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Gustav Uhre Jakobsen ,1 Gustav Mogull ,1, 2 Jan Plefka ,1 and Benjamin Sauer 1

1Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin,
Zum Großen Windkanal 2, 12489 Berlin, Germany

2Max Planck Institut für Gravitationsphysik (Albert Einstein Institut), Am Mühlenberg 1, 14476 Potsdam, Germany

We determine the adiabatic tidal contributions to the radiation reacted momentum impulse ∆p
µ
i

and scattering angle θ between two scattered massive bodies (neutron stars) at next-to-next-to-
leading post-Minkowskian (PM) order. The state-of-the-art three-loop (4PM) worldline quantum
field theory toolkit using dimensional regularization is employed to establish the classical observ-
ables. We encounter divergent terms in the gravito-electric and gravito-magnetic quadrupolar sectors
necessitating the addition of post-adiabatic counterterms in this classical theory. This leads us to
include also the leading post-adiabatic tidal contributions to the observables. The resulting renor-
malization group flow of the associated post-adiabatic Love numbers is established and shown to
agree with a recent gravito-electric third post-Newtonian analysis in the non-relativistic limit.

With todays routine detection of gravitational waves
by the LIGO-Virgo-Kagra observatories emitted from
binary merger events of black holes and neutron stars
in our universe [1–3] we are in the era of gravitational
wave astronomy. The upcoming space- and earth-based
third generation of observatories will widen the frequency
range and dramatically increase the sensitivity of the ob-
servations [4–6]. This situation calls for in par precision
predictions from theory for the observables in the gravita-
tional two-body problem. To achieve this a combination
of analytical and numerical approaches is being pursued
actively: from the perturbative, analytical side the post-
Newtonian [7–9] and post-Minkowskian (PM) [10–14] ex-
pansions cover the inspiral phase where the two bod-
ies are still well separated and weak gravitational fields
apply; while the self-force expansion [15–18] assumes a
mass-hierarchy in the two bodies but works exactly in
Newton’s coupling G. These perturbative results may be
resummed using effective-one-body techniques [19, 20] to
extend their validity close to merger where numerical rel-
ativity (NR) [21–23] techniques become indispensable.
Recently, considerable progress has been made upon

importing modern techniques from perturbative quan-
tum field theory (QFT) to the problem in the PM expan-
sion. While the natural habitat for the PM expansion is
the scattering of black holes or neutron stars [24–28], the
scattering data may nevertheless be used to inform mod-
els for the bound-state problem that should become par-
ticularly relevant for highly eccentric orbits [29–34]. As
long as the objects’ separation is large compared to their
intrinsic sizes, they have an effective description in terms
of a massive point particle coupled to Einstein’s theory of
gravity that may be systematically corrected for intrin-
sic degrees of freedom such as spin or tidal effects [35].
Based on this effective worldline approach two-body scat-
tering observables (deflections and Bremsstrahlung wave-
forms) have recently been computed up to next-to-next-
to-next-to leading order (deflections) and leading order
(Bremsstrahlung) [36–55]. In parallel, great leaps in the
QFT based PM expansions were achieved using tech-
niques based on scattering amplitudes in which quantum
field act as afatars of BHs or NSs [56–89].

Next to the masses and spins of the compact objects,
tidal deformations are a significant astrophysical phe-
nomenon and observational goal. Neutron stars (NSs)
develop a quadrupole moment due to the tidal inter-
action with their companion star or black hole (BH)
[90, 91]. The strength of this effect is parametrized by
the Love numbers that quantify the magnitude of the in-
duced multipole moment in response to an external grav-
itational field. Measuring them through gravitational
waves provides insights into the strong interaction matter
within neutron stars. In fact, the gravitational wave sig-
nal GW170817 observing the first NS-NS merger [2] was
able to put constraints on the first (gravito-electric) Love
number with consequences for the neutron star equation
of state [92–95]. The tidal interactions give rise to oscil-
lation modes of the NS, and in particular the so-called
f -mode dynamical tides [96, 97] have been argued to be
central for inferring the NS equation of state from the
emitted gravitational waves in a merger [98]. In the adi-
abatic limit the tides do not oscillate independently and
are locked to the external gravito-electric and gravito-
magnetic fields — the limit we shall consider in this work.
In the PN expansion gravito-magnetic and gravito-

electric tides have been established up to 2PN order
[99, 100] and recently the state-of-the art has been
extended to 3PN for dynamical and adiabatic tides
[101, 102]. Working in dimensional regularization the
authors of Ref. [102] encountered a UV divergence that
necessitated the inclusion of a post-adiabatic countert-
erm, leading to a renormalization group flow of its post-
adiabatic Love number. Meanwhile, in the PM expan-
sion the two-body scattering observables of the impulse
(change of momentum) and scattering angle in the pres-
ence of tidal interactions have been determined at 2PM
[103–106] and 3PM [38] order in the conservative sector.
We updated the 3PM result to include dissipation [51]
using the in-in worldline quantum field theory (WQFT)
formalism. In addition, the Bremsstrahlung waveform
with tidal effects at leading order was established in
Refs. [44, 51].
In this Letter we lift this tidal precision prediction for

the impulse and scattering angle to the 4PM, i.e. next-
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to-next-to-leading, order in the PM expansion — both
in the conservative and dissipative sectors and for the
gravito-electric and gravito-magnetic tides. As it turns
out, this classical computation suffers from an UV (ultra-
violet) divergence that may be attributed to the point-
particle approximation of the neutron star, equivalent
to what was seen at 3PN order [101, 102]1. We regu-
late the theory using dimensional regularization in the

bulk, i.e. the worldline action remains one dimensional.
While Newton’s constant G is continued to D = 4 − 2ǫ
dimensions, GD = (4πeγER2)−ǫG, introducing an arbi-
trary length scale R, the Love numbers are not dimen-
sionally continued. Removing the UV divergence through
a post-adiabatic counterterm then induces a renormal-
ization group flow of the associated post-adiabatic Love
numbers, matching the flow in the gravito-electric sector
in the PN analysis of Ref. [102]. Using our results for the
impulse and scattering angle we also establish the linear
and angular momentum, at 4PM and 3PM order respec-
tively, radiated off by the gravitational waves emitted in
the encounter of the two neutron stars (NSs).
Worldline effective action. — The effective descrip-

tion of non-spinning compact objects (neutron stars) in-
cluding the leading-order adiabatic tidal couplings takes

the form of a point-particle action S =
∑2

i=1 S
(i)
pp +S

(i)
tidal,

where [36]

S(i)
pp =−mi

∫

dτ

[

1

2e
gµν ẋ

µ
i ẋ

ν
i +

e

2

]

, (1)

S
(i)
tidal = −mi

∫

dτ

[

c
(i)
E2

e3
E(i)

µνE
(i)µν+

c
(i)
B2

e3
B(i)

µνB
(i)µν

]

. (2)

Here xµi (τ) is the trajectory of the ith body of mass mi

and e(τ) is the einbein ensuring reparametrization in-
variance of the worldline theory. The quadrupole Love

numbers c
(i)
E2 and c

(i)
B2 (Wilson coefficients in an effective

field theory nomenclature) are of mass dimension -4 and
couple to the gravito-electric and gravito-magnetic cur-
vature tensors

E(i)
µν := Rµανβ ẋ

α
i ẋ

β
i , B(i)

µν := R∗

µανβ ẋ
α
i ẋ

β
i , (3)

with the dual Riemann tensor R∗
µανβ := 1

2ǫνβρσRµα
ρσ.

We note the relation

B(i)
µνB

(i)µν = E(i)
µνE

(i)µν − ẋ2

2
RµαβγRν

αβγ ẋµi ẋ
ν
i , (4)

that generalizes (2) to D dimensions. These are the first
of an infinite series of tidal Love number couplings, cap-
turing the linear response of the compact body to an
external gravitational field. For the case of a black hole
they are known to vanish [109–111].

1 This divergence was also seen in gravitational radiation from a
single compact object with a quadrupole in Refs. [107, 108].

The two neutron stars xµi (τ) interact gravitationally
according to the gauge-fixed Einstein-Hilbert action

Sbulk =

∫

dDx

(

− 1

16πGD

√−gR + (∂νh
µν − 1

2∂
µhνν)

2

)

(5)

in the bulk, where gµν = ηµν +
√
32πGDhµν and hµν is

the graviton field. Here, we take GD = (4πeγER2)−ǫG,
the extension of Newton’s constant G to D = 4 − 2ǫ
dimensions, working in an MS scheme adapted to config-
uration space. R denotes an intrinsic length scale of the
compact object, such as its radius.
Let us briefly comment on our PM counting scheme.

For a neutron star, or other compact body whose radius
is of the order of its Schwarzschild radius, it is natural
to factor the scale of the Schwarzschild radius out of the
Love numbers such that

c
(i)
E2 = (Gmi)

4c̃
(i)
E2 , c

(i)
B2 = (Gmi)

4c̃
(i)
B2 , (6)

with dimensionless Love numbers c̃
(i)
E2/B2 of order unity.

From that perspective, the results reported in this Let-
ter are enhanced with an additional factor of G4, which
pushes them to the (physical) 8PM order. In this Let-
ter, however, we opt for a (formal) PM counting aligned
with all explicit instances of G in the action — Eqs. (5)
and (7) below. For the adiabatic tidal results this implies
that nPM corresponds with (n − 1) loops while for the
post-adiabatic interaction introduced below nPM corre-
sponds with (n− 3) loops (see e.g. also the discussion in
Ref. [112] regarding PM counting with spin).
Renormalization. — As mentioned above, in the com-

putation of the impulse at the (formal) 4PM level one
encounters an UV divergence that is canceled upon in-
cluding the post-adiabatic tidal counter term

S
(i)
ct = −m3

iG
2

∫

dτ
[ c

(i)
E2 κ̃

(i)

Ė2

e5
Ė(i)

µν Ė
(i)µν

+
c
(i)
B2 κ̃

(i)

Ḃ2

e5
Ḃ(i)

µν Ḃ
(i)µν

]

(7)

to the total action. Note that we need to use the 4D
Newton constant G here, as the worldline action remains
one dimensional. We introduced the dimensionless post-
adiabatic Love numbers κ̃Ė2/Ḃ2 to take the form (drop-

ping the neutron star label (i))

κ̃Ė2 = −107

105

1

ǫ
+ κĖ2 ,

κ̃Ḃ2 = −107

105

1

ǫ
+ κḂ2 ,

(8)

with the counter-terms removing the divergences appear-
ing at the 4PM order being given by the 1/ǫ terms. We
also include finite post-adiabatic Love numbers κĖ2 and
κḂ2 . They experience a renormalization group flow as
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hµ1ν1(k1)
hµ2ν2(k2)

hµnνn(kn)

zρ1(ω1)

...

zρn(ωn)

∼ mG
n/2

cE2/B2

hµ1ν1(k1) hµ2ν2(k2)

zρ1(ω1)

...

zρn(ωn)

∼ m
3
G

3
cE2/B2 κ̃Ė2/Ḃ2

FIG. 1: The tidal interaction vertices needed for the 4PM (order κ8) computation, originating from Stidal (2) and
the counter-term vertices originating from Sct (7).

follows: the bare gravitational coupling GD is indepen-
dent of the scale R, so the flow equation for Newton’s
constant reads

0 = R
d

dR
GD = R

d

dR

[

(4πeγER2)−ǫG
]

=
[

−2ǫG+R
d

dR
G
]

(4πeγER2)−ǫ ,

(9)

i.e. there is no flow of G in D = 4 dimensions. The bare
couplings in (2) and (7) do not depend on the scale R,
hence

0 = R
d

dR
cE2

0 = R
d

dR
(cE2G2κ̃Ė2) (10)

= cE2G2R
d

dR
κĖ2 −

107

105

cE2

ǫ
R

d

dR
G2 .

Together with (9), this then yields the β-functions for the
renormalized couplings κĖ2 and κḂ2 [101, 102]

βκ
Ė2

= R
dκĖ2

dR
=

428

105
, βκ

Ḃ2
= R

dκḂ2

dR
=

428

105
. (11)

These induce a logarithmic flow of the renormalized post-
adiabatic Love numbers as

κĖ2(R) = κĖ2(R0) +
428

105
log

[

R

R0

]

, (12a)

κḂ2(R) = κḂ2(R0) +
428

105
log

[

R

R0

]

, (12b)

where R0 is an arbitrary length scale.2

Computation. — Our 4PM computation is performed
using the WQFT three-loop workflow as described in
[113, 114], which we briefly review. The full tidal effec-
tive field theory is given by the sum of the bulk Eq. (5)
and worldline actions of Eqs. (1) and (7). For the world-
line trajectories we perform a background field expansion
about straight line trajectories

xµi (τ) = bµi + vµi τ + zµi (τ) , (13)

2 Note that the 3PN reference [102] works with different conven-
tions than we do. Their post-adiabatic coupling is minus one-half
ours, κPN = −κ/2, their adiabatic coupling λPN = 4mcE2 and
they take D − 1 = 3 + εPN , i.e. εPN = −2ǫ. Taking this into
account, we agree with their findings.

with perturbative deflections zµi (τ). This setup reflects
the scattering scenario parametrized by the impact pa-
rameters bµi and incoming velocities vµi . In addition we

define the physical impact parameter bµ = |b|b̂µ = (b2 −
b1)

µ and we impose vi·b = 0. Moreover, in the PM expan-
sion the metric is taken to be gµν = ηµν +

√
32πGDhµν .

The goal is to construct perturbative-in-G solutions to
the equations of motion for the deflections zµi (τ), which
is efficiently generated in a diagrammatic fashion in the
WQFT formalism — see Ref. [14] for a recent review.
The propagating fields zµi (τ) and hµν(x) have the re-

tarded propagators

ω
→µ ν =

−iηµν
mi(ω + i0+)2

, (14a)

k

→µν ρσ
=
i(ηµ(ρησ)ν − 1

D−2ηµνηρσ)

k2 + sgn(k0)i0+
, (14b)

using the Schwinger-Keldysh in-in formalism [51, 115].
The worldline vertex rules originating from Spp in Eq. (1)
at lower multiplicities have been exposed explicitly in
[49, 113]: the vertex couples one graviton to m worldline
deflections and conserves the energy on the worldline.
The vertices originating from the tidal terms Eq. (2) in-
volve n ≥ 2 gravitons and m worldline deflections — for
the 4PM order computation we need the vertices with
up to four graviton legs n = 2, 3, 4. The counter-term
(7) on the other hand, gives rise to an n ≥ 2-graviton
and m-worldline vertex, that we only need for n = 2
and m = 0, 1 cp. Fig. 1. The bulk graviton vertices are
standard – yet involved. Using these Feynman rules the
WQFT tree-level one-point functions 〈zµi (τ)〉 may be sys-
tematically constructed. They solve the classical equa-
tions of motion [14, 116].
WQFT workflow at 4PM. — For the computation

of the impulse, i.e. the change of momentum under the
scattering process,

∆pµi = −miω
2〈zµi (ω)〉

∣

∣

∣

ω=0
=

∑

n>0

∆p
(n)µ
i . (15)

At the 4PM level ∆p
(4)µ
i we employ an in-house FORM-

[117] and Mathematica-based code that employs a
Berends-Giele type recursion for the integrand construc-
tion. At this order we face three-loop Feynman integrals
that depend on the momentum transfer qµ and the rel-
ativistic γ = v1 · v2 factor. The |q| may be scaled out
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FIG. 2: Examples of 4PM graphs linear in tidal coefficients contributing to the test-body m1m
4

2 sector.

FIG. 3: The post-adiabatic graphs proportional to κ̃Ė2 and κ̃Ḃ2 that also cancel the divergence.

and we subsequently reduce the single-scale tensor inte-
grals to scalars. The integration-by-part (IBP) reduc-
tion and projection on the 4PM master integral basis
was obtained in [113, 114]. The 4PM master integrals
in turn are three-loop single scale integrals (depending
on γ) that have been solved employing the differential
canonical equation method [118, 119] and the method of
regions [120] in the conservative and dissipative domains
[113, 114], see also [84, 121–123].
The final step is a Fourier transform of the momentum

transfer qµ to impact parameter space. Here one novelty
to the spinning 4PM computation of [113, 114] is the
appearance of log|Rq| terms.

∫

q

eiq·bδ(q · v1)δ(q · v2)|q|ν log|Rq|

=
2ν−1

π(D−2)/2
√

γ2 − 1

Γ(D−2+ν
2 )

Γ(− ν
2 )

(

−2 log

∣

∣

∣

∣

b

2R

∣

∣

∣

∣

(16)

+ ψ
(

−ν
2

)

+ ψ

(

D − 2 + ν

2

)

)

|b|2−D−ν

with the digamma function ψ(z) := Γ′(z)/Γ(z). This
may be most easily derived from the Fourier transform
of |q|ν via a derivative on the exponent ν. At 4PM order
the impulse separates into the test-body contributions
with linear mass dependence, m1m

4
2 or m4

1m2, and the
comparable-mass contributions,m2

1m
3
2 orm

3
1m

2
2. In total

we face 258 graphs contributing to the 4PM tidal effects
— see Fig. 2 for some examples. The divergences arise in
the comparable mass sectors. The post-adiabatic contri-
butions involving the counter-term are depicted in Fig. 3
and amount to a 1-loop integration. Due to them3 factor
in the counterterm vertices — Fig. 1 — they contribute
to m2

1m
3
2 and m3

1m
2
2 terms as well, thereby canceling the

1/ǫ poles.
Impulse. — Tidal contributions to the 4PM impulse

may be split into a conservative ∆p
(4)µ
i,cons and dissipative

contribution ∆p
(4)µ
i,diss due to the presence of radiative (R)

or potential (P) bulk gravitons [113, 114]. At the 4PM
level only two gravitons may go on-shell and can become
radiative. The conservative sector is given by the (PP)
region and also receives contributions from the (RR) part
— these may be identified upon using Feynman propa-
gators for the bulk gravitons. Dissipative contributions,

on the other hand, emerge from the mixed (PR) contri-
bution and the remainder of the (RR) part — reflecting
the number of radiative gravitons.
Let us begin with the post-adiabatic contributions to

the 4PM impulse, proportional to κ
(i)

Ė2/Ḃ2
(R) and involv-

ing one-loop integrals, of Fig. 3, that, for NS 1, take the
form

∆p
(4)µ
1,tidal′ = b̂µ

1575G4m2
1m

2
2

512|b|8 πγv
∑

X,i

fX2mic
(i)
X2κ

(i)

Ẋ2
(R) ,

(17)

and which we label by a prime on the tidal subscript.
The index i runs over the two particles and X over E
and B with functions fX2(γ) given by:

fE2 = 21γ4 − 14γ2 + 9 , fB2 = 7(3γ3 − 2γ2 − 1) , (18)

The adiabatic tidal contributions to the conservative im-
pulse of NS 1 takes the form

∆p
(4)µ
1,tidal,cons =

G4m2
1m

2
2

|b|8
3

∑

l=1

ρµl

[

m2
2

m1
Cl(γ) +

m2
2

m1
C̄l(γ)

+

19
∑

α=1

Fα(γ)
(

m2Dα,l(γ) +m1D̄α,l(γ)
)

]

(19)

+ b̂µ
1605G4m2

1m
2
2

128|b|8 π
√

γ2 − 1 log
∣

∣

∣

2b

R

∣

∣

∣

∑

i,X

fX2mic
(i)
X2 ,

where ρµl = {b̂µ, vµ1 , vµ2 }. The coefficient functions
C, C̄,D and D̄ are linear in the tidal Love numbers and

rational functions of γ, up to integer powers of
√

γ2 − 1

Cl(γ) =
∑

i=1,2

c
(i)
E2C

(i)
E,l(γ) + c

(i)
B2C

(i)
B,l(γ) ,

Dα,l(γ) =
∑

i=1,2

c
(i)
E2D

(i)
E,α,l(γ) + c

(i)
B2D

(i)
B,α,l(γ) . (20)

Analogous relations hold for the barred quantities. We
find 19 basis functions from the three loop-integrals at the

4PM order, which we choose to be even in v =
√

1− γ−2,
of the form:

F1,...,5=

{

1,
log[x]

√

γ2 − 1
, log

[γ+
2

]

, log2[x],
log[x] log

[ γ+

2

]

√

γ2 − 1

}

,
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F6,...,9 =

{

log[γ], log2
[γ+
2

]

,Li2

[

γ−
γ+

]

,Li2

[

−γ−
γ+

]}

,

F10,...,13 =

{

log[x]
√

γ2 − 1
log[γ],

1
√

γ2 − 1
χ2

[
√

γ−
γ+

]

,

Li2[−x2]− 4Li2[−x]− log[4] log[x]− π2

4
,

Li2[−x]− Li2
[

− 1
x

]

+ log[4] log[x]
√

γ2 − 1

}

, (21)

F14,15,16 =

{

E2

[

γ−
γ+

]

,K2

[

γ−
γ+

]

,E

[

γ−
γ+

]

K

[

γ−
γ+

]}

,

F17,18,19 =

{

log
[γ−
2

]

,
log

[ γ−

2

]

log [x]
√

γ2 − 1
,

log
[γ−
2

]

log
[γ+
2

]

}

,

where γ± = γ ± 1, x = γ −
√

γ2 − 1 and χν [z] =
1
2 (Liν [z] − Liν [−z]) is the Legendre chi function. Note
the appearance of elliptic functions of the first and sec-
ond kind in entries F14,15,16. In the conservative impulse
the contributions to the vµi directions, i.e. l = 2, 3 in (19),
only pickup the basis functions F1 and F2.
For the dissipative sector we find

∆p
(4)µ
1,tidal,diss =

m2
1m

2
2

|b|8
3

∑

l=1

ρµl (22)

13
∑

α=1

Fα(γ)
(

m2Eα,l(γ) +m1Ēα,l(γ)
)

]

,

which only uses the first 13 basis functions of (21) and
does not have a probe-limit m1m

4
2 or m4

1m2 contribu-
tion. As mentioned above, the (RP) and (RR) regions
contribute here, which we denote in the following as rad1

and rad2 respectively. In analogy to (20) the coefficient
functions read

Eα,l(γ) =
∑

i=1,2

c
(i)
E2E

(i)
E,α,l(γ) + c

(i)
B2E

(i)
B,α,l(γ) , (23)

and similarly for the barred one. The explicit form of
(20) and (23) are collected in the ancillary file included
in the arXiv.org submission of this article.
Scattering angle. — A relative, dissipative scattering

angle θ may be defined as follows. First, we define the
relative momentum,

pµ =
ν

Γ2

(γm1 +m2

m1
pµ1 − γm2 +m1

m2
pµ2

)

, (24)

with ν = m1m2/M
2, total mass M = m1 + m2 and

Γ = E/M , such that in the initial center-of-mass (CoM)
frame total momentum Pµ = pµ1 + pµ2 we have pµ1 =
(E1,p) and pµ2 = (E2,−p) with pµ = (0,p) and E =
|Pµ|. The relative scattering angle is now defined as the
angle between the initial and final value of pµ taken in

the initial CoM frame. For planar scattering one finds
the formula,

tan(θ) = − b̂ ·∆p
p∞ − p̂ ·∆p , (25)

which for conservative scattering reduces to

sin
(θcons

2

)

=
|∆pµi,cons|

2p∞
. (26)

The angle is PM-expanded, θ =
∑∞

n=1 θ
(n), and ex-

panded in the tidal couplings,

θ(n) = θ(n)pp + θ
(n)
tidal′ +

∑

X=E,B

(

θ
(n,+)
X2 c

(+)
X2 + θ

(n,−)
X2 δc

(−)
X2

)

.

(27)

The first term describes the point-particle tidal-free part,
the second term post-adiabatic tidal effects and the fi-
nal terms adiabatic tidal corrections. The relative mass
difference is δ = (m1 − m2)/M and we use symmetric
finite-size couplings defined by:

c
(±)
E2 = c

(1)
E2 ± c

(2)
E2 , c

(±)
B2 = c

(1)
B2 ± c

(2)
B2 . (28)

The leading adiabatic tidal effects appear at second PM
order and the leading post-adiabatic effects at fourth PM
order (in our formal PM counting).
The (leading-order) 4PM post-adiabatic angle is de-

rived from one-loop integrals, and reads

θ
(4)
tidal′ = Γ

1575πν

512

(GM)4

|b|8
∑

X

fX2κ
(+)

Ẋ2
(R) , (29)

with

κ
(+)

Ẋ2
(R) =

m1c
(1)
X2κ

(1)

Ẋ2
(R) +m2c

(2)
X2κ

(2)

Ẋ2
(R)

M
. (30)

The 4PM tidal contributions take a similar form as the
tidal-free angle:

θ
(4,±)
X2 = Γ

(GM)4

|b|8
[

θ
(±)
X2,cons,ν0 + νθ

(±)
X2,cons,ν1 (31)

+
ν

Γ2

(

θ
(±)
X2,diss,ν1 + νθ

(±)
X2,diss,ν2

)]

.

The angle coefficients of this expansion depend only on
γ and log |2b/R|, and may be expanded on the function

basis Fα(γ) in terms of polynomials of γ (up to
√

γ2 − 1).
The angle satisfies the same tail relation as pointed out

in Ref. [113]:

θ
(4)
tidal,tail = GE

∂E
(3)
tidal,rad

∂L
log

(γ − 1

2

)

, (32)

where we define θ
(4)
tidal,tail as the part of θ

(4)
tidal in the di-

rection of the tail functions Fα with α = 17, 18, 19 that
depend on log[γ−/2], Erad being the radiated energy.
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Linear response. — The dissipative angle obeys the
same linear response relation as derived in Ref. [114]

θ
(4)
tidal,rad1 = −1

2

(∂θ
(1)
pp

∂L
L
(3)
tidal,rad +

∂θ
(1)
pp

∂E
E

(3)
tidal,rad

+
∂θ

(2)
tidal

∂L
L
(2)
pp,rad

)

(33)

where the “pp” subscript refers to point-particle (and so
tidal-free) contributions. We note that neither the 1PM
angle nor the 2PM loss of angular momentum have a
tidal contribution. On the left-hand-side, the subscript
“rad1” refers to the part of the angle including a single
radiative graviton. This part may also be identified from
its odd scaling under v → −v. Knowledge of the 4PM
rad1 angle completely determines the 3PM tidal loss of
angular momentum, and vice versa (assuming knowledge
of other relevant 3PM observables). The 3PM tidal loss
of angular momentum was previously derived in Ref. [71]

with which we fully agree. The result for L
(3)
rad reads

L
(3)
tidal,rad =

πG3M4ν2

|b|6Γ3

3
∑

α=1

Fα(γ)
∑

X=E,B

(34)

×
(

H
(+)
α,X2(γ)c

(+)
X2 +H

(−)
α,X2(γ)δc

(−)
X2

)

,

where the functions H±

i,X2(γ) are polynomial (up to
√

γ2 − 1) in γ and is a linear function in ν. This re-
sult, together with point-particle result, is provided in
the ancillary file on arXiv.org.
Checks. — The results in this paper build on the

3PM results of Ref. [51], and naturally agree with them.
In addition, we have checked that the post-Newtonian
limit v → 0 of the conservative scattering angle repro-
duces the 2PN and 3PN scattering angles reported in
Refs. [102, 124].3 They also obey the non-trivial checks

Eqs. (32) and (33) (reproducing the 3PM loss of angular
momentum of Ref. [71]) and in general we have checked
that the impulse obeys the constraints (pi +∆pi)

2 = p2i ,
which provides a further internal consistency check.
Conclusions. — In this Letter we have applied the

worldline quantum field theory formalism to tidal effects
at 4PM order, demonstrating the power of our technol-
ogy. It is worth stressing that the work flow was iden-
tical (if not simpler) than in the case of spin [113, 114].
We established tidal effects in the impulse in the con-
servative and dissipative sectors at 4PM and derived the
conservative and dissipative scattering angle. A new fea-
ture appearing at this NNLO order is the need to include
post-adiabatic couplings in order to cancel a divergence
in this classical field theory computation which results in
a renormalization group flow of the post-adiabatic Love
numbers. We also confirmed the tidal contributions to
the radiated angular momentum previously derived by
Heissenberg via very different methods [71]. Our findings
will be potentially useful for improving future waveform
models to include tidal effects [125]. They represent yet
another mosaic stone in our steadily improving picture
of highest-precision gravitational wave physics.

Acknowledgments. — We thank Tanja Hinderer,
Rafael Porto, Muddu Saketh and especially Carlo Heis-
senberg, Raj Patil and Jan Steinhoff for discussions.
This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) Pro-
jektnummer 417533893/GRK2575 “Rethinking Quan-
tum Field Theory” and by the European Union through
the European Research Council under grant ERC-AdG-
101097219 (GraWFTy). Views and opinions expressed
are however those of the authors only and do not neces-
sarily reflect those of the European Union or European
Research Council Executive Agency. Neither the Euro-
pean Union nor the granting authority can be held re-
sponsible for them.

[1] LIGO Scientific, Virgo collaboration, B. P. Abbott
et al., Observation of Gravitational Waves from a
Binary Black Hole Merger,
Phys. Rev. Lett. 116 (2016) 061102 [1602.03837].

[2] LIGO Scientific, Virgo collaboration, B. P. Abbott
et al., GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral,
Phys. Rev. Lett. 119 (2017) 161101 [1710.05832].

[3] LIGO Scientific, VIRGO, KAGRA collaboration,
R. Abbott et al., GWTC-3: Compact Binary
Coalescences Observed by LIGO and Virgo During the
Second Part of the Third Observing Run, 2111.03606.

[4] LISA collaboration, P. Amaro-Seoane et al., Laser
Interferometer Space Antenna, 1702.00786.

3 Modulo a typo in eq. (6.14) of that paper (v1): the mass ratios
should be dropped. We thank the authors for communication.

[5] M. Punturo et al., The Einstein Telescope: A
third-generation gravitational wave observatory,
Class. Quant. Grav. 27 (2010) 194002.

[6] S. W. Ballmer et al., Snowmass2021 Cosmic Frontier
White Paper: Future Gravitational-Wave Detector
Facilities, in Snowmass 2021, 3, 2022, 2203.08228.

[7] L. Blanchet, Gravitational Radiation from
Post-Newtonian Sources and Inspiralling Compact
Binaries, Living Rev. Rel. 17 (2014) 2 [1310.1528].

[8] R. A. Porto, The effective field theorist’s approach to
gravitational dynamics, Phys. Rept. 633 (2016) 1
[1601.04914].

[9] M. Levi, Effective Field Theories of Post-Newtonian
Gravity: A comprehensive review,
Rept. Prog. Phys. 83 (2020) 075901 [1807.01699].

[10] D. A. Kosower, R. Monteiro and D. O’Connell, The
SAGEX review on scattering amplitudes Chapter 14:
Classical gravity from scattering amplitudes,

https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://arxiv.org/abs/2111.03606
https://arxiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/27/19/194002
https://arxiv.org/abs/2203.08228
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://doi.org/10.1016/j.physrep.2016.04.003
https://arxiv.org/abs/1601.04914
https://doi.org/10.1088/1361-6633/ab12bc
https://arxiv.org/abs/1807.01699


7

J. Phys. A 55 (2022) 443015 [2203.13025].
[11] N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Plante and

P. Vanhove, The SAGEX review on scattering
amplitudes Chapter 13: Post-Minkowskian expansion
from scattering amplitudes,
J. Phys. A 55 (2022) 443014 [2203.13024].

[12] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban,
M. P. Solon and M. Zeng, Snowmass White Paper:
Gravitational Waves and Scattering Amplitudes, in
Snowmass 2021, 4, 2022, 2204.05194.

[13] P. Di Vecchia, C. Heissenberg, R. Russo and
G. Veneziano, The gravitational eikonal: from particle,
string and brane collisions to black-hole encounters,
2306.16488.

[14] G. U. Jakobsen, Gravitational Scattering of Compact
Bodies from Worldline Quantum Field Theory, other
thesis, 8, 2023.

[15] Y. Mino, M. Sasaki and T. Tanaka, Gravitational
radiation reaction to a particle motion,
Phys. Rev. D 55 (1997) 3457 [gr-qc/9606018].

[16] E. Poisson, A. Pound and I. Vega, The Motion of point
particles in curved spacetime,
Living Rev. Rel. 14 (2011) 7 [1102.0529].

[17] L. Barack and A. Pound, Self-force and radiation
reaction in general relativity,
Rept. Prog. Phys. 82 (2019) 016904 [1805.10385].

[18] S. E. Gralla and K. Lobo, Self-force effects in
post-Minkowskian scattering,
Class. Quant. Grav. 39 (2022) 095001 [2110.08681].

[19] A. Buonanno and T. Damour, Effective one-body
approach to general relativistic two-body dynamics,
Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091].

[20] A. Buonanno and T. Damour, Transition from inspiral
to plunge in binary black hole coalescences,
Phys. Rev. D 62 (2000) 064015 [gr-qc/0001013].

[21] F. Pretorius, Evolution of binary black hole spacetimes,
Phys. Rev. Lett. 95 (2005) 121101 [gr-qc/0507014].

[22] M. Boyle et al., The SXS Collaboration catalog of
binary black hole simulations,
Class. Quant. Grav. 36 (2019) 195006 [1904.04831].

[23] T. Damour, F. Guercilena, I. Hinder, S. Hopper,
A. Nagar and L. Rezzolla, Strong-Field Scattering of
Two Black Holes: Numerics Versus Analytics,
Phys. Rev. D 89 (2014) 081503 [1402.7307].

[24] S. J. Kovacs and K. S. Thorne, The Generation of
Gravitational Waves. 4. Bremsstrahlung,
Astrophys. J. 224 (1978) 62.

[25] K. Westpfahl and M. Goller, Gravitational scattering
of two relativistic particles in postlinear approximation,
Lett. Nuovo Cim. 26 (1979) 573.

[26] L. Bel, T. Damour, N. Deruelle, J. Ibanez and
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[115] G. Kälin, J. Neef and R. A. Porto, Radiation-reaction
in the Effective Field Theory approach to
Post-Minkowskian dynamics, JHEP 01 (2023) 140
[2207.00580].

[116] D. G. Boulware and L. S. Brown, Tree Graphs and
Classical Fields, Phys. Rev. 172 (1968) 1628.

[117] B. Ruijl, T. Ueda and J. Vermaseren, FORM version
4.2, 1707.06453.

[118] T. Gehrmann and E. Remiddi, Differential equations
for two loop four point functions,
Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329].

[119] J. M. Henn, Multiloop integrals in dimensional
regularization made simple,
Phys. Rev. Lett. 110 (2013) 251601 [1304.1806].

[120] M. Beneke and V. A. Smirnov, Asymptotic expansion
of Feynman integrals near threshold,
Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391].

[121] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf,
C.-H. Shen, M. P. Solon et al., Scattering Amplitudes,
the Tail Effect, and Conservative Binary Dynamics at
O(G4), Phys. Rev. Lett. 128 (2022) 161103

https://doi.org/10.1103/PhysRevD.108.084036
https://arxiv.org/abs/2304.04287
https://doi.org/10.1007/JHEP09(2023)183
https://arxiv.org/abs/2307.04746
https://doi.org/10.1007/JHEP06(2023)048
https://arxiv.org/abs/2303.06111
https://doi.org/10.1007/JHEP06(2023)004
https://arxiv.org/abs/2303.06112
https://doi.org/10.1007/JHEP06(2023)126
https://arxiv.org/abs/2303.07006
https://arxiv.org/abs/2303.06211
https://arxiv.org/abs/2308.02125
https://doi.org/10.1103/PhysRevD.77.021502
https://arxiv.org/abs/0709.1915
https://doi.org/10.1086/533487
https://arxiv.org/abs/0711.2420
https://doi.org/10.1103/PhysRevX.9.011001
https://arxiv.org/abs/1805.11579
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581
https://doi.org/10.1007/s10714-020-02754-3
https://arxiv.org/abs/2006.03168
https://doi.org/10.1103/PhysRevD.107.023010
https://arxiv.org/abs/2210.09425
https://doi.org/10.1086/161499
https://doi.org/10.1103/PhysRevD.94.104028
https://arxiv.org/abs/1608.01907
https://doi.org/10.1103/PhysRevLett.129.081102
https://arxiv.org/abs/2109.07566
https://doi.org/10.1103/PhysRevD.85.124034
https://arxiv.org/abs/1202.3565
https://doi.org/10.1103/PhysRevD.101.064047
https://arxiv.org/abs/1912.01920
https://arxiv.org/abs/2307.10391
https://arxiv.org/abs/2308.01865
https://doi.org/10.1103/PhysRevD.101.044039
https://arxiv.org/abs/2001.00352
https://doi.org/10.1103/PhysRevLett.125.191601
https://arxiv.org/abs/2006.06665
https://doi.org/10.1007/JHEP12(2020)024
https://arxiv.org/abs/2008.04920
https://doi.org/10.1007/JHEP05(2021)188
https://arxiv.org/abs/2010.08559
https://doi.org/10.1088/0264-9381/15/1/009
https://arxiv.org/abs/gr-qc/9710038
https://doi.org/10.1103/PhysRevD.81.124015
https://arxiv.org/abs/0912.4254
https://doi.org/10.1103/PhysRevD.72.124016
https://arxiv.org/abs/gr-qc/0505156
https://doi.org/10.1103/PhysRevD.80.084035
https://arxiv.org/abs/0906.0096
https://doi.org/10.1103/PhysRevD.80.084018
https://arxiv.org/abs/0906.1366
https://arxiv.org/abs/2307.06999
https://doi.org/10.1103/PhysRevLett.131.151401
https://arxiv.org/abs/2306.01714
https://arxiv.org/abs/2308.11514
https://doi.org/10.1007/JHEP01(2023)140
https://arxiv.org/abs/2207.00580
https://doi.org/10.1103/PhysRev.172.1628
https://arxiv.org/abs/1707.06453
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://doi.org/10.1103/PhysRevLett.128.161103


10

[2112.10750].
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