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 63 

DNA methylation data generation and pre-processing  64 

DNA was extracted from whole blood using Qiagen DNeasy Blood & Tissue 65 

extraction kits following the manufacturer’s instructions. Previously published data 66 

(N=264 samples) were generated using reduced representation bisulfite sequencing 67 

(RRBS) based on the protocols of (1, 2). Libraries were generated from 200 ng of DNA 68 

per sample followed by high-throughput sequencing on the Illumina HiSeq2500 or 69 

HiSeq4000 platform. Data newly generated for this study (N=31 samples) were 70 

produced using a modification of the standard RRBS protocol, double-digest RRBS 71 

(following (3)), and sequenced on the Illumina HiSeq 2500. Whereas RRBS is based on 72 

a single-step digest using the restriction enzyme MspI, dRRBS uses a double restriction 73 

enzyme digest (here, MspI and ApeKI) to enrich the resulting library for CpG sites 74 

outside of promoters and CpG islands. The batch used to generate the RRBS libraries 75 

and sequencing data, which also controls for differences between the dRRBS versus 76 

RRBS preps, was therefore included as a covariate in our analyses (n=7 batches; 77 

Dataset S1).  78 



In all cases, RRBS samples were subjected to bisulfite conversion using two 79 

rounds of conversion with the Qiagen EpiTect bisulfite conversion kit, following 80 

manufacturers’ instructions. Additionally, both RRBS and dRRBS libraries were 81 

prepared using 0.2 ng of a lambda phage DNA spike-in, which allowed us to estimate 82 

bisulfite conversion efficiency based on reads mapped to the lambda phage genome 83 

(mean bisulfite conversion rate=0.998  2.4 x 10-3 s.d.; Dataset S1). Raw reads from all 84 

samples were trimmed for Illumina adaptors using TrimGalore (length=15, stringency=4) 85 

(4), and mapped to the Panubis1.0 genome (GCA_008728515.1) using BSMAP (10% 86 

max mismatch, unique hits) (5, 6). For further analysis, we retained CpG sites (i) with 87 

non-zero coverage in at least 75% of samples; and (ii) median coverage >5 across all 88 

samples. We also excluded sites that were invariant, constitutively hypomethylated 89 

(mean methylation ratio <0.1), or constitutively hypermethylated (mean methylation ratio 90 

>0.9) in the data set. These three filters together removed most low variance sites from 91 

the data set, resulting in a final analysis set of 477,270 sites.  92 

Importantly, because RRBS non-randomly targets CpG-rich regions of the 93 

genome for profiling, all analyses therefore used this set of 477,270 as the background 94 

(reference) distribution for comparison. For example, when we report that early life 95 

drought-associated sites occur in putative enhancer regions more often than expected 96 

by chance (as shown in Figure 3), this means that drought-associated sites were 97 

proportionally more likely to fall within enhancer regions than the background set of 98 

477,270 sites in the post-filtering analysis set.  99 

 100 

Demographic, social, and ecological variables  101 

 Age is known to within a few days’ error for 251 (98%) of our study subjects, and 102 

within 6 months’ error for the remaining five individuals in the data set (2% of unique 103 

individuals). Age information is based on longitudinal observations of births within study 104 

groups.  105 

Dominance rank is estimated using ordinal ranks (where 1 indicates the highest 106 

status individual and progressively higher numbers correspond to progressively lower 107 

status). Males and females are ordered in distinct linear dominance hierarchies, so male 108 

rank and female rank were modeled as separate effects. Dominance ranks are based 109 

on observations of agonistic wins and losses recorded during representative interaction 110 

sampling (7, 8). In this approach, agonisms are recorded for all study group members 111 

during the course of random-order focal sampling: that is, observers collect agonism 112 

data for all animals in their line of sight while moving through the group to find and 113 

follow predetermined focal sampling subjects.  114 

Ranks are assigned by generating an N x N matrix, where N is the number of 115 

individuals in the social group. The matrix contains symmetrical rows and columns 116 

corresponding to individual animal identities. The cells of the matrix contain the number 117 

of times that the animal represented in a given row won an agonistic interaction against 118 



the animal represented in a given column during a month-long period of data collection. 119 

The columns and rows of the matrix are then ordered to minimize the number of wins 120 

that appear below the diagonal of the matrix. The resulting order of the columns is the 121 

ordinal rank (e.g. 1, 2, 3, etc.) of the animals represented by those columns. We 122 

modeled dominance rank in adulthood based on assigned ordinal ranks in the month in 123 

which blood samples were collected, and maternal social status based on the focal 124 

animal’s mother’s dominance rank in the month that animal was born. For a detailed 125 

treatment of rank assignment, please see (8). 126 

Habitat quality was defined as low quality before the home range shifts and high 127 

quality after the home range shifts. The two social groups that were observed during the 128 

period of the home range shifts, Alto’s and Hook’s groups, made the shift in different 129 

years. Hence, for Alto’s group, we coded low-quality habitat based on a birthdate during 130 

or before 1987, but coded low-quality habitat for animals in Hook’s group based on a 131 

birthdate during or before 1991. Animals in all other social groups in this study were 132 

born post-range shift, in high-quality habitat. We note that the structure of the habitat 133 

quality variable means it is unavoidably confounded with time. However, arbitrarily 134 

dividing our sample from the high-quality environment (covering more than 25 years of 135 

sample collection) produces virtually no significant time period effects (0 sites at 1% 136 

FDR), and there is almost no correlation between the effect size of time period in this 137 

arbitrary division and the observed effect sizes of habitat quality (Pearson’s r=0.016). 138 

These results, as well as the strong congruence between habitat quality effects and 139 

drought effects (where drought is not temporally structured) suggests that the habitat 140 

quality variable is meaningful beyond its separation of two time periods in the field 141 

study. 142 

Early life adversity. To quantify five, individually variable dimensions of early life 143 

adversity, we followed previous studies of early adversity in the Amboseli baboons (9, 144 

10). Specifically, we considered our study subjects to be exposed to (i) drought if they 145 

experienced <200 mm of rainfall in the first year of life; (ii) maternal loss if they lost their 146 

mother prior to 4 years of age (the earliest age of reproductive maturation in our study 147 

population); (iii) low early life social status, if their mother’s rank at birth fell in the lowest 148 

quartile of ordinal dominance rank values (rank 12); (iv) a close-in-age younger sibling 149 

if they experienced the birth of a live younger sibling within 1.5 years of their own birth 150 

(i.e., the lowest quartile of interbirth intervals in this population); and (v) large group 151 

size, a measure of resource competition, if the number of adult baboons residing in their 152 

social group was in the top quartile of group size values for this population (group size 153 

36). Cumulative early adversity was defined as the sum of exposures to these 154 

individual sources of adversity and ranged from 0 to 4 in our sample (median=1; 155 

s.d.=0.97). Note that in this analysis, we omitted a sixth source of early adversity, 156 

maternal social isolation, which was included in (9). This measure is most prone to 157 



missingness in the data set, so we followed the precedent in (10, 11), which maximizes 158 

the analysis set using a five-exposure cumulative early adversity index.   159 

 160 

Modeling socioenvironmental predictors of DNA methylation  161 

We modeled variation in DNA methylation at each CpG site in our analysis set 162 

using the binomial mixed-effects model implemented in MACAU, which is designed 163 

specifically for bisulfite sequencing data (12). The basic form of the model for each CpG 164 

site is: 165 

 166 

𝑦𝑖~𝐵𝑖𝑛(𝑟𝑖 , 𝜋𝑖) 167 

 168 

where ri is the total read count for individual i, yi is the methylated read count, and πi is 169 

the true, unknown underlying proportion of methylated reads for individual i. πi is passed 170 

through a logit link and modelled as:  171 

 172 

𝐿𝑜𝑔𝑖𝑡 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑤𝑖

𝑇𝛼 +  𝑥𝑖
𝑇𝛽 + 𝑔𝑖 + 𝑒𝑖  173 

 174 

𝑔 ~ 𝑀𝑉𝑁(0,   𝜎2ℎ2𝐾) 175 

𝑒 ~ 𝑀𝑉𝑁(0,   𝜎2(1 − ℎ2)𝐼) 176 

 177 

where: w is an n x m-matrix of covariates, including an intercept; α is the corresponding 178 

m-vector of coefficients; xi is a n by p-matrix of predictors of interest for individual i; β is 179 

the corresponding p-vector of coefficients; gi is an n-vector of random effect estimates 180 

that capture the effect of kinship or shared ancestry; MVN is the multivariate normal 181 

distribution; 𝜎2ℎ2 is the genetic variance component; K is a genetic relatedness matrix; 182 

e is an n-vector of residual errors; 𝜎2(1 − ℎ2) is the environmental variance component; 183 

and I is the identity matrix. Note that the w and x vectors are both modeled as fixed 184 

effects. We separate them here conceptually to distinguish between variables whose 185 

effects we are interested in controlling for (w), and those we are directly interested in 186 

estimating and interpreting (x). 187 

 We fit three related models to our data. All three models used the same random 188 

effects structure and incorporated the same w matrix, including the technical effects of 189 

z-scored bisulfite conversion rate, z-scored sequencing depth, and sampling batch. 190 

Sampling batch assignment was based on the batch in which the sample library was 191 

generated and sequenced (n=7 batches, which also capture the differences in 192 

dRRBS/RRBS library preparation). To estimate the genetic relatedness matrix K, we 193 

calculated the variance-covariance matrix of genotype data for the individuals in our 194 

sample, rescaled so that the trace(K)=1 (12). Genotype data were derived from low-195 

coverage resequencing data generated for all individuals in our sample in previous work 196 



(See SI section 4 in (13)). In brief, variants were jointly genotyped using the Genome 197 

Analysis Toolkit (14), after removing PCR duplicates. Low-quality genotypes were 198 

removed, filtered for minor allele frequency >0.05, and thinned by 100,000 base pairs, 199 

resulting in 25,628 biallelic SNPs. We defined the K matrix for our analyses as the 200 

variance-covariance matrix of the genotypes at these loci. Each model differed only in 201 

the composition of the matrix x. Thus our three models took the following forms: 202 

 203 

 𝑀𝑜𝑑𝑒𝑙 1: 𝐿𝑜𝑔𝑖𝑡 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑤𝑖

𝑇𝛼 + 𝑥𝑚𝑜𝑑𝑒𝑙1_𝑖
𝑇 𝛽 + 𝑔𝑖 + 𝑒𝑖  204 

 205 

𝑀𝑜𝑑𝑒𝑙 2: 𝐿𝑜𝑔𝑖𝑡 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑤𝑖

𝑇𝛼 + 𝑥𝑚𝑜𝑑𝑒𝑙2_𝑖
𝑇 𝛽 +  𝑔𝑖 + 𝑒𝑖  206 

 207 

𝑀𝑜𝑑𝑒𝑙 3: 𝐿𝑜𝑔𝑖𝑡 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑤𝑖

𝑇𝛼 + 𝑥𝑚𝑜𝑑𝑒𝑙3_𝑖
𝑇 𝛽 +  𝑔𝑖 + 𝑒𝑖  208 

where, 209 

 𝑥𝑚𝑜𝑑𝑒𝑙1 = 𝐴𝑔𝑒, 𝐻𝑄 , 𝑅𝑎𝑛𝑘 (𝑠𝑒𝑥 = 𝑀), 𝑅𝑎𝑛𝑘(𝑠𝑒𝑥 = 𝐹), 𝐶𝐸𝐴 210 

 𝑥𝑚𝑜𝑑𝑒𝑙2 = 𝐴𝑔𝑒, 𝐻𝑄 , 𝐶𝐸𝐴 (𝐻𝑄 = 0), 𝐶𝐸𝐴 (𝐻𝑄 = 1) 211 

 𝑥𝑚𝑜𝑑𝑒𝑙3 = 𝐴𝑔𝑒, 𝐻𝑄, [𝐸𝐴1(𝐻𝑄 = 0), 𝐸𝐴1(𝐻𝑄 = 1)] … [𝐸𝐴5(𝐻𝑄 = 0), 𝐸𝐴5(𝐻𝑄 = 1)]  212 

 213 

and Age is a continuous measure of age in years; HQ is a binary 0/1 variable capturing 214 

early life habitat quality (0=high-quality habitat; 1=low-quality habitat); CEA is 215 

cumulative early adversity, represented as an integer value from 0 to 5; Rank is an 216 

individual’s sex-specific ordinal dominance rank at the time of sampling; and EAn 217 

represents a series of binary variables that reflect an individual’s exposure to each of 218 

five forms of early adversity (maternal loss, low maternal social status, a close-in-age 219 

younger sibling, high experience density/group size, drought in the first year of life). Age 220 

and sex-specific dominance rank values were z-scored across samples prior to 221 

modeling. In all cases, we tested the hypothesis that the effect size for each variable of 222 

interest did not equal zero. To control for multiple hypothesis testing, we used the false 223 

discovery rate approach implemented in the R package qvalue (15, 16), after confirming 224 

that permutations of our predictors of interest generated null p-value distributions similar 225 

to the uniform distribution. 226 

 We did not include sex or early life effects nested within sex in our models 227 

because of previous evidence in our population that sex-associated differentially 228 

methylated sites are rare (17). Indeed, post hoc analysis revealed that such sites are 229 

also rare for autosomal CpG sites in this data set: on chromosome 1, for example, 230 

including sex in Model 1 identified only 22 differentially methylated sites (0.06% of those 231 

tested, at an FDR of 0.01). We note that we do observe pervasive evidence for 232 

differential methylation by sex on the X chromosome (16,553 sites at an FDR of 0.01). 233 

In 74% of these cases, higher methylation occurs in females, such that many sites that 234 



are hypomethylated in males are intermediately methylated in females, consistent with 235 

the expectation of X inactivation. However, sites on the X constitute <5% of our overall 236 

data set and effect size estimates for Model 1 when including versus excluding sex are 237 

highly congruent overall (r=0.93 for habitat quality, the main result from model 1). For 238 

this reason, and because much of the differential methylation on the X chromosome is 239 

likely caused by a different mechanism (X inactivation) than the ones that are the focus 240 

of this study, we elected to focus our analyses on models excluding sex as a covariate.  241 

 242 

Genome annotations  243 

Gene bodies were defined based on annotations for the baboon genome 244 

(Panubis1.0 GTF # GCF_008728515.1) (6). Promoters were defined as the 2 kb 245 

upstream of a gene’s 5’-most annotated transcription start site. CpG islands were 246 

defined as windows longer than 200 bp with greater than 50% GC content and an 247 

observed/expected CpG ratio greater than 0.6, as identified using EMBOSS (18). CpG 248 

shores were annotated based on the 2 kb regions upstream and downstream of CpG 249 

islands. Finally, putative enhancer elements were identified based on liftOver (19, 20) of 250 

H3K4me1 ChIP-seq peaks from human PBMCs, generated by the ENCODE project 251 

(experiment ENCSR482QXO) (21).  252 

To define chromatin states, we used chromatin state annotations in human 253 

peripheral blood mononuclear cells generated by the Roadmap Epigenomics Project 254 

using chromHMM (22), which is based on quantitative estimates of five histone marks 255 

(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3). As for H3K4me1-defined 256 

enhancers, we used liftOver to identify regions in the baboon genome that correspond 257 

to calls in humans, based on 200 bp non-overlapping windows of the human genome 258 

(19). In both cases, we used default liftOver parameters, and only retained regions that 259 

resulted in unique hits when reciprocally lifting over from the human genome to the 260 

baboon genome as well as back to the same human coordinates (20). The liftover 261 

chainfile generated previously is available at 262 

https://zenodo.org/record/5199534#.Y_FamezML0p.  263 

 264 

Elastic net regularization models 265 

 We predicted early life habitat quality status (i.e. pre- versus post-shift) for each 266 

sample using elastic net regression in the R package glmnet (23). Specifically, we 267 

imputed missing methylation ratios (<5%) for each sample using the R package impute 268 

(24). We then iteratively removed one sample at a time and trained an elastic net model 269 

on the remaining training set using 50-fold internal cross-validation, an alpha value of 1, 270 

and the lambda value that minimized mean-squared error during internal CV. The 271 

resulting model was then used to predict habitat quality (low versus high) for the 272 

originally removed test set sample. We repeated this process for each sample to obtain 273 

an estimate of accuracy and an ROC curve.  274 

https://zenodo.org/record/5199534#.Y_FamezML0p


 To test whether predictive ability declines with time since the shift from low to 275 

high-quality habitat, we used a linear model to model predicted habitat quality as a 276 

function of the time between sample collection and when the animal left their low-quality 277 

habitat. Because of the natural correlation between the time since habitat shift and 278 

animals’ ages, we cannot effectively control for the animals’ ages. We note, however, 279 

that predicted habitat quality is not significantly associated with age in a linear model. 280 

Thus, our model is unlikely to be capturing an age effect rather than difference in habitat 281 

quality.  282 

   283 

mSTARR-seq experiment 284 

To prepare plasmid libraries for mSTARR-seq transfection, we extracted 285 

genomic DNA from cryopreserved peripheral blood mononuclear cells (Qiagen, Blood 286 

and Cell Culture DNA Mini Kit). The cells were sampled from individual #15944 of the 287 

Southwest National Primate Research Center, the same anubis baboon that was used 288 

to generate the Panubis1.0 genome assembly (6). 300-800 bp DNA fragments were 289 

generated in two ways: (i) using a Covaris S220 Focused-Ultrasonicator followed by 290 

size selection, which represents fragments sampled from across the entire genome 291 

("sheared library"); and (ii) via digestion with the restriction enzyme Msp1, also followed 292 

by size selection, which generates fragments that are enriched in baboon RRBS 293 

libraries (“MspI-digested library”). The MspI-digested library mimics the first step of the 294 

RRBS protocol, which also involves MspI digestion. By generating both types of 295 

libraries, our goal was to enrich for fragments that we measured in the Amboseli baboon 296 

data set while also capturing fragments representative of the genome as a whole. 297 

Plasmid libraries, transfection, and harvest protocols followed the published 298 

protocol from (25). In brief, size-selected fragments were ligated to NEBNext adapters 299 

(NEB #E7335), amplified with primers complementary to the insert sites for 300 

pmSTARRseq1 (the CpG-free plasmid backbone used for mSTARR-seq assays), and 301 

cloned into the pmSTARRseq1 backbone using Gibson assembly. We then transformed 302 

the libraries into customized electrocompetent GT115 E. coli cells (300 μl, Intact 303 

Genomics), incubated them overnight at 37°C, and purified the plasmid pool (Qiagen 304 

Plasmid Plus Maxi Kit). We initially performed 10 replicate transformations each for the 305 

sheared and MspI-digested libraries. After estimating fragment diversity in each 306 

replicate via sequencing on an Illumina MiSeq (paired-end 75 bp reads; Dataset S4), we 307 

constructed our final libraries by pooling 300 ug each of the two most diverse MspI-308 

digested replicates into an “MspI” pool and 120 ug each of the five most diverse 309 

sheared library replicates into a “sheared” pool. 310 

To create matched unmethylated and methylated libraries, we split each pool in 311 

half and treated one half with 150U of the enzyme M.SssI (New England Biolabs), which 312 

methylates all CpG sites on the fragment inserts (the backbone is CpG free) and the 313 

other half with water, which leaves all CpG sites in the inserts unmethylated. Methylated 314 



versions of the Msp1-digested and sheared libraries were mixed in a 1:1 ratio, and 315 

unmethylated versions of the Msp1-digested and sheared libraries were also mixed 1:1. 316 

Following the published mSTARR-seq protocol (18), we then performed chemical 317 

transfection (Thermo Fisher Scientific Lipofectamine 3000) of 40 ug of either the 318 

methylated or unmethylated plasmid libraries into the human K562 erythroleukemic cell 319 

line, in six replicates per treatment (ca. 20 million cells). After a 48 hour incubation in 320 

opti-MEM culture media, we harvested the cells and used a quarter of the final cell 321 

suspension (in PBS) to purify plasmids for DNA-seq to quantify input for each region 322 

and the rest for mSTARR-seq plasmid-specific RNA-seq to measure each region’s 323 

enhancer-like activity. Both DNA-seq and RNA-seq libraries were specifically targeted to 324 

fragment inserts and transcripts produced from the plasmid, respectively, using targeted 325 

PCR and the KAPA HiFi HotStart ReadyMix (Roche) (25). DNA-seq (n=6 replicates 326 

each from the methylated and unmethylated treatments) and RNA-seq (n=6 replicates 327 

each from the methylated and unmethylated treatments) libraries were sequenced on a 328 

NovaSeq 6000 S1 flow cell using 100 bp paired end reads. The average sequencing 329 

depth for DNA-seq libraries was 75,179,499 ± 23,113,359 reads (mean ± s.d.), and for 330 

RNA-seq libraries, the average depth was 51,520,043 ± 5,912,789 reads (mean ± s.d.) 331 

(Dataset S4). 332 

 333 

mSTARR-seq data analysis 334 

 Raw reads were trimmed with Cutadapt (26) and Trim Galore (4) and mapped to 335 

the anubis baboon reference genome (Panubis 1.0) with bwa (bwa mem with default 336 

parameters) (27). We retained properly paired reads with MAPQ ≥10. Fragments that 337 

derived from the MspI-digested libraries versus sheared libraries were identified based 338 

on the presence of an Msp1 cut site at the start of either the forward or reverse read. 339 

For each replicate (n=6 unmethylated DNA; n=6 methylated DNA; n=6 methylated RNA; 340 

n=6 unmethylated RNA), and separately for MspI-derived fragments and sheared 341 

fragments, we used bedtools2 (28) to count the number of reads that overlapped 342 

discrete 500 bp windows in the baboon genome. We chose to use 500 bp windows for 343 

this analysis, as opposed to the original 200 bp windows in (25), because 500 bp 344 

windows maximized enrichment of ENCODE-annotated enhancer elements (lifted over 345 

to the baboon genome) among putative regulatory elements called from the experiment. 346 

Larger window sizes also reduced cases of pseudoreplication, in which we called 347 

multiple regulatory elements directly adjacent to one another, which probably function 348 

biologically as a single element.  349 

For downstream analysis, we retained only those windows with (i) median 350 

coverage  4x in both methylated treatment DNA samples and unmethylated treatment 351 

DNA samples (i.e., where there was sufficient fragment input to drive gene expression, 352 

if capable of doing so); (ii) non-zero counts in at least half of DNA-seq replicates in both 353 

treatments; and (iii) non-zero counts in at least half of RNA-seq replicates in either 354 



treatment. The stricter criteria for DNA-seq reads is because DNA fragments must be 355 

successfully introduced into the cells to even be tested for regulatory activity. In 356 

contrast, low or no RNA-seq reads in one treatment condition, if the plasmids containing 357 

the matching DNA fragments are present, is a biological signal of the lack of regulatory 358 

potential. Following filtering, we retained 210,942 analyzable windows for the MspI-359 

digested libraries and 41,521 windows for the sheared libraries, representing ~126 Mb 360 

of the baboon genome (~4% of the genome). Before testing the regulatory capability of 361 

analyzable windows, we normalized library size for each sample with calNormFactors 362 

function as implemented in edgeR package (29–31), and normalized each RNA-seq 363 

sample against its corresponding DNA-seq samples with the voomWithQualityWeights 364 

function implemented in the limma R package (32–34), so that we could later model 365 

RNA abundance relative to DNA abundance as described below. 366 

 To test for regulatory capacity and methylation-dependent regulatory activity, we 367 

fit the following model to each analyzable window:  368 

 369 

𝑦𝑖 =  𝜇 + 𝑚𝑖𝛽1 + 𝑡𝑖𝛽2 ∗ 𝐼(𝑚 = 0) + 𝑡𝑖𝛽3 ∗ 𝐼(𝑚 = 1) + 𝜀𝑖 370 

 371 

where yi is the vector of normalized counts per 500-bp window for a total of 24 samples 372 

(nDNA=12, nRNA=12), indexed by i; μ is the intercept; m is treatment (0=unmethylated; 373 

1=methylated) and β1 is its effect size; t is sample type (0=DNA; 1=RNA) and I is an 374 

indicator variable for whether the sample was unmethylated (m=0) or methylated (m=1); 375 

β2 and β3 are the effect sizes for sample type (RNA versus DNA) in the unmethylated 376 

and methylated conditions, respectively. εi is the residual error. The regulatory activity 377 

for fragments produced via sheared and MspI-digested libraries were modeled 378 

separately. Due to the typically higher coverage in regions covered by MspI-digested 379 

fragments, we used results from the MspI digestion if coverage was available from both 380 

MspI and sheared libraries.   381 

 Regions capable of regulatory activity generate more RNA than expected based 382 

on the amount of DNA input for that region. We therefore were specifically interested in 383 

regions with positive effect sizes for the sample type (RNA versus DNA) effect, such 384 

that mRNA abundance is significantly greater than input DNA abundance for the same 385 

fragment, either in the methylated condition, unmethylated condition, or both. To control 386 

for multiple hypothesis testing, we used a permutation-based false discovery rate 387 

approach. Specifically, we randomized the DNA versus RNA label within replicate pairs, 388 

reran the model described above, and retained the same number of regions with 389 

positive RNA versus DNA effect sizes as detected in the empirical sample. We then 390 

compared the p-value distribution for these regions, across 100 permutations, to the p-391 

values for positive effect sizes identified in the real data, using a 10% FDR cut-off (i.e. 392 

q-value <0.1) for significance (Dataset S5). As in previous studies, regions with 393 

significant regulatory activity detected at this threshold were enriched in strong 394 



enhancer and active promoter chromatin states annotated in K562 cells (log2(OR)=2.50 395 

and 0.92 respectively, both p<1 x 10-9; Dataset S6), indicating that the mSTARR-seq-396 

annotated regulatory elements are consistent with in vivo expectations.  397 

 Finally, to identify methylation-dependent regulatory elements, we focused on the 398 

subset of windows with regulatory activity (n=5,878 detected at q-value <0.1; Dataset 399 

S5). For these windows, we tested whether the effect of sample type (RNA versus DNA) 400 

differed between methylated and unmethylated conditions (i.e., whether a fragment’s 401 

capacity to drive regulatory activity differs depending on whether it was methylated or 402 

not, such that β2 and β3 significantly differ). To correct for multiple testing in this 403 

analysis, we calculated q-values by comparing p-values from the empirical results 404 

against results from 100 permutations where treatment condition (methylated versus 405 

unmethylated) was randomly assigned to each DNA-RNA replicate pair (Dataset S5). 406 

 407 

Comparing DNA methylation to gene expression 408 

 Male dominance rank effects on gene expression were estimated in previously 409 

published work (35). In brief, RNA-seq data were collected from white blood cells 410 

purified from ex vivo-incubated TruCulture tubes (Myriad RBM). Because the original 411 

study was interested in assessing sources of variance in the immune response, two 412 

TruCulture tubes were collected from each study subject: one containing cell culture 413 

media only (the “baseline” control condition) and one containing cell culture media plus 414 

lipopolysaccharide, to mimic bacterial exposure. Here, we focused on rank effect 415 

estimates in the baseline samples only (35) and on CpG sites within annotated gene 416 

bodies.  417 

 To identify pathways and gene categories more closely associated with 418 

differentially methylated CpG sites than expected by chance, we performed gene set 419 

enrichment analysis on CpG-associated genes using GSEA v1.0 in R (36) for each of 420 

fifty Hallmark gene sets annotated in the Molecular Signatures Database (37). For this 421 

analysis, the background comparison set was all 10,281 genes in the post-quality 422 

control gene expression data set. P-values were calculated by randomly permuting 423 

gene labels and rerunning GSEA 1000 times for each gene set. P-values for a gene set 424 

were defined by the number of permuted enrichment scores that were larger in 425 

magnitude than the empirical enrichment score. 426 

 427 

Assessing the effects of cell type heterogeneity 428 

 Differential methylation can occur because of changes in methylation within cells 429 

or because of compositional effects, in which blood cell subtypes differ between, e.g., 430 

individuals exposed to high versus low early adversity, and these subtypes also differ in 431 

their DNA methylation patterns at putatively differentially methylated sites. To assess 432 

the potential confounding effects of cell-type heterogeneity in our data set, we drew on 433 

blood cell counts performed for Giemsa-stained blood smears collected in parallel with 434 



the blood samples used for DNA methylation data generation. These data, which 435 

capture the percentage of white blood cells in a sample that are monocytes, basophils, 436 

eosinophils, neutrophils, or lymphocytes, were available for 137 of our 295 samples 437 

(17). Importantly, none of these values are correlated with the major predictors of 438 

interest in our models (all p > 0.05 for pairwise correlations between blood cell 439 

proportions and cumulative early adversity, male rank, and drought). 440 

We then focused on the two major cell types observed in our blood smears, 441 

neutrophils and lymphocytes. Re-running Model 1 on our data, including z-scored 442 

neutrophil and lymphocyte proportions (12), revealed few significant associations 443 

between DNA methylation and neutrophil or lymphocyte proportions (13 and 17 sites 444 

respectively < 10% FDR). Additionally, the top 5% of neutrophil and lymphocyte-445 

associated sites do not significantly overlap with the set of habitat quality or cumulative 446 

early adversity (in low habitat quality)-associated sites identified in Model 2 (all FET p > 447 

0.20).  448 

These results are somewhat surprising given the importance of cell type 449 

composition in other whole blood DNA methylation data sets. We speculate that the 450 

blood smear data may be too coarse to reveal more granular cell compositional effects. 451 

While more detailed, flow cytometry-based information on cell composition is available 452 

for a subset of our samples (n=119; see (35)), these data are not available for the 453 

majority of our sample. However, cell type proportions in this subset (proportion of 454 

helper T cells, cytotoxic T cells, monocytes, B cells, and natural killer cells in the PBMC 455 

fraction) are not correlated with male dominance rank, early life drought exposure, or 456 

early life habitat quality (all p > 0.05), suggesting that compositional effects to do not 457 

confound our main results. 458 

 459 

Sex effects in rank associations with DNA methylation 460 

 In the main text, we report substantial numbers of rank differentially methylated 461 

sites in male baboons, but not in female baboons. As introduced there, we modeled 462 

rank separately for males and females because the hierarchies for each sex are 463 

separately estimated (see (8)) and because male and female ranks depend on different 464 

characteristics for each sex. In females, dominance rank is determined by nepotistic 465 

inheritance: females (the philopatric sex in this population) tend to insert in the hierarchy 466 

in the position immediately below their mothers (38), while males must physically 467 

compete for rank. Consequently, female rank hierarchies are very stable over time, and 468 

even intergenerationally, while male hierarchies are much more fluid, as they depend on 469 

relative condition and competitive ability, which change over time.  470 

 Our finding that male rank is a stronger predictor of DNA methylation than female 471 

rank is therefore in keeping with these distinct rank dynamics. It is also consistent with 472 

previous findings in this population, which reveal more pronounced rank associations 473 

with gene expression in males than in females (35, 39); a link between male rank and 474 



DNA methylation-based age estimates, but not female rank (40); and a slightly elevated 475 

mortality risk for high-ranking males, but no relationship between dominance rank and 476 

mortality risk for females (41). 477 

 478 
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Supplementary Figures 575 

 576 

 577 

Figure S1: Distribution of births and sampling dates with respect to habitat shifts. 578 

Each individual is represented by a dashed horizontal line, ordered on the y-axis based 579 

on date of birth. Closed circles at the left end of each line show birth dates and x’s at the 580 

right end of each line show blood sample date (in 37 cases, animals were sampled 581 

multiple times, so multiple x’s occur on those lines). Colored lines show animals born in 582 

the low-quality habitat (colored dots and lines); gray lines show animals born in the 583 

high-quality habitat. The two social groups that were studied before the habitat shift 584 

(Hook’s group and Alto’s group) are colored in peach and purple, respectively. Vertical 585 

dashed lines show the year in which Alto’s group and then Hook’s group shifted from 586 

low-quality to high-quality habitat (1988 and 1992 respectively). 587 

 588 



 589 

  590 

 591 

Figure S2: Pairwise correlations of early life variables across individuals. (A) 592 

Pearson’s correlations between exposures to different sources of early life adversity in 593 

both the full dataset, and (B) in the subset of individuals born into a low-quality habitat 594 

(B). Lower triangle indicates the Pearson’s r, colored by the strength of correlation. 595 

Numbers in the upper triangle show the p-value for each pairwise correlation.  596 

 597 

 598 

 599 

 600 

 601 

 602 



 603 

Figure S3: Patterns of DNA methylation across different genomic compartments. 604 

As expected, CpG sites that fall in different genomic compartments systematically differ 605 

in terms of the mean and distribution of DNA methylation levels: CpG sites in 606 

unannotated regions tend to be highly methylated, on average, whereas many CpG 607 

sites in CpG islands and promoters tend to be lowly methylated.  608 

  609 



 610 

 611 

Figure S4. Differences in the distribution of effect sizes for early life variables in 612 

high and low habitat quality environments. Density plots of the absolute value of 613 

standardized effect sizes for each early life predictor when experienced in high-quality 614 

habitat (purple) versus low-quality habitat (peach). These comparisons reveal that effect 615 

sizes of early adversity tend to be systematically larger when adversity occurs on the 616 

background of low habitat quality than when it occurs in high-quality habitat. Effect sizes 617 

are standardized (i.e., the model parameter estimate is divided by its standard error) to 618 

make the effect size estimates unitless and comparable across different predictor 619 

variables. 620 



 621 

Figure S5: Rainfall in the first year of life and in the year leading up to darting are 622 

weakly negatively correlated. (A) Cumulative rainfall (mm) in the first year of life (x-623 

axis) versus cumulative rainfall in the year leading up to sample collection in the full 624 

dataset (p=0.02, Pearson’s R=-0.13) and (B) in the subset of individuals born pre-625 

habitat shift (p=0.09, Pearson’s R=-0.21).     626 

 627 



 628 
Figure S6: Overlap between age and rank effects and the effects of early life 629 

environment. Results from Fisher’s exact tests for overlap of significant effects of rank 630 

or age and each early life variable (10% FDR threshold). Top values show the log2(odds 631 

ratio), lower values indicate p-values. P-values less than 1 x 10-10 are abbreviated as <1 632 

x 10-10. Colors indicate the sign of the effect (blue indicates under-enrichment and red 633 

indicates enrichment).   634 

 635 



 636 
Figure S7: Dominance rank effects on DNA methylation predict those observed in 637 

a separate gene expression dataset. (A) Overlap between dominance rank effects on 638 

DNA methylation within gene bodies (x-axis) and dominance rank effects on gene 639 

expression for the same genes (y-axis), across FDR thresholds for discovery. The 640 

evidence for overlap increases (yellow colors) with increasingly stringent significance 641 

thresholds. (B) Genes containing a rank-associated CpG site exhibit higher methylation 642 

levels at that site in low-ranking males (orange) when they are expressed more highly in 643 

high-ranking males. Higher DNA methylation is observed in high-ranking males (blue) 644 

males when those genes are more highly expressed in low-ranking males.  645 


