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We report on the observation of confinement-induced resonances for strong three-dimensional (3D)
confinement in a lattice potential. Starting from a Mott-insulator state with predominantly single-site
occupancy, we detect loss and heating features at specific values for the confinement length and the 3D
scattering length. Two independent models, based on the coupling between the center-of-mass and the
relative motion of the particles as mediated by the lattice, predict the resonance positions to a good
approximation, suggesting a universal behavior. Our results extend confinement-induced resonances to any
dimensionality and open up an alternative method for interaction tuning and controlled molecule formation
under strong 3D confinement.
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Cold atoms are a well-established platform for quantum
simulation and computation [1,2]. They allow for the
realization of strongly correlated quantum many-body
phases [3] and hold promise for the investigation of
dynamical processes in correlated quantum matter [4] with
exquisite parameter control. Cold atoms come with two
advantageous and enabling features: external potentials that
can be flexibly created by optical means, e.g., optical lattices
[5,6], and interatomic interactions that can be tuned almost at
will, via magnetic Feshbach resonances (FRs) [7]. These
features have been instrumental to amultitude of spectacular
results, e.g., on the superfluid-to-Mott-insulator quantum
phase transition [8,9] and the Bose-Einstein-condensation-
to-Bardeen-Cooper-Schrieffer crossover [10]. Besides inter-
action tuning, FRs serve as an entrance door to the world
of ultracold molecules [11,12], with great promise for
ultracold chemistry [13], precision measurements [14],
and dipolar many-body physics [15]. For a FR to occur,
the free scattering state of two atoms needs to be brought to
degeneracy with a molecular bound state. In most applica-
tions, a variable external magnetic field tunes the energy
difference, inducing the resonance.

Tight external confinement as provided by, e.g., a lattice
can also lead to a dramatic modification of the atoms’
scattering properties [16–23]. Confinement-induced reso-
nances (CIRs) occur if the typical length scale of the
confining potential, e.g., the harmonic-oscillator length ah,
and the 3D s-wave scattering length as assume similar
values. CIRs come in two flavors: elastic (ECIR) and
inelastic (ICIR). ECIRs emerge if the effective 1D or 2D
interaction strength diverges at a specific unique value of
the ratio of these two length scales [16–18]. On the other
hand, an infinite series of ICIRs [23–26] emerges, if center-
of-mass motion (CM) and relative motion (RM) are
coupled [20,27–29] and thus molecular formation [30]
or dissociation becomes possible by transferring the bind-
ing energy from one degree of freedom to the other. The
occurrence of such a coupling is a ubiquitous phenomenon.
It is absent only in very idealized cases like two identical
atoms in a strictly harmonic or square-well potential.
Already the slight anharmonicity of a lattice is sufficient
to induce a coupling and thus an ICIR. In fact, ICIRs can
also occur for other trapped particles like electrons in
quantum dots or quasiparticles like excitons [31].
The positions of ECIRs and ICIRs can be tuned by

varying ah or as. They may be used, similar to FRs, to set
the effective interparticle interaction. For dipolar particles,
ICIRs can be tuned additionally by varying the dipolar
interaction [25]. Because of molecule formation, ICIRs
may lead to loss. Remarkably, ICIRs allow also for the
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tuning of the coupling strength of the resonance itself by
changing the confinement’s anharmonicity.
Experimentally, controlling interactions on ECIRs in 1D

has been used, e.g., to access the super-Tonks Girardeau
regime [32,33], to map out three-body correlations [34],
and to evade thermalization [35]. ICIRs have been used to
coherently produce molecules [30]. ECIRs and ICIRs have
been observed in the 1D-to-2D crossover [36,37], in mixed
dimensionality [39], and in 2D [40].
In this Letter, we experimentally detect ICIRs in 0D as a

result of strong 3D confinement. Interestingly, we find the
resonances starting from a Mott-insulator state with pre-
dominantly single-site occupancy, a situation for which one
would expect at first glance a strong suppression of atom-
atom scattering. We employ Cs atoms in the hyperfine
ðF;mFÞ ¼ ð3; 3Þ ground state, which features wide tuna-
bility for as due to a combination of broad and narrow
FRs [41], as shown in Fig. 1(a). We take data with two
different experimental setups, one (E1) [42] for tuning as
on a broad background, and the other (E2) [43] for tuning
near a comparatively narrow FR.
We model our data by two complementary approaches

based on previous work [23,24], named in the following
M1 and M2 [44], both providing an approximate solution
of the two-body problem in the presence of the 3D-lattice
potential. The potential energy of two atoms is given by
Vðr1; r2Þ ¼ VRMðrÞ þ VCMðRÞ þWðr;RÞ, where r1 (r2)
is the position of atom 1 (2) and r (R) is the RM (CM)
coordinate. For M1, VRM is Taylor expanded to order r6

(sextic potential), and the eigenenergies of the RMare found
perturbatively employing the solution for two particles in a
harmonic trap interacting via a pseudopotential [45]. The
CM is solved exactly given the lattice potential. In particular,
M1 accounts for the full lattice bandwidth,without imposing
any restriction on the quasimomentum, resulting in an
allowed range for each crossing between the levels asso-
ciated with an ICIR rather than in a fixed condition [44].
As a consequence,M1 (as opposed toM2) can describe the
motion of the atoms moving as pairs through the lattice, as
illustrated in Fig. 1(b) [46]. Finally, the coupling term W,
which originates from the anharmonicity of the lattice
potential, is treated perturbatively, leading to avoided cross-
ings. For M2, the terms relative to the lattice-well potential
are also expanded and the solution is found numerically, with
the interaction between the atoms being described by an
ab initio potential [44]. The coupling termW emerges from
the expansion and is included in the numerical treatment. The
results ofM2 for the sextic Taylor expansion, which implies
in the case of the RM that the two particles occupy the same
well, have been assessed by comparison with a double-well
description of the system provided by a twelve-order Taylor
expansion (see Ref. [44]). Finally, M2 (in contrast to M1)
allows for the description of anisotropic settings.
In both models, the RM eigenfunctions can be classified

by two families of states: There are molecular bound states,

the most loosely bound denoted as ψRM
b . Then, there are

higher-lying unbound states determined by the trap. These
states energetically lie in the dissociation continuum in the
absence of the external potential, and become discrete trap
states in a few-well potential or bands in a lattice. The
lowest-lying one is denoted as ψRM

t . The function
ϕCMðnx; ny; nzÞ describes the solutions for the CM of the
atom pair in the three directions with ni ¼ 0; 1; 2;… [44].
In the isotropic lattice, the excited bound states are typically
threefold degenerate because of the factorization of the
potential along the three directions. In the following, we
will denote the degenerate states with the compact notation
ϕCM
iso ðnx; ny; nzÞ implying any permutation of fnx; ny; nzg.

A schematic drawing of the relevant states for the reported
measurements can be found in Fig. 1(c) for the isotropic

FIG. 1. (a) Scattering length as for Cs ðF;mFÞ ¼ ð3; 3Þ as a
function of B (solid black line) [41], with two narrow FRs at
47.8 G and 53.8 G. Orange (blue) shaded area corresponds to the
interval used in experiment E1 (E2). The dashed lines labeled P0,
P1, P2, and P3 mark the positions of the resonant features
observed in E1. (b) Schematic representation of the CM states
involved in the ICIRs: trap (upper) and bound (lower) state
according to each model of the atom pair [23]. For model M1
(M2) the trapping potential is given by the lattice (sextic)
potential. Initially, both atoms are in the same lattice site in a
trap state (separated orange circles), while the CM (blue area) can
be spread (M1) or localized (M2). ICIRs occur if the anharmo-
nicity of the trapping potential couples the trap state to the least-
bound state (connected orange circles) with some CM excitations.
(c) Schematic energy diagram for varying as in units of ah for
isotropic trapping. The thick and thin solid lines correspond
to ψRM

t ϕCM
iso ð0; 0; 0Þ and ψRM

t ϕCM
iso ð2; 0; 0Þ, respectively, whereas

the dashed, dotted, and dashed-dotted curves represent
ψRM
b ϕCM

iso ð4; 0; 0Þ, ψRM
b ϕCM

iso ð2; 2; 0Þ, and ψRM
b ϕCM

iso ð6; 0; 0Þ, re-
spectively. Intersections causing the ICIRs of the present work
are indicated by crosses.
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case, with as varied in units of ah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωÞp

, where ω is
the trap frequency. The results are similar for both models.
Additional crossings that violate parity conservation and
cannot give rise to RM-CM coupling are not included in
Fig. 1(c).
The experimental procedures are similar for both setups,

and we give details here only for E1. We start from a Cs
BEC of ∼3 × 104 atoms [47,48] with a condensate fraction
of 70% to 80%, levitated against gravity by a magnetic
field gradient j∇Bj ≈ 31 G=cm and held in a crossed
optical dipole trap (XODT) at λ ¼ 1064.5 nm generated
by beams along the horizontal x and y directions. The trap
depth of the XODT is V trap ¼ kB × 0.29 μK with trapping
frequencies νx ¼ 10.6ð1.2ÞHz, νy ¼ 16.0ð1.7ÞHz, and
νz ¼ 20.8ð1.5ÞHz, where z denotes the vertical direction
along gravity.
We load the BEC into a 3D cubic 1064-nm lattice with a

depth of up to Vx;y;z ¼ 20.0ð3Þ ER, where ER is the Cs
recoil energy, by ramping up the power in the lattice beams
within 500 ms. Together with a fine adjustment of the
XODT to control the chemical potential, this creates a Mott
insulator with predominant single-site occupancy [42,44].
Note that the finite size and finite temperature are respon-
sible for some defects in the Mott insulator, including
double occupancy of some sites. The offset magnetic field
B is subsequently increased from Bi ¼ 21.0 G to a value B0

between 40 G and 100 G, while adjusting j∇Bj to keep the
atoms levitated. In this interval, as varies in the range from
∼1.0 × 103 a0 to ∼1.5 × 103 a0, where a0 is the Bohr
radius, skipping the narrow FRs. We hold the atoms in the
lattice for a time τh ¼ 15 to 20 ms. After τh, we reverse the
procedure above. We image the atoms after 52 ms time of
flight and we record the atom number N and the rms radius
σ of the sample.
With E1 we observe four characteristic heating features,

see Fig. 2(a). We attribute the feature P0 to the FR at
47.8 G. The resolution is not sufficient to allow for the
observation of substructure near this FR. The much
narrower FR at 53.8 G does not show up in the data.
The features P1, P2, and P3 at B ¼ 56.5ð2Þ G, 65.3(3) G,
and 93.0(2) G, respectively, do not correspond to known
FRs. In fact, they are ICIRs, as confirmed below. In E2, we
tune as on the repulsive side of the FR at 47.8 G. This time
we observe four atom-loss features P0

1A, P
0
1B, P

0
2, and P

0
3 as

B is scanned from 46 G to 47.6 G as shown in Fig. 2(b). We
convert B into as according to Fig. 1(a) and plot both
datasets together in Fig. 3. The positions of the heating
features P1, P2, and P3 agree reasonably well with the
positions of the loss features P0

1A and P0
1B, P

0
2, and P0

3,
respectively. We attribute loss and heating features to the
effect of holding the atoms near resonance. As discussed
below, in E2 the feature P1 from E1 appears to be split
into two components P0

1A and P0
1B. We ascribe the splitting

to some slight anisotropy of the lattice in E2 [44]. Features
P0
2 and P0

3 are significantly broader than P2 and P3,

respectively. We attribute the broadening to the magnetic
field gradient, which causes a spread of as across the
sample [44]. This becomes increasingly larger as one
climbs up the narrow FR at 47.8 G.
We now compare the experimental data with the

predictions of the two models, without any fitting param-
eters. Even though the models are quite different, they
both reflect the data reasonably well. The positions of
P1 and P2 are in good agreement with the avoided
crossings predicted by M2 of the state ψRM

t ϕCM
iso ð0; 0; 0Þ

with the threefold degenerate states ψRM
b ϕCM

iso ð2; 2; 0Þ and
ψRM
b ϕCM

iso ð4; 0; 0Þ, respectively. The difference in energy
between the two states (2,2,0) and (4,0,0) stems from
anharmonic corrections and hence leads to two different
ICIRs. In Fig. 3 we indicate the calculated positions of the
resonances fromM2 and the intervals fromM1. For P1 and
P2 we again find reasonable agreement. We want to stress
that the observed resonances arise from states in which two
atoms initially occupy the same lattice site. Within the here
prepared Mott insulator state, this situation can arise due to
thermal excitations or imperfect preparation. If both atoms
occupy the lowest energy state of the same lattice well, the
relevant crossing for our model is to be expected with
the state ψRM

t ϕCM
iso ð0; 0; 0Þ. It is interesting to note that, on

the basis of our modeling, P3 cannot arise from a crossing
in which this state is involved. However, this resonance
could be the result of further excitations in the Mott-
insulator state. The avoided crossings of ψRM

t ϕCM
iso ð2;0;0Þ

FIG. 2. Observation of ICIRs in a 3D lattice at
Vx;y;z ¼ 20.0ð3Þ ER. (a) Cloud radius σ as a function of B for
E1 after 20 ms hold time. The data are fit by a multipeak Gaussian
(solid line) to guide the eye. (b) Atom number N as a function of
B for E2 after 50 ms hold time, showing four loss features P0

j,
j ¼ 1A, 1B, 2, 3. The solid line is also a multipeak Gaussian fit.
The error bars in both plots reflect the standard deviation from
typically three experimental runs.
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with ψRM
b ϕCM

iso ð6;0;0Þ, and ψRM
t ϕCM

iso ð1; 0; 0Þ with
ψRM
b ϕCM

iso ð5; 0; 0Þ are in fact very close to the position of
P3. We hypothesize that such excitations can be brought
about by mixing of the lowest band with excited bands due
to the strong interparticle interaction. In our case, the on-
site interaction energy is ∼78% of the band gap to the first-
excited lattice band [44], which may open the route for a
non-negligible population of the excited states, i.e., bands,
in a fully correlated many-body description.
Next, we test how the stiffness of the lattice confinement

and the introduction of some controlled anisotropy affect
the resonances, i.e., how their positions are tuned and to
what extent they split. Within E1 we first vary Vx;y;z in the
range between 20.0(3) and 15.5ð3Þ ER while maintaining
Vx ¼ Vy ¼ Vz. In Fig. 4 we plot the resulting resonance
position ar, obtained in the same way as for the resonances
shown in Fig. 3, as a function of the harmonic oscillator
length azh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωzÞ
p

along the z direction. As can
clearly be seen for P1 and P2, the position shifts to higher
values for ar with increasing azh. For P3 only two data
points are available, but also here a trend to higher values is
present. For two specific values Vz ¼ 17.5ð3Þ ER and
16.5ð3Þ ER we then set Vx ¼ Vy ¼ 18.5ð3Þ ER. The
degeneracy is removed [44] by increasing azh with respect
to ax;yh . Here, the crossings of, e.g., ψRM

t ϕCMð0; 0; 0Þ with

ψRM
b ϕCMð2; 0; 2Þ and ψRM

b ϕCMð0; 2; 2Þ are found at the
same position, but they are at a different position with
respect to the crossing of ψRM

t ϕCMð0; 0; 0Þ with
ψRM
b ϕCMð2; 2; 0Þ. In such an anisotropic case, P1 and P2

split into two components, similarly to what we had
observed earlier with E2. The splitting depends on the
difference in the trapping potential along the three direc-
tions. Model M1, which takes into account the full lattice
in the treatment of the CM [44], allows us to provide a
range [49] within which the resonances for the isotropic
case are more likely to be found. This turns out to be very
narrow for P1 and increasingly larger for P2 and P3 due to
the increasing bandwidth of the lattice bands. Overall,
the results of the models M1 and M2, with M2 addressing
also the anisotropic case, are in fair agreement with the
experimental data. Furthermore, the results are also sup-
ported by the double-well description within M2,
see Ref. [44].
While in this Letter the positions and physical origin of

the ICIRs, found experimentally to occur in strong 3D
confinement, are well explained by the theoretical models,
the details of how the resonance leads to loss and heating
need further theoretical and experimental investigation. In
particular, the degree of suppression of the loss features in
the Mott-insulator state and the possible role of inhomo-
geneities, allowing for superfluid regions in the system, is

FIG. 3. Comparison of the data from the two experiments.
(a) Cloud radius σ from E1 and (b) atom number N from E2
as a function of as. The resonance positions ar are found at
1112ð22Þ a0, 1236ð11Þ a0, and 1488ð16Þ a0 for P1, P2, and P3,
respectively, and at 1094ð10Þ a0, 1124ð26Þ a0, 1266ð40Þ a0, and
1484ð92Þ a0 forP0

1A,P
0
1B,P

0
2, andP

0
3, respectively. For each peak,

the resonance position is obtained as the center of a Gaussian
fit, the number in parenthesis indicates thewidth from the gaussian
fit. The colored areas indicate the intervals obtained from M1,
and the dotted lines represent the positions of the crossings as
given by M2: ψRM

t ϕCM
iso ð0; 0; 0Þ with ψRM

b ϕCM
iso ð2;2;0Þ (blue)

and with ψRM
b ϕCM

iso ð4; 0; 0Þ (red), and ψRM
t ϕCM

iso ð2; 0; 0Þ with
ψRM
b ϕCM

iso ð6; 0; 0Þ (green). The width of the blue area has been
increased by a factor of 20 to improve visibility.

FIG. 4. Tuning of the ICIRs. Resonance position ar for P1

(blue), P2 (red), and P3 (green) as a function of the oscillator
length azh along the z direction for the isotropic (circles) and the
anisotropic (triangles) case. For the isotropic case, Vx ¼ Vy ¼ Vz

was set to 20.0(3),18.5(3),17.5(3),16.5(3), and 15.5ð3Þ ER for the
data from left to right. For the anisotropic case, Vx ¼ Vy ¼
18.5ð3Þ ER was chosen for Vz ¼ 17.5ð3Þ ER (left triangles) and
16.5ð3Þ ER (right triangles). The results from M1, applicable to
the isotropic case, are shown as the blue, red, and green areas. The
blue area has been widened by a factor of 3 to improve visibility.
The predictions ofM2 are plotted as dotted (dashed) lines for the
isotropic (anisotropic) case.
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unclear. Studies of the loss dynamics and in particular of its
density dependence would help elucidate the nature of the
observed resonances, with connections to recent observa-
tions of tunneling dynamics of doublons in the regime of
strong interactions and under strong three-body losses [50].
Three-body losses have not been considered explicitly in
any of our theoretical models, where the loss was attributed
to a two-step process via the creation of a mobile molecule,
in analogy with previous observation in 1D geometry [30].
In this context, detecting the ICIRs out of a two-atom
Mott-insulator shell could greatly elucidate the relevant
processes.
Our results contribute to the understanding and charac-

terization of CIRs, with prospects for the association of
dimers in optical lattices [42,51–53] and optical tweezers
[54–56] in the absence of, e.g., magnetic FRs, as a
detection tool with potential implications in novel quantum
sensors or as a step for creating ultracold molecules. In
addition, these results add constraints for the stability of
atoms in optical lattices or tweezers (and tweezer arrays)
and become very relevant in the presence of systems with a
high number of FRs like lanthanide atoms [57,58], or large
lattice depths as in the case of quantum-gas microscopy
[59,60].

Note added.—Recently, Lee et al. [62] also reported on the
observation of resonances caused by CM-RM coupling.
Interaction tuning is reported in a quasi-one-dimensional
lattice, in contrast to losses measured for a three-dimensional
lattice in the present work. A key difference is that
in [62] the resonant process involves states delocalized over
more than one well, and thus requires at least a double-well
description [44,63]. Further recent work by Pinksa et al. [64]
reports on yet another type of resonance due to CM-RM
coupling, this time involving an ion and a neutral atom.

The data that support the findings of this study are made
publicly available by the authors at [61].
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