Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neural density estimation for Galactic Binaries in LISA data analysis

MPG-Autoren
/persons/resource/persons252867

Katz,  Michael L.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons238174

Gair,  Jonathan
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2402.13701.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Korsakova, N., Babak, S., Katz, M. L., Karnesis, N., Khukhlaev, S., & Gair, J. (2024). Neural density estimation for Galactic Binaries in LISA data analysis. Physical Review D, 110(10): 104069. doi:10.1103/PhysRevD.110.104069.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-A3C3-D
Zusammenfassung
The future space based gravitational wave detector LISA (Laser Interferometer
Space Antenna) will observe millions of Galactic binaries constantly present in
the data stream. A small fraction of this population (of the order of several
thousand) will be individually resolved. One of the challenging tasks from the
data analysis point of view will be to estimate the parameters of resolvable
galactic binaries while disentangling them from each other and from other
gravitational wave sources present in the data. This problem is quite often
referred to as a global fit in the field of LISA data analysis. A Bayesian
framework is often used to infer the parameters of the sources and their
number. The efficiency of the sampling techniques strongly depends on the
proposals, especially in the multi-dimensional parameter space. In this paper
we demonstrate how we can use neural density estimators, and in particular
Normalising flows, in order to build proposals which significantly improve the
convergence of sampling. We also demonstrate how these methods could help in
building priors based on physical models and provide an alternative way to
represent the catalogue of identified gravitational wave sources.