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Figure S1. Beethoven’s beat synchronization PGI ranks between the 9th-to-11th 
percentile of modern samples’ beat synchronization PGI. (A–F) The distribution of 
the beat synchronization Polygenic Index (PGI) and Z-scores (zPGI) based on prior GWAS 
data (n=606,825)S1. Each bin includes individuals within a .2 PGI range. The black dashed 
line, and red dot represent Beethoven’s PGI with respect to (A) STAGES2–5 and (B) 
BioVUS1,S6 cohorts. (C) Raincloud plotsS7 depicting the relationship between the beat 
synchronization residualized (res.) PGI and Creative Achievement Questionnaire (CAQ; 
from levels 1: “I am not engaged in music at all” to 7: “I am professionally active as a 
musician and have been reviewed/featured in national or international media and have 
received an award for my musical activities”) in STAGE. We first regressed the first 10 
PCs from the PGIs and used the residuals for illustrative and analytical purposes. Dots 
represent STAGE individual scores; the red dot represents Beethoven’s PGI; the oblique 
line represents the line of best fit, which was calculated excluding Beethoven’s PGI. (D) 
Raincloud plots depicting the relationship between the beat synchronization residualized 
(res.) PGI and the musical engagement score in the electronic records from the BioVU 
health recordsS6. Individuals who were not identified as musically active are labelled as 
population-matched controls. Dots represent BioVU individual scores; the red dot 
represents Beethoven’s PGI; the oblique line represents the line of best fit. Principal 
Component (PC) analyses were carried out for the two modern-day samples to generate 
ancestry covariates for comparison. Genomic PCs capturing genetic ancestry continuum 
are displayed for (E) STAGE and (F) BioVU. In red is Beethoven’s location in the PC space. 
Each dot colour is informative about the density of neighbour points. Neighbours density 
was computed by using the R function ggpointdensity::geom_pointdensityS8. Given 
density, appropriate adjustment was set to one tenth of default bandwidth (adjust =.1). 
The black x represents the centre of the 2D PC space. PGI: Polygenic Index; STAGE: 



Screening Twin Adults: Genes and Environment Swedish Twin Registry; BioVU: 
Vanderbilt Biorepository; PC: Principal Component; Res.: Residualized.  
 

 
Supplemental experimental procedures 
 
Participants - STAGE cohort 
 
The Swedish Twin Registry includes The Study of Twin Adults: Genes and Environment 

(STAGE) cohort, consisting of approximately 32,000 adult twins born between 1959 and 

1985S2–S5. In 2012 and 2013, 11,543 twins from this cohort completed a web survey on, 

among other things, music skills and music-related behaviour. In 2019 and 2020, 

individuals from this cohort, who provided saliva samples between 2006 and 2008, were 

genotyped. After quality control, genotype data were available for 8,343 individuals, of 

which 5,648 had also completed the web survey on music-related behaviour (aged 

between 27 and 54 years old, M = 40, SD = 7.8). The study and analyses of biomarkers 

were approved by the Regional Ethics Review Board in Stockholm (Dnr 2011/570-31/5, 

Dnr 2018/960-31/2, Dnr 2019-05879). The computations were enabled by resources 

provided by the National Academic Infrastructure for Supercomputing in Sweden 

(NAISS) and the Swedish National Infrastructure for Computing (SNIC) at Uppsala 

Multidisciplinary Center for Advanced Computational Science (UPPMAX) partially 

funded by the Swedish Research Council through grant agreements no. 2022-06725 and 

no. 2018-05973. 

Genetic data processing and polygenic index calculation – STAGE cohort 

Detailed information on the genetic data processing and quality control of the genotype 

data from the STAGE cohort can be found in Wesseldijk et al. S9. Whole genome 

sequence data from Ludwig van Beethoven were made publicly availableS10. To combine 

the genotype data from Ludwig van Beethoven with the STAGE cohort, we first 



extracted a list of 1,265,094 autosomal HapMap 3 CEU single-nucleotide 

polymorphisms (SNPs)S11,S12, with imputation INFO score > 0.1 and minor allele 

frequency (MAF) ≥ 0.005 from the STAGE data. We then intersected this set with 

Ludwig van Beethoven’s whole genome sequence data, restricted to sites in accessible 

regions, and with genotype quality ≥ 30. This resulted in a combined dataset with 

981,614 HapMap 3 markers (78% of the HapMap3 markers originally available in 

STAGE). Genotype data were processed using bcftools (version 1.14) and PLINK 1.9 

(version 1.90b4.9) and 2.0 (version 2.00a3.7LM)S13,S14. A principal component analysis 

(PCA) was performed in the merged sample (STAGE plus Ludwig van Beethoven) to 

generate ancestry covariates. PLINK was used to extract the first 20 principal 

components (PCs) based on common independent genotyped markers (MAF > 0.05, 

pairwise R2 < 0.1). PCA was performed in unrelated individuals (identified by the KING 

algorithm in PLINK 2.0, with kinship cutoff 0.0442), and then projected in the full 

sample. Known long-range linkage disequilibrium (LD) regions (hg19 coordinates 

chr5:44-51.5 Mb, chr6:25-33.5 Mb, chr8:8-12 Mb, and chr11:45-57 Mb) were excluded 

from PCA calculations. 

We generated polygenic indices (PGIs) based on summary statistics from a large 

genome-wide association study (GWAS) on self-reported beat synchronization ability in 

N = 606,825 individuals of European ancestryS1. The effect sizes were first re-estimated 

using the summary-data based on the best linear unbiased prediction (SBLUP) 

approachS15,S16. This approach computes effect sizes with best linear predictor 

properties that account for LD between SNPs. As a reference for LD, a random sample of 

11,064 unrelated individuals was extracted from a set of 1,246,531 HapMap 3 SNPs that 

passed quality control in prior studies of the UK BiobankS17. PGIs were generated, based 

on these re-estimated effect sizes, for the 8,343 Swedish twin individuals in the STAGE 



cohort plus Ludwig van Beethoven, using PLINK 1.9. This led to PGIs based on 910,648 

SNPs, in contrast to 1,167,342 SNPs in the earlier published study by Wesseldijk et al.S9 

that validated the PGI for self-reported beat synchronization ability. We re-calculated 

associations between the PGIs based on 910,648 valid predictors and music-related 

outcomes, and this was barely different (maximum difference of 0.01 in beta estimates) 

from findings based on 1,167,342 predictors as reported in Wesseldijk et al.S9. 

Measures – STAGE cohort 

“Musical achievement” was measured with an adapted and translated version of the 

Creative Achievement Questionnaire (CAQ)S18–S21. Using a seven-point scale, individuals 

rate their level of musical achievement, ranging from 1 ‘I am not engaged in music at all’ 

via 4 ‘I have played or sung, or my music has been played in public concerts in my home 

town, but I have not been paid for this’ to 7 ‘I am professionally active as a musician and 

have been reviewed/featured in national or international media and/or have received an 

award for my musical activities’.  

 
Participants - BioVU cohort 

The Vanderbilt BioVU sample includes 6,150 individuals (aged between 18 and 89 years 

old, M = 53, SD = 16.4) containing musically active cases and population matched 

controls whose data were extracted from the Synthetic Derivative (SD) database at the 

Vanderbilt University Medical Center (VUMC), approved by Vanderbilt Institutional 

Review Board for nonhuman subjects research (IRB #160302). Musically active cases 

(N = 1,259) were identified using an algorithmic search of 4 keywords and 449 regular 

expressions (selected examples include “musician”, “vocalist”, “songwriter”, “drummer”, 

“plays the piano”, “playing the guitar”, “played violin”, “player of the cello”, “plays 

saxophone”, “flutist”, “plays the flute”, “player of oboe”, “accordion player”; the full list is 



given in supplementary table 2 of  the phenotyping algorithm study by Niarchou et 

al.S6). Population matched controls (N = 4,891), retrieved from the same study, were 

matched for ethnicity, race, and median age at record length and did not have any of the 

music-related keywords/regular expressionsS1,S6. 

Genetic data processing and PGI calculation – BioVU cohort 

Detailed information on genetic data processing and quality control of the BioVU sample 

was reported in Niarchou et al.S1’s study. Niarchou et al.S1 applied GWAS summary 

statistics on self-reported beat synchronization ability in N = 606,825 individuals of 

European ancestry to estimate beat synchronization PGIs in the BioVU target sample 

and to predict musically active case status (see section F of Supplementary Information 

in S1). The BioVU sample used for the previous PGI analysis included N = 6,152 

individualsS1, but we added an identity-by-descent (IBD) relatedness filter of 0.2 for this 

analysis which removed two related individuals yielding a final sample size of N = 6,150 

for the present study.  

To align the genotype data from Ludwig van Beethoven to the BioVU sample, we 

extracted a restricted set of 777,010 common, well-imputed 1000genomes SNPs from 

Ludwig van Beethoven’s whole genome sequence data. This resulted in genotype data 

from 651,912 of the 1000genomes markers (83.9%) for Ludwig van Beethoven. We 

then extracted the genotype data for these 651,912 markers from the 6,150 individuals 

of the BioVU cohort and merged them with Ludwig van Beethoven’s genotype data. 

We carried out principal component analysis (PCA) using FlashPCA version 2.0S22 

in the merged sample (BioVU plus Ludwig van Beethoven) to generate 10 principal 

components. The sample used for PCA was preprocessed in PLINK1.9 for SNPs with 

MAF >  0.05, HWE p-value > 0.001, SNP missingness < 0.02, exclusion of SNPs in regions 



with high LD in GRCH Build 37 (see list here: 

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)), 

and chromosome 17 inversion region (chr17:40-45Mb), and filtering out strand 

ambiguous and multi-allelic SNPs. Next, the data underwent two rounds of LD pruning 

at r2 < 0.2 in 200kb SNP windows.   

PGIs were estimated following the methods outlined in Niarchou et al.S1. Namely, 

the effect sizes were first re-estimated using PRS-CS-auto and the 1000genomes 

European LD reference panel as the initial beat synchronization PGI calculation using 

the BioVU sample in Niarchou et al.S1’s study. PRS-CS-auto uses a Bayesian regression 

framework and places a continuous shrinkage prior on SNP effect sizes, then tunes the 

phi parameter automaticallyS23. Next, we generated PGIs based on summary statistics 

from the large GWAS on self-reported beat synchronization ability in N = 606,825 

individuals of European ancestry. PGIs were generated, based on these re-estimated 

effect sizes, for 6,150 individuals in the BioVU cohort plus Ludwig van Beethoven, using 

PLINK 1.9S13,S14. This led to PGIs based on 651,912 SNPs in contrast to 777,010 SNPs in 

Niarchou et al. S1 beat synchronization PGI. In the Niarchou et al.S1 PGI analysis with N = 

6,152 individuals, PGIs for beat synchronization were significantly associated with 

musical engagement (OR = 1.34 per s.d. increase in PGI; p < 2 × 10−16; Nagelkerke’s 

R2 = 2%; 95% CI, (1.26, 1.43)). Results recalculated with 651,912 valid predictors in the 

sample of the combined BioVU cohort plus Beethoven sample (N = 6,151) remained 

significant (OR = 1.35 per s.d. increase in PGI; p < 2 × 10−16; Nagelkerke’s R2 = 2%; 95% 

CI, (1.27, 1.44)). 
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