Psychological Methods

A Framework for Studying Environmental Statistics in Developmental
Science

Nicole Walasek, Ethan S. Young, and Willem E. Frankenhuis

Online First Publication, July 18, 2024. https://dx.doi.org/10.1037/met0000651

CITATION

Walasek, N., Young, E. S., & Frankenhuis, W. E. (2024). A framework for studying environmental statistics
in developmental science.. Psychological Methods. Advance online publication. https://dx.doi.org/10.1037/
met0000651



)

AMERICAN
PSYCHOLOGICAL
=== ASSOCIATION
—

A
-
r—

I’
I anll

Psychological Methods

© 2024 The Author(s)
ISSN: 1082-989X

https://doi.org/10.1037/met000065 1

A Framework for Studying Environmental Statistics in Developmental Science

3 Department of Criminology, Max Planck Institute for the Study of Crime, Security and Law, Freiburg, Germany
“* Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics,

Nicole Walasek 2, Ethan S. Youngl, and Willem E. Frankenhuis" > *
! Department of Psychology, Utrecht University, Netherlands
2 Developmental Psychology, Behavioral Science Institute, Radboud University, Netherlands

University of Amsterdam, Netherlands

OPEN DATA

Abstract

Psychologists tend to rely on verbal descriptions of the environment over time, using terms like “unpredictable,”
“variable,” and “unstable.” These terms are often open to different interpretations. This ambiguity blurs the
match between constructs and measures, which creates confusion and inconsistency across studies. To better char-
acterize the environment, the field needs a shared framework that organizes descriptions of the environment over
time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed
in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by
quantifying “unpredictability” in a publicly available, longitudinal data set of crime rates in New York City
(NYC) across 15 years. This case study shows that the correlations between different “unpredictability statistics”
across regions are only moderate. This means that regions within NYC rank differently on unpredictability depend-
ing on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore asso-
ciations between unpredictability statistics and measures of unemployment, poverty, and educational attainment
derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels
in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal
framework for disentangling different properties of the environment. To facilitate the use of our framework, we
provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets.

Translational Abstract

Psychologists tend to rely on verbal descriptions of the environment over time, using terms like “unpredict-
able,” “variable,” and “unstable.” These terms are often open to different interpretations. This ambiguity
blurs the match between constructs and measures, which creates confusion and inconsistency across studies.
To better characterize the environment, the field needs a shared framework that organizes descriptions of the
environment over time in clear terms: as statistical definitions. Here, we first present such a framework,
drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics.
Then we apply our framework by quantifying “unpredictability” in a publicly available, longitudinal data
set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations
between different “unpredictability statistics” across regions are only moderate. This means that regions
within NYC rank differently on unpredictability depending on which definition is used and at which spatial
scale the statistics are computed. Additionally, we explore associations between unpredictability statistics
and measures of unemployment, poverty, and educational attainment derived from publicly available
NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly
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with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for
disentangling different properties of the environment. To facilitate the use of our framework, we provide
a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets.

Keywords: environmental statistics, development, time-series analysis, unpredictability, theory

Supplemental materials: https://doi.org/10.1037/met0000651.supp

Psychologists often study interactions between people and their
environments. Thus, they describe both the individual and the envi-
ronment across time. The “environment” often refers to anything
external to the individual, including the physical as well as the social
world. Consider parental warmth. What is the range and average level
of parental warmth (distributional properties)? How does it change
across time (dynamic properties)? Psychological studies often involve
assumptions or claims about such properties. However, definitions
of distributional and dynamic properties tend to be ambiguous
(Bringmann et al., 2022; Young et al., 2020).

To illustrate, suppose a researcher investigates the effects of paren-
tal warmth on emotional adjustment. They measure parents’ suppor-
tive behaviors during a task (Luby et al., 2016). If this researcher
aims to capture the level of parental warmth, they might compute a
simple average across measurements. However, if they are also inter-
ested in “consistency” in parental warmth, a simple average is not
enough. They should quantify variability in warmth across time: sim-
ilar warmth scores imply lower variability, thus greater stability. The
standard deviation or range offers two ways to quantify consistency.
There are, of course, other options. The main point is that a single
research question often affords many different possibilities for quan-
tifying the environment. This ambiguity creates challenges. It leads to
constructs being loosely connected to measures and inconsistent data
analyses approaches across studies.

Here, we argue that the integration of research across disciplines
(e.g., psychology, biology, anthropology), studies, and methods
(e.g., different statistical models) will benefit from stating environ-
mental properties in statistical terms. By statistically defining environ-
mental properties, we translate verbal descriptions (e.g., level) to
mathematical descriptions (e.g., mean or median). Almost always,
multiple mathematical descriptions are suitable for one verbal descrip-
tion. By specifying which one we are using, we reduce ambiguity and
increase comparability across findings from different disciplines, stud-
ies, and methods. Without choosing an appropriate statistical defini-
tion, our construct and research question will remain ambiguous.

The need for statistical definitions comes into sharp focus when
talking about change. Many studies explore the challenges that envi-
ronmental change poses to developing individuals. To identify these
challenges researchers study how environmental change shapes
such outcomes as health and cognition (Farkas et al., 2024). Indeed,
predictable and unpredictable changes may produce different devel-
opmental outcomes (Baram et al., 2012; Gee, 2021; Ugarte &
Hastings, 2023; Werchan et al., 2022). Documenting such effects is
key to understanding both functional and maladaptive responses
(Hartley, 2022).

Take, for example, the construct of “unpredictability.” In evolution-
ary developmental psychology, unpredictability is typically defined as
“random variation in harshness over space or time,” where “harshness”
refers to rates of disability and death (Ellis et al., 2009). This verbal def-
inition is ambiguous. It is consistent with multiple statistical formaliza-
tions of change over time. For example, one researcher might compute

variance in harshness across the measurement period (e.g., Li et al.,
2018, 2022). Another might track abrupt shifts in the mean or variance
in harshness (i.e., changepoints; described in Young et al., 2020). A
third might measure how well current levels of harshness predict future
levels (i.e., autocorrelation; e.g., Burgess & Marshall, 2014; Marshall
& Burgess, 2015; Werchan et al., 2022). Which statistical definition
captures “random variation in harshness” best? And, do different def-
initions relate to developmental outcomes in the same way? If we want
to test specific hypotheses about unpredictability, verbal definitions
alone may serve as a starting point, but are rarely sufficiently clear
and precise.

The Need for a Framework

In our view, hypothesis testing requires statistically defining dis-
tributional and dynamic properties of the constructs under investiga-
tion. Doing so creates a structured space for science to progress.
Clear definitions serve as the building blocks for exploring and test-
ing questions related to individual-environment interactions across
time. Of course, some verbal definitions are precise enough to nar-
row the possible range of statistical definitions. However, most ver-
bal definitions are consistent with many definitions because verbal
description allows for different interpretations (Frankenhuis &
Walasek, 2020). In such cases, identifying a set of competing statis-
tical definitions may seem problematic for a theory, but we disagree.
Instead, identifying ambiguity is a valuable opportunity to refine the-
ory by exploring competing hypotheses (Platt, 1964). Ignoring
ambiguity carries costs (Frankenhuis et al., 2023). Ambiguous def-
initions weaken the match between theory and methods within stud-
ies (e.g., the mapping of constructs to measures), and lead to
inconsistencies across studies (e.g., different operationalizations of
the same construct). Statistical definitions increase precision and
transparency, making it easier to cumulatively build on each other’s
work (Roisman, 2021). But, before we can compare and evaluate dif-
ferent statistical definitions, we need to organize existing definitions
of distributional and dynamic properties. To this end, we present a
framework for studying environmental statistics in developmental
science (Table 1).

Our Framework

Building on existing work in the social and biological sciences,
we integrate familiar approaches with elements borrowed from
other fields, such as biology, anthropology, ecology, and economics,
which have been using similar frameworks for decades (Bernardi &
Hutter, 2007; Colwell, 1974; Ehlman et al., 2023; Hammel, 2005;
Marshall & Burgess, 2015; Vasseur & Yodzis, 2004; Vinton
etal., 2022; Warlaumont et al., 2022). Our framework organizes stat-
istical definitions of distributional and dynamic properties of an indi-
vidual’s environment. This allows us to reduce the complexity of
person-level time series (e.g., repeated measures) to a few summary
values describing various statistical properties of the environment.
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Table 1
Glossary of Environmental Statistics
Statistic Type Theoretical range Interpretation

Standard deviation Distributional [0, +c0] Average fluctuations around mean level

Range Distributional [0, +o0] Difference between highest and lowest value; quantifies the absolute
range of the data

Interquartile range Distributional [0, +c0] Range of the most common values (middle 50%); a large interquartile
range indicates a large range

Slope (linear model) Dynamic [—o0, +0] Linear association between time and dimensions of the environment;
indicates the trend across time. A positive (negative) slope
indicates an increase (decrease) across time

Period Dynamic [0, +o0] Length of a cycle, if any is present; the presence of a cycle indicates
that similar values occur every cycle

Autocorrelation Dynamic [—1, 1] The extent to which past values correlate with current values; high
absolute autocorrelation indicates high predictability

Entropy Dynamic [0, +o0] Sample entropy for time series indicates the extent to which similar
sequences in values are followed by additional similar values; low
entropy indicates long sequences of similar levels

Spectral coefficient (color of noise) Dynamic [—00, +0] The extent to which noise in dimensions of the environment is
autocorrelated across time lags; is often called color of noise

Number of changepoints in mean Dynamic [0, +0c0] How often the average level changes across the measurement period

Number of changepoints in variance Dynamic [0, +co] How often variance in levels changes across the measurement period

Note.

The first column states the environmental statistics. The second column states whether this statistic describes a distributional or dynamic property of

environmental data. The third column describes the theoretical range of each statistic. “—co0” means any negative number and “+00” any positive number. In

the fourth column, we provide an interpretation of each statistic.

Our framework offers a collection of univariate, interpretable
summary statistics (see Table 1). Other, more complex, approaches
to quantifying dynamic properties of longitudinal data (Hoffman,
2008; Nordgren et al., 2020), do not have this feature. These
approaches extract coefficients from complex multilevel models as
indicators of variability across time. Although these coefficients
are rich, they are difficult to interpret. Our approach is agnostic to
modeling choices; researchers compute environmental statistics
first (e.g., mean, standard deviation, autocorrelation, slope), and
may then enter them as predictors into a model. The first step allows
researchers to quantify an individual’s environment, such as the typ-
ical within-person range in harshness exposure. The second step
allows researchers to relate environmental properties to outcomes.
Our environmental statistics also allow for measurement and validity
analyses, such as relating different statistics to each other to under-
stand their interdependence (e.g., the correlations between different
statistical descriptions of unpredictability, such as standard devia-
tion, autocorrelation, and entropy).

We distinguish between distributional and dynamic statistics (Jebb
et al., 2015; Ram & Gerstorf, 2009). Distributional statistics (mean,
median, range, standard deviation) are time-unstructured; the value of
a particular statistic does not depend on the order of the data. Even if
we shuffle the data, the standard deviation always has the same
value. In contrast, dynamic statistics are time-structured; the order of
individual data points matters. Dynamic statistics describe how data
changes over time. Some dynamic statistics describe the magnitude
of changes in mean and variance. For example, a linear slope describes
the steepness of mean changes over time. Changepoints describe the
number of abrupt shifts in the mean, variance, or both. Other dynamic
statistics quantify regular or irregular changes over time. For example,
sample entropy quantifies whether sequences of similar values are fol-
lowed by additional similar sequences. Thus, there is a wide variety of

possible distributional and dynamic statistics (see Table 1 for a selec-
tion of statistics). Researchers must select statistics according to their
research question, hypothesis, or theory.

Environmental Statistics and Measurement

Environmental statistics may also inform measurement. Measurement
in psychology is notoriously difficult because we often cannot directly
observe and quantify what we aim to measure. For example, we cannot
measure intelligence in the same way as weight or height. Measurement
includes many interdependent steps, such as defining the construct of
interest, identifying suitable indicators, and actually measuring data
from which we can derive these indicators. In recent years, researchers
have raised concerns about various aspects of the measurement process,
such as a lack of guiding theory, conceptual ambiguity, insufficient val-
idation, and questionable measurement practices (Bringmann et al.,
2022; Eronen & Bringmann, 2021; Flake & Fried, 2020; Frankenhuis
et al., 2023; Hodson, 2021; Meier, 2023). Our framework, of course,
does not offer solutions to all of these challenges. However, it can aid
measurement when the goal is to conceptualize and quantify environ-
mental stability and change.

An important role of statistical definitions is to clarify and narrow
the conceptual definition of a construct. When different statistical def-
initions are equally suited to capture the construct, the conceptual def-
inition may not (yet) be precise enough (Borsboom et al., 2021;
Frankenhuis & Tiokhin, 2018; Smaldino, 2020). We illustrate this
using the case of unpredictability, defined as “random variation in
harshness over space or time” (Ellis et al., 2009). Narrowing this def-
inition can aid measurement. For example, we might define unpredict-
ability in statistical terms (e.g., autocorrelation) and directly quantify
it in a data set (e.g., of crime rates). Alternatively, we may define
unpredictability as a composite of statistical definitions (e.g.,
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autocorrelation and entropy). Each of these individual statistics then
serves as an indicator capturing an aspect of unpredictability. Such
a construct would be formative, not reflective, because the indicators
would actually constitute unpredictability, rather than reflect it (Bollen
& Lennox, 1991; Coltman et al., 2008; Edwards & Bagozzi, 2000).

Environmental statistics may be well-suited as indicators of for-
mative constructs. Which statistical definitions are appropriate in
such cases depends on the research question and construct definition.
While indicators of formative constructs do not need to be highly
correlated (e.g., socioeconomic status [SES]), this is a requirement
for reflective constructs (e.g., intelligence; Blotenberg et al.,
2022). We think that environmental statistics are not well-suited to
serving as indicators of reflective constructs. However, this might
be possible, if independent raters can agree which environmental sta-
tistics reflect a given latent construct. Changes in one statistic would
also need to reflect changes in other statistics (Fleuren et al., 2018).
Regardless of formative or reflective constructs, our framework
helps to identify conceptual ambiguity and promotes subsequent
refinement of constructs, indicators, and measures.

The Benefits of an Environmental Statistics Framework

Our framework has four major benefits. First, the framework
increases conceptual clarity by providing formal definitions of distri-
butional and dynamic environmental properties, such as unpredict-
ability. Second, the framework provides guidance by offering
tools to compute these statistical definitions and explore their rela-
tions. Third, the framework provides common ground for the inte-
gration of findings across different empirical studies. Fourth, the
framework provides methods for leveraging the time-series nature
of longitudinal data.

A crucial step in understanding how the physical and social envi-
ronment influence development is to quantify how the environment
changes within individuals across time. At present, we often use
data from single time periods or means across multiple time periods
to capture the environment. The reasons for this are often pragmatic:
to capture how the environment unfolds across time we need appro-
priate statistics for quantifying temporal dynamics and many repeated
measures. Both of these are often scarce in developmental studies.
Our framework can help by providing concrete tools to compute
environmental statistics of dynamic change within individuals. At
the same time large-scale longitudinal and cross-sectional studies
with many repeated measures have grown in number or are actively
being conducted over the past few years (Ehlman et al., 2023).
Similarly, ecological momentary assessment (EMA) and experience
sampling methods (ESM) studies have drastically increased in num-
ber because of advancements in smartphone logging technology.
EMA and ESM studies monitor the development of behavior,
emotions, and mood in real time (Trull & Ebner-Priemer, 2009).
Studies using this methodology provide a large number of repeated
measures collected across days and weeks allowing us a glimpse
into the everyday lives of individuals. All of these various types of
data sources present unique opportunities for the application of our
framework. Another opportunity for applying our framework lies
in computing environmental statistics from secondary data. Such sec-
ondary data includes both individual-level data collected as part of
previous studies or environment-level data, such as administrative
data provided by the local government (Hatzenbuehler et al., 2020;
Kievit et al., 2021; Miller et al., 2018; O’Brien et al., 2015).

Environment-level data refers to data about the environment of an
individual or a group of people. In this way, our framework also facil-
itates the combination of both individual-level and environment-level
data within the same study. Studies that include statistics from both
types of data as predictors may afford separating their effects on
development, cognition, or behavior.

Our framework complements existing work using dynamic systems
theory to study how individuals interact with other individuals, differ-
ent contexts, or environmental factors (using both subjective and
objective measures; Granic & Hollenstein, 2003; Olthof et al.,
2020; Ugarte & Hastings, 2023). Dynamic systems theory uses differ-
ential or difference equations to describe changing and interacting sys-
tems (often called “complex systems”). It typically focusses on a
system of multiple, interacting variables in densely sampled data
(i.e., minutes, hours, days). We focus on capturing distributional
and dynamic statistics of a single environmental variable (e.g., harsh-
ness) sampled over longer timescales (i.e., weeks, months, years). So,
our framework is well-suited to simultaneously exploring the effects
of different environmental variables on developmental outcomes,
but not to analyze the coupling of these variables with each other.

Environmental Unpredictability: A Case Study

We use the case of unpredictability to illustrate the four benefits of
our framework. In some psychological research, “unpredictability”
refers to a person’s subjective perception of, or psychological
response to, their environment (e.g., in Raab et al., 2022). In the cur-
rent article, “unpredictability” refers to an objective property of the
environment, which individuals may detect and adjust to. For exam-
ple, children adjust how they navigate their attention to the objective
predictability of their auditory environment (Werchan et al., 2022).

In this case study, we focus on unpredictability, defined as random
(stochastic) variation in harshness across space, time, or both (Ellis
et al., 2009). The term “harshness,” in this context, refers to the risk
of disability and death (Brumbach et al., 2009; Ellis et al., 2009). In
nonhuman animals, resource scarcity and predator density are indicators
of harshness. In humans, poverty and crime rates are often used to mea-
sure harshness (Brumbach et al., 2009; Young et al., 2020), because
they are consistently correlated with morbidity and mortality (Eberly
et al., 2022; Sundquist et al., 2006). That said, the points we make in
our case study of harshness apply to unpredictability in other dimen-
sions of the environment just the same (e.g., rainfall, temperature).

We illustrate our framework using existing, publicly available
crime records in New York City (NYC, United States) as indices
of harsh environmental conditions. The data span 15 years from
January 2006 until December 2020. For different regions in NYC,
we compute and compare a range of statistical definitions of unpre-
dictability. In addition, we use publicly available survey data to
derive measures of unemployment, poverty, and educational attain-
ment for different regions in NYC. We explore associations between
the NYC survey variables and different statistical definitions of
unpredictability in NYC crime data. All our code and data are avail-
able at https:/osf.io/acrw4/.

Method

In this section, we present a case study of environmental unpredict-
ability in the form of a friendly, step-by-step guide for applying our
framework. We preface our guide by emphasizing the importance of
ensuring the validity and reliability of input measures. When


https://osf.io/acrw4/
https://osf.io/acrw4/
https://osf.io/acrw4/

FRAMEWORK FOR STUDYING ENVIRONMENTAL STATISTICS 5

measures are imprecise or unreliable, researchers may inadvertently
interpret random error rather than true changes across time. In addi-
tion, the validity and reliability of some measures might change
with participant age or across groups. For example, measures of
child temperament and personality at young ages may not be valid
at older ages. The general point is that measures in our framework
should capture the construct of interest, minimize measurement
error (e.g., are reliable), and measure the same construct over time
and across groups. This increases the likelihood that our framework
quantifies real dynamics in the construct. Thus, whenever possible,
we recommend using well-validated measures and quantifying mea-
surement invariance (DeJoseph et al., 2022; Flake & Fried, 2020;
Putnick & Bornstein, 2016).

Environmental Unpredictability: A Case Study

Using our framework, we want to explore whether unpredictability
in crime is associated with socioeconomic outcomes. Specifically, we
explore three questions: is an unpredictable threat of assault associated
with (a) unemployment, (b) poverty, and (c) educational attainment?
Our analyses are exploratory. We draw no inferential conclusions.

Step 1: Specifying the Construct and Selecting Appropriate
Statistics

We conceptualize unpredictability as random variation in harsh-
ness over space or time (Ellis et al., 2009). Multiple statistical defi-
nitions of unpredictability fit this definition.

We explore six different definitions of unpredictability that feature
in the literature: the standard deviation, changepoints in mean,
changepoints in variance, autocorrelation, entropy, and color of
noise. The standard deviation describes the average deviation from
the mean in assault rates. In Table 1, we have referred to the standard
deviation as a distributional statistic because it summarizes the dis-
tribution of the data and not how they change across time (it is time-
unstructured). Nonetheless, we include the standard deviation as an
unpredictability statistic, because previous work has used the stan-
dard deviation of a model’s residuals to quantify unpredictability
(e.g., Li et al., 2018, 2022). Changepoints describe abrupt shifts in
the mean or variance (Haynes et al., 2016; Killick & Eckley,
2014; Young et al., 2020). We assume time-series that are character-
ized by a large number of changepoints to be less predictable. The
autocorrelation indicates how much past values predict current

Table 2

values. Suppose we have monthly measures of assault rates across
1 year. The autocorrelation then corresponds to the correlation of
this time series with itself lagged by 1 month (Burgess &
Marshall, 2014; Marshall & Burgess, 2015). This is called a lag-1
autocorrelation. Lag-2 autocorrelation computes autocorrelation
for a lag of 2 months. Entropy of a time series quantifies the extent
to which similar sequences in assault rates are followed by additional
similar sequences (Pincus, 1991; Richman & Moorman, 2000).
Higher entropy values imply that a time series is complex with
few redundancies and thus highly unpredictable (e.g., a random
sequence of zeros and ones); lower entropy implies redundancy
and scope for predictability (e.g., a sequence in which zeros and
ones alternate). Color of noise summarizes the extent to which
noise in assault rates is autocorrelated across time lags (Burgess &
Marshall, 2014; Frankenhuis et al., 2019; Marshall & Burgess,
2015; Ruokolainen et al., 2009; Vasseur & Yodzis, 2004). Noise
is what is left of the data after subtracting systematic patterns,
such as trend and season. Although theoretically any positive or neg-
ative number is possible (see Table 1), color of noise values com-
monly range between —1 and 3 (Ruokolainen et al., 2009). Noise
can change randomly across time (“white noise,” color of noise
around 0). It can change slowly, resulting in long runs of above
or below average conditions (“red” and “brown noise,” color of
noise between 1 and 2). Or, it can change rapidly but predictably
(“blue noise,” color of noise between 0 and —1). Table Al.1 in
the online supplemental material 1 outlines in detail how each sta-
tistic is computed.

Table 2 describes what type of research questions can be asked
with different unpredictability statistics. This level of specificity
allows researchers to ask nuanced questions about the association
between unpredictability and socioeconomic outcomes.

Step 2: Finding a Data Set

Our data need to fulfill two goals. First, they need to be suitable
for studying our research question. Second, they need to meet the
criteria for applying our framework and any subsequent analyses.
We first describe the input and outcome data and then outline how
these data meet our criteria.

The Data. To explore unpredictability in assault rates, we chose
publicly available crime records from boroughs and public use micro-
data areas (PUMAs) in NYC as input to our framework. NYC consists
of five boroughs: The Bronx, Brooklyn, Manhattan, Queens, and

Overview Over Unpredictability Statistics and Specific Research Questions

Type of statistic

Research question

Standard deviation
Changepoints

Autocorrelation

Are large fluctuations around the mean level of assault rates associated with
socioeconomic outcomes?

Are frequent changes in the mean (variance) of assault rates associated with
socioeconomic outcomes?

Is low predictability in assault rates across years (or months, weeks, etc.)

associated with socioeconomic outcomes?

Entropy
outcomes?

Color of noise

Is inconsistency in sequential assault rates associated with socioeconomic

Is low predictability in noise of assault rates across years, days, and months

associated with socioeconomic outcomes?
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Staten Island. Each borough is further divided into community dis-
tricts for local governance. PUMAs are nonoverlapping geographical
areas with at least 100,000 inhabitants which largely overlap with com-
munity districts (Figure 1; the online supplemental material 2 shows
the overlap between PUMASs and community districts).

Our crime data are part of the NYC Open Data project (https:/
opendata.cityofnewyork.us/). The database contains data related to
business, governance, education, environment, safety, and health. We
focus on the New York City Police Department Arrests Data
(Historic; https:/data.cityofnewyork.us/Public-Safety/NYPD-Arrests-
Data-Historic-/8h9b-rp9u). This data set records every arrest by the
New York City Police Department dating back to 2006 and continues
to be updated every quarter. Each entry holds information about the
type of crime, the arrest location, and the time of arrest. We only use
information about crimes related to assault resulting in 644,684 entries
across 15 years, from January 2006 until December 2020. Table A1.2
in the online supplemental material 1 lists all offenses that we included
under “assault” and their description provided by the police depart-
ment. Each assault can be linked to its respective borough and
PUMA using publicly available shapefiles from the NYC department
of city planning (https:/www.nyc.gov/site/planning/index.page).
Shapefiles are regularly updated to account for changes in boundaries.
We used shapefiles from 2000 and 2010 to match the geographical
boundaries of the survey data.

As outcome data, we chose publicly available data from the
American Community Survey (ACS). The U.S. Census Bureau
developed the ACS to collect data about social, economic, housing,
and demographic characteristics in American communities. For this
purpose, they introduced PUMASs as data collection units. Data are

Figure 1
NYC Boroughs and PUMAs
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Note. Colors indicate boroughs and numbers indicate PUMAs which are
separated by white borders. Officially, two digits precede PUMA labels to dif-
ferentiate between boroughs. To increase visibility these have been omitted.
The horizontal axis shows the longitude and the vertical axis the latitude.
Borough and PUMA boundaries are based on shapefiles from 2010 (available
in our Open Science Framework repository). NYC=New York City;
PUMAS = public use microdata areas; N = north; W = west. See the online
article for the color version of this figure.

released in a 1- and 5-year format. The 5-year format (ACS-5) rep-
resents the average characteristics across 60 months of data collec-
tion and is considered the most reliable estimate.

The data are available through the U.S. Census Bureau microdata
tool (https:/data.census.gov/mdat/#/) and various interfaces. We
used the R package tidycensus to download the ACS-5 data
(Walker & Herman, 2022). We downloaded three batches of
5-year data to cover the range of the NYC crime data: 2006-2010,
2012-2016, and 2016-2020. Each batch contains aggregate survey
data for each PUMA collected across 5 years. Between 2011 and
2012 the PUMA boundaries changed. Therefore, it is not possible
to download 5-year aggregates which include data before and after
2012. In line with the PUMA boundaries, we use shapefiles from
2000 to compute associations between the crime and survey data
ranging from 2006 to 2010, and shapefiles from 2010 otherwise.

For each PUMA and 5-year batch, we compute the following four
variables: the proportion of individuals who are currently unemployed
(excluding individuals who are in school or studying), the proportion
of individuals with a bachelor’s degree or higher, the proportion of
individuals whose income-to-poverty ratio is below 1, and the propor-
tion of individuals whose income-to-poverty ratio is above 5.

Criteria. The NYC crime data meet the requirements for applying
our framework. They provide a sufficient number of measurements and
equal spacing between measurement intervals. Additionally, our sam-
ple of PUMAs is large enough to conduct additional analyses with
extracted statistics. We describe each criterion in more detail below.

Number of Measurements. Ideally, the data set has at least 20
repeated measures per time series. The more repeated measures, the
better: some time series modeling techniques require at least 50 obser-
vations (Haslbeck & Ryan, 2021; Jebb et al., 2015). As is the case
with all cutoffs, they should not be understood as rules but as guide-
lines. A data set with 15 or 19 repeated measures may also be suitable
for our framework. However, the lower the number of repeated mea-
sures, the more likely statistics may be tracking noise in the data,
increasing uncertainty in estimates. We have monthly measures of
assault rates across 15 years, resulting in 180 repeated measures in
total and 60 repeated measures per 5-year batch.

Equal Spacing. Our framework is more easily applied when
measures are equally spaced in time (e.g., once a month or year).
Equal spacing is especially important for various time-series model-
ing techniques, such as computing the autocorrelation (de Haan-
Rietdijk et al., 2017; Jebb et al., 2015). Equal spacing matters because
time series methods typically make assumptions about the sampling
frequency of the data. For example, as already noted, autocorrelation
can be computed at different lags in the data. With monthly data, lag-1
autocorrelation corresponds to the correlation of the time series with
itself lagged by 1 month. To best estimate the autocorrelation at this
lag, we require equal, monthly spacing.

Dealing With Unequal Spacing. There are different ways of
dealing with unequal spacing. If the irregularity in spacing is small,
one option is to ignore it while being explicit about this as a (minor)
limitation. However, if the degree of irregularity is more serious, one
solution is to exclude statistics and preprocessing steps that assume
equal spacing (i.e., autocorrelation and time series decomposition).
Or, the data can be transformed to become equally spaced. This can
be achieved by interpolation (Pavia-Miralles, 2010). Interpolation
uses available data in a time series to predict the most likely value of
data points missing because of irregular sampling. However, interpo-
lation can also bias the data and distort their true dynamics; so, before
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using this method, we recommend exploring additional literature
(Erdogan et al., 2005; Lepot et al., 2017; Oh et al., 2020). In our
data, measures are recorded daily and can be aggregated across evenly
spaced intervals, such as weeks, months, or years.

Sample Size. If the goal is to only explore individual time
series, our framework minimally requires a sample of one time
series. However, it is possible to use statistics from individual
time series to analyze the association among different statistics or
between statistics and outcomes. We will showcase both of these
analyses in this article. Under these conditions, it is important to
consider the sample size, that is, the number of available time
series. With 55 PUMA s our sample is sufficiently large to compute
correlations among statistics and outcomes, as well as simple
regression models. But ideally, we would prefer a larger sample
of PUMAs.

Currently, we cannot provide specific numeric cutoffs or rec-
ommended ranges for our outlined criteria. We expect the appli-
cation of our framework to remain exploratory until empirical
data using our methodology has been generated (i.e., computed
environmental statistics across different samples and timescales).
Such data can then be evaluated to determine more specific
recommendations.

Figure 2
NYC Crime Data Across Boroughs and PUMAs
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Step 3: Exploration and Preprocessing

Third, we suggest visually and descriptively exploring the data.
Exploration is helpful to get familiar with the data and to decide
whether and how you should preprocess the data. Our framework
offers various options. You can plot the raw time series, the autocor-
relation, and changepoints of randomly selected time series
(Figure A1.2 in the online supplemental material 1). For example,
Figure 2 shows the monthly number of assaults recorded across
the measurement period for each borough (Panel A) and two ran-
domly chosen PUMAs (Panel B). The vertical axis displays the num-
ber of assaults per 100,000 inhabitants to correct for population
density. We use census data of boroughs and PUMAS to compute
corrections at the appropriate levels. In addition, we show different
temporal resolutions (i.e., daily, weekly, biannually, and yearly) of
assault rates (Figure Al.1 in the online supplemental material 1).

Additionally, it is possible to compute descriptive statistics of the
input and outcome data. Table 3 lists the means and standard devi-
ations in assaults per 100,000 inhabitants across PUMAs for the
entire measurement period and each S-year batch. Table 4 lists
means and standard deviations for each NYC survey variable across
PUMAs. Additionally, we report means and standard deviations in

Number of assaults (per 100,000)
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Note. Panel A shows monthly assault rates across the measurement period for each borough (colors match those in
Figure 1). The vertical axis displays the number of assaults per 100,000 inhabitants and the horizontal axis denotes
time in years. Panel B displays assault rates across the entire measurement period for two randomly chosen PUMAs
per borough. Vertical and horizontal axes denote the same quantities as in Panel A. NYC = New York City.
PUMAS = public use microdata areas. See the online article for the color version of this figure.
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Table 3
Assaults Across Boroughs and Districts—Descriptive Statistics
Batch
2006-2010 2012-2016 2016-2020 2006-2021
Borough n PUMASs M SD M SD M SD M SD
The Bronx 10 89.97 47.86 97.34 54.13 87.96 47.72 91.81 49.59
Brooklyn 18 64.44 31.41 60.71 33.47 48.85 24.99 58.43 31.24
Manhattan 10 75.22 32.86 71.89 31.59 66.67 31.73 71.37 32.04
Queens 14 54.76 28.02 56.26 32.95 50.92 27.66 54.13 29.88
Staten Island 3 49.12 32.45 48.03 37.58 40.42 31.60 46.44 34.65
Note. PUMAs = public use microdata areas.

the coefficient of variation for each variable. The coefficient of var-
iation corresponds to the standard deviation of the estimate, divided
by the estimate itself. It indicates sampling variability. The smaller
the coefficient, the more reliable the estimate. As a rule of thumb,
estimates above 0.3 are considered unacceptable and estimates
under 0.15 good (European Commission, Eurostat, 2013). We show
PUMA-level breakdowns for each variable and batch (Figures
A3.1-A3.12 in the online supplemental material 3).

If desired, the data can be preprocessed before computing statis-
tics. For example, the data may be standardized to compare linear
slopes across time series. Additionally, it is possible to remove trends
in mean or variance, and seasonal components from the data (see the
online supplemental material 1 “Framework user manual”). A time
series whose statistical properties (e.g., mean, variance) are constant
across time is called stationary. Stationarity is a common require-
ment for many time series models which assume that individual
data points in the time series are independent of each other (Jebb
et al., 2015). For example, the autocorrelation of a time series typi-
cally picks up systematic changes in the data, such as trends (i.e.,
consistent increases or decreases) in mean levels or variance.
Trends make the data more predictable across time and increase
the magnitude of the autocorrelation. However, researchers may
also be interested in the magnitude of the autocorrelation after
accounting for these systematic patterns. Thus, it is common practice
in time-series analysis to compute the autocorrelation of the station-
ary time series. Our framework, therefore, extracts some statistics for
both the raw data and the stationary data. Generally, we recommend
staying close to the raw time series. Preprocessing steps, such as
detrending or decomposing a time series, may solve one “issue”

(e.g., removing a trend) but potentially introduce other artifacts in
the data (e.g., increase variability). We chose to include only one
preprocessing step in our case study, namely to correct assault
rates for population density.

Step 4: Computing Statistics

We compute, visualize, and summarize unpredictability statistics.
Specifically, we compute unpredictability statistics in monthly
assaults in NYC crime data across the entire measurement period
for each borough and PUMA. We show the results of this step in
the Results section.

Step 5: Exploratory and Measurement Analysis

In this step, we explore how individual statistics relate to each
other. Do we derive the same conclusions about the degree of unpre-
dictability irrespective of statistical definition? For each 5-year batch,
we compute Spearman’s rank correlations between unpredictability
statistics across PUMAS (see the Results section). We indicate signif-
icant, bivariate associations at an (arbitrarily set) o level of .005. It is
important to note that PUMAs are nested within boroughs which
may influence the patterns of correlations. If it does, a repeated mea-
sures correlation would be more appropriate. However, because the
interclass correlation was close to zero for almost all unpredictability
statistics, we decided against accounting for clustering within bor-
oughs. Only, the interclass correlations for the standard deviation
and mean were around 0.2 with a wide confidence interval bordering
zero. For comparison, we include plots of the repeated measures cor-
relations (Figures A4.1-A4.3 in the online supplemental material 4).

Table 4
NYC Survey Data Variables—Descriptive Statistics
Batch
2006-2010 2012-2016 2016-2020

Variable M SD M SD M SD
Prop. bachelor or above 0.32 0.18 0.35 0.18 0.38 0.19
Prop. bachelor or above (CV) 0.03 0.01 0.03 0.01 0.03 0.01
Prop. income-poverty above 5 0.25 0.16 0.26 0.16 0.30 0.17
Prop. income-poverty above 5 (CV) 0.05 0.02 0.05 0.02 0.05 0.02
Prop. income-poverty below 1 0.20 0.10 0.21 0.09 0.18 0.09
Prop. income-poverty below 1 (CV) 0.06 0.02 0.06 0.02 0.06 0.02
Prop. Unemployed 0.05 0.01 0.05 0.02 0.04 0.01
Prop. unemployed (CV) 0.08 0.01 0.08 0.02 0.10 0.02
Note. NYC = New York City; CV = coefficient of variation; Prop. = proportion.
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Step 6: Relating Environmental Statistics to Outcomes

Finally, we compute bivariate associations between unpredictability
in assault rates and rates of unemployment, poverty, and educational
attainment. To this end, we compute Spearman’s rank correlations
among unpredictability statistics and socioeconomic outcomes for
each 5-year batch of data (see the Results section). For each batch,
we show histograms and bivariate scatterplots of all variables (i.e.,
unpredictability statistics and socioeconomic outcomes; Figures
A3.13-A4.18 in the online supplemental material 3).

Additionally, we statistically modeled the associations between each
unpredictability statistic and each NYC survey variable. We chose a
beta regression because our outcome variables are proportions. To
this end, we use Bayesian beta regressions to compute associations
between each unpredictability statistic and each NYC survey variable
(Burkner, 2013). We controlled for the mean level of assault rates
because the bivariate scatterplots show strong associations between
the mean and all NYC survey variables across all batches. We stan-
dardized the predictors of each analysis to make coefficients compara-
ble and used default flat priors for all variables. We report the marginal
effects for each unpredictability statistic and their highest posterior den-
sity intervals (HDPI), indicating the most likely values.

Results

We present results of applying our framework to the NYC crime
and survey data. We show unpredictability statistics for each borough
and compare borough-level statistics to aggregates across PUMAs
(Figures 3 and 4). We illustrate to what extent different definitions of
unpredictability result in different rank-orderings of boroughs. In addi-
tion, we present correlations between unpredictability statistics and
NYC survey data across PUMAs (Figures 5-7). Lastly, we discuss
associations between individual unpredictability statistics and NYC
survey variables while controlling for the mean level in assault rates.

Environmental Statistics—New York Crime and Survey
Data

Unpredictability Statistics Across Boroughs and PUMAs

We show six different statistical definitions to quantify unpredict-
ability as “random variation in harshness” (Ellis et al., 2009): the
standard deviation, entropy, color of noise, autocorrelation (at a lag
of 1 month), changepoints in mean, and changepoints in variance.
Higher standard deviation, entropy, and number of changepoints in
mean and variance indicate higher levels of unpredictability. The
same is true of lower absolute (i.e., the magnitude ignoring the
sign) autocorrelation and color of noise.

Figure 3 shows changepoints in mean (green line) and variance
(black horizontal lines and gray rectangles) in monthly assault
rates for each borough. We observe differences in the number of
changepoints in variance across the different boroughs, with the
Bronx having the most and Manhattan the fewest. The differences
in the number of changepoints in mean are smaller (Figure 5).
Almost all boroughs show an increase in mean or variance of assault
rates between 2007 and 2010 and a decrease between 2019 and
2021. The increase might reflect the global financial crisis in 2007
and 2008. The decrease may be because of lockdowns and other
measures against the Corona virus in 2020 and 2021.

Figure 4 compares unpredictability statistics computed from
assault rates in each borough with averages of statistics computed
across PUMAs. We take three things away. First, the rank-orderings
of boroughs depend on which statistical definition of unpredictabil-
ity we use. Second, these rank-orderings may also depend on the spa-
tial level at which we compute unpredictability statistics. Tables 5
and 6 underscore these insights. They list rankings of boroughs in
unpredictability according to our six statistical definitions of unpre-
dictability computed at the borough-level (Table 4) and PUMA-level
(Table 5). When ranking boroughs according to the autocorrelation
and color of noise we consider their absolute values. We observe lit-
tle consistency in ranks within the borough- and PUMA-levels indi-
vidually, as well as across levels. Third, Figure 4 shows that the
standard deviation of averaged statistics across PUMAs can be
large. This indicates that values of individual statistics may vary
even across small spatial distances. Taken together, our results sug-
gest that conclusions about unpredictability may depend on the cho-
sen definition of unpredictability and the spatial level at which we
compute it.

Correlations Between Unpredictability Statistics and NYC
Survey Variables

Figures 5-7 depict Spearman’s rank correlations between unpre-
dictability statistics computed from assault rates in NYC and NYC
survey measures of unemployment, poverty, and educational attain-
ment across PUMASs. Each figure depicts correlations for one 5-year
batch of data. The black horizontal line visually separates correla-
tions computed solely between unpredictability statistics (above
the line) and correlations which include NYC survey variables
(below the line). In addition to our six unpredictability statistics
and four NYC survey variables, we include the autocorrelation of
the stationary time series of assault rates and the mean level in assault
rates. We include the mean level in assault rates for each PUMA
because the bivariate scatterplots indicate strong associations
between NYC survey variables and the mean (Figures A3.13—
A3.18 in the online supplemental material 3). We include the
autocorrelation of the stationary time series to assess the mag-
nitude of the autocorrelation after accounting for systematic pat-
terns. When computing correlations we consider absolute values
of the autocorrelations and color of noise. We show complete cor-
relation tables in Tables A4.1-A4.3 in the online supplemental
material 4.

We first describe patterns in correlations between unpredictability
statistics. Across 5-year batches, patterns of correlations are highly
consistent. Most notably, the standard deviation and mean are highly
correlated. This is a common property of count data which the NYC
crime data are. We observe moderate correlations among some of the
environmental statistics. For example, color of noise and entropy are
negatively associated: lower magnitudes in color of noise and higher
entropy values indicate higher levels of unpredictability. Other pat-
terns seem puzzling at first. We observe that higher variance in the
data (i.e., higher standard deviation, larger number of changepoints
in mean and variance) is associated with higher autocorrelation and
lower entropy. This violates our intuitions because we associate the
former with higher levels of unpredictability and the latter with lower
levels of unpredictability. We believe that these are examples of the
autocorrelation and entropy picking up systematic changes in variabil-
ity in the data. A high standard deviation and large numbers of
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Changepoints in Mean and Variance in NYC Boroughs
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changepoints in mean and variance indicate the magnitude of variabil-
ity in the data. This variability may or may not be predictable. Thus,
combinations of statistics indicating variability (e.g., standard devia-
tion) and statistics indicating regularity in patterns (e.g., autocorrela-
tion) can provide insights that these statistics on their own could not.

We now move on to describe patterns in correlations which
include the NYC survey measures of unemployment, poverty, and
educational attainment. Here too, patterns of correlations are highly
consistent across 5-year batches. Among NYC survey variables we

observe positive correlations between variables indicating low SES
(i.e., unemployment and an income-to-poverty ratio below 1). We
also observed positive correlations between variables indicating
high SES (i.e., educational attainment and income-to-poverty
ratio above 5). These two groups of variables in turn are negatively
correlated with each other. In relation to other variables, we
find that mean levels in assault rates are positively correlated
with unemployment and poverty (i.e., income-to-poverty ratio
below 1). This means unemployed individuals and individuals in
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Figure 4
Comparing Environmental Statistics at the PUMA- and Borough-Level
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figure.

poverty tend to live in PUMAs which exhibit higher levels of
assault rates. Conversely, higher levels in assault rates are nega-
tively correlated with educational attainment and wealth (i.e.,
income-to-poverty ratio above 5). This means individuals with a
bachelor’s degree or higher and wealthy individuals tend to live in
PUMASs which exhibit lower levels of assault rates. Of our unpredict-
ability statistics, only the standard deviation and changepoints in mean
correlate with the NYC survey variables consistently. The direction of
the association can be fully derived from the correlations with the
mean levels in assault rates. Between 2012 and 2016 (Figure 6), as
well as 2016 and 2020 (Figure 7), we observe positive correlations
between the autocorrelation and unemployment and a negative corre-
lation between the autocorrelation and educational attainment (only
between 2012 and 2016). These correlations indicate that higher levels
of unpredictability are associated with higher unemployment and
lower educational attainment. As noted earlier, in these cases the auto-
correlation likely picks up on systematic changes in variability in the
data. Thus, higher levels of systematic changes in variability are asso-
ciated with higher unemployment and lower educational attainment.

Associations Between Individual Unpredictability Statistics
and NYC Survey Variables

Lastly, we explored to what extent bivariate associations between
NYC survey variables and unpredictability statistics change when
controlling for the mean levels in assault rates. In cases where we
included the standard deviation as a predictor, we removed the
mean as a covariate to avoid multicollinearity. Figures A4.4-A4.6
in the online supplemental material 6 depict the marginal effects
and HDPI for each unpredictability statistic as a predictor and each
NYC survey variable as an outcome. Not surprisingly, the standard

deviation is always positively associated with unemployment and
poverty, and negatively associated with educational attainment and
wealth. Except for two instances all other marginal effects are zero
when controlling for the mean. Between 2006 and 2010, the number
of changepoints in mean is positively associated with poverty
(income-poverty ratio below 1) (marginal effect=0.03, 95%
HDPI [0.01, 0.05]) and negatively with wealth (income-poverty
ratio above 5) (marginal effect=—0.05, 95% HDPI [—0.08,
—0.019]). Thus, after controlling for mean levels in assault rates, a
1 SD increase in the number of changepoints in mean is associated
with the following two outcomes: a 3% increase in the proportion
of individuals living in poverty and a 5% decrease in the proportion
of individuals who are wealthy.

Discussion

We have developed a framework that organizes different notions
of environmental properties in unambiguous terms: as statistical def-
initions. To showcase our framework, we have presented a case
study on “unpredictability” using publicly available crime data
from NYC. Additionally, we have explored associations between
different statistical definitions of unpredictability and socioeco-
nomic outcomes in NYC survey data.

We have learned three lessons from our case study. First, we have
shown that the ranking of regions within NYC on unpredictability
depends both on the statistical definition used and the spatial scale
(borough vs. neighborhood) for which unpredictability is computed.
Concretely, this means that answers to research questions—such as
how unpredictability affects health, development, or cognition—
may differ depending on one’s statistical definition and spatial
focus (see Glas et al., 2019).
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Figure 5

Spearman’s Rank Correlations Between Unpredictability Statistics
(Computed From NYC Assault Rates) and NYC Survey Variables
Across PUMAs for Data Collected Between 2006 and 2010
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Note. Each cell corresponds to one Spearman’s correlation coefficient
between the variables indicated by the row and column. Significant correla-
tions (oo < .005) are indicated by colored cells. The intensity of the color is
proportional to the strength of the correlation coefficient. The black horizon-
tal line separates coefficients between unpredictability statistics only (above
the line) and coefficients that include NYC survey variables (below the line).
NYC=New York City; PUMAs = public use microdata areas; var.=

variance; Prop. = proportion. See the online article for the color version of
this figure.

Second, we found that different unpredictability statistics were
not only associated to different degrees but in some instances, the
sign of the association was even negative. For example, we
observed negative associations between statistics quantifying var-
iability and irregularity, implying that some regions are highly
variable and regular. Identifying these dynamics matters because
the conjunction of different unpredictability statistics may create
specific adaptive challenges for individuals. For example, if the
world is variable yet regular individuals know what environmen-
tal states to expect in the future. Similarly, low variability paired
with irregularity may give individuals an idea of the range of
environments to expect. However, if the world is both variable
and irregular it may be difficult for individuals to predict their
environment.

Third, we observed associations between mean levels of crime and
socioeconomic outcomes, but not between unpredictability and socio-
economic outcomes. We leave explanation of this pattern for a future
study. What matters, for our purposes, is that we have used a rigorous
approach to studying how environmental variables, such as mean levels
of crime and unpredictability in crime rates over time, are associated
with relevant outcomes. Of course, these associations may be different
in other data sets. Our case study provides a clear roadmap for how
these and other associations could be explored using the framework
we have presented.

Our main contribution is to address a broader problem in con-
ceptualization and measurement of environmental change:

Figure 6

Spearman’s Rank Correlations Between Unpredictability Statistics
(Computed From NYC Assault Rates) and NYC Survey Variables
Across PUMAs for Data Collected Between 2012 and 2016
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Note. Each cell corresponds to one Spearman’s correlation coefficient
between the variables indicated by the row and column. Significant correla-
tions (0. < .005) are indicated by colored cells. The intensity of the color is
proportional to the strength of the correlation coefficient. The black horizon-
tal line separates coefficients between unpredictability statistics only (above
the line) and coefficients that include NYC survey variables (below the line).
NYC =New York City; PUMAs = public use microdata areas; var. =
variance; Prop. = proportion. See the online article for the color version
of this figure.

ambiguous constructs and research questions are compatible with
multiple statistical definitions, which may imply qualitatively dif-
ferent results. The field currently lacks a shared framework that
affords systematic comparison of these different definitions. We
have provided a clear framework with the aim to provide a struc-
tured space for conceptualizing, developing, and comparing theo-
ries and empirical studies—attempting, in the words of Virginia
Woolf, to create shape amidst chaos (Woolf, 1927). The statistical
definitions in our framework serve as building blocks that clarity
connections between empirical studies, facilitating cumulative
science.

Though the research question determines which notions of envi-
ronmental change are appropriate in a particular study, we provide
some guidance. First, we recommend only doing confirmatory
studies if the construct definition is precise enough to make specific
predictions about specific environmental statistics. Additionally,
we recommend to preregister such studies. In cases where the def-
inition of a key construct is ambiguous, we recommend acknowl-
edging this limitation and using an exploratory approach
(Frankenhuis et al., 2023). Of course, such studies may be prereg-
istered as well. It is perfectly fine to explore multiple statistical def-
initions, if done transparently. Such studies may inform future
confirmatory studies. For example, based on our case study, we
may consider exploring how combinations of two statistics (e.g.,
autocorrelation and number of changepoints in variance) are asso-
ciated with socioeconomic outcomes in a sample of regions across
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Figure 7

Spearman’s Rank Correlations Between Unpredictability Statistics
(Computed From NYC Assault Rates) and NYC Survey Variables
Across PUMAs for Data Collected Between 2016 and 2020
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Note. Each cell corresponds to one Spearman’s correlation coefficient
between the variables indicated by the row and column. Significant correlations
(o0 < .005) are indicated by colored cells. The intensity of the color is propor-
tional to the strength of the correlation coefficient. The black horizontal line
separates coefficients between unpredictability statistics only (above the line)
and coefficients that include NYC survey variables (below the line). NYC =
New York City; PUMASs = public use microdata areas; var. = variance;
Prop. = proportion. See the online article for the color version of this figure.

cities in the United States. Thus, our framework can contribute to
all parts of the research cycle: it fosters conceptual development,
which informs empirical research, which in turn refines conceptual
development. Using our framework in this cycle can thus increase
theoretical clarity and precision, generating knowledge and cumu-
lative science.

The Future of Environmental Statistics

Our case study has illustrated the merits of having a shared frame-
work for quantifying environmental statistics in psychological
research. We highlight four future directions for our framework.

Table 5

Linking Individual- and Environment-Level Data

As already noted, our framework can be applied to individual-level
data, as well as environment-level data (e.g., crime records); that is,
data about the environment of an individual or a group of people.
In our case study of “unpredictability,” we have shown how to com-
pute environmental statistics for environment-level data. We explored
associations between unpredictability statistics and NYC survey var-
iables. Similarly, environmental statistics computed across regions
in which individuals have lived may be associated with individual-
level outcomes of unemployment, poverty, and educational attain-
ment. These environmental statistics would complement measu-
res collected through self-reports and questionnaires. Combining
individual- and environment-level data in this way can paint a
more precise picture of an individual’s lived experience.

For decades personality researchers have acknowledged the impor-
tance of both person and environment characteristics for understand-
ing behavior (Fleeson, 2004). Here, environment typically refers to
the situational context in which individuals express a specific behav-
ior. The idea is that although personality traits tend to predict long-
term behavior, traits, and situations substantially influence short-term
actions. Although a large and well-developed body of work has been
devoted to characterizing personality traits (e.g., the Big Five), sys-
tematic ways for quantifying the situation are less common.

An exception is the DIAMONDS taxonomy. This taxonomy char-
acterizes situations along eight dimensions (Rauthmann et al.,
2014). These dimensions quantify how individuals perceive and
evaluate specific situations. For example, “D” stands for duty and
indicates the extent to which individuals perceive an obligation to
act in a certain situation. The DIAMONDS taxonomy also considers
the extent to which these different dimensions relate to specific per-
sonality traits (e.g., conscientiousness in the case of duty) and to the
ecology (e.g., the workplace in the case of duty). Future work may
extract environmental statistics in densely sampled data from an indi-
vidual’s surrounding ecology to explore how short-term changes in
the ecology are associated with changes in DIAMONDS’ dimen-
sions and behaviors. Such data may provide valuable insight into
individual differences by exploring how individuals with different
personality types are influenced by changing situations.

EMA and ESM offer promising ways to collect environmental
data. These methods afford tracking behaviors, emotions, and
mood through time. If it is possible and ethical to record the locations
of individuals using smartphones, these data could be directly linked
with data from the ecology (e.g., distinguishing between the

Ranking of Boroughs Based on Different Statistical Definitions of Unpredictability

Statistics at borough-level

Changepoints

Color of noise Entropy Autocorrelation Changepoints (M) (variance)
Firs Queens swenisiand [RGB EEEERIN
Second RO EEEERN  Manhatn Staten Island
Third Staten Island Staten Island Manhattan Manhattan Queens
Fourth Manhattan Manhattan Staten Island Queens _ Queens
Fifth Queens Queens _ _ Staten Island Manhattan
Note. Each column corresponds to a different statistical definition. Statistics are computed at the borough level. For each statistic, rows indicate each borough’s

rank in unpredictability, where 1 ranks highest and 5 lowest. See the online article for the color version of this table.
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Table 6

Ranking of Boroughs Based on Different Statistical Definitions of Unpredictability

Averaged statistics at PUMA level

Changepoints
Rank SD Color of noise Entropy Autocorrelation Changepoints (M) (variance)

First Manhattan Queens Queens
Second Staten Island Staten Island
Third Manhattan _ Manhattan Queens
Fourth Queens Queens Manhattan Queens Manhattan
Fifth Staten Island Staten Island Manhattan Staten Island Staten Island
Note. Each column corresponds to a different statistical definition. Statistics are computed at the PUMA level and averaged for each borough. For each statistic,

rows indicate each borough’s rank in unpredictability, where 1 ranks highest and 5 lowest. PUMAs = public use microdata areas. See the online article for the

color version of this table.

workplace and home). Previous work has used geo-location coding
to quantify the extent to which individuals move unpredictably
through space (“roaming entropy”; Heller et al., 2020; Saragosa-
Harris et al., 2022). Future work may combine such measures of
individual exploration with environmental statistics quantifying
unpredictability across visited locations. Collecting these types of
data across different developmental stages would allow us to explore
the consistency of behaviors across the lifespan (Fraley & Roberts,
2005; Roberts & DelVecchio, 2000; Rush et al., 2019). These stud-
ies can, for instance, provide insight into when the impact of situa-
tional context on behavior is greatest, deepening our understanding
of sensitive periods for personality development.

Comparing Perceived and Observed Measures

Relatedly, we may examine how environmental statistics from
observed measures, for instance of harshness and unpredictability,
relate to subjective perceptions of these constructs. Is subjective
perception of unpredictability related to unpredictability statistics
computed from observed measures, such as crime rates? Do they
influence different outcomes in individuals? The existing literature
on the association between observed and perceived measures is
mixed. For example, perceptions of urban disorder appear to be
unrelated to observed disorder and instead driven by other cues,
such as demographic composition of the neighborhood and racial
biases (Janssen et al., 2022). In the same vein perceptions of unsaf-
ety stabilize even when crime rates are going down (Glas, 2021).
However, although this association is not perfect, it is generally
accepted that fear of crime is related to crime rates (Pearson
et al., 2015). Another study showed that effects of perceived and
actual crime on life satisfaction vary across demographic character-
istics, such as sex, age, income, the presence of children, and
whether individuals live in major cities (Ambrey et al., 2014).
Some developmental studies suggest that perceived childhood
adversity has a greater influence on psychopathology later in life
than objective childhood adversity (Baldwin et al., 2021).
Assuming two children have been exposed to similar objective lev-
els in harshness, an interesting question is whether lower perceived
harshness is related to children’s resilience. In that case, tracking
environmental statistics of subjective perceptions of experiences
may help us understand the development of resilience.

Taken together, these studies suggest nuances in the association
between perceived and observed measures and their unique effects

on outcomes. Knowing which outcomes are shaped by objective mea-
sures and which ones are by subjective measures is important for devel-
oping interventions.

Integrating Environmental Statistics and Measurement

Future work may explore combinations of unpredictability statis-
tics as indicators of a formative construct. In our small sample,
higher variability was moderately associated with higher regularity
in crime rates. It may be interesting to explore a more narrow con-
ceptual definition of unpredictability, defined as high, irregular
variability in harshness over space or time. This definition implies
frequent and unpredictable changes in harshness levels.
Combinations of environmental statistics indicating variability
(e.g., changepoints) and regularity (e.g., entropy) may then be
used as indicators of unpredictability. However, we would first rec-
ommend more exploratory research quantifying unpredictability
statistics in diverse and larger data sets.

We provide a few concrete suggestions for using our environmental
statistics as indicators of constructs. First, we recommend using a nar-
row conceptual definition of the construct. Second, the choice of indi-
cators should be guided by theory or prior exploratory research. Next,
it is important to consider whether the underlying construct is thought
to cause the indicators (e.g., intelligence) or whether the indicators
cause the construct (e.g., SES). The former requires a reflective
model and the latter a formative model (Bollen & Lennox, 1991;
Coltman et al., 2008; Edwards & Bagozzi, 2000). Confirmatory factor
analysis and various other latent factor modeling techniques involving
structural equation modeling are suitable for reflective constructs. If
environmental statistics have been quantified across different time
periods (e.g., in 5 years batches as in our case), latent profile analysis
is useful for modeling how the construct changes across time.
Recently, there is an increasing number of analogous methods for for-
mative constructs. For example, analogous to confirmatory factor
analysis, confirmatory composite analysis determines whether the
indicators form one or multiple formative constructs (Hubona et al.,
2021). Dimensionality reduction techniques, such as principle com-
ponent analysis, are also suitable to explore formative constructs.
Nowadays, structural equation modeling techniques also allow the
coupling of composites of indicators and outcomes (Sarstedt &
Hwang, 2020). However, irrespective of modeling choice, we need
to consider whether and how measurement invariance influences
the construct (DeJoseph et al., 2022). After fitting an appropriate
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measurement model, we still need to assess the reliability of the indi-
cators (e.g., using Cronbach’s o, McDonalds’ o), as well as the valid-
ity of the measure itself (Flake & Fried, 2020; Hair et al., 2021; Hayes
& Coutts, 2020; Hodson, 2021).

A Database of Environmental Statistics

Our framework offers tools to compute environmental statistics and
can thus contribute to the development of a “database of environmen-
tal statistics” across studies (Frankenhuis et al., 2019). Knowing the
values of different environmental statistics for different variables
and samples can help to generate new explanations and hypotheses
in psychological research. For example, the database could provide
the necessary data to test the association between different unpredict-
ability statistics and poverty across different countries.

Quantifying the statistical structure of the environment on shorter
timescales has already proven to advance infancy research. For
example, a recent study documented the everyday auditory experi-
ences of infants (Warlaumont et al., 2022). The authors found that
infants seek out vocal responses using strategies similar to how ani-
mals forage for resources. This parallel between vocal exploration
and foraging dynamics offers opportunities to generate novel
hypotheses about learning in infants. Similarly, another study used
head cameras and eye trackers to document infants’ everyday visual
experiences (Smith et al., 2020). As sensorimotor development pro-
gresses, infants’ interactions with their visual environment change,
granting them access to novel experiences; referred to as “curriculum
for learning.” The authors hypothesize that infant learning is opti-
mized for the continuously changing visual environment. Moving
forward, computing environmental statistics could advance develop-
mental research in similar ways as documenting the early environ-
ment has advanced infancy research.

A recently published “ecology-culture data set” is an outstanding
example of what a database of such statistics might look like
(Wormley et al., 2022). A similar database for psychological research
may fuel future research but also harmonize existing knowledge.

Limitations of Our Case Study and Environmental
Statistics in General

In our case study, we compute different statistical definitions of
unpredictability in data that exhibit a strong association between
the mean and standard deviation. We do not know whether our
findings generalize to different types of data that do not have this
property. Moreover, our sample of 55 PUMAs is rather small.
It would be worthwhile to expand our current study to explore
the association between different statistical definitions of un-
predictability and survey outcomes across multiple cities in the
United States.

Our statistical formalizations are simple and do not cover more
advanced time series modeling approaches. Rather than extracting
individual statistics from time series data, as we have, these models
can be used to test—rather than explore, as we have done here—
hypotheses about how the data change across time. For example,
Jebb et al. offer a beginner-friendly tutorial on time series analysis
in psychological research and provide pointers to further, more
advanced reading (Jebb et al., 2015). Applying time series modeling
to developmental research may help us answer research questions
that we cannot answer with our current methods. However,

successfully applying time series modeling to developmental ques-
tions can be challenging. Recent work addressed such challenges in
the study of emotion development across the span of minutes, hours,
and days (Haslbeck & Ryan, 2021). Future work may explore chal-
lenges of applying time series modeling to environmental data sam-
pled over longer time-scales (i.e., weeks, months, and years).

We will refrain from providing guidelines for determining which
statistics to use in which conditions and how to interpret their values.
Should we compute the autocorrelation or entropy? What does an
entropy of 0.95 tell us about unpredictability without comparing it
against other regions or individuals? The first question should be
answered on the grounds of theory; precise research questions,
hypotheses, and construct definitions should guide our choices. The
second question is empirical, requiring us to compute environmental
statistics more regularly and in different contexts (e.g., samples, time-
scales, countries). As the number of empirical studies computing envi-
ronmental statistics increases, we learn more about their values in
different contexts. However, as noted, the extent to which environ-
mental statistics track real patterns, as opposed to noise, depends on
the quality of the underlying data. Thus, as with any other empirical
work, measurement error is a concern. Generally, we believe that
both quantity and quality of data may ultimately be improved with
“team science.” If we pool resources and research efforts, we may
be able to conduct fewer studies with larger quantity and higher qual-
ity data. With more calls for collaborative science, increasing incen-
tives to share data collected from participants, and the availability of
public environment-level data (e.g., crime records), we see exciting
opportunities ahead for systematically quantifying environmental
stability and change across the human life course.
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