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I. LAGRANGIAN AND EQUATIONS OF MOTION

Here, we present our semiclassical U(1) lattice gauge theory [1–3] in detail. The in-plane lattice constant dx,r =
dy,r = dab is introduced as a short-range cutoff below the in-plane coherence length. The interlayer distances are
dz,r = ds for intrabilayer (strong) junctions and dz,r = dw for interbilayer (weak) junctions, reproducing the spacing
of CuO2 planes in the crystal. The Lagrangian of the lattice gauge model consists of three terms,

L = Lsc + Lem + Lkin. (1)

The first term is the |ψ|4 model of the superconducting condensate in the absence of Cooper pair tunneling,

Lsc =
∑
r

Kℏ2|∂tψr|2 + µ|ψr|2 −
g

2
|ψr|4, (2)

where the Ginzburg-Landau coefficients µ and g are kept fixed throughout this work. The coefficient K is related
to the Thomas-Fermi screening length λTF [4], K = ϵ0/8e

2|ψ0|2λ2TF. We formulate the Lagrangian of the free
electromagnetic field on an anisotropic lattice,

Lem =
∑
j,r

κj,rϵ∞ϵ0
2

E2
j,r −

κz,r
κj,rβ2

j,rµ0

[
1− cos

(
βj,rBj,r

)]
. (3)

We employ the temporal gauge, where the electric field is given by the time derivative of the vector potential,
Ej,r = −∂tAj,r. The j component of the electric field lies on the bond from site r to its nearest neighbor in the
j ∈ {x, y, z} direction. The magnetic field components Bj,r = ϵjklδkAl,r are centered on the plaquettes of the lattice.
We calculate the spatial derivatives according to δkAl,r = (Al,r+uk

− Al,r)/dl,r, where uk is the unit vector in the
k direction. The background permittivity ϵ∞ is due to bound charges. The other prefactors in Eq. (3) are linked to
the anisotropic lattice geometry. Introducing dc = (ds + dw)/2, we write κx,r = κy,r = 1 and κz,r = dz,r/dc, while
βx,r = βy,r = 2edabdz,r/ℏ and βz,r = 2ed2ab/ℏ. The kinetic part of the Lagrangian,

Lkin = −
∑
j,r

tj,r|ψr+uj − ψre
iaj,r |2, (4)

accounts for nearest-neighbor tunneling of Cooper pairs. The unitless vector potential aj,r = −2edj,rAj,r/ℏ couples
to the phase of the order parameter, ensuring the local gauge-invariance of Lkin. This coupling reflects the Coulomb
interaction between the Cooper pairs. The tunneling coefficients are tx,r = ty,r = tab for in-plane junctions, tz,r = ts
for intrabilayer junctions, and tz,r = tw for interbilayer junctions.

The equations of motion read

∂2t ψr =
1

Kℏ2
∂L
∂ψ∗

r

− γsc∂tψr + ξr, (5)

∂2tAj,r =
1

ϵ∞ϵ0

∂L
∂Aj,r

− γj,r∂tAj,r + ηj,r, (6)

where γsc and γj,r are phenomenological damping constants of the superconducting order parameter and the vector
potential, respectively. The damping constants of the vector potential are γx,r = γy,r = γab for in-plane junctions,
γz,r = γs for intrabilayer junctions, and γz,r = γw for interbilayer junctions. The Langevin noise terms ξr and ηr

have a white Gaussian distribution with zero mean. To satisfy the fluctuation-dissipation theorem, we take the noise
of the order parameter as

⟨Re{ξr(t)}Re{ξr′(t′)}⟩ =
γsckBT

Kℏ2V0
δrr′δ(t− t′) , (7)

⟨Im{ξr(t)}Im{ξr′(t′)}⟩ =
γsckBT

Kℏ2V0
δrr′δ(t− t′) , (8)

⟨Re{ξr(t)}Im{ξr′(t′)}⟩ = 0, (9)

where V0 = d2abdc. The noise correlations for the vector potential are

⟨ηx,r(t)ηx,r′(t′)⟩ =
2γabkBT

ϵ∞ϵ0V0
δrr′δ(t− t′), (10)

⟨ηy,r(t)ηy,r′(t′)⟩ =
2γabkBT

ϵ∞ϵ0V0
δrr′δ(t− t′), (11)

⟨ηz,r(t)ηz,r′(t′)⟩ =
2γz,rkBT

κz,rϵ∞ϵ0V0
δrr′δ(t− t′). (12)
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II. MODEL PARAMETERS

We simulate a bilayer cuprate with N = 40× 40× 4 lattice sites. The model parameters are specified in Table I.

TABLE I. Model parameters of the simulated bilayer cuprate.

K (meV−1) 2.9× 10−5

µ (meV) 1.0× 10−2

g (meV Å
3
) 5.0

ϵ∞ 4

dab (Å) 15

ds (Å) 4

dw (Å) 8

tab (meV) 5.7× 10−1

ts (meV) 3.9× 10−2

tw (meV) 3.6× 10−4

γH/2π (THz) 1.0

γab/2π (THz) 7.0

γs/2π (THz) 1.2

γw/2π (THz) 0.4

III. PLASMA RESONANCES

A bilayer superconductor has two longitudinal Josephson plasma modes, which govern the dynamics of the Cooper
pairs along the c axis. The ground state expressions [5, 6] for the two Josephson plasma frequencies are

ω2
J1,J2 =

(
1

2
+ αs

)
Ω2

s +

(
1

2
+ αw

)
Ω2

w ∓

√[(
1

2
+ αs

)
Ω2

s −
(
1

2
+ αw

)
Ω2

w

]2
+ 4αsαwΩ2

sΩ
2
w. (13)

The bare plasma frequencies of the interlayer junctions are given by

Ωs,w =

√
8ts,w|ψ0|2e2dcds,w

ϵ∞ϵ0ℏ2
, (14)

and the capacitive coupling constants [4, 7, 8] are

αs,w =
ϵ∞ϵ0

8K|ψ0|2e2dcds,w
, (15)

where dc = (ds+dw)/2 is the average c-axis spacing. The parameter choice in Table I implies αw ≈ 1, and αs ≈ 2. The
bare plasma frequencies are Ωw/2π ≈ 0.9 THz and Ωs/2π ≈ 6.3 THz, resulting in the Josephson plasma frequencies

ωJ1 ≈ 2π × 1.0 THz, (16)

ωJ2 ≈ Ωs

√
1 + 2αs ≈ 2π × 14.1 THz. (17)

To study the temperature dependence of the Josephson plasma modes, we compute the power spectra of the
interlayer supercurrents based on an ensemble of 1000 trajectories. The Josephson current along a single junction in
the z direction is given by

Jz
l,m,n =

2etz,rdc
iℏ

(
ψ∗
l,m,n+1ψl,m,ne

iaz
l,m,n − c.c.

)
. (18)
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(a) (b)

FIG. 1. Thermal distribution of the interlayer currents. (a) Power spectrum of the interbilayer current at different temperatures.
(b) Power spectrum of the intrabilayer current at different temperatures. Each spectrum is based on an ensemble average of
1000 trajectories, and the spectral power is normalized by the total power. The crossover temperature is Tc ∼ 25 K.

For each trajectory, we record the average interbilayer supercurrent

Jw =
1

Nxy

∑
l,m

Jz
l,m,2 (19)

and the average intrabilayer supercurrent

Js =
1

Nxy

∑
l,m

Jz
l,m,1 (20)

over a time interval of 10 ps. We then compute the Fourier transforms Jw,s(ω) and evaluate the ensemble averages
⟨|Jw,s(ω)|2⟩. One can see in Fig. 1(a) that the lower Josephson plasma resonance shifts to lower frequencies with
increasing temperature and vanishes around Tc. This is also observed in experiments [9, 10].

As shown in Fig. 1(b), the upper Josephson plasma resonance broadens with increasing temperature and shifts to
lower frequencies. The latter is also visible in Fig. 2(a), where the peak frequency ωs,peak is displayed as a function
of temperature. We compare the peak frequency to the thermal average

ωJ2,th = Ωs

√
⟨Cs

l,m⟩
|ψ0|2

+ αs

〈
Cs

l,m

|ψl,m,1|2
+

Cs
l,m

|ψl,m,2|2

〉
, (21)

where

Cs
l,m =

1

2

(
ψ∗
l,m,2ψl,m,1e

iaz
l,m,1 + c.c.

)
. (22)

This simple estimate describes the average renormalization of the plasma frequency of the intrabilayer junctions. It
accounts for the renormalization of both the effective intrabilayer tunneling and the order parameter due to thermal
fluctuations. At temperatures above 20 K, ωJ2,th is clearly smaller than ωs,peak. Remarkably, the discrepancy

(a) (b)

FIG. 2. Temperature dependence of the upper Josephson plasma resonance. (a) Temperature dependence of the peak frequency
and the thermal average of the upper Josephson plasma frequency. (b) The discrepancy δω = ωs,peak − ωJ2,th has a similar
temperature dependence as the number of vortices per layer Nv. The crossover temperature is Tc ∼ 25 K.
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(a) (b)

FIG. 3. Temperature dependence of the in-plane plasma resonance. (a) Power spectrum of the in-plane currents at different
temperatures. Each spectrum is based on an ensemble average of 1000 trajectories, and the spectral power is normalized by
the total power. (b) Temperature dependence of the peak frequency and the thermal average of the in-plane plasma frequency.
The crossover temperature is Tc ∼ 25 K.

δω = ωs,peak − ωJ2,th follows a similar temperature dependence as the areal density of vortices, which is highlighted
by Fig. 2(b). This indicates that the appearance of vortices leads to a significant stabilization of the upper Josephson
plasma frequency.

We now turn to the temperature dependence of the in-plane plasma frequency. At zero temperature, the in-plane
plasma frequency is

ωab =

√
8tab|ψ0|2e2d2ab

ϵ∞ϵ0ℏ2
≈ 2π × 73.7 THz. (23)

We evaluate the average supercurrent along the x axis based on the definition

Jx =
1

2Nxy

∑
l,m

2∑
n=1

Jx
l,m,n, (24)

where

Jx
l,m,n =

2etabdab
iℏ

(
ψ∗
l+1,m,nψl,m,ne

iax
l,m,n − c.c.

)
. (25)

In Fig. 3(a), we present the power spectrum of the supercurrents along the x axis at different temperatures. Similarly
to the upper Josephson plasma resonance, the in-plane plasma resonance broadens with increasing temperature. While
the peak frequency ωx,peak decreases monotonically with increasing temperature below Tc, it slowly increases above
Tc. This behavior is consistent with the temperature dependence of the order parameter. Indeed, we find that the
temperature dependence of ωx,peak is described by the average renormalization of the plasma frequency of the in-plane
junctions. As evidenced by Fig. 3(b), ωx,peak is in good agreement with the thermal average

ωab,th = ωab

√
⟨ψ∗

l+1,m,nψl,m,ne
iax

l,m,n + c.c.⟩
2|ψ0|2

(26)

at all simulated temperatures.

IV. TEMPERATURE DEPENDENCE OF THE IN-PLANE TUNNELING AND THE
SUPERCONDUCTING ORDER PARAMETER

In this section, we show the behavior of the effective in-plane tunneling coefficient and the amplitude of the order
parameter across the phase ordering transition described in the main text.

The temperature dependence of the effective in-plane tunneling coefficient tab,eff = tab ⟨cos θxr ⟩ is plotted in Fig. 4(a).
Local phase fluctuations reduce the effective in-plane tunneling coefficient through disorder averaging of ⟨cos θxr ⟩.

The temperature dependence of the order parameter is displayed in Fig. 4(b). In the ground state at T = 0, the
amplitude of the order parameter is given by |ψ0|2 = µ/g = 2× 1021 cm−3. The order parameter first decreases with
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(a) (b)

FIG. 4. Temperature dependence of the in-plane tunneling and the superconducting order parameter. (a) Temperature
dependence of the effective in-plane tunneling coefficient. (b) Temperature dependence of the amplitude of the order parameter.
Both quantities are averaged over all lattice sites, a time interval of 2 ps (200 measurements), and an ensemble of 100 trajectories.
The standard error of each data point is comparable to the point size. The crossover temperature is Tc ∼ 25 K.

increasing temperature and reaches a minimum of ⟨|ψr|⟩/|ψ0| ≈ 0.66 around 30 K. Above 30 K, it slowly increases
with increasing temperature. This behavior is consistent with an order-disorder transition [11]. We attribute the
temperature dependence of the order parameter to a modification of the order parameter potential due to phase
fluctuations, depleting the order parameter at temperatures below 30 K. However, as temperature is further increased,
amplitude fluctuations are also strongly excited, leading to an increase of ⟨|ψr|⟩.

V. VORTEX CORRELATIONS

Using the definition for the vorticity given by Eq. (4) in the main text, we define the two-point correlation function
of vortices in the xy plane,

Vab(xi, yj , t) =
⟨vl,m,n(0)vl+i,m+j,n(t)⟩

⟨v2l,m,n(0)⟩
. (27)

In Fig. 5(a), we show the equal-time in-plane vortex correlation function at 36 K. It reveals a strong tendency to the
formation of vortex-antivortex pairs. The accumulated probability to find an antivortex on the nearest or next-nearest
plaquettes of a vortex amounts to 94%. On larger length scales, in-plane vortex correlations are negligible. Next, we
consider the cumulative correlation function

Vab(r, t) =
∑

|(xi,yj)|=r

Vab(xi, yj , t), (28)

where the sum is taken over all (xi, yj) with x2i + y2j = r2. One can see in Fig. 5(b) that vortex-antivortex pairs
annihilate on a time scale of a few femtoseconds.

In Fig. 5(c), we show the relative amount of isolated vortices as a function of temperature. An isolated vortex is
a vortex without an vortex of opposite vorticity on the nearest or next-nearest neighbor plaquettes. The percentage
of isolated vortices grows below Tc and saturates at higher temperature. This indicates a transition from bound to
unbound vortices akin to a Kosterlitz-Thouless transition. The percentage of isolated vortices is limited by the areal
density of vortices.

Furthermore, we calculate the interlayer correlation functions

Vs =
⟨ṽl,m,1ṽl,m,2⟩

⟨ṽ2l,m,n⟩
, (29)

Vw =
⟨ṽl,m,2ṽl,m,3⟩

⟨ṽ2l,m,n⟩
, (30)

where

ṽl,m,n =

l+1∑
l′=l−1

m+1∑
m′=m−1

vl′,m′,n (31)
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(a) (b) (c) (d)

FIG. 5. Vortex excitations. (a) Equal-time in-plane vortex correlation function at 36 K ∼ 1.4Tc. (b) Time-resolved in-plane
vortex correlation function at 36 K, where r2 = x2 + y2. (c) Relative amount of isolated vortices at different temperatures.
Isolated vortices are vortices without an antivortex on the nearest or next-nearest neighbor plaquettes. (d) Interlayer vortex
correlations. The results in (a) and (b) are obtained from an ensemble average of 1000 trajectories. Each data point in (c) and
(d) is based on an ensemble average of 100 trajectories.

is the vorticity of a bin of 9 plaquettes. The interlayer vortex correlation functions are displayed in Fig. 5(d).
While interbilayer vortex correlations are generally negligible, intrabilayer vortex correlations are larger than zero
at all simulated temperatures. The intrabilayer correlations are small and follow a similar temperature dependence
as the effective intrabilayer coupling; see Fig. 2(b) in the main text. Note that the in-plane penetration depth
λab = ωab/c

√
ϵ∞ ≈ 324 nm is larger than the in-plane system size of 60 nm.

VI. CORRELATIONS OF THE INTRABILAYER JOSEPHSON POTENTIAL

In the presence of fluctuating vortices, the intrabilayer Josephson potential becomes disordered and fluctuating.
We characterize this effect by computing the power spectra of spatial and time variations around the spatiotemporal
mean, through the function

F (r, t) = cos θs(r, t)− ⟨cos θs(r, t)⟩. (32)

For each trajectory of an ensemble of 1000 trajectories, we record F (r, t) for 2 ps with a detection rate of 5 PHz and
compute the Fourier transform

F (k, ω) =
1

Nt

∑
r

∑
j

F (r, tj) e
i(k·r−ωtj), (33)

where Nt = 104 is the number of measurements per trajectory. In Fig. 6, we show a selection of power spectra
|F (k, ω)|2, based on the ensemble average of 1000 trajectories. Note that F (k = 0, ω = 0) = 0. We find that
the disordered potential is peaked at the lowest momenta. As a function of frequency, we see noisy dynamics with
fluctuations up to ∼ 5 THz.

(a) (b)

FIG. 6. Power spectra of the disorder function at 36 K ∼ 1.4Tc. (a) Power spectra of the disorder function for various momenta
with kz = 0. (b) Power spectra of the disorder function for various momenta with kz = π/2dc. The in-plane momentum
components are specified in units of 2π/Lab. The power spectra are evaluated from an ensemble average of 1000 trajectories.
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VII. DETAILS ON THE CONDUCTIVITY MEASUREMENTS

In the main text, we present numerical results for the symmetric and antisymmetric components of the in-plane
conductivity. To measure the symmetric conductivity σ+, we add a spatially homogeneous probe current to the
equations of motion for Ax,r,

∂2tA
x
l,m,n =

1

ϵ∞ϵ0

∂L
∂Ax

l,m,n

− γab∂tA
x
l,m,n + ηxl,m,n − Jsym

ϵ∞ϵ0
cos(ωprt). (34)

Once a steady state is reached, we record the symmetric component of the electric field

E+ =
1

N

∑
l,m,n

Ex
l,m,n =

1

N

∑
l,m,n

(
−∂tAx

l,m,n

)
(35)

and the symmetric component of the current

J+ =
1

Nz

∑
n

Jx
n . (36)

The average current Jx
n in layer n includes superconducting, normal and capacitive contributions,

Jx
n = Jx

n,sup + Jx
n,nor + Jx

n,cap. (37)

The superconducting current is given by

Jx
n,sup =

1

Nxy

∑
l,m

2etabdab
iℏ

(
ψ∗
l+1,m,nψl,m,ne

iax
l,m,n − c.c.

)
. (38)

The normal current is given by

Jx
n,nor =

1

Nxy

∑
l,m

ϵ∞ϵ0γabE
x
l,m,n. (39)

The capacitive current is given by

Jx
n,cap =

1

Nxy

∑
l,m

ϵ∞ϵ0∂tE
x
l,m,n. (40)

For ωpr/2π = 1 THz, we record E+(t) and J+(t) for 20 ps. For all other probe frequencies, we record E+(t) and
J+(t) for 4 ps. Following this protocol, we evaluate σ+(ωpr) = J+(ωpr)/E+(ωpr) for 100–1000 trajectories and take
the ensemble average. We use Jsym = 500 kA cm−2. Thus, we probe the linear response as evidenced by Fig. 7.
To measure the antisymmetric conductivity σ−, we proceed analogously to the symmetric case. Here, the probe

current alternates from layer to layer, i.e.,

∂2tA
x
l,m,n =

1

ϵ∞ϵ0

∂L
∂Ax

l,m,n

− γab∂tA
x
l,m,n + ηxl,m,n − (−1)nJasym

ϵ∞ϵ0
cos(ωprt). (41)

(a) (b)

FIG. 7. Symmetric conductivity for different probe strengths at 36 K ∼ 1.4Tc. (a) Real part. (b) Imaginary part. The error
bars indicate the standard errors of the ensemble averages.
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(a) (b)

FIG. 8. Antisymmetric conductivity for different probe strengths at 36 K ∼ 1.4Tc. (a) Real part. (b) Imaginary part. The
error bars indicate the standard errors of the ensemble averages.

Once a steady state is reached, we record the antisymmetric component of the electric field

E− =
1

N

∑
l,m,n

(−1)nEx
l,m,n (42)

and the antisymmetric component of the current

J− =
1

Nz

∑
n

(−1)nJx
n . (43)

For ωpr/2π = 1 THz, we record E+(t) and J+(t) for 20 ps. For all other probe frequencies, we record E+(t) and J+(t)
for 4 ps. Following this protocol, we evaluate σ−(ωpr) = J−(ωpr)/E−(ωpr) for 100–1000 trajectories and take the
ensemble average. In Fig. 8, we show data for probe strengths of Jasym = 5× 109 kA cm−2, Jasym = 7× 109 kA cm−2,
and Jasym = 1010 kA cm−2. We suspect that the measurement with Jasym = 5 × 109 kA cm−2 at 1 THz is poorly
converged and use the data from the measurement with Jasym = 7 × 109 kA cm−2 in the main text. For all other
probe strengths, we use the results from the measurements with Jasym = 5 × 109 kA cm−2. Note that Jasym is
significantly larger than Jsym because the antisymmetric probe current induces a magnetic field that strongly screens
the antisymmetric current.

Furthermore, we measure the symmetric and antisymmetric conductivity for a z-axis momentum of kz = π/2dc.
The corresponding current configurations are depicted in Fig. 9(a). One can see in Figs. 9(b) and 9(c) that σ+ and
σ− have no significant dependence on kz. This confirms that the interbilayer coupling between vortices is negligible
as indicated by Fig. 5(d).

x
z

𝜎+ (𝜋/2dc) 𝜎− (𝜋/2dc)
(a) (b) (c)

FIG. 9. Dependence of the symmetric and antisymmetric conductivity on the z-axis momentum. (a) Current configurations
characterized by the symmetric and antisymmetric conductivity, respectively, for kz = π/2dc. (b) Imaginary part of σ+ for
kz = 0 and kz = π/2dc at 36 K ∼ 1.4Tc. (c) Imaginary part of σ− for kz = 0 and kz = π/2dc at 36 K. The error bars indicate
the standard errors of the ensemble averages.
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