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We report the existence of dissipationless currents in bilayer superconductors above the critical
temperature Tc, assuming that the superconducting phase transition is dominated by phase fluctuations.
Using a semiclassical U(1) lattice gauge theory, we show that thermal fluctuations cause a transition from
the superconducting state at low temperature to a resistive state above Tc, accompanied by the proliferation
of unbound vortices. Remarkably, while the proliferation of vortex excitations causes dissipation of
homogeneous in-plane currents, we find that counterflow currents, flowing in the opposite direction within
a bilayer, remain dissipationless. The presence of a dissipationless current channel above Tc is attributed to
the inhibition of vortex motion by local superconducting coherence within a single bilayer, in the presence
of counterflow currents. Our theory presents a possible scenario for the pseudogap phase in bilayer
cuprates.
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Introduction.—Underdoped cuprates exhibit two char-
acteristic temperature scales. While these materials are
superconducting only below the critical temperature Tc,
they feature a gaplike suppression of the density of low-
energy electronic states up to a significantly higher temper-
ature T�. The precise nature of this pseudogap regime is
still under debate [1,2]. As the density of superconducting
charge carriers is relatively small in underdoped cuprates, it
was proposed that the breakdown of superconductivity at
Tc is dominated by phase fluctuations [3]. This scenario, in
which Cooper pairs exist up to T�, is consistent with the
similarity between the symmetries of the superconducting
gap and the pseudogap [4,5]. Remarkably, measurements
of the Nernst effect [6–9], magnetization experiments
[10,11], and optical spectroscopy [12,13] indicate the
existence of superconducting fluctuations well above Tc.
Further evidence for superconducting fluctuations in the
pseudogap regime is provided by pump-probe experiments
involving parametric amplification of Josephson plasmons
in YBa2Cu3O7−δ (YBCO) [14–17].
To contribute to the ongoing debate, we investigate the

signatures to low-frequency electrodynamics of the phase
fluctuating scenario of the pseudogap phase in bilayer
superconductors. Specifically, we assume that the transition

is dominated by phase fluctuations while the pairing
amplitude remains essentially constant up to temperatures
close to T�. We utilize a semiclassical U(1) lattice gauge
theory [18–20] to simulate dynamics of the superconduct-
ing phase of a bilayer superconductor in the presence of
thermal fluctuations. We find a crossover from an ordered
state to a highly fluctuating state without global phase
coherence at high temperatures, which we associate with
the pseudogap phase. Our simulations show that, in the
pseudogap phase, long-range coherence is destroyed by the
proliferation of vortex excitations, consistent with studies
on the anisotropic XY model [21–27]. Prior Berezinskii-
Kosterlitz-Thouless studies emphasize the importance of
vortices in the phase fluctuation scenario of the pseudogap
phase. In this Letter, our simulations add three crucial
components absent in previous works: (i) inclusion of the
gauge field, (ii) coherent dynamics of fluctuations based on
Maxwell’s equations, and (iii) accounting for consistent
fluctuations and dissipation induced by a thermal bath. The
combination of these elements together are vital for
accurately simulating low-energy electrodynamics in
bilayer superconductors and understanding their collective
modes within the pseudogap phase.
We find that the loss of long-range coherence is

accompanied by a resistive transition where superconduc-
tivity is lost. However, our simulations show that short-
range intrabilayer coherence persists far above Tc. A
striking consequence of short-range intrabilayer supercon-
ducting correlations is that counterflow currents remain
dissipationless above Tc. To be precise, the in-plane
conductivity of a bilayer superconductor can be divided
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into a symmetric and an antisymmetric component as
depicted in Fig. 1(a). Our simulations, presented in
Fig. 1(b), show that the symmetric in-plane conductivity
σþðωÞ no longer features a 1=ω divergence at temperatures
T ≳ Tc, signaling the emergence of a resistive state. In
contrast, in-plane currents with opposite direction in the
lower and upper layer flow without dissipation. This
phenomenon manifests itself in a 1=ω divergence of the
antisymmetric conductivity σ−ðωÞ, as shown in Fig. 1(b).
The effect that we present here is conceptually related to a
variety of other phenomena, such as antisymmetric quasi-
order in a bilayer of superfluids [28], counterflow super-
fluidity in cold atoms [29–31], and Bose-Einstein
condensation of excitons in bilayer electron systems
[32–38]. We clarify that these phenomena are distinct from
the normal-superfluid counterflow of the two-fluid model,
which occurs within the superfluid phase [39].
Model.—Following the Ginzburg-Landau theory of

superconductivity [40], we describe the superconducting
state by a complex order parameter ψ r ¼ jψ rjeiϕr, which is
discretized on a three-dimensional lattice with r being the
lattice site. Each superconducting layer is represented by a
square lattice as depicted in Fig. 2(a). The crystalline c axis
is oriented along the z direction. Because of the Cooper pair
charge of −2e, the order parameter is coupled to the
electromagnetic field. We employ the Peierls substitution
such that the electromagnetic vector potential Ar enters
the gauge-invariant phase differences between the lattice
sites. The gauge-invariant phase differences, which are
defined below, govern the nearest-neighbor tunneling of
Cooper pairs.
In our model, we fit our parameters to the bilayer cuprate

YBCO [14–16,41,42]. The interlayer distances are ds for
intrabilayer (strong) junctions and dw for interbilayer
(weak) junctions. Here, we choose ds and dw such that
the interlayer distances approximately reproduce the spac-
ing of CuO2 layers in the bilayer cuprate YBCO. The in-
plane lattice constant dab is introduced as a short-range
cutoff below the in-plane coherence length. The tunneling

coefficients are tab for in-plane junctions, ts for intrabilayer
junctions, and tw for interbilayer junctions. We choose ts
and tw such that the Josephson plasma frequencies of the
simulated bilayer superconductor are comparable to those
of YBCO: ωJ1=2π ≈ 1 THz and ωJ2=2π ≈ 14 THz. The
in-plane tunneling coefficient tab determines the in-plane
plasma frequency, which we take to be ωab=2π ∼ 75 THz
at zero temperature.
The Lagrangian and the equations of motion are pre-

sented in Supplemental Material [42]. We add Langevin
noise and damping terms to the equations of motion and
employ periodic boundary conditions. We then integrate
the stochastic differential equations using Heun’s method
with a step size of Δt ¼ 1.25 as. In the following, we
consider a bilayer superconductor with Nz ¼ 4 layers and
Nxy ¼ 40 × 40 sites per layer. The layers n ¼ 1 and n ¼ 2

form a bilayer, as well as the layers n ¼ 3 and n ¼ 4. The
complete set of model parameters is specified in
Supplemental Material [42].
Interlayer phase coherence.—To characterize the coher-

ence of the gauge-invariant intra- and interbilayer phase
differences, we introduce effective interlayer tunneling
coefficients. First, we define the unitless vector potential
aj;r ¼ −2edj;rAj;r=ℏ on the bond between the lattice site
r≡ ðl; m; nÞ and its nearest neighbor in the j∈ fx; y; zg
direction, where dj;r denotes the length of the bond. The

FIG. 1. Dissipationless counterflow in a bilayer superconduc-
tor. (a) Current configurations in the copper oxide layers
characterized by the symmetric and the antisymmetric conduc-
tivity, respectively. (b) Imaginary part of the symmetric and the
antisymmetric conductivity at 36 K ∼ 1.4Tc. The error bars
indicate the standard errors of the ensemble averages.

FIG. 2. Semiclassical simulation of a bilayer superconductor.
(a) Schematic illustration of the lattice gauge model. (b) Temper-
ature dependence of the effective interlayer tunneling coeffi-
cients. The intrabilayer coherence remains nonzero above Tc.
(c) Snapshot of the vorticity of the superconducting order
parameter at 36 K ∼ 1.4Tc. (d) Temperature dependence of the
number of vortices per layer. Vortices and antivortices contribute
equally to this number. The vortex number rises sharply around
Tc, suggesting that the transition is driven by vortex unbinding.
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gauge-invariant intrabilayer phase differences between
layers n ¼ 1 and n ¼ 2 are θsl;m ¼ Pðϕl;m;1 − ϕl;m;2þ
azl;m;1Þ, and the gauge-invariant interbilayer phase
differences between layers n ¼ 2 and n ¼ 3 are
θwl;m ¼ Pðϕl;m;2 − ϕl;m;3 þ azl;m;2Þ. Note that the gauge-
invariant phase differences are mapped onto the interval
ð−π; π� by the projection operator Pð·Þ. In the presence of
thermal fluctuations, we determine the effective interlayer
tunneling coefficients

ts;eff ¼ tshcos θsl;mi; ð1Þ

tw;eff ¼ twhcos θwl;mi: ð2Þ

The temperature dependence of the effective tunneling
coefficients is shown in Fig. 2(b), where we average the
cosine of the interlayer phase differences over the xy plane,
for a time interval of 2 ps, and an ensemble of 100
trajectories. The onset of strong phase fluctuations dra-
matically suppresses the interbilayer tunneling coefficient
around a crossover temperature of 25 K, which we take to
be the transition temperature Tc. While the advent of strong
phase fluctuations suppresses also the intrabilayer coeffi-
cient ts, it remains nonzero up to large temperatures. This
indicates that, while long-range order is lost across the
transition, the pseudogap phase still retains strong local
phase coherence within each bilayer. The consequences of
phase fluctuations on the plasma resonances as well as the
temperature dependence of the in-plane tunneling coeffi-
cient and the amplitude of the order parameter in our model
are presented in Supplemental Material [42].
Vortices.—To understand the microscopic nature of the

phase transition, we turn our attention to the role of vortices
in the pseudogap phase. In continuum theories, a vortex is
defined through the phase winding of the order parameter
along a closed path:

Φ ¼
I

∇ϕ · dr ¼
I �

∇ϕþ 2e
ℏ
A

�
· dr −

I
2e
ℏ
A · dr:

ð3Þ

In our simulation, we use the latter representation, as it is
based on quantities that directly enter the Lagrangian. We
define the vorticity of a single plaquette in the xy plane as

vl;m;n ¼
1

2π

�
axl;m;n þ aylþ1;m;n − axl;mþ1;n − ayl;m;n

�

−
1

2π

�
θxl;m;n þ θylþ1;m;n − θxl;mþ1;n − θyl;m;n

�
; ð4Þ

where θxl;m;n ¼ Pðϕl;m;n − ϕlþ1;m;n þ axl;m;nÞ and
θyl;m;n ¼ Pðϕl;m;n − ϕl;mþ1;n þ ayl;m;nÞ. The vorticity can
assume the values −1, 0, and þ1. A vorticity of þ1

corresponds to a vortex, while a vorticity of −1 corresponds
to an antivortex.
In Fig. 2(c), we show a snapshot of the vorticity in the

lowest layer at a temperature of 36 K ∼ 1.4Tc. Even though
most vortex and antivortex form pairs or clusters (seen as
blue and red squares next to each other), we crucially also
find isolated vortices and antivortices, indicating that the
phase transition is driven by vortex-antivortex unbinding.
In Fig. 2(d), we plot the number of vortices per layer as a
function of temperature. The number of vortices exhibits a
rapid increase between 15 and 30 K. Details of the behavior
of vortices in the pseudogap phase are captured by
computing in-plane and out-of plane correlations, which
can be found in Supplemental Material [42]. In addition,
the presence of vortices leads to a disordered Josephson
intrabilayer potential. The strength and spectral behavior
of the vortex-induced disorder is also presented in
Supplemental Material [42]. Here, we focus on the con-
sequences of the phase transition on the conductivity.
In-plane conductivity.—We separate the in-plane con-

ductivity of a bilayer superconductor into a symmetric
and an antisymmetric component as shown in Fig. 1(a).
To calculate the two components of the conductivity,
we introduce an oscillating symmetric (antisymmetric)
current, J�. Once a steady state is reached, we compute
σ�ðωÞ ¼ J�ðωÞ=E�ðωÞ, where E� is the symmetric (anti-
symmetric) electric field. Details of the conductivity
measurements are provided in Supplemental Material [42].
The symmetric and the antisymmetric conductivity are

shown for different temperatures in Fig. 3. At a temperature
of 15 K ∼ 0.6Tc, σþ and σ− are in good agreement with
each other. The imaginary part of σþ and σ− exhibits the
characteristic 1=ω behavior of a superconductor. While the
real part of both conductivities is relatively flat for
frequencies above 10 THz, it tends to slowly increase with
decreasing frequency below 10 THz. The values of Reσþ
and Reσ− at 1 THz bear some uncertainty due to slow
numerical convergence.
At temperatures T ≳ Tc, the phase transition is accom-

panied by a dissipative transition, where the imaginary part
of σþ no longer diverges as 1=ω. At temperatures close to
Tc, the real part of σþ rises significantly at small frequen-
cies. By contrast, the imaginary part of σ− exhibits a 1=ω
divergence up to temperatures well above Tc while the real
part has no significant temperature dependence. This
manifestation of remnant superconductivity above Tc is
the key result of the present work.
Origin of dissipationless counterflow.—The breakdown

of the 1=ω divergence of the imaginary part of σþ reveals a
transition to a resistive state at Tc. This indicates an
unbinding of planar vortex-antivortex pairs above Tc,
similar to the resistive transition in superconducting thin
films [50,51]. The underlying mechanism of this transition
is the following. In the presence of a current J, a single
vortex is exposed to a Magnus force F ¼ J ×Φ0, whereΦ0
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has the magnitude of a flux quantumΦ0 ¼ πℏ=e and points
in the direction of the magnetic field inside the vortex core.
In the case of a dc current, unbound vortices and anti-
vortices drift in opposite directions perpendicular to the
current, dissipating energy.
The simultaneous observation of dissipationless counter-

flow suggests that unbound vortex lines cut through an
entire bilayer rather than just a single layer. Equivalently, a
vortex in one layer of a bilayer is paired with a vortex of the
same vorticity in the other layer of the same bilayer. In this
scenario, the dissipation of currents in the two layers of the
same bilayer is different, depending on whether the currents
flow in the same or opposite directions. If the currents flow
in the same direction, the Magnus force points in the same
direction for all vortices in the two layers with the same
vorticity. Thus, each vortex-vortex pair experiences a drift

motion perpendicular to the current direction as depicted in
Fig. 4(a). Analogously to the case of a thin film, the vortex
motion dissipates energy, implying a nonzero resistivity. If
the currents flow in opposite directions, however, the
Magnus force points into opposite directions for the two
vortices of each intrabilayer pair. The remnant intrabilayer
coherence leads to an effective potential with a linear
dependence on the pair size, acting as string tension against
the flow of the two vortices away from each other in the
presence of counterflow currents [52]. Thus, the intra-
bilayer vortex pairs experience no net force as highlighted
by Fig. 4(b). Since the vortices do not move in this case, the
flow of counterdirected currents is dissipationless, consis-
tent with the observation of a 1=ω divergence of the
imaginary part of σ− above Tc.
We note that the previous paragraph provides only a

simplified description of the vortex dynamics in the
presence of in-plane currents. In fact, the vortex dynamics
is very complicated due to the high density of vortices in
the layers and fast creation and annihilation processes; see
Supplemental Material [42]. Nonetheless, the scenario of
intrabilayer vortex-vortex pairs that are essentially unbound
from any antivortices is supported by several correlation
functions [42]. In Supplemental Material, we also calculate
conductivities at finite momentum along the z direction
[42]. The results are momentum independent, which
corroborates the picture of decoupled bilayers, where
vortex lines between different bilayers are uncorrelated.
Conclusion.—We have discovered that counterflow cur-

rents flow without dissipation even above the phase
transition temperature in a U(1) gauge-invariant model
for bilayer superconductors coupled to a thermal bath.
Experimental verification of the existence of dissipationless
counterflow in bilayer cuprates would provide smoking

FIG. 4. Dynamics of intrabilayer vortex pairs in the presence
of in-plane currents, sustaining dissipationless counterflow.
(a) Vortex dynamics in the presence of unidirected in-plane
currents. (b) Vortex dynamics in the presence of counterdirected
in-plane currents. Vortices in different superconducting layers
within the same bilayer are pinned relative to each other due to the
residual superconducting coherence within a single bilayer.

FIG. 3. Symmetric and antisymmetric conductivity at different temperatures. (a)–(d) Imaginary part. (e)–(h) Real part. The error bars
indicate the standard errors of the ensemble averages. The crossover temperature is Tc ∼ 25 K. The antisymmetric conductivity
indicates superconductivity above Tc.
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gun evidence that the pseudogap phase in bilayer super-
conductors corresponds to phase-fluctuating superconduc-
tivity with strong intrabilayer superconducting correlations
up to high temperatures. Importantly, the observation of
dissipationless counterflow currents would strongly sup-
port the scenario of preformed pairs without global phase
coherence as the correct description of the pseudogap
phase, in general, applying also to monolayer cuprate
superconductors. We expect counterflow currents to appear
when a magnetic field is applied in parallel to the layers,
giving rise to a diamagnetic response [53]. The results
presented here open up interesting research questions about
the full range of consequences of such dissipationless
currents and whether they can be technologically exploited.
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