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Collective beliefs can catalyse cooperation in a population of selfish individuals. We study this
transformative power of collective beliefs, an effect that intriguingly persists even when beliefs lack
moralising components. Besides the process itself, we consider the structure of human populations
explicitly. We incorporate the intricate structure of human populations into our model, acknowledging
the bias brought by social and cultural identities in interaction networks. Hence, we develop ourmodel
by assuming a heterogeneous group size and structured population. We recognise that beliefs,
typically complex story systems, might not spontaneously emerge in society, resulting in different
spreading rates for actions and beliefs within populations. As the degree of connectedness can vary
among individuals perpetuating a belief, we examine the speed of trust build-up in networks with
different connection densities. We then scrutinise the timing, speed and dynamics of trust and belief
spread across specific network structures, including random Erdös-Rényi networks, scale-free
Barabási-Albert networks, and small-world Newman-Watts-Strogatz networks. By comparing these
characteristics across various network topologies, we disentangle the effects of structure, group size
diversity, and evolutionary dynamics on the evolution of trust and belief.

Working together, or cooperation, is imperative for developing
societies1–3. Even though cooperative behaviour yields the results
desired from the group’s point of view, it is costly and risky for the
individuals involved. Evolutionary game theory can be used to model
and understand these instances4–6. This work focuses on a specific
game, namely the stag hunt game7,8, and how it can be used to model
trust. In the game, also known as the trust dilemma, cooperators can
only succeed if they coordinate with other cooperators. Hence,
cooperation is a reasonable option only if one trusts that the others will
cooperate.

Trust is crucial to social and economic interactions9. It is foundational
to exchanges and contracts—in an entirely rational population, entering any
agreement is reasonable only if all parties believe that others will respect it.
Establishing trust would not be difficult in a risk-free, mutually beneficial
setting. However, the uncertainty about the actions of others often makes it
difficult to achieve andmaintain10.Hence, the trust problemusually involves
some temptation tobreak it or risknot being reciprocated.Wedefine trust as
an individual’s conviction that a partner (or partners) will work with them
towards a common goal11.

Not all individuals are as likely to interactwith one another. Individuals
are likelier tomeet their family, neighbours or co-workers than strangers in a
different city. To account for that, a network structure can be introduced12.
The dynamics of evolutionary games played by spatially structured popu-
lations differ substantially from their well-mixed counterparts13,14. In par-
ticular, networks are shown to facilitate cooperation in games like the
prisoner’s dilemma or the snowdrift game15–20. However, the stag hunt
game, representing a different class of games focused on coordination and
trust, has received less attention. Studies of the game dynamics on random
networks show that structure can promote cooperation and trust21–23. In this
work, we follow suit, considering the dynamics of themultiplayer stag hunt
game in structured populations and examining the effects of particular
network parameters in the presence of an additional layer of complexity
brought by collective beliefs.

The participating individuals’ experiential histories, convictions and
commitments shape their social interactions. Individual decisions are not
always based solely on facts but are often biased by personal beliefs, pre-
ferences and constraints24. For example, opinions and decisions about
vaccination can be induced not by scientific facts but rather by one’s
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emotions and anecdotal, non-reliable, persuasive storytelling. The beliefs
may develop from events irrelevant to the current decision or spillover from
past experiences25,26. Social norms can, however, stimulate coordination and
cooperation in a population27–29. The introduction of money, an object with
no physical worth but rather a value derived from a collective belief in its
worth, allows for successful coordination within economies30. Collectively
agreed-upon rules spread in the population via narratives and tales, like
stories from Agta, a Filipino hunter-gatherer population, and promote
moral behaviours31. The existence of non-moralising beliefs, or beliefs with
no explicit instruction or morals behind them, cannot be explained by their
direct effect. However, theymay still act as a cooperation catalyst. This effect
is significant when beliefs can spread evenly between individuals29. How-
ever, the effect of non-moralising collective beliefs on the dynamics on a
structured population is rarely discussed.Hence, in this work, we study how
network properties influence game dynamics in the presence of distinct
beliefs.

Results
Takeover
Introducing a structure into a population often facilitates cooperation32,33.
Formultiplayer games, this effect is robust to evolutionary dynamics (birth-
death or death-birth, pairwise comparison) or updating strategy (syn-
chronous, asynchronous); hence, we only present results obtained for the
birth-death process with synchronous strategy-updating32. However, we
note that analysis of the interplayof beliefs and evolutionarydynamics could
interest future work.

The simulation results presented in this work portray evolutionary
dynamics with mutations in small finite populations. Hence, high levels of
stochasticity are present, and all simulations result in the stag-hunting
equilibrium for all types of networks. Therefore, our focus metric is the
takeover time34,35. We define takeover as the first instance when all the
individuals in the population are stag hunters. We measure the time in
generations, which could also be easily represented in the number of birth-
death events since each generation consists of exactly Z events. After the
takeover, some hare hunters may appear due to mutations; however, they
cannot takeover the population.

The introduction of structure can promote cooperation in the
system due to the varying group size and network parameters. Hence,
unsurprisingly, all simulations performed on the random graphs led to a
faster stag hunter takeover than the well-mixed population. In parti-
cular, in the presence of only one belief (achieved by setting μB = 0.0), the
takeover time in a well-mixed population is on average 7.2 times longer
than on the Newman-Watts-Strogatz (NWS) and 3.4 times longer than
in the Erdös and Rényi (ER) and Barabási-Albert (BA) networks. For
higher values of belief mutation μB, the difference between the well-
mixed and structured populations reduces but exists. Therefore, in our
case, the network structures facilitate the spread of cooperative beha-
viour and trust.

In all explored regimes, introducing the secondbelief (μB ≠ 0.0) leads to
faster stag hunter takeover, as shown in Fig. 1. Increasing the value of belief
mutation rate μB from 0.0 to 0.01 decreases the average takeover time on all
network types, with a similar reduction of around 65% for ER and BA and
around 50% for the NWS. Thus, introducing the second narrative benefits
the fast spread of cooperation and trust.

In the BA and ER network populations, the takeover happens slower
than in the NWS networks for every considered parameter set. This result
suggests that a higher clustering coefficient (0.44 for the NWS) in the net-
work expedites the spread of cooperative behaviour more effectively, as
compared to the lower values (0.23 and0.31 forERandBA, respectively)36,37.
The Supplementary Material (Supplementary Fig. 8) presents the effect of
clustering on takeover time. Although the low network diameter is also said
to promote cooperative behaviour38, the effect is less pronounced. A rela-
tively lowdiameter of 3.22 and 3.02 for ER andBAnetworks does not lead to
a more effective cooperation spread than the NWS network, which is
characterisedby an average diameter of 3.61. In particular, for μB = 0.0 (only

one belief present), the average takeover time on the ER network is com-
parable to BA and over 2.1 times longer than on the NWS network.

Hence, we hypothesise that the high clustering coefficient is more
effective in promoting cooperation. However, the beneficial effect of beliefs
is amplified more effectively by a lower network diameter, as indicated by
the higher impact of change in belief mutation on the ER and BA networks
compared to the less notable impact for the NWS network.

Hitherto, we assumed that the beliefmutation assignment happened at
random. Each individual had the same probability of changing their con-
victions. We acknowledge that, in practice, these assumptions can be vio-
lated; hence, this part of our model serves as a null expectation but helps
focus on the network properties. The characteristics of network structures
can be used to target specific individuals and further accelerate takeover
times. In the following section, we analyse how introducing mutations on
specific types of nodes of the network influences the dynamics.

Targeting belief spreaders
Not everyone is as likely to be introduced to a novel belief system as others.
An individual’s characteristics can influence the probability of exposure to
different worldviews or the propensity to internalise a new belief. Subse-
quently, the properties of an individualmay also influence the probability of
further spread of the novel belief. In particular, in a structured population,
the connectivity of a node can be an essential factor in determining whether
a belief mutation occurs and spreads.

Ourmodel assumes that anexternality causes themutation inbeliefs and
is not easy to induce in principle. The origins of such beliefs and underlying
processes are a vast topic in itself andbeyond the scopeof this study.However,
the presence of beliefs promotes a faster spread of cooperative behaviour.
Hence, we check whether it is possible to choose specific kinds of individuals
to introduce the new beliefs such that the takeover time is reduced.

The concept of changing the properties of a node based on its con-
nectivity is thoroughly explored in epidemiology. A degree of a node,
interpreted as multiple social interactions, can be used to identify high-risk
individuals39,40 to target them in vaccination campaigns. The importance of
network hubs in epidemiology is apparent39,40. The influence of more con-
nected individuals in a network can also be observed in the context of
information spreading in social networks41. However, the involvement of
hubs can also have the opposite impact. They can act as “firewalls" and
prevent information from spreading42. Hence, it is beneficial to sometimes
target the less connected “middle-class" nodes.

We use a degree-based scheme to choose the node for introducing the
mutant43. The probability of being chosen is given by pj ¼ eαkj=

P
i2Ne

αki

Fig. 1 | Takeover time for stag hunters.The level of actionmutation (μA) is constant
in all simulations. Hence, the mutation rate ratio change is caused by manipulating
the belief mutation rate (μB). Increased belief mutation frequency leads to a lower
takeover time, meaning higher belief diversity promotes a faster spread of coop-
erators in a population. The takeover is notably faster on the NWS networks, but the
effect of belief is more pronounced on the ER and BA networks. The results are
averaged over 1000 runs per network type and parameter set.

https://doi.org/10.1038/s44260-024-00005-z Article

npj Complexity |             (2024) 1:6 2



with ki being the degree of a vertex i. Parameter α controls the impact one’s
connectivity has on its role. In particular, a positive value of α moves the
belief mutation to the hubs, α = 0 is equivalent to randomly placing the
mutant on any node, and α < 0 increases the probability of the mutation
arising at the periphery.

Similarly to the random mutation allocation, all simulations for
targeted mutation placement resulted in a stag hunt takeover. Varying
values of α did not affect the overall average fraction of each strategy in
the population; hence, we focus on its effect on the takeover times. We
compare the takeover times relative to the random belief mutation
placement (α = 0).

The effect of targeted belief mutation differs notably between different
types of networks, as seen in Fig. 2. For the BA networks, there is a striking
distinction between positive and negative values of α (a difference between
targeting thehubor theperiphery). For the lowestmutation rateμB = 10

−5 on
the BA network (depicted on the bottom panel of Fig. 2), the takeover times
for all analysed values of α do not vary significantly and are shorter than the
random case. However, as the mutation rate increases, the differences arise,
with negative values of α leading to a similar takeover time as α = 0 and
positive values leading to a slower takeover. Differences between parameter
values are more visible as the mutation rate increases. This lack of notable
differences between negative values of α and α = 0 can be caused by the fact

Fig. 2 | Relative time for stag hunters to takeover with node targeting. For each
value of μA/μB, the time to takeover is compared to the case of random belief
mutation placement (α = 0). The impact of varying parameter α is most visible on
networks with high node degree heterogeneity (BA and ER) and negligible on the

NWS network, characterised by high node degree homogeneity. Positive values of α
lead to the targeting of hubs, which increases the takeover time. The time to takeover
can be decreased by targeting the periphery (α < 0). The presented results are
averaged over 1000 runs per network type and parameter set.
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that the periphery in the scale-free network is significantly larger than the
hubs.Hence, if themutation is introduced randomly, it ismore likely tooccur
on a less connected node. This result indicates that targeting less influential
(connected) individuals on the scale-free network accelerates takeover.

A similar effect is foundon theERnetwork (the toppanel of Fig. 2).The
takeover times for higher mutation and negative values of α converge to
values for random mutation placement and positive values of α lead to a
slower takeover. The effect of changing the belief mutation rate value is less
notable.

The introduction of targeted mutation has a different effect on the
NWSnetwork (middle panel of Fig. 2). As the degreedistribution of nodes is
not as divided as in the case of the scale-free network, different values ofαdo
not affect the takeover times in such a diverse way. Almost all non-zero
values ofα lead to a lower takeover time for a lowbeliefmutationprobability.
As the mutation value increases, the relative takeover time grows and
oscillates around one.

Thus, the impact of targeted belief mutation depends highly on the
network type and node degree distribution. We show that the most influ-
ential or connected individuals do not always induce a change in social
behaviour in a structured population. However, a committed minority of
regular individuals can alter social conventions. We thus delve deeper into
how different network structures can impact the power of commoners.

Social tipping points
Theoretically, a committedminority can produce a “bandwagon" effect and
cause a population-wide social change. The importance of the commitment
to the cause, rather than the wealth and power of its supporters, is indicated
in critical mass theory44. The threshold, which the minority group has to
cross to ensure a successful change at the societal level, varies across the
literature, ranging from 10% of the population up to 30%− 40%45–48.
Among others, the value of the tipping pointmay depend on the underlying
network structure of the population49.

We analyse our results to determine an average tipping point value
(and standard deviations) for the network types used and three values of
α = {−2.0, 0.0, 2.0} (Fig. 3).We assume a given fraction of stag hunters to be
a tipping point if, after surpassing it for the first time, the proportion does
not fall below it. In other words, the population did not reach the tipping
point ever before and did not fall below it after crossing it.

The belief mutation rate affects the tipping point’s average value pro-
minently.Mean and standard deviation increased with increasingmutation
rate on all considered network types; see Fig. 3. Thus, a competingminority
can hinder the spread of a strategy. With a high mutation rate, a second
novel strategy can show up in the population before the takeover by the
previous invader. The appearance of the newmutant can slowdownor even
revert the growth of a desired strategy. Thus, the takeover must occur to
ensure growth before a new contender can appear. With an increase in the
mutation rate, only a larger group can takeover the population unin-
terrupted, leading to a higher value of the tipping point. Hence, we can
conclude that in the absence of a competing group, a minority of around
15−30% has enough power to alter the social behaviour of the population.
High mutation rates result in increased stochasticity and an increase in the
standard deviation.

The value of the tipping point varies between the network types, with
the value for small mutation and negative α being 19% for NWS and 25%
and28%forERandBA, respectively.As shown inFig. 1, theNWSnetwork’s
takeover time is shorter than other network types. Hence, a single mutant
appearing on a network can takeover faster, reducing the possibility of
another invader appearing and hindering the process. In this case, the effect
of targeted belief spreading α is not drastic. The differences in valuesmay be
due to the stochasticity present in the system, and also, the parameter does
not change the portion of new belief followers in the population.

We thus show that the type of underlying network structure can have a
crucial impact on the tippingpoint value.Weobserve the tippingpoint value
of 19% on networks with a high clustering coefficient. A lower clustering
leads to a higher value of the tipping point of around 25−30%.

Discussion
Our study illuminates the role of collective beliefs in fostering cooperation
and trust among self-interested, rational individuals29,50,51. Similar to influ-
ential tags or symbolic markers, these beliefs are unbound by specific
actions, catalysing a swift spread of cooperative behaviours in structured
populations. Our work proposes a framework for future research to explore
the dynamic interplay between consensus mechanisms and network
structure, including the pivotal role of charismatic leaders52, conformity
dynamics and eventual impacts on actions. Gokhale et al.29 explored the
importance of consensus-forming mechanisms such as frequency-
dependent decision-making, majority vote and random narrative choice.
While these various processes have the potential to change the outcome of
the dynamics in this study, we have focused on the frequency-dependent
("Group Think") mechanism53.

Structured populations are a hotbed for cooperation13,32,33. Networks
allow cooperators to flock together and interact with one another, subse-
quently protecting them from being exploited by the defectors. Many
parameters of real-life social networks, like thedegree distribution, are said to
sustain cooperative behaviour54,55. To determine the effects of specific net-
work properties on the evolution of cooperation, we implement three classes
of random networks. While random networks such as scale-free networks
might not be an appropriate representation of empirically observed ones56,
performing simulations onmultiple random networks allows us to focus on
general networkproperties rather than the effects of specific social structures.
We show that specific network attributes like a higher clustering coefficient
or low diameter are powerful accelerators for spreading cooperation and
trust, mainly when high belief diversity exists. Thus, harnessing network
structures and understanding their properties is necessary to propel the
diffusion of desired behaviours. This concept, already applied successfully in
targeted vaccination campaigns57–59, has profound implications, especially in
scale-freenetworks60,61. In this context, the role ofwell-connected individuals,
or “hubs," is crucial40. Strategically targeting these hubs can amplify the
dissemination of critical information, from marketing messages to disaster
response updates41,62. However, this double-edged sword can impede the
desired spread42. Introducingmutations onhubs can trigger cascading effects
and propagate defectors18,63. Our simulations reveal that belief mutations on
the network periphery are more effective in bolstering cooperation than
targeting hubs. Remarkably, this phenomenon emerges only in networks
with discernible hubs and periphery, suggesting a novel strategy: focusing on
less influential individuals can be the key to fostering cooperation.

The impact of network structure on minority power is profound.
Lower belief mutation values tip the scales, decreasing the average tipping
point. In comparison, higher values may slow the takeover by a desired
minority (Fig. 3). With this understanding of social network structure and
individual belief systems, it may be possible to strategise to ignite social
change for good. Introducing novel beliefs to less connected individuals
proves to be a potent catalyst, expediting cooperation diffusion. This insight
explains why the most impactful social change often emerges from grass-
roots movements64.

Methods
The problem of trust—the Stag Hunt
To formalise the problem of trust, we use the stag hunt game7. In the
traditional form of the game, two hunters set out on a hunt to obtain food.
Both players can choose to hunt either a stag or a hare. Hunting a stag is
difficult and cannot be done alone; however, it yields a higher payoff than a
hare.Hence, if bothplayers coordinate onhunting a stag, eachobtains ahigh
payoff ofPS. However, if only one of themhunts a stag, they get a payoff of 0,
as the hunt is unsuccessful. Conversely, hunting a hare is easy and can be
accomplished alone. Thus, the payoff of a hare hunter is always equal to PH,
regardless of their partner’s decision. The payoffmatrix of the game and the
resulting game dynamics are represented in Fig. 4.

This work focuses on an N-player version of the stag hunt, as intro-
duced by ref. 23. In particular, a hunting party consists of N individuals.
Each one has an action of hunting a hare or a stag. Pursuing a hare brings a
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risk-free payoff of ΠH = PH to each hare hunter, where PH is the value of a
hare. For a stag hunt to succeed, at leastM stag hunters need to participate.
Thus, if the number of stag hunters is less than M, then the hunt is
unsuccessful, and the payoff of a stag hunter isΠS = 0; else, a successful hunt

yields ΠS = PS. The value of the caught quarry thus grows linearly with the
number of participants in the hunt. This expansion of the 2-player stag hunt
allows us to preserve an essential feature of the 2-player game—successful
cooperation always brings a higher payoff than defection. This need not be

Fig. 3 | Average values and standard deviation of tipping points. The coloured
bars represent the average tipping point value, and the error bars represent the
standard deviation. The tipping point values for the ER and BA networks are similar
since both types of networks share similar values of parameters. TheNWSnetwork is
characterised by a higher clustering coefficient, which leads to lower tipping point

values. Increasing the value of themutation rate introduces more stochasticity in the
system and leads to a higher value of the average tipping point and a higher standard
deviation value. The parameter α does not visibly affect social tipping points. The
results are averaged over 1000 runs per network type and parameter set.
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the case in other versions of the game, which could lead to different inter-
esting dynamics but are not considered in this work.

Similarly to the 2-player version of the game, in a population pre-
dominantly hunting hare, choosing a stag is risky—an individual is not
guaranteed to assemble a hunting party consisting of enough other stag
hunters. Only if a significant enough fraction of players hunt stag is it safe to
choose the bigger prey. How does one overcome the initial risk of hunting
stag in a fully hare hunting population to move to the more profitable
endeavour of pursuing a stag?

A solution to the above dilemma is posited via the inclusion of col-
lective narratives by Gokhale et al.29. The authors assume that each indivi-
dual believes in narrative one (or two) personally, and the group believes in
one of those narratives. The individuals then condition their actions on the
narrative chosen by the group. Therefore, each player’s strategy consists of
three elements:-
• action taken by the individual when the group believes in narrative one
• action taken by the individual when the group believes in narrative

two and,
• narrative the player personally believes in.

For example, a (H,S,1) player would hunt a hare if the hunting party
believes in narrative one and a stag if the party believes in narrative two. The
individual personally believes narrative one to be true. Thus, eight strategies
can be present, as shown in Fig. 4.

Importantly, we do not make assumptions about the narratives’ con-
tents. Beliefs held by individuals neither impact their payoffs nor the actions
taken directly. Believing in either of the narratives does not make players
prone to choose specific actions, and it does not give them additional payoff
for choosing them. Still, introducing collective narratives leads to rich game
dynamics, as shown in Fig. 4.

Different ways of determining the collective narrative can exist, such as
groupthink53, majority vote65,66, dictatorship, charismatic individuals52 and
so forth. In this model, hunters make decisions based on a frequency-
dependent process. The choice of the narrative believed in by the group is
random and depends on the composition of the hunting party. The

probability of each of the narratives to be chosen is proportional to the
fraction of the believers in the given narrative in the group.

Narratives can act as coordination devices, allowing stag-hunting to
takeover the population29. Thus, the model explains how moral-free beliefs
can influence game dynamics but assumes that the players interact within a
well-mixed population.

In a realistic society, social ties, family connections or geographic
closeness can cause specific individuals to interact more frequently than by
chance. Similarly, organically formed hunting parties can be expected to
include a different number of participants rather than be an artificially
chosen, constant size. Varying group sizes can significantly impact the game
dynamics67,68. The analysis of the effect of group sizediversity onour game is
presented in the Supplementary Material. Hence, the assumption of well-
mixed populations cannot always be substantiated.

Structured populations
Random networks represent human societies more accurately than com-
plete ones69. We implement three classes of random networks frequently
considered in the literature to analyse the impact of particular network
properties on evolutionary dynamics.

Erdös and Rényi70 proposed a random network to model real social
networks. The Erdös-Rényi (ER) network is characterised by a high degree
of homogeneity. It is formed by generating nv nodes and ne random edges
connecting them.

Many social networks are said to have “small-world" properties71–74,
meaning that any two individuals in thenetwork can reachone another via a
small numberof links (steps).Hence,our analysis implements a small-world
network generated by the Newman-Watts-Strogatz (NWS) algorithm75. In
this algorithm,first, a d-dimensional lattice is generated. Then, a new edge is
drawn for each vertex with probability p. An NWS network has a high
clustering coefficient and a small average path length between any two
vertices.

Furthermore, some members of society are typically more connected
and, as a result, more influential than others. These individuals are repre-
sented by hubs—vertices of the network with a high degree. However, the

Fig. 4 | Dynamics in the StagHunt game. Left panel: in the classical two-player stag
hunt game, two individuals decide to hunt for a stag or a hare. If both choose to hunt
a stag together, they successfully hunt one. Hunting a stag brings a larger payoff than
hunting a hare, but hare hunting does not require any coordination of actions and
can be achieved alone. However, the players do not know their partner’s action
preferences. In an infinite population, change in the fraction of stag hunters ( _x)
depends on the current value of x. If there are enough stag hunters in a population,
hunting a stag is profitable. However, stag-hunting is not favoured if the fraction of
stag hunters is low x < x*. The value of x at which the direction of the change shifts
(the unstable internal equilibrium x*) is represented with an open dot. How do we
convert a population of hare hunters to stag hunters? Introducing collective nar-
ratives provides a solution. Central panel: In the stag hunt with narratives, the
strategy of each individual consists of three elements. The centremost layer (a�1)
corresponds to the action taken by an individual when they find themselves in a
group believing in narrative 1, the options being stag or hare. The middle layer (a�2)
shows the two possible actions that can be taken in the group believing in narrative 2.

The outermost layer (u*) depicts an individual’s two possible beliefs in narrative 1 or
2. A strategy is then represented as ða�1 ; a�2 ; u�Þ. Thus, in all, there can be eight
strategies. Right panel: like the two-strategy outcome (left panel), the right panel
shows the result of the eight-strategy case in an infinitely large, well-mixed popu-
lation.White points represent the unstable equilibria. If two strategies have the same
payoff when played against each other, the change in composition may happen by
neutral drift—indicated by the grey dashed lines. Here, we see two paths from a hare
hunting population ((H,H,1) or (H,H,2)) to stag-hunting. If an initial population
consists of only (H,H,1) individuals, it may be taken over by (H,S,1) individuals by
chance. From there, the dynamics would lead to a takeover of (H,S,2) individuals,
and the population would end up drifting neutrally between the stag-hunting
strategies without the possibility of reverting to hare hunting. A similar transition
may also occur if first (H,H,2) and then (S,H,2) individuals takeover the initial
population via drift. The plots are generated for N = 5, M = 4, PH = 1, PS = 4 with
N = 2,M = 2 for the two-player case. The central and right panels have been adapted
from Gokhale et al.29.
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majority of the population is not as well-connected. Such diversity within
the individuals is not present in either of the networks mentioned above.
Hence, we use a Barabási-Albert network (BA)76, with a power-law degree
distribution. The Barabási-Albert algorithm is based on preferential
attachment. A network grows at each time step by adding one node and
connecting it tom nodes already present. The probability of a vertex being
connected to the new one is proportional to the attachment function A(k),
with k being the node’s degree. The attachment function ABA(k)∝ k.

Differences in degree distribution between the three networks are
presented in Fig. 5.

For the results obtained for networks generated by different
algorithms to be comparable, we keep the network size (Z = 32) con-
stant. The parameters of the generating algorithms were chosen so that
the networks would have a similar number of edges. First, the minimal
connectivity of the BA network was selected to be equal to the stag-
hunting threshold (m =M). By construction, all BA networks with the
same minimal connectivity are characterised by the same number of
edges, computed as m(m−1)/2+ (Z−m)m. Then, this value is used to
parametrise the ER network (ne =m(m−1)/2+ (Z−m)m). Due to the
random component of the NWS algorithm, it is not possible to set a
given number of edges in the network. However, the expected number
of edges can be computed as k(d+p) (or (d−1)(1+p) if d is odd).
Hence, the probability of adding an edge p and initial lattice
dimensionality d were chosen for the expected number of edges to
equal the other networks. The parameters of interest of the networks
are presented in Table 1.

The similarity in the network size and number of edges allows us to
focus on the effects of the properties of interest, like the degree distribution,
global clustering coefficient and diameter.

Updating actions and beliefs
A belief frequently involves a complex system of stories, values, orientation,
perspective, andmore77.Due to its complexity, it isunlikely toappear in society
spontaneously at the same rate as new behaviours do. Individuals are far less
likely to invent a newbelief systemor culture than explore novel behaviours78.
Arguments can also bemade in the opposite direction, and hence, we assume
that actions and beliefs appear at different rates. Namely, we introduce two
uncorrelatedmutationrates—μAandμB.The formerapplying toactions taken
by an individual (two first elements of the strategy) and the latter influencing
the belief (the third element of the strategy).Weassume that change in actions
happens during reproduction, capturing the notion of offspring being prone
to experiment and try actions different from those displayed by their parents.
In this setup, a “mutation of actions" occurs at most once in an individual’s
lifetime and can be seen as a cumulation of all the changes they have
undergone. Simultaneously,we assume that a change in belief ismore likely to
happen in a later stage of life and is caused by a cultural externality.Hence, the
“belief mutation" occurs independently from reproduction. Once appeared,
actions and beliefs spread in the population in the same evolutionary process.
Hence, we can use the ratio of the two mutation rates to proxy the timescale
ratio between the action and belief propagation processes.

Interaction dynamics
Birth-death. Our model uses a birth-death Moran process79,80. Every
generation consists of Z discrete time steps (Z corresponding to the
population size) so that (on average) every individual has an opportunity
to reproduce. In each time step, a belief mutation occurs with probability
μB—a belief (the third element of the strategy) of a randomly chosen
individual is set to one of the two existing beliefs, each with equal
probability. Subsequently, the fitness of all individuals is determined. In

Fig. 5 | Degree distribution and an example of the three types of graphs used in
the simulations. In the Erdös Rényi, the edges are generated randomly. The
Newman-Watts-Strogatz graph is a small-world network. In the Barabási-Albert
network, some vertices (hubs) are characterised by much higher connectivity as

compared to the rest (periphery). For all graphs, Z = 32. The colours of the vertices
represent strategies according to the scheme presented in Fig. 4. An analysis of
varying network sizes from 32 to 252 is provided in the Supplementary Material
(Supplementary Fig. 3).
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each time step, one player reproduces with probability proportional to its
fitness. The offspring is identical to the parent unless a mutation occurs
(with probability μA). If a mutation occurs, actions (the first two-strategy
elements) are drawn from four possibilities (H-H, S-H, H-S or S-S).
Regardless of the action mutation, the offspring inherits the belief from
the parent unchanged. One of the neighbouring individuals (or the
parent itself) is randomly chosen to die and be replaced by the offspring.
The schematic of the process is presented in Fig. 6.

Fitness. The fitness of an individual (ψi) depends on a payoff received
after engaging in one hunting game with all its neighbours (Πi) and the
selection intensity (ω)79 asψi = 1+ ωΠi, whereΠH = PH andΠS = PS if the
hunt is successful and ΠS = 0 otherwise. The selection intensity can be
used as a proxy for the importance of the hunt relative to other activities
affecting one’s fitness. That is, for ω = 0, the game (and therefore one’s
strategy) does not affect the fitness and increasing ω enhances the game’s
impact on the fitness81. In the main text, we continue with ω = 1 while
different values of selection intensity are further explored in the Sup-
plementary Material (Supplementary Fig. 4).

Simulation parameters. The simulation results presented in this work
were obtained for populations of size Z = 32. For computational ease, we
choose a population size that could characterise a local hunter-gatherer
residential group82, but large enough to examine differences in network
properties. Results of simulations for varying population sizes are pre-
sented in the Supplementary Material (Supplementary Fig. 3).

We start with an egoistic population, everyone following the (H,H,1)
strategy. Thus, they always hunt hares, and only belief one is present. Starting
with a single belief allows us to analyse the effects of introducing the second

belief. As mentioned above, three types of networks were implemented—
Erdös-Rényi with 118 edges, Newman-Watts-Strogatz with initial lattice
dimension d= 6 and probability of adding an edge p = 0.24 and Barabási-
Albert with minimal connectivity of a node m= 4. The parameters and
properties of the generated networks are specified in Table 1. Due to the
random nature of the ER network, in a small proportion of the cases, indi-
viduals had fewer neighbours thannecessary for the stag hunt to be successful
(the number of neighbours never falling below 1). Despite some hunting
parties being too small to support cooperation, the average results for these
networks do not differ from the ones with only big enough groups. Further
investigation of the issue is presented in the Supplementary Material. Addi-
tionally, we compare the results on random graphs with ones obtained in a
well-mixed population, where individuals play the stag hunt game with 8
random players. At each time step, any two individuals can be chosen to
reproduce and die. Each simulation lasts for a maximum of 5 × 105 genera-
tions, where each generation consists of Z time steps. We use μA = 0.001,
PH = 1, PS= 4, M= 4, ω = 1, Z= 32. For an exploration of some of these
parameters, see theSupplementaryMaterial.Tennetworksweregenerated for
each parameter set and network type, and 100 simulations were run on each.
The results for each network type are thus averages over 1000 realisations.

Data availability
Data used in the analysis is available on Github at https://github.com/
tecoevo/structured_beliefs.

Code availability
Appropriate computer code describing the model is available on Github at
https://github.com/tecoevo/structured_beliefs.

Table 1 | Parameters of networks used in simulations

Erdös-Rényi Newman-Watts-Strogatz Barabási-Albert

Algorithm Randomly generated edges Randomly generated edges Preferential attachment

Size 32 32 32

Average degree 7.375 7.375 7.375

Average number of edges 118.0 118.0 118.0

Parameters Number of edges ne = 118 Initial lattice dimension d = 6
Probability of adding an edge p = 0.24

Minimal connectivity m = 4

Average global clustering coefficient 0.23 0.44 0.31

Average diameter 3.22 3.61 3.02

All networks used in the simulations share the same size and average node degree. The effects of different degree distributions and varying values of clustering coefficient and diameter are of interest.

Fig. 6 | Scheme of the dynamics. Strategies are
updated by the birth-death process. An individual is
chosen to reproduce (represented by a solid black
outline on the figure) with probability proportional
to their fitness. A neighbour of the reproducing
individual is chosen randomly to die (indicated by a
dashed black outline) and gets replaced by an
identical offspring of the reproducing individual (as
represented by an arrow and a small dot). In each
step of the birth-death process, amutation of actions
might occur with probability μA. If a mutation
occurs, the newly produced offspring has different
actions than the parent but the same belief. A belief
mutation can occur in each time step with prob-
ability μB. The belief of a randomly chosen indivi-
dual (represented by a dotted black outline) is
randomly set to one of the two beliefs present in the
population.
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