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Methods 1 

 2 

1. Distribution of wooden balls 3 

The chimpanzees required wooden balls to operate the apparatus successfully; hence, we 4 

provided the balls to them. First, throughout the baseline phase (Part 1), the balls were 5 

plentiful available in the chimpanzees’ enclosure (±75 at all times), distributed over a 6 

concentric area with a radius of ± 25 meters with the implemented apparatus in its centre-7 

point. Most balls were distributed close to the apparatus such that the chimpanzees had them 8 

readily available when they were exploring the apparatus (Figure 1c in Main text). The 9 

chimpanzees were rather naïve to such experimental testing (except for a study on prosocial 10 

fruit-juice provisioning1), yet they exhibited curiosity for the apparatus and likely gained 11 

motivation to operate the apparatus because they could both see and smell the food rewards 12 

inside the box (peanuts). Moreover, in each group, the chimpanzees experienced the presence 13 

of the food inside the box in their first week of the baseline phase (see Main text). 14 

During the experimental sessions (Part 2), we used the exact same apparatus as 15 

during the baseline phase, but instead of leaving the apparatus full-time in the enclosure, for 16 

the experiment, we attached the apparatus to the mesh. We did this because i) for the training 17 

of the models, we had to get the apparatus out of the enclosure and put it in the indoor 18 

holding facility to facilitate the training (without others seeing it), and ii) we anticipated that 19 

the chimpanzees would become proficient now that a model had been trained, which meant 20 

that both the wooden balls and the food had to be replenished regularly (while we cannot go 21 

inside the chimpanzees’ outdoor enclosures regularly). Moreover, we wanted to be sure to 22 

obtain a full record of what the chimpanzees had observed before attempting or succeeding 23 

themselves, which would not have been possible outside, because of the limited range of the 24 

Go-Pro images and the fact that the apparatus could be solved 24/7, which would have been a 25 

further challenge for the Go-Pros (no night vision and limited battery).  26 

Indeed, during Part 2, we found that the chimpanzees were functionally using the 27 

wooden balls (first only the trained models, but afterwards also the formerly naïve 28 

chimpanzees, see Figure S1, and Figures 2 and 3 in the Main text), thus the balls were 29 

provided by the experimenters in a continuous effort. The experimenters adhered to the 30 

following ball-replenishing procedure: the first two sessions, mainly the trained model was 31 

directly provisioned (i.e., by throwing) to entice them to act as demonstrators for the rest of 32 

the group (Figure S1). In the following sessions, we provided Group 1 with ±40 balls and 33 



Group 2 with ±80 balls at all times, meaning that whenever a ball was used to operate the 34 

apparatus, this ball was readily thrown back into the enclosure (this later transitioned into 35 

piles of ±5-10 balls, before throwing them back in). Importantly, at all times, we aimed to 36 

provide all group members with at least one ball as to give all the chimpanzees the 37 

opportunity to solve the apparatus and thus show us that they had acquired the skill at stake. 38 

We also note that the experimental sessions lasted for only 2 months not because the number 39 

of individuals learning the skill reached a plateau, but because of logistical constraints. 40 

 41 

2. Rewarding 42 

Upon successfully entering the wooden ball into the cavity in the pulled-out drawer, the 43 

chimpanzee was rewarded. At first, we rewarded with small amounts of peanuts (sessions 1-44 

5), but because of ensuing aggression over the peanuts, we decreased this by rewarding only 45 

one peanut (sessions 6-15) per solve, after which we transitioned to rewarding one corn-puff 46 

(i.e., a ±2cm large somewhat salted crisp) per solve (sessions 16-39). We provided these 47 

corn-puffs manually given that the automated mechanism could not take squishy food items. 48 

The puffs were put in the rewarding slide by a human experimenter. Given that the rewarding 49 

(distribution) itself was not under experimental scrutiny, this procedure worked adequately. 50 

In other words, even though the adjustments in the rewarding scheme may have altered some 51 

chimpanzees’ motivation to partake in the experiment, the fact that chimpanzees learned the 52 

skill at all remains unchanged. Moreover, we started off during the experimental phase with 53 

shelled peanuts (same as in baseline), which the chimpanzees like to eat very much. In fact, 54 

they liked the peanuts so much that they started fighting over them, which was the reason for 55 

us to switch to a bigger, one-unit reward (corn-puff). If anything, the corn-puffs may not have 56 

been to the liking of all chimpanzees, or at least less so than the preferred peanuts, which 57 

would have biased our results towards less chimpanzees being motivated to learn the skill. 58 

 59 

3. Training of the model 60 

The model of each group (Rita in Group 1; Pippa in Group 2) was trained on the apparatus in 61 

isolation from the group to ensure that no other group member could benefit from the human 62 

instructions. Both chimpanzees took approximately 8 sessions (of ±20 minutes each) to fully 63 

understand the contingencies of the apparatus, which we operationalized as at least 8 64 

successful operations on the apparatus out of 10 successive opportunities (i.e., provisioning 65 

of a wooden ball). The training of the models comprised various techniques including 66 

enhancing the relevant parts of the apparatus (e.g., the drawer), gesturing towards the wooden 67 



balls, and demonstrating the entire sequence to the chimpanzees (this was done by the 68 

resident caretakers). The selection of the models was based on our assessment of them being 69 

able/willing to operate the apparatus in the presence of the entire group. Both females were of 70 

mid/high rank and endowed with sufficient confidence to endure the group’s pressure. 71 

 72 

4. Statistical analysis (NBDA) 73 

Network-based diffusion analysis (NBDA) infers social transmission of novel behaviour if 74 

the pattern of its spread follows a social network, which is taken to represent opportunities to 75 

learn from others2. Here, we used a dynamic observation network such that the connection 76 

from i to j in group k at time t (𝑜𝑜𝑘𝑘,𝑖𝑖𝑖𝑖) was the number of times i had observed j successfully 77 

solving the task prior to time t (see3), since this type of network provides the most direct 78 

quantification of opportunities to learn from others by observation4. We also used other 79 

networks derived from the direct observation network (see below). 80 

 81 

We used the order of acquisition (OADA) variant of NBDA5, which takes as data only the 82 

order in which individuals acquire the target behaviour and not the times of acquisition. This 83 

has the advantage that it does not make any assumptions about the baseline rate function (see 84 

Eqn. S1 below) unlike the time of acquisition variant (TADA). TADA can have more 85 

statistical power when the assumed baseline hazard function is correct, but can have lower 86 

power or inflated false positive rate when it is incorrect5. 87 

Since we have data on the diffusion of each behaviour through more than one group, 88 

one option is to treat these as separate diffusions with separate baseline rate functions. 89 

However, we chose to include all groups in the same stratum, with the same baseline rate 90 

function- i.e., to treat them as one diffusion, but with zero connections between individuals in 91 

different groups to indicate their lack of opportunities to learn from one another6. This 92 

approach has the advantage that it is sensitive to the behaviour diffusing through different 93 

groups at different times: if the behaviour spreads through one group, then another group, 94 

etc.; this is consistent with social transmission of the behaviour. In some cases, this pattern 95 

might also be consistent with groups differing in their rate of asocial learning of the target 96 

behaviour, making it necessary to fit different rates of asocial learning to each group to 97 

control for this possibility. However, given the nature of the target behaviours in this case, we 98 

can a priori rule out the possibility that groups substantially differ in asocial learning rate, 99 

especially given that no chimpanzee in either group solved the apparatus without social 100 



information (i.e., during the baseline phase). To be sure, we also ran a normal OADA, which 101 

is sensitive only to the order within each diffusion. In a normal OADA, a spurious result 102 

cannot arise as a result of group differences in asocial learning rate. Here, we obtained the 103 

same results: evidence for social transmission (and no evidence for a difference between the 104 

groups), which adds to our confidence that we have evidenced a true social transmission 105 

effect. 106 

Our primary goal with the NBDA was to establish whether there was evidence for social 107 

transmission of the task solution, determined by the extent to which the diffusion followed 108 

the pattern of observations over time. We furthermore assessed whether three individual-level 109 

variables (ILVs), namely age, sex and rank, affected the rate of asocial or social learning. 110 

 111 

a) Formal model specification 112 

 113 

The full model be expressed as follows: 114 

 115 

𝜆𝜆𝑖𝑖(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡) ��𝑠𝑠1� 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

+ 𝑠𝑠2� 𝑜𝑜2,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

� 𝑒𝑒𝑒𝑒𝑒𝑒�𝛾𝛾1𝑥𝑥1,𝑖𝑖 + 𝛾𝛾2𝑥𝑥2,𝑖𝑖 + 𝛾𝛾3𝑥𝑥3,𝑖𝑖�116 

+ 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽1𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2𝑥𝑥2,𝑖𝑖 + 𝛽𝛽3𝑥𝑥3,𝑖𝑖�� (1 − 𝑧𝑧𝑖𝑖(𝑡𝑡)) 117 

Eqn. S1 118 

 119 

Where 𝜆𝜆𝑖𝑖(𝑡𝑡) is the rate at which individual i first solves the task at time t, 𝜆𝜆0(𝑡𝑡) is the 120 

unspecified baseline rate function, 𝑜𝑜𝑘𝑘,𝑖𝑖𝑖𝑖(𝑡𝑡) is the number of times i has observed j in group k 121 

prior to time t (set to 0 when i or j are not in group k), 𝑠𝑠𝑘𝑘 is a fitted parameter estimating the 122 

relative rate of social transmission per observation in group k, x1,i is the sex of i (0= female, 123 

1= male), x2,i is the standardized age of i, x3,i is the transformed rank of i (see below); 𝛽𝛽𝑚𝑚 are 124 

fitted parameters estimating the effect each ILV has on asocial learning, whereas 𝛾𝛾𝑚𝑚 estimate 125 

the effect on social learning. Rank (𝑥𝑥3) was transformed such that 0= highest ranked in each 126 

group, 1= lowest rank within each group with other ranks equally spaced within each group, 127 

meaning 𝛽𝛽3 and 𝛾𝛾3 estimate the difference between highest and lowest ranking chimpanzees.  128 

 129 

Given that we tested two groups, we had several options regarding assumptions on social 130 

transmission rates. The variant of no difference in social transmission rate, per observation, 131 



between groups 1 and 2 is represented by models with the constraint 𝑠𝑠1 = 𝑠𝑠2, and the 132 

hypothesis of no social learning in each group can be represented by 𝑠𝑠1 = 0 and 𝑠𝑠2 = 0.  133 

 134 

b) Observation networks 135 

 136 

We wished to investigate the conditions under which social transmission occurred. One 137 

hypothesis is that social transmission to i occurs at a rate proportional to the number of 138 

observations, represented by the absolute observation network described above. Here, 139 

∑ 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗  reduces down to the number of times i has observed the task being solved prior to 140 

time t. Alternatively, chimpanzees might learn socially at a rate proportional to the number of 141 

individuals they have observed solving the task, regardless of the number of times they have 142 

observed each individual. This hypothesis was represented by the individuals observed 143 

network in which 𝑜𝑜𝑘𝑘,𝑖𝑖𝑖𝑖(𝑡𝑡) = 1 if i has observed j solve the task at least once prior to time t, 144 

such that ∑ 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗  is now the number of individuals i has observed solving the task prior to 145 

time t. Next, we reasoned that a single observation of any chimpanzee solving the task might 146 

be sufficient for social transmission to occur, with any further observations making no 147 

difference. This hypothesis was represented by a model in which ∑ 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗  was replaced 148 

with a binary indicator variable, 𝑜𝑜1,𝑖𝑖(𝑡𝑡), taking the value 1 if i had observed at least one 149 

chimpanzee solving the task prior to time t and 0 otherwise (single observation network). 150 

Finally, we ran models containing a static group network indicating which individuals were 151 

in the same (1) or different groups (0). This was to test whether a positive result for the 152 

networks above indicated evidence that the diffusion followed the pattern of observations 153 

within each group above as opposed to simply being a result of group differences in relative 154 

time of acquisition6. These four networks were entered into the model separately (one for 155 

each group, k) and their fit to the data was compared (see section c below). 156 

 157 

c) Inference 158 

 159 

We used a multi-model inference approach using Akaike’s Information Criterion corrected 160 

for sample size (AICc)7 to obtain support for models using the absolute observation network, 161 

individuals observed network, single observation network and group network. For each 162 

observation network, we fitted models representing the hypotheses: a) social transmission of 163 

different strength in each group, 𝑠𝑠1 ≠ 𝑠𝑠2 b) social transmission of equal strength in each 164 



group, 𝑠𝑠1 = 𝑠𝑠2; c) social transmission only in group 1, 𝑠𝑠2 = 0; and d) social transmission 165 

only in group 2, 𝑠𝑠1 = 0. For the group network, only models representing b) were fitted, 166 

since this was only intended as a null hypothesis for comparison with other combinations of 167 

networks and a-d. 168 

 169 

For each observation network and for a-d we fitted models with every combination of 3 ILVs 170 

affecting asocial and social learning, resulting in 16 models for each set. For (e) asocial 171 

learning, 𝛾𝛾 parameters have no effect so were excluded resulting in only 4 models. We 172 

calculated the total Akaike weight as a measure of support for each hypothesis a-d and each 173 

network7. Due to the lower number of models in the asocial set (e) we do not use the total 174 

Akaike weight as a measure of support for asocial learning, instead we use the 95% 175 

confidence intervals for the s parameters to this end (see below).  176 

 177 

For the favoured network, we calculated model averaged estimates, unconditional standard 178 

errors, and the total Akaike weight for the effect of each ILV on asocial learning (𝛽𝛽 179 

parameters) and social learning (𝛾𝛾 parameters). In some models, standard errors could not be 180 

derived. When calculating the unconditional standard error, the standard errors for these 181 

models were replaced with a Akaike-weighted mean across models with a standard error, 182 

allowing an approximate unconditional standard error to be calculated. 183 

 184 

Standard errors are often a misleading measure of precision for parameters in an NBDA, 185 

since such parameters often have much higher precision for a plausible lower limit than for a 186 

plausible upper limit or vice versa. Consequently, we obtained 95% confidence intervals 187 

(CIs) for parameters with Akaike weight >50% using the profile likelihood method, using the 188 

model with best AICc. Since s parameters are difficult to interpret directly, we also obtained 189 

an estimate of the number of learning events that are predicted to have occurred by each 190 

pathway corresponding to the estimate for each s parameter and its 95% Confidence Interval8. 191 

 192 

d) Comparison of networks 193 

 194 

Table S1 below shows the support for each hypothesis a-d and each network considered. 195 

 196 



Table S1. The support (total Akaike weight) for each network and hypothesis combination. Each cell 197 
represents a set of 64 models except asocial learning (*) which has only 8 (see section c). Totals are 198 

provided for the three observation networks with equal numbers of models. 199 
 200 
Network Total 𝑠𝑠1 ≠ 𝑠𝑠2 𝑠𝑠1 = 𝑠𝑠2 𝑠𝑠1 > 0 

𝑠𝑠2 = 0 

 𝑠𝑠1 = 0 

𝑠𝑠2 > 0 

𝑠𝑠1 = 𝑠𝑠2 = 0 

Absolute observation 50.4 8.2 39.2 2.6 0.4 - 

Individuals observed 34.7 5.0 27.7 1.8 0.2 - 

Binary observation 13.5 1.5 9.5 2.3 0.2 - 

Group network  - 0.6 - - - 

Asocial learning  - - - - 0.6* 

 201 

The results support the hypothesis that the rate of social transmission was best predicted by 202 

the number of task solutions observed (support= 50.4%), as opposed to the number of 203 

individuals observed solving the task (support= 34.7%). They also suggest that a single 204 

observation of a task solution was not sufficient for a full social learning effect to occur 205 

(support= 13.5%). Models in which 𝑠𝑠1 = 𝑠𝑠2 were best supported suggesting that social 206 

transmission occurred in both groups, and that there was no evidence of a difference in the 207 

magnitude of the social effect between groups. The absolute observation network with 𝑠𝑠1 =208 

𝑠𝑠2 received 65.3x more support than the group network, further supporting the hypothesis of 209 

social transmission following the pattern of observations within each group. Asocial learning 210 

also receives relatively little support at 0.6%, however, only 4 models were fitted (c.f. 16) so 211 

we prefer to use the 95% C.I.s for s (see below) to quantify the strength of evidence against 212 

purely asocial learning (𝑠𝑠1 = 𝑠𝑠2 = 0). 213 

 214 

e) Estimates of social transmission effects 215 

 216 

Estimates of social effects were made conditional on the absolute observation network since 217 

this network received the most support. For a dynamic observation network, the s parameter 218 

estimates the increase in rate of solving per observation, relative to the baseline rate of asocial 219 

learning (set to a female of mid rank and age). It was found that the log-likelihood levelled 220 

out to an asymptote as s tended to infinity, meaning we are unable to generate a single 221 

maximum likelihood estimate for 𝑠𝑠 = 𝑠𝑠1 = 𝑠𝑠2 since a large range of values up to infinity 222 

explain the data equally well. However, conditional on the best fitting model, the 95% C.I. 223 

for s was 0.461 – Infinity, meaning the data provides a lower plausible limit on the size of s. 224 



The 95% C.I. for s can be converted into an estimated percentage of learning events that 225 

occurred by social transmission, %ST= 18.5 – 100%. Since this range is conditional on the 226 

single best fitting model, we also calculated the %ST corresponding to the lower 95% 227 

confidence limit in all models with 𝑠𝑠 = 𝑠𝑠1 = 𝑠𝑠2 to determine the robustness of the estimate to 228 

model selection uncertainty of ILVs. We calculated the Akaike weighted average for the 229 

lower limit of %ST at 15.7%. In all models except the lowest ranked model in the set (Akaike 230 

weight= 5e-7), the lower 95% limit for s was estimated at >0. So overall, from the basic 231 

NBDA described here, we have strong evidence that social transmission of the task solution 232 

occurred. 233 

 234 

f) Model-averaged estimates of effects of ILVs 235 

 236 

Table S2 below shows the effects of the individual-level variables (sex, age, and rank) on 237 

asocial and social learning. 238 

 239 

Table S2. Model averaging for individual-level variables in the NBDA conditional on the absolute 240 

observation network. 241 
 242 

 

Model-

averaged 

estimate Unconditional SE* 

Back-

transformed 

effectꝉ 

Total Akaike 

weight 

ILV effects on asocial learning 

Sex (female-male) 0.00 0.00 1.00x 0.206 

Age (per SD) -2.83$ 811$ 0.06x 0.264 

Rank (bottom-top) -0.44 6.5e4$ 0.64x 0.189 

ILV effects on social learning 
 

 
 

Sex (female-male) 0.24 0.27 1.27x 0.278 

Age (per SD) -0.10 0.24 0.90x 0.236 

Rank (bottom-top) 0.20 0.17 1.22x 0.172 

*Unconditional standard errors (USE) are approximate, see section (c). ꝉ Since effects of ILVs are 243 
estimated on the log scale, the back-transformed effects give the multiplicative effect of one unit change in 244 
the ILV. $The USE for age and rank are very high- this is due to one or more models of low weight with a 245 
flat log-likelihood resulting in a high SE, and thus a high USE overall. This has likely also skewed the 246 
estimate of the effect of age to an unrealistically high coefficient despite its low Akaike weight. 247 

 248 



Since none of the effects of the ILVS had high support (all well under 50%), we did not 249 

derive 95% C.I. for any ILV effects using the profile likelihood method. Overall, there is 250 

little or no evidence that these variables affected social or asocial learning, though the 251 

standard errors also suggest that the data also cannot rule out a sizeable effect. 252 

 253 

g) Two-stage learning process 254 

 255 

In a standard NBDA, individuals are modelled as moving from a naïve state (never solved the 256 

task) to a solved state (solved the task). Here, we used the multistate extension of NBDA9 in 257 

which chimpanzees moved from a naïve state (never manipulated the task) to an interacting 258 

state (have started manipulating the task but not yet solved it) to a solved state (have solved 259 

the task at least once). This involves breaking the analysis down into two models, one for 260 

modelling the rate of transition to naïve->interacting and another modelling the transition 261 

from interacting->solved. Breaking the analysis up in this way offers more insight into the 262 

role of social learning in the diffusion of behaviour. If individuals are initially attracted to the 263 

task by observation of other individuals solving it, we would expect a social effect on naïve-264 

>interacting. If the rate at which chimpanzees transition from interacting->solved is related to 265 

the number of times they have observed successful interactions with the task, it suggests they 266 

may be learning something about how to solve the task. Potentially, both processes could 267 

operate in tandem. In three-spined sticklebacks learning to solve a foraging task, evidence 268 

was only found of an effect on the former transition9. 269 

 270 

i. Formal model specification 271 

 272 

The full model used for the naïve-> interacting (N->I) transition can be expressed as follows: 273 

 274 

𝜆𝜆𝑁𝑁𝑁𝑁,𝑖𝑖(𝑡𝑡) = 𝜆𝜆𝑁𝑁𝑁𝑁,0(𝑡𝑡) ��𝑠𝑠𝑁𝑁𝑁𝑁,1� 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

+ 𝑠𝑠𝑁𝑁𝑁𝑁,2� 𝑜𝑜2,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

� 𝑒𝑒𝑒𝑒𝑒𝑒�𝛾𝛾1𝑥𝑥1,𝑖𝑖 + 𝛾𝛾2𝑥𝑥2,𝑖𝑖 + 𝛾𝛾3𝑥𝑥3,𝑖𝑖�275 

+ 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽1𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2𝑥𝑥2,𝑖𝑖 + 𝛽𝛽3𝑥𝑥3,𝑖𝑖�� (1 − 𝐼𝐼𝑖𝑖(𝑡𝑡)) 276 

Eqn. S2 277 

 278 

This is simply the same form as for the NBDA shown in Eqn. S1, but with the subscript NI 279 

added where appropriate to show that the rate of transition from naïve to interacting is being 280 



modelled and 𝑧𝑧𝑖𝑖(𝑡𝑡) is replaced with 𝐼𝐼𝑖𝑖(𝑡𝑡), indicating whether i has interacted with the task at 281 

least once by time t. The data are modelled in the same way as for a standard NBDA, but 282 

instead of predicting the order in which individuals first solve the task, the model is fitted to 283 

predict the order in which individuals first interact with the task. 284 

 285 

The full model used for the interacting-> solved (I->S) transition can be expressed as follows: 286 

 287 

𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖(𝑡𝑡) = 𝜆𝜆𝐼𝐼𝐼𝐼,0(𝑡𝑡) ��𝑠𝑠𝐼𝐼𝐼𝐼,1� 𝑜𝑜1,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

+ 𝑠𝑠𝐼𝐼𝐼𝐼,2� 𝑜𝑜2,𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗

� 𝑒𝑒𝑒𝑒𝑒𝑒�𝛾𝛾1𝑥𝑥1,𝑖𝑖 + 𝛾𝛾2𝑥𝑥2,𝑖𝑖 + 𝛾𝛾3𝑥𝑥3,𝑖𝑖�288 

+ 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽1𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2𝑥𝑥2,𝑖𝑖 + 𝛽𝛽3𝑥𝑥3,𝑖𝑖�� (1 − 𝑧𝑧𝑖𝑖(𝑡𝑡))𝐼𝐼𝑖𝑖(𝑡𝑡) 289 

Eqn. S3 290 

 291 

This is the same form as for the NBDA shown in Eqn. S1, but with the subscript IS added 292 

where appropriate to show that the rate of transition from interacting to solved is being 293 

modelled and with the addition of 𝐼𝐼𝑖𝑖(𝑡𝑡). The addition of 𝐼𝐼𝑖𝑖(𝑡𝑡) ensures that only individuals 294 

that have entered the interacting state are ‘at risk’ of solving the task (in survival analysis 295 

terminology). Thus, as with a standard NBDA, we model the order with which individuals 296 

solve the task, but they effectively only enter the diffusion and become at risk of being the 297 

next individual to solve once they have started interacting with the task- this is equivalent to 298 

individuals entering the population at different times in a standard NBDA.  299 

 300 

ii. Inference 301 

 302 

We used multi-model inference to analyse each transition separately, as described in (c) 303 

above, except we only considered the absolute observation network. Our aim here was to 304 

break down the result found in the standard NBDA to offer more insight into the underlying 305 

social influences, so we limited our analysis to the network favoured in the standard NBDA. 306 

 307 

For the NI model, there were a number of ‘true ties’: i.e., chimpanzees that started interacting 308 

with the task at the same time, or too close in time for the order to be resolved5. We fitted the 309 

full set of models accounting for true ties to generate the support for each hypothesis, 310 

however, this is highly computationally intensive since it requires calculating and adding 311 

likelihoods for all possible orders consistent with the tied data. Consequently, we refitted the 312 



models ignoring the true ties and found they made a negligible difference to the results in this 313 

case, so we ignored true ties in order to calculate 95% C.I.s for each parameter. 314 

 315 

iii. Naïve -> interacting results 316 

 317 

Table S3. The support (total Akaike weight) for each social learning hypothesis for the naïve -> 318 
interacting transition. Each cell represents a set of 64 models except asocial learning (*) which has 319 

only 8 (see section c above). 320 
 321 
Network 𝑠𝑠1 ≠ 𝑠𝑠2 𝑠𝑠1 = 𝑠𝑠2 𝑠𝑠1 > 0 

𝑠𝑠2 = 0 

 𝑠𝑠1 = 0 

𝑠𝑠2 > 0 

𝑠𝑠1 = 𝑠𝑠2 = 0 

Absolute observation 48.3 32.4 1.9 17.3 - 

Asocial learning - - - - 0.0* 

 322 

The greatest support was obtained for social transmission in both groups, but with a greater 323 

rate of transmission per observation in group 2. There was little support for an effect of any 324 

of the three ILVs on social or asocial learning (all <40%). 325 

 326 

𝑠𝑠1 had a model-averaged estimate of 0.40, with a 95% C.I.= 0.032-1.78 conditional on the top 327 

model, corresponding to %ST = 5.3 – 30.6. Therefore, there is reasonable evidence of an 328 

effect of social transmission in group 1, however, this is not robust to model selection 329 

uncertainty: in 29/64 models the 95% C.I. for 𝑠𝑠1 included zero. We conclude there is weak 330 

evidence of an effect of social transmission in group 1, but that this effect is unlikely to be 331 

highly important with most individuals starting to interact with the task asocially. 332 

 333 

𝑠𝑠2 had a model-averaged estimate of 2.12, with a 95% C.I.= 0.742-9.09 conditional on the top 334 

model, corresponding to %ST = 13.0 – 43.2. In all 64 models the 95% C.I. for 𝑠𝑠2 excluded 335 

zero, showing the finding is robust to model selection uncertainty. The model averaged 95% 336 

lower limit for %ST=16.8. Furthermore, the 95% C.I. for 𝑠𝑠2/𝑠𝑠1 = 1.4 – 85.3, confirming the 337 

finding that social transmission was stronger per observation in group 2. We conclude there is 338 

strong evidence of an effect of social transmission in group 2, but that it is nonetheless likely 339 

that most chimpanzees started interacting with the task asocially. 340 

 341 

Overall, it seems likely that that most chimpanzees would have eventually interacted with the 342 

task without having observed a trained demonstrator or another chimpanzee solve the task 343 



first. However, there is strong evidence that this process was sped up by a social effect in 344 

group 2, with chimpanzees that observed successful manipulations interacting with the task 345 

sooner. Evidence for such an effect in group 1 was weaker, with evidence that, if it did exist, 346 

it was a weaker effect than in group 2. 347 

 348 

iv. Interacting -> solved results 349 

 350 

Table S4. The support (total Akaike weight) for each social learning hypothesis for the interacting-> 351 

solved transition. Each cell represents a set of 64 models except asocial learning (*) which has only 8 352 
(see section c above). 353 
 354 
Network 𝑠𝑠1 ≠ 𝑠𝑠2 𝑠𝑠1 = 𝑠𝑠2 𝑠𝑠1 > 0 

𝑠𝑠2 = 0 

 𝑠𝑠1 = 0 

𝑠𝑠2 > 0 

𝑠𝑠1 = 𝑠𝑠2 = 0 

Absolute observation 8.6 44.6 4.0 30.7 - 

Asocial learning - - - - 12.0* 

 355 

The greatest support was obtained for equal social transmission in both groups (44.6%), 356 

however, models with social learning only in group 2 (30.7%) also received comparable 357 

support. Consequently, we make inferences about 𝑠𝑠 = 𝑠𝑠1 = 𝑠𝑠2, but also derive 95% C.I. for 358 

𝑠𝑠2/𝑠𝑠1.  359 

 360 

s had a model-averaged estimate of 0.023, with 95% C.I.= 0.009-0.58 conditional on the top 361 

model, corresponding to %ST = 8.1 – 47.4. Therefore, there is reasonable evidence of an 362 

effect of social transmission. The finding is fairly robust to model selection uncertainty: in 363 

the 11 top models, accounting for 71% of total Akaike weight, the 95% C.I. for s does not 364 

include zero, but in 23/62 lower-ranked models the 95% C.I. includes zero. The model 365 

averaged 95% lower limit for %ST= 4.4. We conclude there is reasonable evidence of an 366 

effect of social transmission across both groups.  367 

 368 

In the top model with 𝑠𝑠1 ≠ 𝑠𝑠2, 𝑠𝑠2/𝑠𝑠1 was estimated at 7.9 and the lower bound for the 95% 369 

C.I was 0.862. The upper bound could not be found since numerical errors were triggered 370 

when calculating the profile likelihood for 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠2/𝑠𝑠1)> 4.5, however, we know that exp(4.5) 371 

= 90 is within the 95% C.I. for 𝑠𝑠2/𝑠𝑠1, so we can rule out all but a small difference in favour 372 

of 𝑠𝑠1, but cannot rule out a large difference in favour of 𝑠𝑠2. 373 

374 



Figures and Tables 375 

 376 

 377 
Figure S1. The within-group demonstrations by the conspecific models. The frequency 378 
by which the trained chimpanzees (one adult female in each group) successfully used the 379 
apparatus (y-axis) over experimental time (x-axis) for Group 1 (left) and Group 2 (right). 380 

381 



Table S5. Subject details including age, sex, mother identity, origin, and whether the subject 382 
participated in the experiment. 383 
 384 

Chimpanzee Group Age* Sex Mother Origin Participated in exp.** 

Pal 1 36.5 male unknown wild born yes 
Booboo 1 35.5 male unknown wild born yes 
Girly 1 35.5 female unknown wild born yes 
Tobar 1 35.5 male unknown wild born yes 
Rita 1 34.5 female unknown wild born yes 
Tara 1 34.5 male unknown wild born yes 
Ingrid 1 26.5 female Liza captive born yes 
Brenda 1 21.8 female Bella captive born yes 
Renate 1 20.5 female Rita captive born yes 
Genny 1 20.4 female Girly captive born yes 
Bob 1 16.2 male Big Jane captive born yes 
Gerard 1 15.2 male Girly captive born yes 
Ilse 1 15.1 female Ingrid captive born yes 
Regina 1 11.5 female Renate captive born yes 
Rusty 1 10.7 male Rita captive born yes 
Chrissy 1 10.5 female Cleo captive born yes 
Innocentia 1 10.4 female Ingrid captive born yes 
Gonzaga 1 9.5 male Genny captive born yes 
Irene 1 5.4 female Ingrid captive born yes 
Rachel 1 4.8 female Renate captive born yes 
Ian 1 2.5 male Ilse captive born no 
Gloria 1 1.5 female Genny captive born no 
Ida 1 1.3 female Ingrid captive born no 
Noel 2 40.5 female unknown wild born yes 
Donna 2 33.5 female unknown wild born yes 
Coco 2 32.5 female unknown wild born yes 
Jane 2 32.5 female unknown wild born yes 
Maggie 2 31.5 female unknown wild born yes 
Misha 2 29.5 female unknown wild born yes 
Dora 2 28.4 female unknown wild born yes 
Pan 2 28.4 male unknown wild born yes 
Pippa 2 28.4 female unknown wild born yes 
Trixie 2 27.4 female unknown wild born yes 
Zsabu 2 27.4 male unknown wild born yes 
Diana 2 26.4 female unknown wild born yes 
Masya 2 26.4 female unknown wild born yes 
Violet 2 26.4 female unknown wild born yes 
Judy 2 22.4 female Jane captive born yes 



Carol 2 21 female Coco captive born yes 
Dolly 2 20.6 female Dora captive born yes 
Nikkie 2 19.6 female Noel captive born yes 
Mikey 2 19.4 male unknown wild born yes 
Tess 2 19.4 female Tina captive born yes 
Tilly 2 16.4 female Trixie captive born yes 
Maxine 2 16.1 female Misha captive born yes 
Debbie 2 15.6 female Donna captive born yes 
David 2 15.5 male Diana captive born yes 
Claire 2 15.1 female Coco captive born yes 
Doug 2 14.4 male Dora captive born yes 
Nina 2 14.2 female Noel captive born yes 
Vis 2 13.1 male Violet captive born yes 
Daisey 2 12.6 female Diana captive born yes 
Mary 2 12.2 female Masya captive born yes 
John 2 11.4 male Judy captive born yes 
Jenkins 2 10.4 female Jane captive born yes 
Moyo 2 9.8 male Maggie captive born yes 
Dizzy 2 9.5 female Diana captive born yes 
Charity 2 9.4 female Carol captive born yes 
Max 2 8.8 male Misha captive born yes 
Jones 2 6.7 male Jane captive born yes 
Jacky 2 5.2 male Judy captive born yes 
Martin 2 5.2 male Misha captive born yes 
Danny 2 5.1 male Dora captive born yes 

Mavis 2 4.5 male Masya captive born no 
May 2 4.5 female Maggie captive born yes 

Chitalu 2 2.4 female Claire captive born no 
 385 
* at the start of the study 386 
** whether or not the individual took part in the experimental phase, either by observing, attempting, or 387 
successfully operating the apparatus 388 
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