., XN} and M output spike train vectors {Y1, Y2, . . .,
YM}, then

Υs à
MÖM � 1Ü

PN
i6àj sÖXi;XjÜ

NÖN � 1Ü
PM

i6àj sÖYi;YjÜ
Ö7Ü

Decorrelation Υρ. Pattern separation has also been defined as the reduction in pairwise
correlations between input and output ensembles of spike train vectors [45]. The Pearson cor-
relation coefficient ρX,Y between vectorised spike trains X and Y is defined as [131]

rX;Y à
EâÖX � mXÜÖY � mYÜä

sXsY
Ö8Ü

where μX and σX are the mean and standard deviation of X respectively. ρX,Y varies between −1
for perfectly anticorrelated and 1 for perfectly correlated spike train vectors. If there are N
input spike train vectors {X1, X2, . . ., XN} and M output spike train vectors {Y1, Y2, . . ., YM},
then

Υr à
MÖM � 1Ü

PN
i6àj rXi ;Xj

NÖN � 1Ü
PM

i6àj rYi ;Yj

Ö9Ü

Hamming distance Υη. A standard way to determine the distance between vectors is the
Hamming distance [132]. This is simply the number of elements at which the vectors differ;
the Hamming distance η between binarised spike trains X and Y is defined as

ZÖX;YÜ à
Xn

ià1

jXÖiÜ � YÖiÜj Ö10Ü

where X(i) is the i-th element of the spike vector X of length n and |x| is the absolute value of x.
If there are N input spike train vectors {X1, X2, . . ., XN} and M output spike train vectors
{Y1, Y2, . . ., YM}, then

ΥZ à
MÖM � 1Ü

PN
i6àj ZÖXi;XjÜ

NÖN � 1Ü
PM

i6àj ZÖYi;YjÜ
Ö11Ü

Some studies modify the Hamming distance to account for sparsity in activity by removing
permanently inactive spike trains from the ensembles [47, 49]. This adjustment does not have
an impact here as there are no completely unresponsive neurons.

Wasserstein distance Υδ. The Wasserstein distance quantifies the minimum change in
probability density needed to move between two probability distributions [133]. It has recently

PLOS COMPUTATIONAL BIOLOGY Information theory for pattern separation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010706 February 20, 2024 22 / 38



been applied to neuronal spike trains by Sihn and Kim [53]. Briefly, if spike train X consists of
spikes at times {x1, x2, . . ., xn} and spike train Y consists of spikes at times {y1, y2, . . ., ym}, the
Wasserstein distance δ(X, Y) between them is given by

dÖX;YÜ à
Z maxÖxn ;ymÜ

minÖx1 ;y1Ü

����� wâxn ;1ÜÖtÜ á
Xn�1

ià1

i
n
wâxi ;xiá1ÜÖtÜ

 !

� wâym ;1ÜÖtÜ á
Xm�1

jà1

j
m
wâyj;yjá1ÜÖtÜ

 !�����dt Ö12Ü

where χ[a,b)(t) is the indicator function of the interval [a, b). W(X, Y) is unbounded and Υδ is
defined as the reduction in mean pairwise Wasserstein distance between input and output
spike train ensembles. If there are N input spike trains {X1, X2, . . ., XN} and M output spike
trains {Y1, Y2, . . ., YM}, then

Υd à
MÖM � 1Ü

PN
i6àj dÖXi;XjÜ

NÖN � 1Ü
PM

i6àj dÖYi;YjÜ
Ö13Ü

Unlike the above measures which map spike times to a vector, Υδ does not require a choice of
bin size. We prefer it to other popular measures of spike train distance such as those of van
Rossum [134], which requires a choice of smoothing parameter, or Kreuz et al [50], which is
more sensitive to the differences in rates between spike trains that are already measured by σ
(Eq 6).

Mutual information

The mutual information IX,Y between two random variables X and Y quantifies the reduction
in uncertainty about the value of one variable that knowing the value of the other would pro-
vide [71]. It takes a minimum of 0 for independent random variables and a maximum of the
entropy of either random variable if the relationship is entirely deterministic. I(X;Y) is defined
as

IX;Y à
X

x

X

y

pÖX;YÜÖx; yÜlog2

pÖX;YÜÖx; yÜ
pÖXÜÖxÜpÖYÜÖyÜ

 !

Ö14Ü

where p(X,Y) is the joint distribution of X and Y and pX and pY are their respective marginals.
For neural data the distributions p(X,Y), pX, and pY depend on the choice of neuronal coding

strategy (see ‘Neuronal codes’ below) and discretisation. The coding strategy and discretisation
should in principle be chosen to maximise I in each case.

Transfer entropy

The transfer entropy TX!Y [83] from one random variable X to another Y is the mutual infor-
mation between Y at the current time T and the history of X conditioned on the history of Y:

TX!Y à HÖYTjYt<TÜ �HÖYTjYt<T;Xt<TÜ

à
X

x

X

y

X

yt<T

pÖX;Y;Yt<T ÜÖx; y; yt<TÜlog2

pÖYt<T ÜÖyt<TÜ pÖX;Y;Yt<T ÜÖx; y; yt<TÜ
pÖX;Yt<T ÜÖx; yt<TÜ pÖY;Yt<T ÜÖy; yt<TÜ

 !
Ö15Ü

where H(X|Y) is the conditional entropy of X given Y. As for the mutual information, the dis-
tributions depend on the choice of neuronal coding strategy (see ‘Neuronal codes’ below) and
discretisation, but these can be chosen to maximise the measured entropy. Unlike mutual
information, transfer entropy is directional and asymmetric between inputs and outputs. In
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many circumstances, the transfer entropy requires less data to produce an accurate estimate
than the mutual information [86, 89].

Redundancy

Redundancy means that multiple parts of a signal may encode the same information [78, 84,
92, 135]. To use this idea to asses pattern separation, we adapt the partial information decom-
position of Williams and Beer [84] to spike trains in an ensemble. In particular, if X is a spike
train ensemble made up of trains {x1, x2, . . ., xn} we consider the redundancy of X to be the
minimum mutual information between any individual train xi and the remainder of the
ensemble X\xi

RX à min
xi

X

x2Xnxi

X

y2xi

pÖXnxi ;xiÜÖx; yÜlog2

pÖXnxi ;xiÜÖx; yÜ
pÖXnxiÜÖxÜpÖxiÜÖyÜ

 ! !

Ö16Ü

Again, the probability distributions depend on the choice of neuronal code. Redundancy can
be applied to both the input and output ensembles, and these are combined to give the pattern
separation measure redundancy ratio ΥR (Eq 3).

Neuronal codes

The joint and marginal distributions over the spike trains depend on which features are con-
sidered. We use the common terminology of ‘words’ to refer to the significant patterns that
make up the sample spaces over which information is calculated; ‘words’ can be formed from
different combinations of ‘letters’. All distributions are computed empirically from the data,
without assuming a specific functional form. It is not necessary for input and output spike
train ensembles to use the same coding strategy, so informational measures are maximised
over all possible input-output pairs.

Instantaneous spatial code. The instantaneous spatial code assumes that information is
encoded by the current state of all spike trains in the ensemble. Spike trains are binarised into
bins and ‘words’ are formed from the state of the bins in each train at a given time. If there are
n trains in the ensemble, there are therefore 2n possible ‘words’.

Local temporal code. The local temporal code assumes that information is encoded by
spike times in each train individually. Spike trains are binarised into bins and ‘words’ are
formed from the state of the consecutive bins in a given train. If the word length is w, there are
2w possible words.

Local rate code. The local rate code assumes that information is encoded by the instan-
taneous firing rates in each train individually. Spike trains are discretised additively into bins
in a given train. If the maximum number of spikes found in any bin is r, the number of
words is r + 1.

Ensemble rate code. The ensemble rate code assumes that information is encoded by the
total firing rates across all trains in the ensemble. Spike trains are discretised additively into
bins and these are added across trains. If the maximum number of spikes found in any bin is r,
the number of possible words is r + 1.

Specific rate code. The specific rate code assumes that information is encoded by the pat-
tern of instantaneous firing rates across all trains in the ensemble. It is distinct from the ensem-
ble rate code as the identity of the neuron firing at each rate is significant. Spike trains are
discretised additively into bins and these are formed into ‘words’ by combining bins at a given
time. If there are n trains in the ensemble and the maximum number of spikes found in any
bin is r, the number of possible words is (r + 1)n.
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Spatiotemporal code. The spatiotemporal code assumes that information is encoded
by the pattern of spike times across all trains in the ensemble. Spike trains are binarised
into bins and ‘letters’ are formed from the state of the consecutive bins in each train. These
‘letters’ are formed into ‘words’ by combining sets of bins at a given time. If there are n
trains in the ensemble and the ‘letter’ length in each train is w, the number of possible
words is 2wn.

Estimating mutual information and redundancy

Mutual information can also be estimated using a variety of standard techniques [136]. We
demonstrate the application of such techniques using the modified Kozachenko-Leonenko
estimator [85] described in Houghton [76]. This estimator exploits the proximity structure of
spike trains to reduce the amount of data necessary to reliably estimate the mutual information
between them. Briefly, the input and output spike train ensembles are each divided into N peri-
ods of equal size. The pairwise spike train distances between each period of each spike train
are computed using the Wasserstein metric δ (Eq 12) and a euclidean norm is taken over the
trains in the ensemble. This produces a set of pairwise distances between periods of the input

and output ensembles. A biased estimator ~IÖhÜkl of the mutual information between input and

output ensembles in terms of an integer smoothing parameter 1 h< N is given by

~I klÖhÜ à
1

N
XN

ià1

log2

N
h2

# ChÖui; viÜ
⇣ ⌘✓ ◆

Ö17Ü

where #(Ch(ui, vi)) counts the number of pairs (uj, vj) such that both δ(ui, uj)< Δh(ui) and δ(vi,
vj)< Δh(vi), where Δh(ui) is the distance of ui to its h-th nearest neighbour amongst all seg-

ments u. The bias ~I 0 can estimated as

~I 0ÖhÜ à
1

N
XN

ià1

Ö h�1
i�1 Ü N�h

N�iÖ Ü

n�1
h�1Ö Ü log2

iN
h2

✓ ◆
Ö18Ü

We follow Houghton [76] in choosing the smoothing parameter h to maximise the unbiased

estimator ~IÖhÜ à ~I klÖhÜ � ~I 0ÖhÜ, specifically.

~I à argmax
h
Ö~IklÖhÜ � ~I 0ÖhÜÜ Ö19Ü

The original implementation of this technique assumed a fixed period of division, leading to a
fixed value of N if the total length of the spike train ensemble is constant. We relax this
assumption by adapting the technique in Strong et al [75] to estimate the limiting mutual

information for infinitely long spike trains. Briefly, ~I is calculated for different values of N and
values are considered reliable if the optimal smoothing parameter h is much lower than its
maximum possible value of N − 1 (S5(A) Fig, top panels). Estimates in this region are a linear
function of the number of periods N. The linear fit is then extrapolated back to a value of N = 0
to produce a consistent estimate of the total mutual information between the spike train
ensembles (Fig 4, right panels, and S5(A) Fig, bottom panels).

The procedure to estimate the redundancy between trains in an ensemble is similar. As in
Eq 16, we compute the minimum estimated mutual information between each train in the
ensemble and the remainder taken together. This is extrapolated to the limiting mutual infor-
mation as above before the minima are taken.
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Input spike trains

Ensembles of input spike trains are generated using a number of different techniques to pro-
duce different correlation structures across and within different trains. The different ensem-
bles possess positive and negative correlations both across and within distinct trains [137, 138]

• Phase-locked. Phase-locked ensembles are generated using an inhomogeneous Poisson pro-
cess with the instantaneous firing rate varying sinusoidally in time and constant across spike
trains. This generates sets of spike trains that are periodic in time and positively correlated
between different trains. Key parameters are the strength of the phase-locking, the relative
amplitude of the sinusoid about the mean single neuron firing rate, and the period of the
sinusoid.

• Auto-correlated. Spike trains are generated independently using a renewal process with
gamma-distributed interspike intervals. The shape parameter α of the gamma distribution
governs the autocorrelation of the trains. Shape parameters less than one produce bursty
trains, a shape parameter of one is equivalent to an uncorrelated Poisson process, shape
parameters greater than one produce periodic trains. The initial spike time in each train is
generated by a Poisson process to eliminate cross-correlations.

• Cross-correlated. Spike trains are produced by uniformly filtering a master Poisson process
with rate equal to the desired rate multiplied by the product of the number of trains in the
ensemble and the correlation strength.

Examples are plotted in S1(A) Fig.

Granule cell models

We conduct our simulations using the morphologically robust compartmental models of
mouse dentate gyrus granule cells introduced by Beining et al [94]. In brief, these models dis-
tribute the ion channels reported in the literature over morphologies based on those recon-
structed by Schmidt-Hieber et al [139]. The ion channels are section specific to the soma, axon
hillock, axon, granule cell layer dendrites, inner molecular layer dendrites, middle molecular
layer dendrites, and outer molecular layer dendrites. Full details can be found in the original
paper.

Synaptic inputs from the perforant path undergo short-term plasticity. This is modelled
using the quantal version of the Tsodyks-Markram model [140], where individual vesicles
undergo probablistic release and replenishment. The standard parameters are adapted from
those fitted in Madar et al [44] to the lateral perforant path. The initial release probability is
0.325, there are 40 vesicle release sites per synapse, the timescale of recovery from depression
is 500ms, and the timescale of facilitation is 9ms. The excitatory postsynaptic conductance
change induced by a single vesicle is 0.3nS. The synapse is formed by four anatomical contacts
in the outer molecular layer (see Fig 3A). In addition, each cell receives background noise
from weaker synapses, these are distributed randomly with densities of 0.05, 0.1, 0.2, and 0.1
contacts per μm in the granule cell layer, inner molecular layer, middle molecular layer, and
outer molecular layer respectively. Background synapses undergo independent Poisson activa-
tion with a rate of 0.5Hz and a strength of 0.01nS. All excitatory synapses are modelled as a dif-
ference of exponentials, with a rise timescale of 0.2ms, a decay timescale of 2.5ms, and a
reversal potential of 0mV.

The original model assumes that ion channel conductances are constant within each section
of the tree (granule cell layer, inner molecular layer, etc). For the bottom panels of Fig 3B we
vary the conductance randomly within each section. Conductances in each 1μm segment are

PLOS COMPUTATIONAL BIOLOGY Information theory for pattern separation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010706 February 20, 2024 26 / 38



randomly drawn from a non-negative gamma distribution with mean equal to the fitted value
and a coefficient of variation (ratio of standard deviation to mean) that is used to vary the spa-
tial heterogeniety as seen in the figure. Specifically, if the mean conductance of an ion channel
in a layer is μ, and the desired coefficient of variation (heterogeneity) is c> 0, then the conduc-
tance of that ion channel in each 1μm section is drawn independently from

f ÖxÜ à Ömc
2Ü�

1
c2

GÖc�2Ü x
1
c2
�1

⇣ ⌘

e
� x
mc2

⇣ ⌘
Ö20Ü

where Γ(z) is the gamma function.
A typical set of input spike patterns and corresponding output voltage traces are plotted in

S4(A) Fig.

Pattern completion

In Fig 5 we give a proof-of-principle demonstration as to how our novel measures of pattern
separation would affect pattern completion in an abstract auto-associative Hopfield network
[99]. The network consists of 784 recurrently-connected artificial binary neurons that each
have a state si 2 {−1, 1}. The network is initiated with a given pattern and evolves asynchro-
nously, so that individual neuron states are updated randomly until the network has converged
to a final state. Updates occur using the rule

sái à
1; if

P784
jà1 wijs�j > 0

�1; otherwise

(
Ö21Ü

where s�j is the state of neuron j immediately before the update, sái is the state of neuron i
immediately after the update, and wij is the connection weight from neuron j to neuron i.
Weights are calculated for an exemplar pattern of each of the 49 classes (S5(B) Fig) using the
pseudo-inverse training rule [102]:

wij à
1

784

X49

nà1

X49

mà1

xni Q�1
nm

⇣ ⌘
xm
j Ö22Ü

where ν and μ index the 49 patterns, xni is the i-th element of training pattern ν, and Qνμ is the

overlap

Qnm à
1

784

X784

kà1

xnkx
m
k Ö23Ü

The noisy transformation is applied to patterns by selecting m pixels uniformly randomly.
These pixels then take a uniform random value in {−1, 1}. For each transformation, the loca-
tions of the randomised pixels are fixed, but their values are generated independently for each
pattern. The correlation ρ between two different pattern classes is calculated as the average
between all patterns in the classes. The mutual information for each class is calculated between
the example pattern used to train the network and the set of all other patterns in the class. The
redundancies are calculated between the different classes.

Network models of detailed neurons

In Fig 5 we consider a small network of excitatory and inhibitory cells from the the mouse den-
tate gyrus. The network is randomly generated for each repetition, with potentially different
morphologies and connectivites. The principal cells are 40 mature and 10 adult-born granule
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cells adapted from the single cell model described above. Heterogeneity is included by using
the range of available morphologies introduced in Beining et al [94] and varying the channel
densities with a coefficient of variation of 0.1 for the mature and 0.2 for the adult-born cells. 5
mossy cells and 1 inhibitory pyramidal basket cell are modelled as integrate-and-fire units
with a membrane time constant of 15ms.

Connectivity for the microcircuit broadly follows the principles described in Hainmueller
and Bartos [5] and employs motifs believed to support pattern separation as discussed by
Cayco-Gajic and Silver [61].

• Perforant path to granule cells. These synapses are as described in the single cell case above,
with informative synapses innervating the outer molecular layer and displaying quantal
short-term plasticity. Background synapses randomly innervate the rest of the dendritic tree,
with a fixed independent likelihood based on dendritic length. There are no differences in
synaptic structure or parameters between adult-born and mature granule cells. Groups are
formed by sets of 8 mature and 2 adult-born cells receiving the same informative presynaptic
spikes, but with independent stochastic synaptic dynamics. This provides unreliable expan-
sion to a larger coding space.

• Granule cells to mossy cells. Granule cells form excitatory connections to mossy cells. Each
group of granule cells is preferentially recurrently connected to a single mossy cell, with
probabilities of cells inside the group contacting the mossy cell being 0.9 each, and 0.025 for
innervating each of the other mossy cells. The mossy cells act as a second threshold.

• Mossy cells to granule cells. Mossy cells form lateral excitatory connections to granule cells.
Each mossy cell is preferentially connected to a group of granule cells, with probability 0.9 of
contacting each cell inside the group and 0.01 of contacting each granule cell outside the
group. Synapses are located at the soma of the granule cell and have a conductance of 0.5nS.

• Granule cells to pyramidal basket cells. Mature granule cells have the potential to form excit-
atory connections to the pyramidal basket cell and do so with probability 0.5. Adult-born
granule cells do not form these connections. This motif provides competitive inhibition
between groups of principal cells.

• Pyramidal basket cells to granule cells. The pyramidal basket cell forms lateral inhibitory con-
nections to all granule cells, including the adult-born population. Synapses are located at the
granule cell somata and have a conductance of 1nS, a double exponential timecourse with
rise and decay timescales of 0.5ms and 5ms respectively, and a reversal potential of −80mV.

Further connections, such as direct granule cell recurrency, which is observed in primates
but not healthy rodents [5], are not included.

Pathological changes to the network model. To model some of the effects of epilepsy,
two changes are made to the above network model for Fig 5D and 5E. Firstly, informative syn-
apses are scaled up by factors from 1 to 5 by increasing the conductance induced by each indi-
vidual vesicle, to cover the range of structural changes measured in Janz et al [40]. Secondly,
the conductances of all inward rectifier K+ (Kir2) channels are scaled up by factors from 1 to
10 to cover the range of conductance changes measured in Young et al [38]. All other network
features remain as above.

Network models of point neurons

In Fig 7 we expand our detailed model to consider much larger networks and so reduce the
fidelity of our simulations. The compartmental models of mature and adult-born granule cells
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are replaced with single-compartment adaptive exponential integrate-and-fire neurons [107,
108]. The voltage V of each neuron evolves as

t
dV
dt
à Ev � V á DT exp

V � yT

DT

✓ ◆
á R I tÖ Ü � w tÖ ÜÖ Ü Ö24Ü

where τ is the neuron time constant, Ev is the reversal potential, ΔT is the sharpness of action
potential initiation, θT is the ‘threshold’, R is the somatic input resistance, I(t) is the input cur-
rent, and w(t) is an adaptation variable governed by

Figtw
dw
dt
à aÖVÖtÜ � EvÜ � wá b

X

spikes

dÖt � tspikeÜ Ö25Ü

where τw is the adaptation time constant, a is the adaptation coupling strength, b is the increase
in w caused by a single spike, and δ is a Dirac delta function. The voltage in Eq 24 goes to infin-
ity in finite time once it exceeds θT, so a spike is recorded once the voltage exceeds 0mV and
the voltage is reset to Ev.

To match the responses of the point neurons to the full compartmental models, the parame-
ters of Eqs 24 and 25 are fitted to each cell in the population of models using the dynamic IV-
curve method described by Badel et al [141] for threshold properties (S6(A) Fig) and the pat-
tern search global optimisation algorithm for the remaining adaptation properties (S6(B) Fig).
The latencies and transfer resistances for dendritic inputs from the lateral and medial perfor-
ant paths are also estimated (S6(C) and S6(D) Fig). This produces a joint distribution of
parameters across the populations of mature and adult-born neurons (S6(E) Fig), from which
sample neurons can be drawn to reflect the statistics and heterogeneity of the full compart-
mental models [142].

Unless otherwise stated, connectivity is as above. Groups of 10 granule cells, initially 8
mature and 2 adult-born receive common inputs. Inputs are generated with grid-cell like firing
patterns (see below). Basket cells are now much rarer, with 100 basket cells in the 50, 000 gran-
ule cell model and 200 in the 100, 000 granule cell model. This better reflects their proportions
in the real dentate gyrus [5]. Synapses to basket cells are therefore weakened by a factor of ten,
and each basket cell typically makes 500 contacts onto granule cells.

Grid cell-like inputs. Inputs to granule cells in the larger model are based on grid cell fir-
ing. Each input cell fires as an inhomogeneous Poisson process with an instantaneous rate
depending on the location of a particle making a directed random walk (Fig 7A). Each input
cell i responds to the position of the particle x(t) relative to a randomly shifted hexagonal grid
(S6(F) Fig). Instantaneous firing rates ri(t) are given by

riÖtÜ à rmax

X

j

e�
kxÖtÜ�ci;jk2

r2 Ö26Ü

where rmax is the maximum firing rate of a centre (typically rmax = 1), j indexes over the centres
of grid firing at locations ci,j, and ρ is a radius parameter (typically ρ is half the distance
between centres). In Fig 7, the centres are 10% of the domain size apart, leading to ~100 grid
centres.

Supporting information

S1 Fig. A Example rasters resulting from different methods of generating ensembles. All
ensembles have a mean spike rate of 2.5Hz per neuron. Clockwise from top left: Phase-locked
ensemble with a phase-locking strength of 0.9 and a phase rate of 0.6Hz, periodic ensemble
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with α = 10, cross-correlated ensemble with a similarity strength of 0.8, and bursty ensemble
with α = 0.5. B Filtering of spike train ensembles. From top to bottom: random filtering with
p = 0.5, 0.75, 0.85, 0.95, n-th pass filtering with n = 2, 4, 7, 20, refractory filtering with t = 0.18,
0.54, 1.01, 3.71 s, and competitive filtering with t = 3.4, 13.7, 17.9, 31.4 ms. Filtering parameters
are chosen to give roughly equal numbers of spikes across different filters. C Unnormalised
orthogonalisation Υθ values for comparison with Fig 1B. D Unnormalised scaling Υσ values
for comparison with Fig 1B. E Unnormalised decorrelation Υρ values for comparison with Fig
1B. F Unnormalised Hamming distances Υη values for comparison with Fig 1B. G Unnorma-
lised orthogonalisation Υθ values for comparison with Fig 1C. H Unnormalised scaling Υσ val-
ues for comparison with Fig 1C. I Unnormalised decorrelation Υρ values for comparison with
Fig 1C. J Unnormalised Hamming distances Υη values for comparison with Fig 1C. K Unnor-
malised Wasserstein distances Υδ values for comparison with Fig 1C.
(TIF)

S2 Fig. A Unnormalised mutual information values using the spatial code for comparison
with Fig 1D. B Unnormalised mutual information values using the temporal code for compari-
son with Fig 1D. C Unnormalised mutual information values using the local rate code for
comparison with Fig 1D. D Unnormalised mutual information values using the ensemble rate
code for comparison with Fig 1D. Solid, dashed, and dotted lines in all panels refer respectively
to strong, medium, and weak input similarities (see Methods). E Scatter plot of sparsity against
different classical measures of pattern separation for comparison with Fig 1E. F Scatter plot of
sparsity against mutual information computed using different codes for comparison with Fig
1E. Different markers correspond to different methods of ensemble generation: circles are for
phase-locked ensembles, squares are for periodic ensembles, diamonds are for bursty ensem-
bles, and triangles are for cross-correlated ensembles. G Density map corresponding to scatter
points in E. H Density map corresponding to scatter points in F. Density values are logarith-
mic. There is a consistent negative relationship between the proportion of spikes that pass
through the filter and pattern separation metrics. In the four cases, the linear correlations
between the proportion of spikes passing through the system and the different measures are
Υθ : −0.33, Υρ : −0.071, Υη : −0.68, and Υδ : −0.28. Conversely, the typical relationship between
mutual information and the proportion of spikes is positive (Fig 1E), with linear correlations
of 0.96 for the spatial code, 0.97 for the temporal code, 0.07 for the local rate code, and 0.73 for
the ensemble rate code.
(TIF)

S3 Fig. A Unnormalised sparsity weighted mutual information ΥM for comparison with Fig
2A. B Unnormalised sparsity weighted transfer entropy ΥT for comparison with Fig 2B. C
Unnormalised relative redundancy reduction ΥR for comparison with Fig 2C. From top to
bottom, the codes are spatial, temporal, rate local, and rate ensemble in all cases.
(TIF)

S4 Fig. A Example input spiking rasters (top) and output voltage traces (bottom) for the single
granule cell model. B Classical pattern separation measures applied to simulated voltage traces
from a granule cell model with varied timescales of synaptic depression. From left to right:
orthogonalisation Υθ, scaling Υσ, decorrelation Υρ, Hamming distance Υη, and Wasserstein
distance Υδ. Solid lines correspond to a strong input similarity and a binning window (where
applicable) of 100 ms, dashed lines correspond to a strong input similarity and a binning win-
dow of 10 ms, dash-dotted lines correspond to a weak input similarity and a binning window
of 100 ms, and dashed lines correspond to a strong input similarity and a binning window of
10ms. C As above with varied timescales of synaptic facilitation. D As above with varied ion
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channel spatial heterogeneities. Input spike traces are two minutes long and consist of phase-
locked inputs with a phase rate of 0.6Hz and a spiking rate of 5Hz.
(TIF)

S5 Fig. A Examples of extrapolating mutual information estimates. The left and right col-
umns show two different ensembles. The top row shows the optimal smoothing parameter h
(Eq 19) as a function of the number of sections the spike trains are divided into N. The bot-
tom panels show the relationship between N and the mutual information estimate (grey cir-
cles), and the extrapolation back to infinitely long sections (black lines) from the region
where h is significantly less than N and the relationship between N and the mutual informa-
tion estimate is linear. B Exemplar patterns for each of the 49 classes in the Kuzushiji-49
dataset [101]. C Relative redundancy reduction ΥR for the mature granule cells as a function
of scaling parameters for informative synapses and Kir2 channel expression. For comparison
with Fig 5E.
(TIF)

S6 Fig. A Example dynamic IV curves for mature (dark blue) and adult-born (light blue)
granule cells. Circles show the simulated results from full compartmental models and solid
lines the best fit under Eq 24. B Example voltage traces for mature granule cells showing spike-
frequency adaptation. C Example somatic voltages in a mature granule cell in response to syn-
aptic inputs at increasing distances (lighter blue lines). D Latency of synaptic inputs at the
soma (left) and transfer resistance to the soma (right) as a function of relative path length for
mature (dark blue) and adult-born (light blue) granule cells. Shaded areas show one standard
deviation around the mean. E Adaptive EIF parameter distributions for mature (lower left)
and adult-born (upper right) granule cell compartmental models. The leading diagonal panels
show single marginal distributions, and the off-diagonal panels show the pairwise marginals. F
Examples of grid cell-like firing rates as a function of location (Eq 26).
(PDF)

S1 Code. zip file containing code for the pattern separation toolbox and paper figures.
(ZIP)
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18. Guzman SJ, Schlögl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the
hippocampal CA3 network. Science. 2016. https://doi.org/10.1126/science.aaf1836 PMID:
27609885

PLOS COMPUTATIONAL BIOLOGY Information theory for pattern separation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010706 February 20, 2024 32 / 38



19. McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and information storage within a
distributed memory system. Trends in Neurosciences. 1987; 10(10):408–415. https://doi.org/10.1016/
0166-2236(87)90011-7

20. Rolls ET. Information representation, processing, and storage in the brain: Analysis at the single neu-
ron level. Neur Moll Bas Learn. 1987; p. 503–540.

21. O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: Avoiding a
trade-off. Hippocampus. 1994; 4(6):661–682. https://doi.org/10.1002/hipo.450040605 PMID:
7704110

22. Hasselmo ME, Schnell E, Barkai E. Dynamics of learning and recall at excitatory recurrent synapses
and cholinergic modulation in rat hippocampal region CA3. J Neurosci. 1995; 15(7):5249–5262.
https://doi.org/10.1523/JNEUROSCI.15-07-05249.1995 PMID: 7623149

23. McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the
hippocampus and neocortex: Insights from the successes and failures of connectionist models of
learning and memory. Psychol Rev. 1995; 102(3):419–457. https://doi.org/10.1037/0033-295X.102.3.
419 PMID: 7624455

24. Rolls ET. A theory of hippocampal function in memory. Hippocampus. 1996; 6(6):601–620. https://doi.
org/10.1002/(SICI)1098-1063(1996)6:6%3C601::AID-HIPO5%3E3.0.CO;2-J PMID: 9034849
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