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Abstract
Wepropose an efficient residualminimization technique for the nonlinearmodel-order reduc-
tion of parameterized hyperbolic partial differential equations. Our nonlinear approximation
space is spanned by snapshots functions over spatial transformations, and we compute our
reduced approximation via residual minimization. To speedup the residual minimization,
we compute and minimize the residual on a (preferably small) subset of the mesh, the
so-called reduced mesh. We show that, similar to the solution, the residual also exhibits
transport-type behaviour. To account for this behaviour,we introduce adaptivity in the reduced
mesh by “moving” it along the spatial domain depending on the parameter value. Numerical
experiments showcase the effectiveness of our method and the inaccuracies resulting from a
non-adaptive reduced mesh.

Mathematics Subject Classification 65D99

1 Introduction

For some solution u(x, t, μ) ∈ R, consider a parametrized partial differential equation (PDE)
given as

∂t u(x, t, μ) + L(u(x, t, μ), t, μ) = 0, ∀(x, t, μ) ∈ � × D × P. (1)

Here, x ∈ � ⊂ R
d is a point in the space domain �, P ⊂ R

p is some parameter domain,
that can encode, for instance, the change in the material properties, variation in length scales,
changes in the background temperature, t ∈ D is a point in the finite-dimensional time-
domain and L is some spatial differential operator. For the rest of the paper, we include the
time-domain D := [0, T ] in Z and express Z as Z = D × P ⊂ R

p+1 as the full parameter
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domain. The later sections of our article further elaborate on the relevance of P , we refer to
[19] for additional examples.

An exact solution to the above equation is often unavailable and one seeks a numerical
approximation

u(·, z) ≈ uN (·, z) ∈ XN ,

withXN being a N -dimensional finite-volume/element/difference-type space.We refer to uN

as the full-order model (FOM). In a multi-query setting where solutions at several different
parameter instances are needed, due to the high-dimensionality of XN , computing a FOM is
unaffordable. This motivates one to consider a reduced-order model (ROM).

A ROM splits the solution algorithm into an offline and an online phase and performs
most of the expensive computations offline, thus making the online phase efficient. For some
finite number of training parameters {z(i)}i=1,...,m ⊂ Z, the offline phase computes the set of
solution snapshots {uN (·, z(i))}i that are used by the online phase to efficiently approximate
the FOM of a different parameter. If the number of snapshots required to reasonably approx-
imate the FOM are sufficiently small, then one can expect a ROM to be more efficient than
the FOM. We refer to the review article [4] and the later sections of our article for further
details of the offline and the online phase.

This work focuses on parametrized hyperbolic PDEs. For such equations, there is ample
numerical and analytical evidence indicating that a ROM based on a linear approximation
space is inefficient/inaccurate, meaning a large number of solution snapshots are required to
reasonably approximate the FOM. The inefficiency arises from the poor approximability of
the solution set {u(·, z) : z ∈ Z} (or the so-called solution manifold) in a linear space—
we refer to [5, 7, 11, 17, 18, 27, 31] for proofs related to the slow m-width decay of these
solution sets and the related numerical experiments. It is basically clear that a nonlinear
approximation space is needed and several ideas for such nonlinear spaces are presented in
the literature [6, 12, 16, 21, 28]. All these papers show the good approximation quality of the
defined space but lack in finding efficient algorithms to compute reduced solutions within
this space. We do not consider methods that interpolate between different reduced spaces
as our parameter includes time and we are interested in solving a reduced time dependent
differential equation with a time derivative.

Given a linear approximation space different projection methods such as Galerkin projec-
tion exist to reduced the original equation to a low-dimensional one, for a non-linear search
space we can not use a projection method that is equivalent to the residual minimization as
is done in the linear setting. Performing residual minimization directly in the online phase is
often of the same complexity as computing the FOM [6, 8, 17]. This is the core methodology
presented in this paper, namely to reduce the computational cost of the residual minimization
by using an adaptive reduced mesh to reduced the minimization.

We have organized the rest of the article as follows. Section2 presents our FOM. The dis-
cussion is a brief recall of the standard first-order finite-volume methods. Section3 presents
our ROM. We discuss the sampling of the parameter domain, we concretely define the trans-
formed snapshot based approximation space, we present the residual minimization technique
and explain the reason behind its complexity scaling with the dimension of the FOM. Sec-
tion4 presents a adaptive reduced mesh technique to speedup residual minimization. This
technique attempts to make our ROMmore efficient than the FOM. Section5 present numer-
ical examples showcasing the accuracy of our method.
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2 Full-order model (FOM)

To compute our FOM, we consider an explicit Euler time-stepping scheme and a first-order
finite-volume (FV) spatial discretization. The details are as follows. For a parametrized
hyperbolic conservation law, the differential operator L appearing in (1) is given as

L(·, z) = ∇ · f (·, z) ∀z ∈ Z. (2)

The flux-function f (·, z) : R → R
d is assumed to be convex and at least twice-differentiable.

For all (x, μ) ∈ R
d × P , the initial conditions read u(x, t = 0, μ) = u0(x, μ). We assume

that u0(·, μ) is compactly supported. As a result, due to a finite speed of propagation, for any
finite final time T , the solution u(·, z) is also compactly supported. Therefore, we consider a
bounded and connected spatial domain � ⊂ R

d , which, for all z ∈ Z, contains the support
of u(·, z). Along the boundary ∂� and for all z ∈ Z, we prescribe u(·, z) = 0.

A discretization of the space-time domain is as follows. We consider a two-dimensional
square spatial domain i.e., d = 2 and � = [0, 1]2. We consider Nx ∈ N number of mesh
elements in each spatial direction, resulting in a grid-size of �x := 1/Nx . To discretize the
time-domain D, we consider the discrete time-steps {tk}k=0,...,K ordered such that

0 = t0 < t1 · · · < tK = T . (3)

For simplicity, we consider a constant time-step of �t .
An explicit Euler time stepping scheme and a FV spatial discretization of the evolution

equation (1) provides

uN (·, tk+1, μ) = uN (·, tk , μ) + �t × LN (uN (·, tk, μ), tk , μ), (4a)

∀k ∈ {0, . . . , K − 1}, μ ∈ P. (4b)

The full order solution is approximated in a finite dimensional subspace XN which is equiv-
alent to R

N with N = N 2
x for a 2-dimensional spatial variable and a vector representation

of the solution therefore exists. The operator LN : RN → R
N is a result of a FV discretiza-

tion and its explicit expression can be found in any standard textbook (for instance, [15])
on FV methods. As the numerical flux, we choose the Local-Lax–Friedrich (LLF) flux—a
different choice does not change the forthcoming discussion. If the time-step �t does not
satisfy the CFL-condition, we compute time steps in between that are not used later on and
therefore ignored. However one can easily include all solutions in the snapshot samples later
one without changing the later algorithms.

3 Reduced-order model (ROM)

We base the construction of the reduced order model on the idea of snapshots, meaning for
certain parameter values {z(i)} we have already computed solutions of the FOM uN (·, z(i)).
In a classical snapshot approach one looks for a solution of the reduced system in the space
spanned by all the snapshot namely span{uN (·, z(i))}i . This does not work well for solutions
that differ in the parameter by being transported in the spatial domain. Interpolating function
over a linear space results in the typical staircase solutions. Therefore we want the solution to
be approximated in a space that is spanned by snapshot solutions over a transformed spatial
domain. For now, we introduce a spatial transform ϕ(·, z, z(i)) : � → R

d without specifying
the properties and how to compute it, and approximate the solution uN (·, z) in the space

Xm(z) := �(span{uN (ϕ(·, z, z(i)), z(i))}i∈�(z)). (5)
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taking the span of transformed snapshot function. As this span may not be a subspace of
our large discretization space XN we need �, a projection operator from L2(�) or the used
surrounding space toXN to ensure thatXm is a subspace ofXN . The set�(z) ⊆ {1, . . . ,m} is
a z-dependent index set, selecting a subset of the precomputed solutions for a given parameter
value z. One could take all snapshot solutions but for computational efficiency taking only
some is preferred and for accuracy it turns out that a few snapshots are often enough. The
index set is picked as those indices, which are close to the given parameter z. In the numerical
experiments we often only take four indices for the four nearest neighbours in the two
dimensional parameter space. However, depending on the application one could take any
numbers of nearest neighbours in a given appropriate norm [1, 17].

The choice of ϕ the spatial transformation function and its theoretical foundation is rather
complicated, we refer to [31, 32] for more detail, where some uniqueness under certain
circumstances can be shown. However the computation is still a nontrivial task then. Theo-
retically we could take an approximation space in which snapshots are collected evaluated
at several spatial transformations. This will be investigated in future work.

We also restrict ourselves to a rather simple construction of the spatial transformation. We
use a numerical construction of ϕ that is accurate for the numerical experiments considered
later in a data-driven manner while computing the solution by using the original PDE. It
is also possible to compute ϕ via a PDE based approach [7, 24]. This is typically done by
computing characteristic curves of the PDE, which can result in a highly accurate ϕ but for
non-linear problems, is limited to classical solutions. On the opposite one could compute not
only ϕ but also the solution in a fully data-driven approach [31]. We however suspect that by
discarding the PDE in the online phase, one might miss out on some physics of the problem,
resulting in inaccuracies.

3.1 The approximation space

So far the definition of the spatial transformation function ϕ as well as the index set �(z) are
kept a bit vague. In order to fully define (5) those need to be specifiedmore clearly. Construct
the spatial transform from the full order solutions by assuming that ϕ(·, z, ẑ) is a spatial shift
function i.e.,

ϕ(·, z, ẑ) := x − c(z, ẑ), ∀z, ẑ ∈ Z, (6)

reducing to problem to computing the spatial shift c(z, ẑ) ∈ R
d . This is done via L2-

minimization [25]. We acknowledge that the above ansatz has limited applicability. As the
numerical experiments and the discussion in [31] indicate, its applicability is limited to prob-
lems with a single large discontinuity or to multiple discontinuities moving with the same
velocity. To cater to a broader class of problems, we will require a more sophisticated ϕ than
that considered above—see [17, 22, 31, 32]. We first compute {c(z( j), z(i))}i, j for all pairs
of parameter samples and interpolate the spatial transform via a Lagrange interpolation.

In order to have some regularity in u(ϕ(x, z, ·), ·) we want to satisfy approximately the
matching condition

ϕ(D(z(i)), z( j), z(i)) = D(z( j)), (7)

where D(z(i)) ⊂ � and D(z( j)) ⊂ � represent the point/curve/surface of discontinuity
in u(·, z(i)) and u(·, z( j)), respectively. With our spatial shift ansatz for ϕ given in (6), the
matching condition transforms to

D(z(i)) = D(z( j)) + c(z(i), z( j)). (8)
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To find an approximate D(z( j)) (and D(z(i))), we apply to uN (·, z(i)) the multi-resolution-
analysis (MRA) based troubled cell indicator proposed in [29] (any other shock-detection
technique [13, 20] also suffices). For a 1D spatial domain and for a finite-volume scheme,
D(z( j)) is a collection of grid points at which the first-order derivative (approximated via
central differences) overshoots a user-specified tolerance. Equivalently, D(z( j)) := {xi :
|uN (xi+1, z( j)) − uN (xi−1, z( j))| > K�x}, where xi and uN (xi , z( j)) represent the center
of the i-th cell and the finite-volume approximation in the i-th cell, respectively. In our
experiments, K = 5 provides reasonable results. The general definition of D(z( j)) for a
higher-order finite element scheme in multiD can be found in [29].

Remark 3.1 In general, condition (8) is (very) restrictive. For instance, in a 1D spatial domain,
the condition holds only if the solution has a single shock or multiple shocks that move with
the same velocity. However, the condition is violated for two shocks moving with different
velocities. Furthermore, in a multi-dimensional setting, even a single shock that changes in
length violates the above condition.

Despite the restrictions of the above condition, empirically, we observe that a spatial shift
provides accurate results for problems that approximately satisfy the above relation. For
instance, in a multi-dimensional setting, D(z(i)) might be a translation of D(z( j)) but with
an elongation. If the elongation is not significant then, we recover a reasonable snapshot
transformation via shifting. Similarly, when D(z(i)) has the same length as D(z( j)) but is
both a translation and a rotation of D(z( j)), we expect a spatial shift to provide reasonable
results if the rotation is not significant.

In order to find c we define first the set B(z( j), z(i)) ⊂ R
d

B(z( j), z(i)) := {c∗ : ∃x∗
i ∈ D(z(i)) and x∗

j ∈ D(z( j)) s.t. c∗ = x∗
i − x∗

j , }. (9)

Out of all the possible shifts in B(z( j), z(i)), we select the one that solves the minimization
problem

c(z( j), z(i)) = argmin
c∗∈B(z( j),z(i))

‖uN (· − c∗, z(i)) − uN (·, z( j))‖L2(�) (10)

anL2-minimization technique proposed in [17, 23, 25, 26, 31].We solve the above problem
via enumeration. In our numerical experiments, the set B(z( j), z(i)) is not too large and a
solution via enumeration is affordable. Given c(z( j), z(i)) the general function c(z, z(i)) is
defined via Lagrange interpolation. Then that defines the spatial transform ϕ as in (6).

Remark 3.2 (Computing the projection operator�) On a Cartesian mesh, we define� (given
in (5)) by approximating the shifts by an integer multiple of �x . This provides

�c(tk, μ, z(i)) =
⌊
c(tk, μ, z(i))

�x

⌋
�x, (11)

where �n represents the greatest integer less than equal to n and acts component-wise if n
is more than one dimensional.

The set �(z) can be generally defined as �ε(z) for a certain ε.

�(z) := {i : ‖z − z(i)‖ ≤ ε}
If the parameter is sampled in a grid we can pick epsilon in such a way that generically

we end up with the corners of the cell the parameter value z lies in.
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3.2 Sampling the parameter domain

We consider a two-dimensional parameter domain Z—an extension to higher dimensions is
straightforward. We assume that Z is (or can be mapped via a bijection to) a rectangle. We
take Nt and Nμ uniformly placed samples from D and P , respectively. The vertices of Z are
included in the samples, and the samples from D are a subset of the time-instances {tk}k=0,...,K

used to compute the FOM. To collect the samples from Z, we take a tensor-product of the
samples in D and P .

Remark 3.3 (Scalingwith p)Uniformsampling canmake snapshot computation unaffordable
for large values of p, the dimension of the parameter domainP . In that case, one can consider
a greedy/sparse sampling technique [10, 19] or Smolyak quadrature rules [14, 30].

Remark 3.4 (The locality of the approximation space Xm(z)) The space Xm(z) (and also the
one considered in [17]) is local—it only uses parameter samples that lie in a neighbourhood
of the target parameter.

3.3 Residual minimization

For a target parameter z = (t, μ) /∈ {z(i)}i , the following steps of the online phase compute
a reduced approximation um(·, z). First we introduce the previous discrete time steps 0 =
t0 < · · · < tK ∗ = t , assuming that the given t is one of the timesteps of the full order model.
We also keep �t as in the FOM. Different time-stepping is possible see [7] for details.
For each previous time step we compute {c(tk, μ, z(i))}i interpolating the snapshots of the
shifts {c(z( j), z(i))}i, j via Lagrange polynomial interpolation.Any regression or interpolation
technique can be used. Compute the reduced approximation um(·, tk, μ) in Xm(tk, μ) via
residual minimization given as [1, 7, 17]

um(·, tk, μ) = argmin
v∈Xm (tk ,μ)

‖v − um(·, tk−1, μ)

+ �t × LN (um(·, tk−1, μ), tk−1, μ)‖L2(�).

(12)

We initialize with um(t0, μ) = argminv∈Xm (t0,μ) ‖v − u0(·, μ)‖L2(�). The approximation
space Xm(tk, μ) is given in (5). The operator LN approximates the evolution operator L. Its
precise form is not important here and depends on the details of the full order model. The
complexity of solving the above problem scales with the dimension of the FOM therefore,
we later equip it with hyper-reduction.

The approximation spaceXm(z) is isomorphic to range(A(z))where the matrix A(z) is of
size N × 	 where 	 is the number of chosen neighbours for a given value of z. Each column
of the matrix represents the discrete FOM solution of the shifted snapshot.

Similarly um(·, tk−1, μ)+�t ×LN (um(·, tk−1, μ), tk−1, μ) can be represented inRN by
b(tk, μ) and we can write the residual minimization in matrix vector form as

α(tk+1, μ) = argmin
y∈R	

‖A(tk+1, μ)y − b(tk, μ)‖2l2 , (13)

Consider the underlined vector in the above problem (13). The i-th element of this vector
represents the residual in the i-th mesh element. Since we take the l2-norm of the entire
vector, we minimize the residual over the entire mesh. This can become a computational
bottle neck. We propose to collect element ids in the possibly z-dependent set Ez ⊆ E f ull ,
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where

E f ull := {1, . . . , N },
such that doing the residual minimization only over that set leads to a good approximation
quality of the reduced system. The computational cost of the least square minimization of
(13) over only Ez has O(	2n) operations, where n = #Ez .

3.4 Summary

The reduced model is a fast algorithm to compute the solution of a given equation at a certain
time and parameter value z∗ = (t∗, μ∗). That means given that we are interested in an
approximation of uN (,̇t∗, μ∗). The steps to get there are

1. Find interpolation points z j = (t j , μ j ) close for which full order solutions exists.
2. Compute c(z∗, z j ) (The function c is a simple Lagrange interpolation over the known

values c(zi , z J ) of all pairs of sample points)
3. Solution is then found through residual minimization over the ansatz functions uN (· −

c(z∗, z j ), z j ).

4 Hyper-reduction—finding Ez

With Ez = E f ull , our ROM is (at least) as expensive as the FOM, which is undesirable. While
maintaining the accuracy of the ROM, we want to choose Ez such that n � N . This way,
one can expect the ROM to be more efficient than the FOM. We pursue two approaches to
compute such an Ez .
1. The non-adaptive technique, where Ez is independent of the parameter z.
2. The adaptive technique where Ez changes with the parameter z i.e., the index set Ez is

adaptive.

First, we present the non-adaptive technique and its shortcomings.

4.1 Non-adaptive technique

This technique consists only of an offline phase. At {μ̄ j } j=1,...,mhyp ∈ P parameter samples,
we solve the non-hyper-reduced least-squares problem in (13) and collect snapshots of the
residuals for each time step generating a residual snapshot matrix S of size N × (Nt ×mhyp).
The columns of this matrix are given by

Scol := A(tk, μ̄i )α(tk, μ̄i ) − b(tk−1, μ̄i ). for k = 0, . . . Nt , i = 1, . . . ,mhyp (14)

The relevant indices are those in which the residual is large and are picked via a point-
selection algorithm as described in Algorithm 1. (Any other point-selection algorithm from
[2, 3, 8, 17] could also be used here).

Note that as compared to [2], we apply the algorithm directly to S and not to its POD
modes. Numerical experiments suggest that both the strategies provide similar results.

The selection of the relevant mesh points is parameter value independent and our numer-
ical experiments suggest that the non-linearity of the approximation space Xm(z) induces a
transport-type behaviour in the residual. As a result, only a large reduced mesh computed
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Algorithm 1 Summary of the reduced mesh selection algorithm from [2]
1: Input S, n
2: Output Ez
3: for i ∈ {1, . . . , N } do
4: r(i) = ‖S(i, :)‖2 {S(i, :) denotes the i-th row of S. }
5: end for
6: [r-sorted,idx] = sort(r) {Sort in decreasing order and r-sorted=r(idx).}
7: Ez ← idx(1 : n)

using Algorithm 1 can provide a reasonable accuracy - a similar observation holds for the
other point-selection techniques outlined in [3, 8]. This is undesirable because, at least ideally,
for some error tolerance of practical interest (‖uN (·, z) − um(·, z)‖L2 ≤ TOL, for instance),
the size of the reduced mesh should be as small as possible.

4.2 Adaptive technique

To account for the transport-type behaviour of the residual, we introduce adaptivity in the
reduced mesh. For this we precompute different index sets Eẑ . Instead of using one large
matrix S for all the residual snapshots we divide the set of training parameters into subsets
and create several residual snapshot matrices for each subset. The resulting index set is
then used for all parameters within the subset. The more subsets we define the better the
approximation. The maximal number of subset we can pick is the number of snapshots in
the parameter domain. This could be a reasonable choice. For each parameter value we pick
a reduced mesh meaning the index set Ezi . During the online phase in which we compute the
ROMwe pick the index set given by the parameter value closest to the one we are evaluating,
or we pick a combination of index sets collected by the 2 nearest neighbours.

5 Numerical experiments

The goal of our numerical experiments is to study the accuracy of the adaptive reduced mesh
technique compared to the non-adaptive technique and the FOM as well as the computa-
tion time improvement in particular through the two different hyperreduction methods. We
abbreviate the different ROMs that we compare via numerical experiments as in Table 1. The
space X̃m is given as

X̃m := span{uN (·, z(i))}, (15)

which is just the space spanned by all snapshots. To compute a solution in X̃m , we use the
residual minimization technique from Sect. 3.3. We are only interested in the accuracy of the
L-ROM and do not equip it with any hyper-reduction technique.

Recall that Nμ and Nt represent the number of parameter samples along the domains P
and D, respectively—see Sect. 3.2 for details. We quantify the error in our ROMs via the
relative error

E(Nt , Nμ) := ‖e‖L∞(Z) where e(z) := ‖uN (·, z) − um(·, z)‖L2(�)

‖uN (·, z)‖L2(�)

. (16)
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Table 1 Abbreviations for the different ROMs compared via numerical experiments

Abbreviation Approximation space Hyper-reduction

Adp-S-ROM Xm (z) Adaptive (see Sect. 4.2)

N-Adp-S-ROM Xm (z) Non-adaptive (see Sect. 4.1)

S-ROM Xm (z) None

L-ROM X̃m None

See (5) and (15) for a definition of Xm (z) and X̃m , respectively. S shifted, L linear

The reduced solution um can result from either of the ROMs listed in Table 1.We approximate
the L∞(Z) norm via

‖e‖L∞(Z) ≈ max
z∈Ztarget

|e(z)|, (17)

where Ztarget ⊂ Z is a sufficiently dense, problem dependent and finite set of target param-
eters given later.

Remark 5.1 (Software and hardware details) All the simulations are run using matlab, in
serial, and on a computer with two Intel Xeon Silver 4110 processors, 16 cores each and
92GB of RAM.

5.1 1D Linear advection

We consider a linear one-dimensional advection equation with a parameterised advection
speed and a reaction term

∂t u(x, t, μ) + μ∂xu(x, t, μ) = −r × u(x, t, μ), ∀(x, t, μ) ∈ � × D × P. (18)

We choose r = 10−4, � = [0, 3], D = [0, 0.5], and P = [1, 3]. The initial data reads

u0(x, μ) =
{

μ, x ∈ [0.5, 1]
0, else

, ∀μ ∈ P. (19)

We choose a constant time-step of �t = 1/Nx , which satisfies the CFL-condition every-
where. We choose Nμ, Nt = 2 and Nx = 103. Furthermore, as a set of target parameters,
we choose Ztarget = {(ti , μ̃ j )}i, j , where t j are the time-instances at which we compute
the ROM, and {μ̃ j } j are 40 different parameter samples uniformly placed inside P . For the
offline phase of the hyper-reduction, we consider five uniformly placed samples insideP i.e.,
mhyp = 5. For the different ROMs outlined in Table 1, Table 2 compares the error E(Nμ, Nt ).
The size of the reduced mesh for the hyperreduction is choosen to be n = Nx × 5 × 10−3,
which is 0.5% of the total mesh size. A few observations are in order. Firstly, with a relative
error of 1.05, the L-ROM performs poorly. It results in an error that is almost five and ten
times larger than that resulting from theAdp-S-ROMand the S-ROM, respectively. Secondly,
the error resulting from the Adp-S-ROM is twice of that resulting from the S-ROM. Given
the speedup offered by the Adp-S-ROM (see the results below), we insist that this loss in
accuracy is reasonable. Lastly, the N-Adp-S-ROM showed large oscillations and appeared to
be unstable, which resulted in extremely large error values. Increasing the size of the reduced
mesh (as discussed next) makes N-Adp-S-ROM stable and provides acceptable accuracy.
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Table 2 Results for 1D linear
advection

N-Adp-S-ROM Adp-S-ROM S-ROM ROM

E(Nμ, Nt ) 1.95 × 1030 0.21 0.10 1.05

Error comparison between the different ROMs listed in Table 1. Compu-
tations performedwith Nμ, Nt = 2, Nx = 103, and n = Nx ×5×10−3.
The N-Adp-S-ROM showed large oscillations and appeared to be unsta-
ble, hence the extremely large error values

Table 3 Results for test 1D linear
advection

E(Nμ, Nt )
n (%Nx ) Adp-S-ROM N-Adp-S-ROM

100 (10) 0.12 5.6 × 1027

200 (20) 0.10 1.1 × 1026

400 (40) 0.10 1.01 × 1013

800 (80) 0.10 0.10

Error versus the size of the reducedmesh n. For the underlined values, the
N-Adp-S-ROM showed large oscillations and appeared to be unstable,
hence the large error values

1 2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Nt

E
(N

µ
,N

t
)

Nµ = 2
Nµ = 3
Nµ = 4

Fig. 1 Error of the shifted ROM without any hyperreduction for different sizes of the sampling set

Remark 5.2 (Treatment of the reaction term) The reaction term in (18) is treated implicitly.
This results in the systemmatrix A(z)beingmultiplied by (1+r�t). The rest of the framework
remains the same.

By increasing the number of points used in the hyperreduction the N-Adp-S-ROMwill be
able to achieve the error of the S-ROM without hyperreduction. Table 3 compares the error
values with varying but large n.

Since the accuracy of our ROM is limited by our choice of Nt and Nμ, and increasing n
can only offer so much accuracy, the error from Adp-S-ROM stagnates after a value of 0.11.
In Fig. 1 we see the error value of the S-ROM for increased snapshot sizes.
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Fig. 2 Results for 1D linear advection computed with the Adp-S-ROM. See (16) and (20) for a definition
of the error E(Nμ, Nt ) and the runtime C, respectively. The dashed line represents (a) the time taken by the
S-ROM, and (b) a speedup of one

In order to show the necessity of the adaptive hyper reduction we consider the average
runtime given as

C :=
∑

z∈Ztarget

Cz/(#Ztarget), (20)

where Cz represents the cpu-time (measured with the tic-toc function of matlab) required by
the online stage of the ROMs (or by the FOM) to compute the solution at the parameter z.

Figure2 plots the runtime C and the speedup against the error E(Nμ, Nt ). Herewe are only
interested in the speedup of the hyperreduction technique meaning comparing the runtime
of the S-ROM with the Adp-S-ROM. We make the following observations. (i) Although not
monotonically, the error converges with n. The non-monotonic convergence of the error can
be an artefact of the point selection algorithm given in Algorithm 1. (ii) Increasing n increases
the runtime. This is consistent with the fact that the cost of the Adp-S-ROM scales with n.
(iii) At worst, for n = 320, the Adp-S-ROM is 1.8 times faster than the S-ROM, and at
best, for n = 5, it is five times faster than the S-ROM. (iv) The problem is one-dimensional
therefore, the explicit time-stepping based FOM is already very efficient. As a result, none
of the ROMs provide any speedup. We refer to the last test case for a 2D problem where, as
compared to the FOM, our hyper-reduction technique offers a significant speedup.

Figure3 compares the solution between the FOM, Adp-S-ROM and L-ROM. Notice that,
due to the linearity of the approximation, L-ROM entirely misrepresents the solution. It fails
to capture the transport nature of the solution. In contrast, owing to the shifting of the reduced
basis, Adp-S-ROM provides an accurate approximation. Furthermore, at least for all our test
cases, it does not exhibit any Gibbs-like phenomenon.

5.2 1D Burgers equation

As an example of a nonlinear equation we tested the one dimensional Burgers equation

∂t u(t, x) + 1

2
∂xu

2(t, x) = 0
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Fig. 3 Solution comparison for 1D linear advection. The L-ROM and Adp-S-ROM both use 4 snapshots and
for the hyperreduction n = 5

with initial condition as in (21).

u0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ exp

(
−1/

(
1 −

(
x−δ1
δ2

)2))
,

∣∣∣ x−δ1
δ2

∣∣∣ < 1

− exp

(
−1/

(
1 −

(
x+δ1
δ2

)2))
,

∣∣∣ x+δ1
δ2

∣∣∣ < 1

0, else

(21)

where we set δ1 = 0.5 and δ2 = 0.2. The solution as shown in Fig. 4 presents two features
moving in opposite directions. We see that the S-ROM can capture only one of the features
accurately which we expected due to the limitation of the spatial transformation as just a
simple shift. The qualitative results are shown in Fig. 4. The speedup of the hyperreduction
step shows to be about a factor of 500.

5.3 Amoving box function

In this examplewe discuss approximation qualitywithout using a partial differential equation.
We construct a reduced approximation to the set {uN (·, z) : z ∈ Z}, where uN (·, z) is a
FV approximation to a function u(·, z) that shifts in � and changes its “shape” with the
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-1.5 -1 -0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

0.6

FOM
S-ROM
L-ROM

Fig. 4 Solution quality of the S-ROM and the L-ROM of the one dimensional Burgers equation compared to
the FOM at μ = 2 and t = 1

parameter. For all (t, μ) ∈ D × P , the function u(·, z) is given as

u(·, t, μ) =
{
exp (−μt) , |x1 − (μ + t)| ≤ 0.3, |x2 − t | ≤ 0.3

0, else
. (22)

We choose D,P = [0, 1], and � = [−0.5, 2.5]2. Note that increasing μ shifts u(·, t, μ)

along the x1-direction, and increasing t shifts u(·, t, μ) along the vector (t, t)T . To compute
the FV approximation uN (·, z), we project u(·, z) onto the FV approximation space. The
details related to the projection and the reduced approximation are discussed later. We set
Nt = Nμ = 3, and Nx = 600. To compute the S-ROM, we consider the minimization
problem

α(z) = argmin
y∈R4

‖A[Ez](z)y − b[Ez](z)‖l2 . (23)

Here, Ez is as defined earlier and A[Ez](z) is built from A by choosing the corresponding rows
as is the vector b[Ez](z), a sub-vector of the vector b(z). To compute b(z), we project u(·, z)
onto the FV approximation space. To perform the projection, we consider tensorized 5 × 5
Gauss-Legendre quadrature points in eachmesh element. The reduced approximation is given
by Um = A(z)α(z). Note that for the current test case, computing the FOM is equivalent to
projecting the exact solution onto the FV approximation space. To collect snapshots of the
residual, we set mhyp = 4. We choose Ztarget as 100 × 100 uniformly placed and tensorised
points inside Z.

Remark 5.3 (No time-stepping) The above minimization problem does not involve a time-
stepping scheme. This allows us to study the errors resulting from the reduced approximation,
residual minimization and hyper-reduction without the errors introduced from the time-
stepping scheme.

Table 4 presents the error values resulting from the different ROMs listed in Table 1. As
the size of the reduced mesh, we choose n = N 2

x × 10−2, which is 1% of the total mesh size.
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Table 4 Results for the moving box

N-Adp-S-ROM Adp-S-ROM S-ROM L-ROM

E(Nμ, Nt ) 1 0.19 0.18 0.84

Computations performed with Nμ, Nt = 3, Nx = 600, and n = N2
x × 10−2. Error comparison between the

different ROMs listed in Table abbrvROM

Fig. 5 Results for the moving box, computed with the Adp-S-ROM. The dashed line represents (a) the time
taken by the S-ROM, and (b) a speedup of one

Both the Adp-S-ROM and the S-ROM outperform the L-ROM. The error values resulting
from the L-ROM are almost 4.5 times of those resulting from the Adp-S-ROM. At least for
the present test case and our choice of n, our adaptive hyper-reduction technique introduces
almost no error in the S-ROM.

Unlike the previous test case, the N-Adp-S-ROM did not exhibit large oscillations, insta-
bilities or error values going towards infinity. The reason being that theminimization problem
in (23) does not involve a time-stepping scheme—see Remark 5.3 above. This prevents error
accumulation over time, which, along with a poor placement of the reduced mesh, was
one of the reasons why the N-Adp-S-ROM was unstable in the previous study. For the
N-Adp-S-ROM, there exist target parameters without a single reduced mesh element lying
inside the support of the residual. As a result, the solution to the minimization problem (23)
is zero but the approximation is not good.

Consider the average runtime C defined in (20). For the Adp-S-ROM, Fig. 5 plots the
runtime and the speedup against the error. A few observations follow. (i) The error decreases
monotonically upon increasing n, which is desirable. (ii) At best, for n = 1.8 × 103, the
Adp-S-ROM is 30 times faster and 1.3 times worse in accuracy than the S-ROM. (iii) At
worst, for n = 115.2 × 103, the Adp-S-ROM is almost 8.5 times faster (and similar in
accuracy) than the S-ROM. (iv) Computing the FOM involves projecting a function onto the
FV approximation space, which is a cheap operation. Therefore, none of the ROMs offer
any speedup. We refer to the following test case that considers a more realistic scenario and
presents the speedup offered by our hyper-reduction technique.
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Table 5 Results for 2D transport

N-Adp-S-ROM Adp-S-ROM S-ROM L-ROM

E(Nμ, Nt ) 18.75 × 103 0.29 0.21 1.06

Computations performedwith Nμ, Nt = 6, Nx = 800, and n = Nx ×2×10−2. Error comparison between the
different ROMs listed in Table 1. The N-Adp-S-ROM showed large oscillations and appeared to be unstable,
hence the extremely large error values

5.4 2D Collisionless radiative transport

We consider the 2D collisionless radiative transport equation given as [9]

∂t u(x, t, μ) + cos(μ)∂x1u(x, t, μ)

+ sin(μ)∂x2u(x, t, μ) = 0, ∀(x, t, μ) ∈ � × D × P.
(24)

The initial data reads

u0(x, μ) =
{
1, ‖x‖2 ≤ 0.2

0, else
, ∀μ ∈ P. (25)

We set � = [−1, 1]2, P = [0, 2π ], and D = [0, 0.5].
We discretize � with a Nx × Nx Cartesian grid and we choose Nx = 800. We use a

constant time step of�t = �x/2. We set Nμ = Nt = 6. To collect snapshots of the residual,
we take 5 uniformly placed samples from P i.e., mhyp = 5. We study the ROM at the target
parameters Ztarget = {(ti , μ̃ j )}i, j . Here, {t j } j represent the time-instances at which we
compute the ROM, and {μ̃i }i are 50 uniformly placed samples inside P .

We choose a reduced mesh that contains 2% of the total mesh elements. Table 5 shows
the error E(Nμ, Nt ) for the different ROMs. We make the following observations. (i) Both
the Adp-S-ROM and the S-ROM outperform the ROM. (ii) The maximum error result-
ing from the Adp-S-ROM is almost 1.3 times of that resulting from the S-ROM. Given
that Adp-S-ROM is 50 times more efficient than the S-ROM—see the discussion below—
we insist that the loss in accuracy introduced via hyper-reduction is acceptable. (iii) The
N-Adp-S-ROM shows large oscillations resulting in large error values. Nonetheless, same
as earlier, increasing the size of the reduced mesh removes these instabilities and provides
an acceptable accuracy.

5.4.1 Runtime versus the error

For the Adp-S-ROM, Fig. 6 plots the average runtime and the speedup versus the error
E(Nμ, Nt ). We make the following observations. (i) Increasing n increases the runtime and
decreases the speedup, which is as expected. Beyond n = 25.6 × 103, as compared to the
FOM, the Adp-S-ROM does not offer any speedup. (ii) The lowest runtime and the maximum
speedup of 7.8 corresponds to a reduced mesh that contains 0.5% of the total mesh elements.
The relative error is 0.32, which is one-third of that resulting from the L-ROM and is 1.5 times
of that resulting from the S-ROM—see Table 5. The accuracy loss as compared to the S-ROM
is acceptable given that the Adp-S-ROM offers a speedup of two orders-of-magnitude.
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Fig. 6 Results for test 2D
transport, computed with the
Adp-S-ROM. Computations
performed with Nμ = Nt = 6,
and Nx = 800. See (16) and (20)
for a definition of E(Nμ, Nt ) and
C, respectively. The dotted line
indicates (a) the runtime of the
S-ROM, (b) and (c) speedup of
one

123



Partial Differential Equations and Applications (2024) 5 :3 Page 17 of 19 3

Fig. 7 Results for the 2D transport. Runtime split for the adaptive hyper-reduced ROM. Computations per-
formed with Nt = Nμ = 6

5.4.2 Runtime split

Wesplit the runtimeC into fourmajor parts. (i)Cadapt , the average runtime to adapt the reduced
mesh, (ii) CA, the average runtime to compute the matrix A(tk+1, μ) (or A[Etk+1,μ(tk+1, μ)]
in the case of hyper-reduction). (iii) Cb, the average runtime to compute the vector b(tk, μ).
(iv) Cls , the average runtime to solve the least-squares problem in (13). For Nx = 800 and
n = N 2

x × 2 × 10−2, Fig. 7 compares the different runtime for the Adp-S-ROM. By far,
computing the vector b(tk, μ) is the most expensive part of the algorithm—it takes almost
70% of the total runtime. It is noteworthy that the combined cost of solving the least-squares
problem and adapting the reduced mesh is less than 10% of the total runtime. Although not
shown in the plot, increasing Nx has almost no effect on the runtime.

6 Conclusions

We propose an adaptive hyper-reduction technique for the nonlinear reduced order modelling
of transport dominated problems. Our nonlinear approximation space is a span of shifted
snapshots and we seek a solution using residual minimization. Through a cost analysis, we
conclude that residual minimization is (at least) as expensive as the full-order model. To
reduce the cost of residual minimization, we perform residual minimization over a reduced
mesh i.e., over a subset of the full mesh. Using numerical and analytical examples we show
that, similar to the solution, the residual exhibits a transport-type behaviour. This makes the
use of afixedparameter-independent reducedmeshboth inaccurate and inefficient. To account
for the transport-type behaviour of the residual, we introduce adaptivity in the reduced mesh.

In the numerical example we restrict to a one dimensional parameter space and a grid
sampling. However we can use any sampling and the techniques still work. We also restrict
the discussion to a spatial transformation function that is just a spatial shift. However other
transformation function and even a collection can be used without harming the adaptive
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hyperreduction technique which speeds up the computation of the ROM but keeps most of
the accuracy gained from introducing a nonlinear ansatz space.

Empirically, we establish that for the same size of the reducedmesh, the adaptive technique
greatly outperforms a non-adaptive technique. For a sufficiently small reducedmesh—almost
1% to 2% the size of the full mesh—the adaptive technique provides reasonable accuracy.
In contrast, for such small sizes of the reduced mesh, the non-adaptive technique lead to
an unstable reduced-order model, resulting in oscillations and extremely large error values.
Nonetheless, at the expense of a high computational cost, increasing the size of the reduced
mesh to about 20–50% of the total mesh size improved the accuracy of the non-adaptive
technique.

In futurework in particular the issue on compact solutions needs to be addressedmore care-
fully. One should considered parametrized boundary conditions as well as periodic boundary
conditions. Those can be included within the framework with some work. Numerical test for
more complicated nonlinear functions including different sampling strategies together with
a collection of spatial transformation functions should be included as well.
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