
RESEARCH ARTICLE

A biologically inspired repair mechanism for
neuronal reconstructions with a focus on
human dendrites
Moritz GrodenID

1*, Hannah M. MoessingerID
2, Barbara Schaffran2,3, Javier DeFelipe4,

Ruth Benavides-Piccione4‡, Hermann CuntzID
1,2,5‡, Peter Jedlicka1,6‡

1 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen,
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Abstract

Investigating and modelling the functionality of human neurons remains challenging due

to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstruc-

tions. Here we used a morphological modelling approach based on optimal wiring to

repair the parts of a dendritic morphology that were lost due to incomplete tissue sam-

ples. In Drosophila, where dendritic regrowth has been studied experimentally using

laser ablation, we found that modelling the regrowth reproduced a bimodal distribution

between regeneration of cut branches and invasion by neighbouring branches. Interest-

ingly, our repair model followed growth rules similar to those for the generation of a new

dendritic tree. To generalise the repair algorithm from Drosophila to mammalian neurons,

we artificially sectioned reconstructed dendrites from mouse and human hippocampal

pyramidal cell morphologies, and showed that the regrown dendrites were morphologi-

cally similar to the original ones. Furthermore, we were able to restore their electrophysi-

ological functionality, as evidenced by the recovery of their firing behaviour. Importantly,

we show that such repairs also apply to other neuron types including hippocampal gran-

ule cells and cerebellar Purkinje cells. We then extrapolated the repair to incomplete

human CA1 pyramidal neurons, where the anatomical boundaries of the particular brain

areas innervated by the neurons in question were known. Interestingly, the repair of

incomplete human dendrites helped to simulate the recently observed increased synaptic

thresholds for dendritic NMDA spikes in human versus mouse dendrites. To make the

repair tool available to the neuroscience community, we have developed an intuitive and

simple graphical user interface (GUI), which is available in the TREES toolbox (www.

treestoolbox.org).
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Author summary

Reconstructing neuronal dendrites by drawing their 3D branching structures in the com-
puter has proved to be crucial for interpreting the flow of electrical signals and therefore
the computations that dendrites perform on their inputs. These reconstructions are
tedious and prone to disruptive limitations imposed by experimental procedures. In
recent years, complementary computational procedures have emerged that reproduce the
fine details of morphology in theoretical models. These models allow, for example, to pop-
ulate large-scale neural networks and to study structure-function relationships. In this
work we use a morphological model based on optimised wiring for signal conduction and
material cost to repair faulty reconstructions, in particular those of human hippocampal
dendrites, which are rare and precious but often cut due to technical limitations. Interest-
ingly, we find that our synthetic repair mechanism reproduces the two distinct modes of
repair observed in real dendrites: regeneration from the severed branch and invasion
from neighbouring branches. Our model therefore provides both a useful tool for single-
cell electrophysiological simulations and a useful theoretical concept for studying the biol-
ogy of dendrite repair.

Introduction

It is well established that dendritic geometry affects neuronal function [1–5]. For example, a
change in dendritic size or topology may significantly alter the neuronal firing behaviour [6–9]
in a possibly selective manner [10]. Several studies on the morphology and electrophysiology
of human neurons have revealed their specific enhanced computational features [11–14].
However, systematic investigations of the relationship between the structure and the
electrophysiological properties of human dendrites in computational models remain challeng-
ing [15, 16] since complete 3D reconstructions are scarce [17]. The sparse anatomical data that
is available usually comes from both autopsies of healthy donors and biopsies of patients with
brain diseases such as epilepsy or brain tumours [18–20]. These diseases may significantly alter
the morphology and electrophysiology of a neuron [21, 22], resulting in severely impaired cog-
nitive function [23]. Such pathological dendritic data may limit scientific conclusions if they
are interpreted as coming from healthy controls.

Moreover, the reconstruction of labelled cells is often incomplete due to technical limita-
tions related to brain tissue quality, staining processing, and intracellular injection require-
ments [24–26, see for example in Fig 1A–1C]. In addition, staining dyes injected into larger
neurons, such as those in the human brain, often fail to reach the most distal dendritic areas
[27, 28]. Such incomplete reconstructions, further limit the ability to study dendritic anatomy.
However, the characterisation of morphological differences between human and other species’
neural circuits [26, 29–31] is of great importance, since they have been shown to lead to dis-
tinct computational properties [11, 32–34]. Therefore, more complete human morphologies
are urgently needed for a better understanding of human neuronal physiology and pathophysi-
ology and for the creation of realistic computational models of human dendrites [5, 13, 15, 35].

Solutions to implement repair tools for morphological neuronal reconstructions have been
proposed in the past [36]. These models have usually focused on detecting and fixing or
removing artefacts that may occur during the reconstruction process, such as neurites that are
not properly connected to the soma, removing segments of zero length, or adjusting dendrites
that cross each other [37, NeuroR,]. Ref. [37] shows a morphological repair model, growing
exclusively from severed branch ends. Electrophysiological analysis of such repairs, or of
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different neuron type repairs has not yet been conducted. Other morphological growth models
are usually implemented as stochastic procedures based on branch probabilities and the num-
ber of branching events [38–40]. These branch probabilities are sampled from experimental
distributions. This results in a large number of model parameters that must be adjusted to gen-
erate different neuron types. Adding entirely new branches to existing dendritic trees is not
part of such tools.

For these reasons, in this work we investigated whether in silico dendritic growth algo-
rithms based on optimal wiring [41–43] are able to complete incomplete morphology

Fig 1. Examples of human CA1 pyramidal reconstructions that were cut in the same plane during tissue
sectioning. Example of a 3D-reconstructed human CA1 pyramidal cell shown on the XY A, and YZ B, planes, to
illustrate that, due to technical limitations, part of the dendritic arbour closest to the surface of the slice from which the
cell soma is injected (typically at a depth of* 30μm from the surface) is lost. Axon, main apical, collateral and basal
dendrites are shown in green, black, blue and orange, respectively. Scale bar (in panel B) = 100μm. C, Three human
CA1 pyramidal neuron reconstructions (yellow, pink and blue) from the same preparation viewed from the side. Raw
data from [26].

https://doi.org/10.1371/journal.pcbi.1011267.g001
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reconstructions by adding missing parts of the dendritic tree that reproduce real structures.
Optimal wiring principles allow the dendritic structure to be described by locally optimised
graphs, in which total length and path length are minimised [44, 45]. An algorithm that weighs
these two factors by a balancing factor bf can generate synthetic trees that reproduce biological
dendrites [41, 46]. The impact of the balancing factor is showcased in Fig 2A by repairing an
artificial 2D morphology using different values of bf. A small bf (close to or equal to 0) favours
minimising of total cable length, as opposed to the direct path length to the soma (or the signal
travel time to the soma). In turn, short path lengths are favoured when bf is large (close to or
equal to 1). Once target points (target points are successively connected to the dendritic tree
according to optimal wiring principles weighted by bf) are distributed within a cell-type spe-
cific dendritic density field, they can be connected to a tree structure according to these opti-
mised wiring costs in e.g. fly [47] or mouse [48] dendrites as well as in some axons [49]. Given
the general applicability of the method, here we investigate whether such morphological
modelling can also be used to better understand and implement dendrite repair.

The biological system that inspired our regrowth algorithm was the nervous system of the
Drosophila larva with so-called da (dendritic arbourisation) neurons [50]. These are divided
into four classes based on their dendritic pattern, classes I–IV. Class IV da neurons grow pre-
dominantly in a two-dimensional space [51] and are well known to regrow their dendrites
after dendriotomy [52, 53]. Almost 98% of all proximally lesioned dendrites showed regrowth,
as measured by receptive field coverage after lesioning. Interestingly, in some cases the cut
dendrite regenerated from the site of its lesion, and in others the field was covered by invading
neighbouring branches of the same neuron, showing a bimodal distribution of dendrite
regrowth [52].

In the work presented here, we report that our synthetic growth algorithm has the ability to
mimic biological regrowth and to reproduce its two observed modes. In addition, regrowth
can be tuned to emerge exclusively from the known incomplete ends of severed dendrite mor-
phologies. Taking advantage of these features, we build a TREES toolbox function fix_tree and
a user interface fix_tree_UI to complete dendritic reconstructions inspired by biological
regrowth.

Results

A repair mechanism inspired from biology

To develop a repair algorithm for incomplete/damaged dendrites of nerve cells based on bio-
logically inspired mechanisms, we first simulated and analysed the synthetic regrowth of den-
drites characterised in a controlled experimental setting. Class IV da neurons of Drosophila
larvae are a useful and well-studied experimental model system to investigate dendritic growth
following dendriotomy [52–54]. To simulate the repair mechanism, seven reconstructions of
class IV neurons [55] were taken from NeuroMorpho.org [56, 57]. The location where the cell
was cut was chosen as a random branch point of the original morphology. The root of the sev-
ered branch (including the branch point) was used as a reference to determine the type of
regrowth following the lesion. Branches growing back from this node during the repair process
were defined as regenerated. Branches, that innervated the lesioned area but did not originate
from the lesion node, were considered to be invading the space made available by the lesion.

We implemented a regrowth protocol, using newly distributed target points within the
region of the severed branch, and replicated the stochastic regrowth in silico (see Methods).
Regrowth based solely on optimal wiring principles, balancing path length and total wiring
cost [41], successfully reproduced the main features of the dendrites. Importantly, our model
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Fig 2. Reproduction of biological regrowth of severed class IV Drosophila neurons. A, The impact of the balancing
factor bf demonstrated by repairing a 2D artificially created morphology (left with cut dendrites in mangenta). Repairs
with different balancing factors on the right (repaired dendrites in green). bf = 0 favours the minimisation of the
overall cable length whereas bf = 1 optimises the direct path length towards the soma. B and C, Left, Reference
Drosophila larva class IV morphology in which the branches that will be severed deliberately are marked in magenta.
B, Right, Example of repaired dendrite where invasion has occurred from adjacent branches marked (green). C, Right,
Sample repair where the severed branch regenerated from the cut end (green). D, Morphological statistics of the
regrown dendrites from B and C (green) and 498 other random cuts. The repaired morphologies were compared to
the original reference neuron (black + magenta in B and C) shown here as the black dashed line, as well as to the cut
dendrites (magenta). The root mean square errors (RMSE) indicate the deviation from the reference value as a
percentage of the reference value. The examples shown in B and C are represented by the darker square data points. E,
Average Sholl distribution for the cut and repaired morphologies from D with standard deviation as shaded area. The
reference distribution is shown in black. F, Histogram for 500 regrown dendrites using our repair function, showing
the percentage of regenerated branches. G, Percentage of regenerated branches as a function of the size of the removed
branch. The points show the actual data as an overlay to the binned normalised histograms of the data points. The bin
size is indicated by the black vertical lines. H, Histograms for 500 regrown morphologies as in F but for a higher
number of target points N and a higher balancing factor bf.

https://doi.org/10.1371/journal.pcbi.1011267.g002

PLOS COMPUTATIONAL BIOLOGY Modelling dendritic repair

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011267 February 23, 2024 5 / 32



replicated the experimentally observed bimodal distribution of branch regeneration versus
invasion from neighbouring branches:

The model, just like the experiments showed two different possibilities for regrowth. Some-
times the synthetic regrowth invaded the available space, with new branches emerging from
adjacent branches (Fig 2B, the branches in magenta on the left were intentionally severed and
then repaired, as shown by the synthetic branches in green on the right). At other times, the
repair algorithm showed complete regeneration of the lesioned area by a branch originating
from the severed node, as shown in the example in Fig 2C with similar colours. These two
types or modes of synthetic regrowth were in close agreement with similar observations in the
experiment of Ref. [52], indicating that optimal wiring principles may be sufficient to explain
these experimental observations (Fig 2B and 2C). The authors of Ref. [52] state that class IV da
neurons regenerate in an all-or-none fashion, meaning that a severed branch will either regrow
or fail to do so entirely. The latter will leave the vacant area open to invasion by neighbouring
branches. They report that in about 50% of branch injuries the severed stem would regenerate
successfully, resulting in a bimodal distribution.

Reconstructions from NeuroMorpho.org allowed us to generate synthetic cells that matched
the branching statistics of class IV da neurons [42, 43, 58]. Morphologies, quantified by num-
ber of branches, total dendritic length and mean segment length (one segement is measured
from one branch point to the next), were similar in synthetic cells grown using the minimum
spanning tree (MST) algorithm [41] compared to reconstructions from biological cells (Fig
2D) which is underlined by the reported RMSEs as a percentage of the reference value. Fur-
thermore the synthetic cells match the Sholl distribution of the reference well (Fig 2E). In sum-
mary, the algorithm captured the structure of the synthetic trees to such an extent that the
morphology could be recovered after removing part of the tree.

A summary of 500 different cuts and synthetic regrowths clearly shows the bimodal distri-
bution between regeneration and invasion (Fig 2F). There was a distinct peak at 0% regenera-
tion, i.e. 100% invasion, and a flatter distribution of larger percentages of regeneration in the
case of the Drosophila larval class IV neurons. In ca. 50% of the cases the severed stem showed
regeneration. There were no obvious relationships between the amount of invasion and model
parameters or morphological features. When the results were dissected by the size of the sev-
ered branch in mm (Fig 2G), all types of regrowth were observed for all sizes of severed
branches apart from when the severed branch was very large. In such a case invasion was more
prominent. The bimodal distribution was seen for all other lengths of cut as indicated by the
binned normalised histograms in Fig 2G. Only for very large and very small cuts did 100%
regeneration become less likely. The exact amount of regeneration depended both on the den-
sity of new branches (higher N) and on the balancing factor bf, the trade-off in the optimal wir-
ing algorithm between minimising the conduction time (i.e., path length) and minimising the
total cable length (Fig 2H). However, both regeneration and invasion were possible outcomes
of the synthetic regrowth.

Repair of different neuron types

We then tested whether our regrowth model could be used as a general tool, applicable to a
variety of neuron types and different species including humans. Our previously established
algorithmic generation of distinct dendritic trees of different neuron types depends on a single
free parameter, the balancing factor bf, weighing material cost (i.e. cable length) against con-
duction time to the soma (i.e. path length) [41]. Based on recently established algorithms [59],
our regrowth model is able to automatically estimate the biological bf from any incomplete
(input) dendrite morphology. It also analyses the density profile of branch and termination
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points based on the input neuron to be repaired, and distributes target points accordingly. The
MST algorithm [41] then grows new branches along these target points, the number of which
is set according to the density of branch and termination points of the input neuron and the
size of the growth volume in which the target points are distributed. All parameters can also be
adjusted manually. In this way, both highly branched (with low bf) as well as less branched
morphologies with longer straight branches (with high bf) can be modelled.

The repair algorithm uses the fix_tree function which analyses the input tree to deter-
mine the growth parameters and set up the target points in the growth volume. fix_tree
then calls upon the MST_tree function to grow artificial dendrites. Examples of different cell
type repairs are depicted in Fig 3, where panel A shows a mouse dentate granule cell [60]. This
type of cell minimises predominantly the conduction time (path length) as compared to the
material cost (cable length) with a high bf. The granule cell repair was able to accurately match
the reference number of branch points, while the total dendritic length and mean segment
length were less reliably reproduced but still significantly improved over the cut version (Fig
3B, see RMSE as a percentage of the reference value). The Sholl distribution (Fig 3C) of the
repair also showed a significant improvement over the cut neuron. In this case, we used the
conserved growth mode, which limits the regrowth process to the known cut branches. Inter-
estingly, the execution of the procedure from Fig 2, where random branches were cut from the
morphology and then repaired using the biological regrowth of the fix_tree function,
revealed different distributions of regeneration and invasion in the different neuron types (Fig
3D). To demonstrate that the algorithm works for any neuron type, the same procedure was
applied to a mouse Purkinje cell [61] with many branches on the right side of Fig 3. Purkinje
cells are known to minimise the material cost more than the conduction time, exhibiting a low
bf, Fig 3E–3H (same layout as for the granule cell). The morphological statistics were in good
agreement with the reference, except for the mean segment length, which showed only a slight
improvement as indicated by the RMSE. The histogram in Fig 3G shows the regeneration vs
invasion statistics of the Purkinje neuron. Although still bimodal, regrowth from the severed
branch appeared to be more likely in granule cells when compared to Purkinje cells and Dro-
sophila larval class IV neurons (c.f. Fig 2). This may be due to the relatively high balancing fac-
tor in granule cells.

Implementation of the regrowth algorithm in a new user interface

Next we used the regrowth algorithm, validated above using the dendrite regeneration data
from Drosophila da neurons, to develop a new practical tool for repairing lesioned 3D-imaged
and reconstructed dendrites. The model was then tested using a dataset of mouse CA1 pyrami-
dal neurons provided by [26] (see more details in supplementary S1 Fig). The reconstructions
of this dataset, like most others [27], are incomplete due to technical limitations (see above).
We have generated an in silico model that utilises a graphical user interface (GUI) capable of
fixing arbitrary neuron morphologies by adding synthetic dendritic branches to the existing
incomplete reconstruction (Fig 4). The GUI allows the user to upload any 3D reconstruction
and draw or upload any 3D or 2D region where dendrites are missing in the reconstruction.
The algorithm then automatically grows the artificial dendrite into the specified volume, pre-
serving the original morphology. This is done by distributing target points in the specified vol-
ume and successively connecting them to the input morphology (see Methods). As a reference
for the anatomical tissue context, the user can upload a microscope image stack to serve as a
background.

As demonstrated in Fig 4 Top, the image can highlight the different layers of the given brain
region, e.g. the CA1 region of the hippocampus. This helps as an anatomical indication of
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where the incomplete morphology might be repaired. The image can be set to the correct size
and the morphology moved to the correct location using the image stack panel of the GUI. To
draw a 3D target volume, the coordinates for its outline are selected with the cursor in at least
two planes (e.g. x-y-plane and x-z-plane). Alternatively, the volume coordinates can simply be
uploaded. Pressing the Repair button automatically estimates all parameters (see Methods)
except the pruning parameters (truncation of terminal dendritic branches below a certain
length threshold) and performs the repair. All parameters can also be adjusted manually by the
user as well. As shown in Fig 4 Bottom, the GUI outputs the repaired morphology as well as

Fig 3. Repair algorithm successfully restores removed dendrites of different neuron types with high, low and
intermediate balancing factors. A Left, Reference dentate granule cell morphology [60, Morphology from] with cut
dendrites in magenta, Right, Repaired morphology with restored dendrites in green. The area enclosed by the dashed
black line indicates the volume into which the dendrite has grown. B, Morphological statistics of 20 different cuts and
repairs of the neuron shown in A. Total number of branches (Top left), Total dendritic length (Top right) and Mean
segment length (Bottom left). The RMSE shows the deviation from the reference value as a percentage of the reference
value. C, Average Sholl distribution for the cut and repaired morphologies from B with standard deviation as shaded
area. The reference distribution is shown in black. D, Histogram of 500 regrown morphologies using our repair
function fix_tree, with the percentage of the repair regrowing from the cut branch similar to Fig 2F. E-H, Same
layout as in A-D but using a repaired mouse cerebellar Purkinje cell [61, Morphology from].

https://doi.org/10.1371/journal.pcbi.1011267.g003
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statistical morphological data comparing the input and output morphologies. If available, the
user can also upload a reference morphology to be used as a template. The algorithm then
matches the statistics of the repair to the reference reconstruction. In this way, the repair
mechanism can be tested on sample data before being applied to data from actual incomplete
reconstructions.

Repair of artificially sectioned mouse CA1 pyramidal neurons

Next we tested our repair algorithm on mouse CA1 pyramidal neuron morphologies [26] (Fig
5A). To assess the quality of our repair algorithm, existing reconstructions were arbitrarily cut
at different points and angles in the apical and basal arbour. The original morphology served
as a reference and ground truth. The comparison between the reference and the repaired mor-
phology showed the accuracy of the repair (Fig 5A, Top). Dendritic branching profiles [62] as
a function of the distance from soma showed that the repair algorithm was able to restore the
original dendritic shape (Fig 5). The Sholl profiles showed a significant improvement over the

Fig 4. A new software tool for the repair of dendrites with a graphical user interface (GUI). Top, Example
screenshot of fix_tree_UI (Neuron Repair Graphical User Interface). The numbers 1–8 represent the steps of
successfully uploading a morphology and background image stack and repairing a missing region. Bottom, Showcase
of the output of fix_tree_UI with the repaired neuron and two example statistics (the output contains more statistics
than shown). Step one appears when launching the GUI asking the user to upload a morphology and step two can be
initiated by clicking the “Load stack” button.

https://doi.org/10.1371/journal.pcbi.1011267.g004
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cut dendrites, but did not exactly replicate the reference. An exact match was not possible due
to the stochastic nature of the repair mechanism. For example, in Fig 5A, (Middle) the two
right side peaks in the Sholl profile were present in the repair, but were more prominent com-
pared to the reference. As the dendrites were intentionally cut, the exact cut-off points were

Fig 5. The repair algorithm successfully recovered artificially removed dendrites from mouse CA1 pyramidal cells
and restored their Sholl profiles. A, Three example repairs of apical and basal dendrites of mouse CA1 pyramidal
neurons [26, reconstructions from]. For each repair, the left morphology is the reconstructed reference with cut
branches in magenta and the right morphology is the repaired tree with regrown branches in green. The area enclosed
by the dashed black line represents the 3D volume into which the artificial dendrites grew, corresponding to the
convex hull of the severed dendrites (see Methods). The graphs below each repair show the distributions of Sholl
intersections for the Cut, Repaired and Reference morphologies. B, Each graph shows the value of the repaired
morphology (green dots) plotted against the value of the original morphology in black on the identity line. For
comparison, the data points in magenta show the values for the cut morphologies. Top, left to right Total number of
branch points, Total dendritic length, Average dendritic length per segment in the apical dendrite (one segment is
measured from one branch point to the next). Bottom, left to right Average dendritic length per segment in the basal
dendrite, Average diameter per segment in the apical dendrite, Average diameter per segment in the basal dendrite.
The root mean square errors (RMSE) show the deviation from the reference values as a percentage of the reference
value.

https://doi.org/10.1371/journal.pcbi.1011267.g005
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known and the algorithm allowed new dendrites to grow exclusively from these incomplete
branches (a forced conserved growth mode).

This additional growth mode was inspired by the regeneration observed in biology but was
implemented here as a useful option in our software tool. The other mode allows the algorithm
to grow new dendrites from any point of the existing morphology, preferably points that are
close to the volume chosen for growth (invasion and regeneration). To repair incomplete mor-
phologies we used the conserved growth mode, when the incomplete branches were known,
such as in Fig 5A. This method allows the user to restore a part of the dendrite that they know
should be there but could not be reconstructed from their tissue slice. The growth parameters
for the algorithm are determined by analysing the remaining part of a cut dendrite, making
repairs more difficult when only minimal dendritic material remains. Additionally, since pyra-
midal neuron main apical dendrites can branch, as observed in Refs. [26] and [31] there is a
main growth option for the conserved growth mode (see Methods). With this option, a promi-
nent straight main apical dendrite is grown first and then oblique dendrites are added. As the
main apical dendrite is incomplete in all cases shown in Fig 5A, this option was used for the
apical repairs. The extent to which the dendrites grow in a particular direction is given by the
growth volume.

From a morphological point of view it is important to accurately analyse the shape and
appearance of the neuron as well as the statistics of its morphology. Therefore, Fig 5B shows
further details for the fine-grained morphological statistics of the pyramidal neurons from Fig
5A plus 47 additional mouse pyramidal neurons from [26] that have been cut and repaired in
a similar fashion. The algorithm tries to fit the repairs to exactly match the number of branch
points of the reference morphology (Fig 5B, Top left). The model also fits the total dendritic
length well in most cases as shown in Fig 5B, Top middle. The remaining four statistics are the
dendritic length per segment and the diameter per segment for apical and basal arbours (a seg-
ment is measured from one branch point to the next or from a branch point to a termination
point). These results show that our model was able to reliably match the morphological prop-
erties of mouse CA1 pyramidal neurons in terms of shape and appearance as well as their sta-
tistical properties. The statistical agreement is also indicated by the RMSE values, which were
approximately one order of magnitude smaller for each measure except for the mean dendritic
length per segment in the basal dendrite and for the mean diameter per segment in the basal
dendrite. For the latter, even the values for the cut dendrites were a close match. The improve-
ment of the repair was measurable but not as significant. For the former, the repair approxi-
mately halved the RMSE.

Repair of human CA1 pyramidal cell reconstructions

We also tested our method on incomplete human CA1 pyramidal neurons. We applied the
repair algorithm to a dataset of CA1 pyramidal neurons from [26] depicted in Fig 6. Similar to
the validation process carried out with the mouse reconstructions (Fig 5), we first applied our
repair algorithm to the original reconstructions from Fig 6D. In particular, the basal dendritic
arbour and the most distal apical dendritic collaterals and tufts were reconstructed. The results
of these extensions are depicted in Fig 6E. The dendritic spanning fields of these artificially
repaired morphologies are based on the layer limitation boundaries marked out in the slice
image. Furthermore, it was assumed that CA1 pyramidal cell dendrites would extend more
than halfway into the SLM when the soma of the neuron is close to the SP-SR boundary, in
order to make synaptic connections with axons from the perforant pathway [31, 63]. S2 Fig
shows examples of regions where dendrites were missing from the neuron reconstructions.
The authors of Ref. [26] knew that human CA1 pyramidal neuron dendrites were present in
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Fig 6. Growth algorithm extends incomplete human CA1 pyramidal cell morphologies. A, Confocal microscope
image of the human hippocampal CA1 region (DG: dentate gyrus; SLM: stratum lacunosum moleculare; SR: stratum
radiatum; SP: stratum pyramidale; SO: stratum oriens) with stained pyramidal cells and ROI (region of interest). B,
Morphology reconstructions. C, ROI enlarged from A. D, ROI with overlays of originally reconstructed pyramidal cell
morphologies by Ref. [26], which are incomplete due to experimental limitations (see text). Scale bar = 460 μm in A, B.
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these regions, but could not reconstruct them because they were not visible in the microscopic
images due to technical limitations and accidental lesions. We cannot evaluate the accuracy of
the repair algorithm regarding the extended human neuron morphologies, as the model pro-
vides a prediction in this case.

Restoration of firing behaviour in repaired mouse morphologies and
predictions for human data

We tested whether our repair algorithm was able to restore the simple firing behaviour of the
original morphology after regrowth of cut branches (Fig 7). We used a biophysical model from
Ref. [64], implemented in mouse (Fig 7A) and human (Fig 7B) neuron morphologies. Somatic
current clamp simulations were performed with the stimulation current increasing in five
steps (from 0.16nA–0.24nA in Fig 7A and 0.26nA–0.46nA in Fig 7B) and lasting 500ms each.
The cut neurons clearly displayed hyperexcitable firing behaviour (Fig 7). In the repaired neu-
ron, the firing behaviour was restored as demonstrated by the F-I curves (Fig 7A and 7B
insets).The firing rate of the cut neuron (magenta) was much higher than that of the reference
(black) and repaired (green) neurons in both cases. The firing behaviour of the repaired neu-
ron was close to that of the reference, although the firing rate was slightly lower. The discrete
Fréchet distances between the cut-reference and repaired-reference electrophysiological curves
show that the improvement of the repair was substantial (Mouse: cut-reference = 49.11;
repaired-reference = 6.63; Human: cut-reference = 71.44; repaired-reference = 2). The Fréchet
distance was approximately one order of magnitude smaller for the repair in both cases. To
study the effect of different cuts and repairs on the electrophysiological behaviour we per-
formed the same simulations as in Fig 7A and 7B but for different cuts on the same morpholo-
gies. The results are presented in S3 Fig, where the reference F-I curve is plotted in black next
to the average of 20 different repaired lesions in green with the standard deviation (cut mor-
phologies in magenta). There was no notable difference in the recovery of firing behaviour for
the different cuts, which is supported by the discrete Fréchet distances between the curves of
the average repaired, reference and cut morphologies (Mouse: cut-reference = 55.32; repaired-
reference = 6.92; Human: cut-reference = 24.28; repaired-reference = 3.15). The Fréchet dis-
tances for the average of the different repairs were similar to those shown in Fig 7A and 7B.
We conclude that using our repair tool to restore lost dendritic material can lead to the recov-
ery of the original neuronal excitability, when only incomplete data is available. Fig 7C shows
an incomplete human CA1 pyramidal neuron that has been artificially extended (c.f. Fig 6).
The extended version is closer to the actual size of the neuron before the reconstruction pro-
cess. Consequently, the electrophysiological behaviour predicted for the extended morphology
by the [64] model differs from the incomplete reference morphology, as excitability is reduced
in the extended version (Fig 7C right). The F-I curve inset underlines the reduction in excit-
ability, predicting an average gain of −16.67Hz for an extension depicted in the figure.

To analyse the effect of repair on more detailed electrophysiological properties of a neuron,
such as sag current, inter-spike interval (ISI) and adaptation index, we used a different model
of CA1 pyramidal neurons from Refs. [65, 66]. The model in Ref. [64] does not include HCN
channels or slow K+-channels, which would produce a sag current or spike adaptation, respec-
tively. Therefore, such measurements can only be applied when using the model in Refs. [65,

E, ROI showing morphologies from D that have been artificially extended in the apical and basal arbour, showing
plausible completion of incomplete dendrites based on known layer-specific target growth regions. Each individual
neuron has been given a different colour to distinguish the morphologies.

https://doi.org/10.1371/journal.pcbi.1011267.g006
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66], which was converted to T2N [60] in Ref. [67] such that the morphology can be exchanged.
Here, we used a mouse CA1 pyramidal neuron morphology from Ref. [68] as was previously
done in Ref. [69]. The morphology was cut and subsequently repaired using our algorithm in
Fig 8. The model in Refs. [65, 66] became unstable for very large neurons such as those found
in human tissue. The ion channel distribution in this model depends on the layers in CA1.

Fig 7. The repair algorithm restores the electrophysiological behaviour of cut and repaired mouse pyramidal cells
and allows for better predictions of neuronal function in human neurons. A, CA1 pyramidal cell of the mouse. Left,
Reference morphology, Middle, Repaired morphology with growth volume indicated by the black dashed line. Cut
dendritic sections in magenta, repaired dendritic sections in green. Right, Somatic voltage traces induced by current
injections in the soma of reference (black), cut (magenta) and repaired (green) morphology with resting membrane
potentials (Top) and current clamp increments (Bottom). The inset on the left shows the F-I curves of the data on the
right (same colour scheme). B, Human CA1 pyramidal cell. Same arrangement as in A. Repair restores the
electrophysiological behaviour of the reference neuron. C, Prediction of the electrophysiological behaviour of an
extended human CA1 pyramidal cell. Arrangement as in A but the reference morphology on the left is the full but
incomplete reconstruction as provided in Ref. [26], which has been extended using the repair algorithm (c.f. Fig 6).

https://doi.org/10.1371/journal.pcbi.1011267.g007
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Laminar regions were well defined within the model for mouse neuron morphologies but not
for human neurons. For this reason, human neurons have not been included in Fig 8. The top
of Fig 8 depicts example voltage traces from current clamp simulations of a repaired mouse
CA1 pyramidal neuron for the reference (black), the cut (magenta) and the repair (green)
using the model in Refs. [65, 66] (a zoomed version is also depicted). The six plots below show
different electrophysiological metrics for the three morphologies using the same colour
scheme. In each case in Fig 8, we found that the repaired model (green line) was much closer
to the reference (black line) than the cut model (magenta line), suggesting that repairing the
morphology restored the electrophysiological behaviour of the neuron. The cut neuron exhib-
ited a reduced firing frequency but a larger negative voltage sag. For small stimuli, the firing
frequency of the repaired neuron was almost perfectly matched to the reference, but began to
deviate for larger stimuli. The inter spike interval (ISI) between the first and second spike as

Fig 8. Repairs restore the detailed electrophysiological behaviour of neurons. Top, Example voltage traces of
intentionally cut and subsequently repaired mouse CA1 pyramidal neuron current clamp simulations using the model
by [65, 66] (neuron data by [68]). Reference in black, cut in magenta, repair in green (same colour scheme for the
entire figure). A zoomed in version for the spiking traces is shown below for clearer visibility (zoom shows the
beginning of the traces where spiking commences). Middle (left to right), Firing frequency, sag voltage and half width
of the first spike plotted against stimulation current increments. Bottom (left to right), Interspike interval between the
first and second spike, spike adaptation index and difference between the peak of the first and second spike plotted
against stimulation current increments.

https://doi.org/10.1371/journal.pcbi.1011267.g008
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well as the spike adaptation index were all significantly increased for the cut neuron, with the
half-width of the first spike being similar for all morphologies. Finally, the difference between
the peak of the first and the second spike in the cut neuron was increased for small stimuli. For
larger stimuli, the reference and repaired morphologies showed a steep increase, but the cut
morphology did not. The spike adaptation index was larger for low stimuli in the reference
and the repaired morphology, but decreased significantly for higher stimuli. In contrast, the
adaptation index remained relatively constant for the cut morphology.

It has recently been reported that mouse dendrites in cortical pyramidal neurons have
lower synaptic thresholds for NMDA spike generation than human dendrites [14]. To further
demonstrate the restorative effects of our repair algorithm on the electrophysiological behav-
iour of rodent and human dendrites, we performed a computational analysis of their dendritic
NMDA spiking. In particular, we were interested in the behaviour of incomplete morphologies
that were extended beyond the reconstructed dendritic material (c.f. Figs 6 and 7). In Fig 9A,
three morphologies were synaptically stimulated in their basal dendrites (highlighted colours;
other dendrites in grey) at different Euclidean distances from the soma. The distances were
scaled according to the size of the neurons, as the human morphologies were much larger than
the mouse morphologies, defined by the percentage of the maximum possible distance within
the basal dendrite. Using a passive version of the compartmental model of [64], AMPA and
NMDA synapses were stimulated. The intensity of the stimulation was determined by the
number of synapses distributed over sections of 20μm.

Fig 9B shows example dendritic spike traces with increasing numbers of synapses, recorded
at the site of stimulation, at 85.19% of the maximum possible distance from the soma. We
compared a mouse pyramidal cell morphology with an incomplete human reference morphol-
ogy and an elongated (extended) human neuronal morphology. We measured the peak voltage
of NMDA spikes evoked by different numbers of synapses at different distances from the soma
(Fig 9C). For each distance, 10 different dendritic locations at that specific distance were
tested, as we found a lot of variation in the response (transparent dashed coloured lines) espe-
cially close to the soma (Fig 9C left). The mouse average peak voltage (solid blue) was generally
the largest and had the steepest slope, whereas the voltage peaks in human (solid black) and
human extended morphologies (solid green) were similar close to the soma. This is consistent
with the findings of [14], who reported a lower threshold for eliciting NMDA spikes in mouse
compared to human layer 2/3 pyramidal neurons. As one moved away from the soma, the
response variation decreased in all morphologies with the peak of dendritic spikes in the
human reference morphology (black) being more similar to the mouse neuronal morphology
(blue), whereas the peak of dendritic spikes in the extended human neuronal morphology
(green) was reduced. Thus, only the repaired human neuronal morphology maintained a
higher synaptic threshold for NMDA spikes compared to its mouse counterpart. Therefore, an
incomplete human neuron (incomplete due to reconstruction limitations) did not exhibit a
different NMDA threshold on the outer parts of the dendrites. Completing the neuron with an
extension using our algorithm restored this behaviour, increasing the threshold and therefore
resulting in a lower peak voltage (Fig 9C Right). Thus the extended human neuron reproduced
the findings of [14] more accurately than the incomplete human reconstruction. Since the
human extended neurons (green) were even larger than the incomplete human neurons
(black), the absolute distance of the stimulation site from the soma was not the same in these
two cases. To investigate whether this discrepancy in distance had a significant impact on the
analysis presented in Fig 9, we re-ran the same simulation as in Fig 9, where the absolute stim-
ulation distances from the soma were the same in both human and human extended neurons
(S4 Fig). The results in S4 Fig suggest that the difference in stimulation distance between the
two human neurons had no significant effect on the NMDA spiking behaviour, as the results
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were similar to Fig 9. As the difference in stimulation distance in Fig 9 was only* 10–20μm,
which was in the range of the size of the sections in which synapses were distributed, no signif-
icant effect was to be expected. Overall, in agreement with previous findings [14], the differ-
ences in NMDA spiking were associated with differences in dendritic diameter (Fig 9D). Close
to the soma, dendritic diameter varied more than at distal locations, resulting in the large

Fig 9. Repairing neuronal dendrites is likely to improve simulations of NMDA spikes, which are reduced in
extended human neurons compared to mice. A, Mouse CA1 pyramidal cell with basal dendrites in blue. Stimulation
and recording sites are indicated on the basal dendrite. Right, Human and human extended morphology with basal
dendrites in green and black with the growth volumes indicated by the black dashed lines. The human extended
version was created by extending the human reconstuction in A, Middle. (continued) B, Example dendritic NMDA
spikes for a mouse (blue), human (black) and human extended (green) morphology at 85.19% of the maximum
possible Euclidean distance in the basal tree away from the soma for each morphology, respectively. C, Peak NMDA
spike voltage measured for different numbers of synapses at different distances from the soma in the basal dendrite,
given as a percentage of the maximum possible distance in the basal tree (colour scheme as in B). For each distance, 10
different locations at that distance were tested (transparent dashed coloured lines). The average is shown as a solid line.
The synapses were distributed over 20μm sections. D, Dendritic diameters for the locations described in C, with mean
and standard deviation.

https://doi.org/10.1371/journal.pcbi.1011267.g009
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variation in NMDA spikes close to the soma. At distal locations, diameters were consistently
larger in the extended human neuronal morphology (Fig 9 green) than in the incomplete
human neuronal morphology (Fig 9 black). With the reduced diameters, the incomplete
human neuronal morphology (Fig 9 black) showed similar dendritic spikes to the mouse (Fig
9 blue). The differences in diameter were also found by Testa-Silva et al. [14], who provide evi-
dence that the higher NMDA spike threshold in human neurons is likely due to larger den-
dritic diameters. Therefore, completing a human neuronal morphology by extending its
dendrites using our repair tool leads to more realistic simulations of NMDA spikes in human
neurons.

Discussion

In this work, we developed a morphological modelling algorithm based on optimal wiring to
regrow previously severed dendritic branches. We report four main results. First, we show that
the algorithm reproduces an experimentally observed bimodal distribution of dendritic
regrowth, consisting of regeneration from lesioned branches and invasion from adjacent
branches (Fig 2). Second, when applied to simulated lesions resulting in incomplete 3D mor-
phologies, the repaired dendrites were morphologically similar to the original ones in terms of
branching statistics and electrophysiological behaviour (Figs 5 and 7). Third, when applied to
incompletely reconstructed human CA1 pyramidal neurons, the repair algorithm was able to
improve their dendritic structure based on the known anatomical layer-related context (Fig 6).
Finally, simulations of species-specific differences in NMDA spiking suggest that our approach
may improve predictions of dendritic electrophysiology in incomplete reconstructions (Fig 9).

Bimodal dendrite regrowth based on the trade-off between optimal cable
length and conduction speed

The adapted TREES toolbox algorithm [41], which balances material cost, i.e. cable length of
the dendrite, and conduction time, i.e. path length to the root [41], was able to successfully
regrow dendrites of class IV da neurons of Drosophila after removing a part of the tree. The
regrown dendrites were statistically similar to the cells under experimental conditions. There-
fore, the same balancing factor (which quantifies the trade-off between cable length and con-
duction speed) underlying the same optimisation algorithm accounts for both a newly
generated dendritic tree as well as for the completion of an already existing tree.

Intriguingly, both the computer model and the biological system [52] displayed a binary
distribution of invasion vs. regeneration (Fig 2F). Ref. [52] investigated the regenerative capac-
ity of class IV da neurons. Regeneration of class IV dendrites was a commonly observed phe-
nomenon, with 49.4% showing regrowth from the lesioned stem in Ref. [52] [53, see also]. In
cells where the severed stem did not regrow, neighbouring branches invaded the area and re-
established coverage of the epithelial area by the dendritic network [52]. This modal response
was clearly seen in both Ref. [52] as well as in our model. In general Ref. [53] reported a re-
coverage of the lesioned area in almost all cases. In the case of 100% invasion, Ref. [52]
reported retraction or stalling of the lesioned dendrite. It has also been observed in Ref. [53]
that if they left a longer stump, the regeneration tended to initiate from there. Therefore it
should be investigated how the site of dendriotomy influences invasion versus regeneration.
Nevertheless, the close correspondence between the morphological statistics of the original
and regenerated nerve cells clearly shows that a dendritic arbour has similar properties before
and after the lesion, regardless of whether the empty space is invaded by non-lesioned
branches or regenerated from the lesioned stem.
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Human and mammalian dendrite repair

Detailed anatomical data on human neurons remain limited [17]. For example, one of the larg-
est public databases of neuronal morphologies, NeuroMorpho.Org [56, 57], contains human
cell data in only*4.4% of its entries. Neuroscientists face technical and ethical limitations
that limit the acquisition of large datasets from the human brain [70–72]. However, there are
structural and functional properties that are specific to the human brain and its neurons [73–
80], which is why animal neurons cannot completely replace human ones [81]. Human neu-
rons are not only larger but also more complex than those of for example macaques and mar-
mosets [11]. Similar observations have been made when comparing humans and chimpanzees
[82]. Ref. [83] found a wide range of differences between homologous mouse and human neu-
ron types including gene expression, morphology and laminar distribution. To enable more
complex brain functions, human neurons have probably evolved special mechanisms such as
very strong excitatory synapses, which allow excitatory principal cells to trigger firing in local
inhibitory interneurons via a single action potential [84]. Recent somatic and dendritic record-
ings in human neurons and their analyses have also revealed other human-specific
electrophysiological properties [14, 30, 34, 35, 85–90]. These species-specific differences may
contribute to the unique cognitive abilities of the human brain. Using our approach, such dif-
ferences could be investigated by first predicting the shape and topology of the putative full
morphology reconstruction (see Fig 6). In a second step the electrophysiological behaviour
and how it differs from the reference reconstruction can be predicted by implementing com-
partmental models (see Fig 7). Extended reconstructions of full human neuronal morphology
could also help to build more accurate human compartmental models, which can be done for
any neuron type as the fix_tree function developed in our work is generally applicable.

Understanding the specific functionality of human neurons requires anatomically complete
and reliable datasets of 3D human neuron reconstructions. Our repair tool could help address
these issues and alleviate some of the difficulties.

Restoration of electrophysiological behaviour and practical use for detailed
network modelling

As demonstrated in Fig 7, cutting off the dendritic arbour of neurons is likely to lead to hyper-
excitability in the electrophysiological model, even though the distribution of ion channels is
similar in both the cut and the original neuron. The variability in firing behaviour of neurons
with similar ion channel distributions has long been recognised [6]. Neurons that differ only
in the geometry of their dendritic arbours produce a wide range of different spiking patterns.
Typically, the smaller the neuron, the higher the spiking frequency. Therefore large neurons
tend to be less excitable due to their lower input resistance/higher input conductance [67].
This is exactly what happens in Fig 7, as cutting away some of the dendritic material results in
a smaller dendritic arbour, which now has a higher input resistance, thus inducing
hyperexcitability.

We were able to show that neuronal repair also restores the more detailed electrophysiolog-
ical properties of a neuron (Fig 8). The more complex model of [65, 66] includes, for example,
HCN channels that produce a sag current. The sag current and spike properties in the repaired
neuron are much closer to the reference than in the severed version. Such electrophysiological
properties have never been tested for any neuron repair algorithm.

To compensate for reduced excitability, large neurons receive more synaptic input (see
[67]), whereas small neurons have fewer synapses, reducing the effective current received by
the neuron. As we have shown in Fig 9, activation of synaptic inputs close to the soma (proxi-
mal inputs) leads to large variability in responses, whereas inputs to distal parts of the dendrite
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appear to produce more consistent dendritic spikes. Therefore, repairing incomplete morphol-
ogies and thus restoring distal synaptic input sites may make the electrophysiological behav-
iour of dendrites more consistent. More importantly, we were able to reproduce the findings
of [14], who showed that the synaptic threshold for NMDA spikes is higher in human pyrami-
dal cells than in mouse pyramidal cells. However, in the case of distal synaptic inputs, the
reduced NMDA spike threshold was not present in incomplete human pyramidal cell mor-
phologies. However, when incomplete human dendrites were completed using our repair
method (Fig 9C), the higher NMDA spike threshold (for distal synapses) was restored. Like
Testa-Silva and colleagues [14], we also found that the differences in the NMDA spike thresh-
old were related to differences in dendritic diameter, which is increased in humans compared
to mice. The addition of artificial dendritic material by the repair algorithm increases the aver-
age diameter in the distal dendrites of the human extended morphology (green) compared to
the incomplete human neuronal morphology (black) (c.f. Fig 9D). The larger diameters
explain the higher threshold for NMDA spike generation in repaired human dendrites than in
incomplete human and in mouse dendrites.

In terms of dendritic geometry, not only differences in dendritic length, but also changes in
topology such as branching pattern significantly affect the firing behaviour of a neuron [9].
Dendritic topology also seems to have an effect on the type of firing, which can be expressed as
bursts or regular spike trains [7]. The study by Ref. [9] suggests that changes in the dendritic
geometry and topology, which are common in Alzheimer’s disease, epilepsy and people with
intellectual disabilities, have a significant impact on firing behaviour and therefore on infor-
mation processing and cognitive ability. Therefore, restoring the missing parts of incomplete
dendritic morphologies with our repair tool can restore the original firing behaviour of a neu-
ron. The algorithm can be applied to the incomplete morphologies that are available in the
databases of the Blue Brain Project [91] and the Allen Brain Atlas Data Portal (https://portal.
brain-map.org). Combined with robust and generalisable biophysical models [60, 67], such
improved morphologies could be used for large-scale network modelling.

Limitations of our model and possible extensions

The repair of our software tool is based on the distribution of target points within a selected
volume. These points are then successively connected to the existing reconstruction based on
wiring optimisation constraints of cable length and conduction speed [41]. The volume can be
chosen arbitrarily by the user. While this approach is highly flexible and gives the user com-
plete freedom to choose where to grow the morphology, it does place an emphasis on the
user’s experience, anatomical knowledge and intuition. As shown in S2 Fig, the user needs to
have in-depth knowledge of where to grow the missing dendritic material. In all cases, repaired
dendrites should be considered as a model prediction that is useful for improving incomplete
reconstructions but requires further experimental testing. The possibility to use a suitable ref-
erence image helps to assess where the boundaries of an intact morphology are and where cer-
tain parts are missing. A reference facilitates the repair of neurons from brain regions such as
CA1 in the hippocampus where the sizes, shapes and anatomical layers are well defined, giving
the user a clear indication of where somata are located and where to grow dendrites (as shown
in the CA1 region; Fig 6). Less well-laminated and defined regions may be more challenging
for the context-based neuronal repair. To overcome this problem, data-driven predictions for
species-, cell-type- and region-specific anatomical boundaries based on morphological statis-
tics would also need to be implemented. Such an algorithm would rely on a database contain-
ing reconstructions of many morphologies of different neuron types, regions and species. To
predict the most likely complete boundary of a given input neuron, its type and region of
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origin would have to be specified by the user. Based on the database, an average boundary
could be calculated and scaled to the size and dimensions of the input neuron.

Our algorithm is unlikely to be suitable for repairing astrocytes or other glial cells, as it has
not been validated for growing them specifically. It is currently unclear whether glial cells fol-
low similar growth rules to neurons, but a recent study published a 3D editing tool for glial
cells [92] to facilitate future detailed simulations of glial cells. If future research can confirm
that MST_tree is indeed suitable for glial cell repair, the fix_tree function would need to
be re-evaluated in this regard. Alternative growth algorithms may be incorporated into the
fix_tree function in the future.

As the algorithm uses the uploaded incomplete morphology to automatically determine
growth parameters such as the balancing factor, vastly incomplete morphologies can lead to
inaccuracies. A morphology with very little dendritic material left is a challenge when trying to
estimate growth parameters. Importantly, repaired morphologies can only be used to make
predictions. It is important to realise that when one completes a dendritic tree based on the
statistics of the remaining tree, homogeneous statistics throughout are assumed.

It is important to note that the repairs made by our algorithm are not perfect. Visually, they
do not always resemble their biological counterparts exactly, as can be seen in Figs 2A and 2B
and 3E. These examples are morphologies with low bf. In terms of the morphological statistics
the algorithm was not able to perfectly replicate the Sholl profile of the reference neuron (Fig
5A). This mismatch was, at least in part, due to the stochastic nature of the algorithm. Never-
theless, the match was close, but in the most distal parts of the dendrites, the number of
branches was slightly too high. In addition, the volume occupied by the repaired dendrites was
slightly smaller compared to the reference morphology. Due to these discrepancies we find
that we were able to restore the electrophysiological behaviour well, but the gain in the F-I
curve of the repair did not match the reference exactly (Fig 7A–7C inlays). As for the more
detailed electrophysiological properties the repair also represents a close match to the reference
(Fig 8). The growth algorithms can be further refined in the future, e.g. based on developmen-
tal data [42, 43].

Relationship to other morphological models

While there have been experimental studies investigating how in vivo neurons respond to
injury and subsequently regrow and repair the damaged dendrites [52–54], artificial repair
tools such as NeuroMorphoVis [36] mostly focus on removing artefacts that occur during the
reconstruction process. Such artefacts include abrupt changes in dendritic thickness at bifurca-
tions, soma profile adjustments, crossing neurites, and dendrites that are disconnected from
the soma. Previous publications [37, 93] have presented a neuron repair tool in NeuroR. Their
algorithm focuses on growing from severed ends only and has been validated on a single layer
2 pyramidal neuron. Importantly, such repair algorithms should restore the dendritic mor-
phology as well as the original electrophysiological behaviour of a neuron in order to improve
scientific inferences about neuronal functionality based on the repaired data. To date, there
has been no electrophysiological validation of morphological repair algorithms. Our approach
is therefore unique in that it uses principles of wiring optimisation, is generalisable and can be
easily applied to any neuron type or species, and is capable of extending the dendritic arbour
to create entirely new artificial sections. The easy-to-use graphical user interface allows the
repair of incomplete or otherwise unusable morphologies. This also improves electrophysio-
logical behaviour of reconstructed morphologies.

Morphological computational models mostly describe the growth as a stochastic process
that depends on the branching probability, the number of branching events and the number of
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segments [38–40]. It has recently been shown that a sequential stochastic growth and retrac-
tion algorithm is able to generate dendritic trees of Drosophila larval sensory neurons that are
realistic in terms of both function and optimal wiring [42, 43], see also [94]. Similarly, building
on the TREES toolbox [46], our repair tool also takes wiring optimisation into account. There-
fore, switching between different neuron types with different wiring constraints can be done
by adjusting a single free parameter, the balancing factor bf, which determines the neuron type
specific optimal balance between cable length and conduction speed (Fig 2A). Using a limited
set of parameters is the best way to implement a model if one wants to avoid overfitting prob-
lems [5]. Such simplicity makes our tool adaptable and easy to generalise to different morphol-
ogies and helps to understand whether certain neuron types optimise their dendrites primarily
for material or conduction costs. However, our tool does not take into account the interactions
between different neurons during growth, as do other morphological models such as CX3D
[95, 96] and the one in the reference [97]. Here the authors [97] used an activity-driven algo-
rithm where neuronal growth was determined by the activity of nearby potential synapses. The
approach of CX3D focused on chemical gradients and mechanical forces that can generate
layer-specific branching patterns. A similar morphological model, NETMORPH, in Ref. [98],
growed neurons based on a stochastic branching outgrowth mechanism that does not use any
extracellular cues. Modelling and completing multiple neuron types is likely to be more diffi-
cult using these alternative approaches, as the neuronal branching patterns in these models
depend on many parameters.

Conclusion

The TREES toolbox, extended by the new fix_tree function, allows for a range of investiga-
tions of dendritic anatomy, both during growth and repair, using synthetically grown dendritic
structures. The morphological, and by extension functional, changes following cut and repair
have not been extensively studied in vivo, and can be addressed in silico using our repair tool
for both synthetic cell models and biological reconstructions. By making our tool widely avail-
able to the scientific community, datasets of human neuronal reconstructions could be
improved and expanded. Such datasets could eventually provide the insight we need to under-
stand what makes the human brain different from other species.

Materials and methods

Regrowth of lesioned class IV da-neurons of Drosophila melanogaster
We reconstructed the lesion paradigm, regrew the missing branches to re-cover the target area
of the cell, and assessed the differences in morphology using statistical parameters. To study
the bimodal distribution of regeneration from the lesioned stem and invasion we severed ran-
dom dendritic subtrees of Drosophila da neurons, Purkinje cells and granule cells with lengths
between 50μm < L< 1, 000μm for 500 trials. Using the repair tool we regrew these 500 mor-
phologies based on the volume previously occupied by the cut branches. To avoid a bias
toward regeneration or invasion, target points were distributed within the growth volume with
a given margin of Rd away from any point of the lesioned neuron. To assess the distribution of
regrowth, we determined what percentage of the regrown dendritic material was regenerated
from the lesioned stem. The different growth modes of the GUI, and in particular the fix_
tree function that is at the heart of the repair tool, are described in more detail in the next
section.
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The fix_tree function of the repair algorithm

Based on the regrowth algorithm for Drosophila neurons (see above), we developed a stochas-
tic model of regrowth after dendritic lesions in mouse and human CA1 pyramidal neurons
using custom code implemented in the MATLAB-based TREES toolbox [46]. The fix_tree
algorithm and UI are, like the TREES toolbox, are only available in MATLAB (fix_tree and
fix_tree_UI require the inpolyhedron function in MATLAB in order to operate. This
was also explicitly mentioned in the YouTube tutorial). The supported file type is the “.swc”
and “.mtr” format of the TREES toolbox, which “.asc” files can be converted to using the
neurolucida_tree function of the TREES toolbox.

The repair algorithm is based on the minimum spanning tree (MST) function (MST_
tree) from the TREES toolbox [41]. A tree is the representation of the morphology of a neu-
ron by a set of nodes and an adjacency matrix defining the connections between these nodes.
The distance between two consecutive nodes was adjusted by resampling the tree to achieve a
distance between neighbouring nodes of 1μm without significantly changing the branching
morphology. The missing dendrites were regrown by distributing the target points over an
area/volume V, which is an input to the function. To match the clustering of branch and termi-
nation points in the input neuron, the density profile of its spanning field is analysed and ran-
dom clustered points are distributed accordingly using a Monte Carlo approach (available in
the TREES toolbox). The number of target points Npts required is estimated by evaluating the
density of branch points in the input neuron along with the size of the area/volume V. MST_
tree then connects these points successively to the existing input neuron using a cost func-
tion [41] that depends on the balancing factor bf, which weights the conduction time (path
length cost) against the material cost (wiring cost).

total cost à wiring cost á bf � path length cost

The balancing factor bf is estimated by analysing the original input morphology using the
bf_tree function in the TREES toolbox [59]. The maximum distance a single connection can
span is limited by the growth threshold Gthr, which is calculated by measuring the part of a
straight line m, passing through the neuron root R (soma) and the point lying between the
mean volume coordinate Vmean and the volume coordinate furthest away from the root node
Vfar, that lies within V.

Q à meanÖVmean;VfarÜ

m à
n
~x à ORÉ! á t � RQÉ! j ~x 2 V

o

The values of t must be chosen so that m lies within V. New dendrites can grow from any
point in the input tree within the range of Gthr (biological growth). Biological growth is the
first of two growth modes available in the fix_tree function, which fills the space by grow-
ing from lesioned or intact parts of the dendritic arbour. Alternatively, the algorithm can grow
new dendrites exclusively from incomplete terminals of the neuron’s branches (conserved
growth), repairing a missing part of a severed neuron. Such incomplete terminals must be
specified by the user with their exact coordinates in the uploaded morphology file. The algo-
rithm only selects incomplete terminals for growth that are in close proximity to the growth
area/volume V. The maximum distance an incomplete end can have to V depends on the size
of the original input tree. Additionally, the noninvasive/conserved growth mode has an option
(main growth) specifically designed for severed apical dendrites of pyramidal neurons, since
they usually feature one or more prominent main apical dendrites [26, 31]. These grow
approximately in a straight line from the root of the tree. If main growth is enabled, the
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algorithm will determine the thickest incomplete terminals in relation to all incomplete termi-
nals and grow a main branch from these first, up to approximately 95% of the length of the
growth volume. The direction and distance the main branch will grow is estimated by the
same straight line m that was calculated earlier. m serves as a template for the main apical
branch. The algorithm then proceeds as before, allowing dendrites to branch from the newly
added main apical section.

In addition to the input neuron to be repaired, a reference morphology (if available) can be
passed to the function. The algorithm then matches the number of branch points NBr of the
repaired neuron to NBr in the reference neuron or to an arbitrary number (greater than NBr
in the input neuron) by iterating over the growth process but successively adding more target
points until the desired number is reached. The fix_tree function analyses the input neu-
ron to set the growth parameters. It also distributes the target points in the growth volume,
and identifies the incomplete (cut) terminals of the input neuron to restrict growth to those
locations if needed. fix_tree then calls the MST_tree function, iterating with different
numbers of target points until the number of branch points matches the desired value as
closely as possible. fix_tree then edits the output tree, applying a jitter, adjusting diame-
ters, and more.

The area/volume V for the repair dendrites to grow into is an input to the function and can
be any set of user-defined 2D or 3D points. The volume is then defined by using the boundary
function in MATLAB, which uses α-shapes [99] to determine the outline of a set of points.
How tightly the boundary fits is determined by a single parameter α, where α = 0 is the convex
hull and α = 1 is the tightest boundary.

To better match the appearance of the existing input neuron, low-pass filtered spatial noise
is imposed on the coordinates of the grown dendrite as a spatial jitter. To achieve realistic
diameter values for the grown dendrites, a quadratic taper is applied using the quadratic taper-
ing algorithm of the TREES toolbox developed in Ref. [100]. The taper parameters are esti-
mated based on the original existing morphology reconstructions. The repaired morphology is
then tapered using these estimated parameters scaling down towards a minimum diameter in
the terminal branches of the morphology as proposed in Ref. [101]. Since towards the very tips
of the dendrites the diameters level off to a constant value, depending on the species, any diam-
eters that fall below an adjustable threshold are set to that threshold value. Optionally, the mor-
phology can be pruned to a desired dendritic length (e.g. length of a reference morphology) by
first matching NBr and then trimming any excess material. By default, all parameters are esti-
mated by analysing the morphology of the input neuron. The main parameter of the MST_
tree function, the balancing factor bf, is estimated by analysing the root angle distribution as
introduced in Ref. [59].

The GUI fix_tree_UI, for easy access to the fix_tree function, was programmed in
the GUIDE MATLAB environment with a custom design interface (see Fig 4). The GUI can
be accessed by running fix_tree_UI which uses the fix_tree function.

Electrophysiology (T2N)

For electrophysiological compartmental modelling we used the previously developed T2N
(TREES-to-NEURON) software interface [60] in MATLAB which links the compartmental
modelling package NEURON [102] and the TREES toolbox. T2N allows for the creation and
use of existing complex electrophysiology models, many of which are readily available from
https://senselab.med.yale.edu/modeldb [103]. Any morphology in the TREES toolbox can be
uploaded to T2N and is then equipped with ion channel conductances specified by the bio-
physical model. We simulated somatic current injections with a duration of 500ms and
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ramping intensity for both mouse and human morphologies. Current clamps were performed
on the reference, the repaired and the artificially cut morphologies respectively in order to
compare their behaviour. We used a biophysical model from Ref. [64], previously imported
into T2N. The model in Ref. [64] incorporates four active voltage channels (conductances).
These channels include the following: a voltage-gated Na+ channel, a delayed rectifier K+ chan-
nel, a distal A-type K+ channel with an elevated half-inactivation voltage and a proximal A-
type K+ channel. The model distributes these ion channels along the dendrites as a function of
the length of the direct path to the soma. As the repair extended the cut dendrites, we stretched
the ion channel distributions along the newly formed dendrites accordingly. In addition, in
new simulations (Fig 8), we have used an active model from Refs. [65, 66] that contains a set of
active channels which are described in more detail in the next paragraph. The model in Ref.
[64] includes a weak excitability version that follows a uniform distribution, which was used to
model the delayed rectifier K+ and the Na+ channels. Following the experimentally reported
sixfold increase in conductance along the apical dendrites, the A-type K+ current was modelled
accordingly. The result is linearly increasing slopes of variable nature between soma and tuft
for different morphologies. The regions of the apical dendrites were defined as follows: the
boundaries for the apical trunk (proximal apical) were set to contain 3.14% of the total apical
length. The medial apical dendrites contain 36.27%, the distal 68.90% and the tuft 100% of the
total apical length. The dendrites were divided at path distances of approximately 100μm,
300μm and 500μm.

The same current clamp procedure with different stimulation current increments was
applied to a mouse CA1 pyramidal neuron (data by Ref. [68]) using a different compartmental
model in Refs. [65, 66]. The Poirazi model is more detailed than the one by Jarsky and includes
HCN and slow K+-channels that allow for the simulation of more intricate electrophysiological
properties such as the sag current. Poirazi’s model incorporates 6 different Ca2+, 5 K+, 1 Na+, 1
h-current and 2 Hodgkin-Huxley-channels. The neuron morphology was equipped with an
artificial soma using the soma_tree function of the TREES toolbox and an artificial axon. The
soma dimensions were chosen such that the surface area equaled approximately* 560μm2.
The axon in the form of a straight line had a length of 630μm with six 100μm myelin segments.
The axon featured a hillock, an initial segment and 5 nodes of Ranvier with an average axon
diameter of 0.5μm. The hillock started at 2μm in diameter, tapered down to 0.5μm and was
10μm long. The initial segment had a length of 15μm whereas the nodes of Ranvier were 1μm
in length. To analyse the sag current, small negative current stimulations were performed. The
electrophysiological properties were extracted from the voltage traces using the findpeaks func-
tion in MATLAB.

To simulate synaptic dendritic spikes, we implemented AMPA and NMDA synapses at dif-
ferent locations on the basal dendrites of three morphologies (mouse, human and human
extended). The simulations were again carried out using the model in Ref. [64], but with all
active ion channel conductances switched off, leaving only the passive properties of the model.
The dendritic diameters on these morphologies were adjusted to eliminate any artefacts that
arise during the reconstruction process when using Neurolucida 360 (MBF Bioscience). Syn-
aptic stimulation was carried out at different Euclidean distances from the soma based on the
maximum possible Euclidean distance from the soma of the basal dendrite. The distances were
thus scaled for the different morphologies respectively, since the human morphologies are
much larger than mouse morphologies. The procedure is designed to expand on what was pre-
viously done in Ref. [14], who measured NMDA spikes in human and mouse layer 2/3 pyra-
midal neurons at only one fixed distance (150μm from the soma) for mouse and human. To
account for morphological variability, 10 different sites were simulated for each distance and
the average was calculated. The stimulation strength was determined by the number of
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synapses, which were distributed over segments of 20μm in length. We then recorded the den-
dritic spike response for different numbers of synapses with gAMPA = 25pS and
gNMDA = 500pS at the stimulation site. We also measured the diameters for each part of the
20μm sections.

Supporting information

S1 Fig. Hippocampal CA1 region of the mouse. A,B, Confocal microscope image of the
mouse hippocampus with stained pyramidal neuron morphologies, region of interest (ROI)
and marked layers (SLM: stratum lacunosum moleculare, SR: stratum radiatum, SP: stratum
pyramidale, SO: stratum oriens). C, Morphology reconstruction overlays with marked layers.
D, Magnified ROI with marked layers. E, Magnified ROI with marked layers and example of
reconstructed morphology overlay. Imaging data were taken from [26]. Scale bar = 75 μm in
D, E. Scale bar = 230 μm in A, B, C.
(TIF)

S2 Fig. Hippocampal CA1 region of the human with marked growth volumes. A, Image
showing 3D human CA1 pyramidal neuron reconstructions in Ref. [26]. The shaded green
areas are example regions where Ref. [26] knew dendrites should be during the reconstruction
process but could not reconstruct since they were not visible in the confocal microscope
images. The green regions were used as an inspiration when extending the human neuron
reconstructions in Fig 6E. Scale bar = 145 μm.
(TIF)

S3 Fig. The effect of different cuts in the apical dendrite on neural firing behaviour. A, F-I
curve for reference and repaired mouse CA1 pyramidal neurons. 20 different lesions (magenta
line) were performed on the reference neuron (black line) and then repaired (green line). The

In brief

We use morphological modelling inspired by the regeneration of various artificially cut
neuron types and repair incomplete human and nonhuman neuronal dendritic
reconstructions.

Highlights

• Optimal wiring-based growth algorithm replicates regrowth of artificially cut
dendrites

• The growth algorithm repairs cut dendrites in incomplete reconstructions

• The algorithm works for diverse neuron types in multiple species

• The repair of morphology restores original electrophysiology

• The repair of morphology supports simulations of high synaptic thresholds for
NMDA spikes in human dendrites

• The repair tool with user interface is available in the TREES toolbox

PLOS COMPUTATIONAL BIOLOGY Modelling dendritic repair

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011267 February 23, 2024 26 / 32



magenta line shows the average of the 20 different cuts with the standard deviation as the
shaded area. The repairs are shown in green with the standard deviation as the shaded area.
See Fig 7A which shows the procedure for one specific cut and repair. B, Same as in A but for
a human neuron morphology (see Fig 7B).
(TIF)

S4 Fig. NMDA spikes in human neurons with unscaled synapse distance from the soma. A,
Peak NMDA spike voltage for a mouse (blue), human (black) and human extended (green)
morphology. The peak NMDA spike voltage is measured for different numbers of synapses at
different distances from the soma in the basal dendrite, given as a percentage of the maximum
possible distance in the basal tree. Unlike in Fig 9 however, the distance from the soma for the
human extended neuron (green) is exactly equal to that of the human (black) neuron (see text
in A, the absolute stimulation distance for the two human neurons is given in μm). For each
distance 10 different locations at that distance were tested (transparent dashed coloured lines).
The average is shown as a solid line. The synapses were distributed over 20μm sections (same
procedure as in Fig 9). B, Dendritic diameters for the locations described in A, with mean and
standard deviation.
(TIF)
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2. Stuart G, Spruston N, Häusser M. 3rd edn. In: Dendrites. Oxford Univ. Press; 2016.

3. Platschek S, Cuntz H, Vuksic M, Deller T, Jedlicka P. A general homeostatic principle following lesion
induced dendritic remodeling. Acta Neuropathologica Communications. 2016; 4:19. https://doi.org/10.
1186/s40478-016-0285-8 PMID: 26916562
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16. Fisek M, Häusser M. Are human dendrites different? Trends in Cognitive Sciences. 2020; 24(6):411–
412. https://doi.org/10.1016/j.tics.2020.03.002 PMID: 32392467

17. DeFelipe J. The anatomical problem posed by brain complexity and size: a potential solution. Frontiers
in Neuroanatomy. 2015; 9:104. https://doi.org/10.3389/fnana.2015.00104 PMID: 26347617
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