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Opportunistic plant observations reveal spatial and temporal
gradients in phenology
Michael Rzanny1✉, Patrick Mäder2,3,4, Hans Christian Wittich2, David Boho2 and Jana Wäldchen1,4

Opportunistic plant records provide a rapidly growing source of spatiotemporal plant observation data. Here, we used such data to
explore the question whether they can be used to detect changes in species phenologies. Examining 19 herbaceous and one
woody plant species in two consecutive years across Europe, we observed significant shifts in their flowering phenology, being
more pronounced for spring-flowering species (6-17 days) compared to summer-flowering species (1-6 days). Moreover, we show
that these data are suitable to model large-scale relationships such as “Hopkins’ bioclimatic law” which quantifies the phenological
delay with increasing elevation, latitude, and longitude. Here, we observe spatial shifts, ranging from –5 to 50 days per 1000 m
elevation to latitudinal shifts ranging from –1 to 4 days per degree northwards, and longitudinal shifts ranging from –1 to 1 day per
degree eastwards, depending on the species. Our findings show that the increasing volume of purely opportunistic plant
observation data already provides reliable phenological information, and therewith can be used to support global, high-resolution
phenology monitoring in the face of ongoing climate change.
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INTRODUCTION
Phenology, the timing of season-related life cycle events, plays a
key role for plants and influences major processes such as growth,
reproduction and evolution. Global warming and the related
altered temperature and precipitation regimes1,2 but also
urbanisation3 and deposition of CO2 and nitrogen4 are affecting
the timing of plants’ phenological phases. In turn, altered plant
phenology feeds back on global ecosystems and influences
fundamental processes such as the carbon and water cycle1,5,6,
ecological interactions7–13, or land-atmosphere interactions14,15.
Especially, temperate vegetation is sensitive to climate variability,
since temperature is a core driver of phenological changes in
these regions16,17. These co-dependencies highlight the crucial
role of phenology and the vital importance to adequately
document, monitor and model changes in the timing of
phenological events on larger scales and at more fine-grained
resolution. However, current phenology monitoring is diverse in
terms of scales, geographical regions, and approaches18–20. At the
same time, there is an urgent need for phenology data suitable to
parameterize predictive phenology models20,21 and to analyze
effects on community level18,22,23. Therefore, phenological obser-
vations need to be integrated and extended with a focus on a
broader taxonomical scope, especially towards herbaceous
species, a higher spatial and temporal resolution, and a larger
spatial extend24,25.
The digital age with almost ubiquitously available and high-

performance technology makes way for a new type of data that
can be harnessed for ecological research26–29: opportunistic plant
records, collected via species reporting platforms, e.g., iNatural-
ist30, observation.org or artportalen31; and via identification apps,
e.g., Flora Incognita32 and Pl@ntNet33. These plant observations
have not been intentionally generated to address phenological
questions, but come in large quantities, broad spatial coverage,
and at high spatial, temporal and taxonomic resolution. Observa-
tions captured by these platforms already surpass the number of

manually recorded phenology observations by orders of magni-
tude and unlock a great potential to study spatially and temporally
highly resolved changes in species observation patterns34.
Phenology is known to primarily respond to temperature and

precipitation. Therefore, it is dependent on geographic factors
such as elevation, latitude and longitude. In the Northern
hemisphere, spring events are observed later at higher latitudes,
whereas autumn events occur earlier35. The same applies for
higher elevations, where the average temperature decreases as
altitude increases. These relationships have been described as the
Bioclimatic Law, which hypothesizes that on the northern Hemi-
sphere, phenological events shift by four days for one degree
latitude north, five degrees longitude west, or 400 ft (120 m) of
elevation increase36. Similar responses can be expected for the
southern Hemisphere, although much less studied37,38. While this
law neglects important sources of variation, such as differences
between species, populations or regions39–42, its predictions have
been described as matching observations derived from remote
sensing, phenocams or ground observations41,43,44 when applied
at coarse-grained scales. A recent study found that the Bioclimatic
Law was systematically altered by global-change-induced warm-
ing for four tree species in the Swiss alps43. Trends predict
consistently advancing phenological events of two to ten days per
decade, depending on observed species and bioregion1,35,45.
In this study, we assess the viability of using large amounts of

opportunistic plant observations to monitor changes in phenolo-
gical patterns in 20 mostly herbaceous species with high temporal
and spatial resolution. To achieve this, we calculate the median
flowering dates for 20 species and compare the results across two
years (2020 and 2021) on a grid across Europe. Until now, large-
scale bioclimatic relationships have mainly been studied for tree
species through dedicated local phenology observing initiatives.
Our goal is to showcase how massive numbers of opportunistic
plant observations can be used to quantify similar relationships for
herbaceous species on a continental scale.
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RESULTS
We studied the flowering phenology of 20 species on a 50 × 50 km
grid cell raster across Europe in terms of median observation date
(MOD) per species and gridcell. In total, our analyses are based on
2,040,418 opportunistic plant observations. Figure 1 exemplary
visualizes the median observation date per grid cell for the spring-
flowering Veronica chamaedrys, the spring-to-summer flowering
Echium vulgare, and the summer-flowering Tanacetum vulgare in
2020 and 2021. The maps for the remaining species can be found
in SI Fig S6. In general, the three exemplary species show spatially
varying phenology dependent on latitude, longitude and eleva-
tion (e.g., the European Alps), a considerable shift among the two
years of observation, and a reversed shift in flowering between
the early and the late-flowering species. The figure shows the
species’ natural distribution range as a red-shaded overlay,
verifying that the utilized observation data covers a substantial
part of it.

Species’ phenology within the growing season
Figure 2 provides a spatially more detailed overview of the
differences discussed above. Each map in the figure represents
one species and shows differences in median observation date per
grid cell between the two years. The maps are ordered according
their median MOD in 2020. Although the extend of this time shift
differed between species, there is a tendency towards a larger
shift (6–17 days) for the spring-flowering species, whose mean
date of observation was between mid April and mid June (DOY:
94–172). This shift levels off to a few days (1–6 days) in the course
of the growing season until the mid of August (SI Figure S4). While
almost all medians of MOD were observed earlier in 2020 than in
2021, there are local differences between species. For example,
the median observation date for early-flowering species, such as
Ficaria verna, Lamium purpureum, Glechoma hederacea, Alliaria
petiolata, Ajuga reptans, and Chelidonium majus was advanced
in 2020 in all observed regions, the median flowering date of

later-flowering species was delayed in 2020 compared to 2021 in
the eastern Silene dioica, Aquilegia vulgaris, Tanacetum vulgare and
northern Origanum vulgare parts of Europe.

Yearly temperature differences influence phenology
When studying the spatially aggregated medians of MOD per
species and year, we found that all but one species (Centaurea
cyanus) was observed significantly earlier in 2020 than in 2021 SI
Table S1. In order to better understand and validate these inter-
annual changes in the phenology we compared the median shift
in MOD with the median shift in growing degree days (GDD). The
left hand side panel of Fig. 3 shows the median shift of MOD
across all grid cells as box plot per species. The panel on the right-
hand side shows the difference in growing degree days (GDD)
between 2020 and 2021 for the same gridcells at the time when
median flowering date was observed for a particular species in
these gridcells. We observed that the earlier flowering in 2020 is
matched by a similar shift in GDD towards faster temperature
accumulation.

Bioclimatic variables influence phenology
Figure 4 visualizes the relationship between the shift of a species’
median MOD in 2020 and 2021 for these three spatial dimensions;
and the average shift in this period per 1000 m elevation, one-
degree latitude and one-degree longitude. In general, flowering
was belated towards increasing elevations and towards higher
latitudes, except for very late-flowering species, while longitude
was observed to have a more species-dependent effect if at all. In
terms of elevation, the strongest influence was observed for
Digitalis purpurea in 2020, showing a delay of 49.92 days in MOD
for every 1000 m increase. Plotting the shift in days per 1000 m
increase in elevation for all species against MOD results in a hump-
shaped relationship, with its maximum during the transition from
spring to summer in both observed years. The largest influence of
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Fig. 1 Median observation date (MOD) for Veronica chamaedrys, Echium vulgare, and Tanacetum vulgare in 2020 and 2021, estimated
from opportunistic plant observations. MOD was calculated for grid cells of 50 × 50 km size with at least 20 observations. The day of year
(DOY) designationg MOD is colour coded. Cells without sufficient observations are interpolated using a support vector machine (SVM) model
based on elevation, latitude and longitude that was trained on the gridcells with sufficient observations. We interpolated only grid cells within
the area of applicability, i.e. gridcells whose parameter can reliably estimated based on the observed MODs. The underlying red-shaded area
visualizes a species' range of distribution. Note that the color scales differ between species.
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latitude was observed for Lamium purpureum in 2020, with a delay
of 4.18 days in MOD per degree northward occurrence. We
observe an average delay of 2.11 days per degree northwards
occurrence across both years for all species, while on the extreme,
the three late-flowering species Origanum vulgare, Tanacetum
vulgare, and Impatiens glandulifera flowered 0.75 to 1.05 days
earlier per one degree northwards in 2021. The functional
relationship across all species once again shows a hump-shaped
pattern, peaking in the middle of spring, with the values for
2020 slightly above those for 2021. Regarding longitude, the most
significant influence was observed for Digitalis purpurea in 2020,
showing a delay of 1.32 days in flowering for every one degree
eastwards. Similarly, Centaurea cyanus in 2021 exhibited earlier
flowering by 1.35 days for every one-degree eastward occurrence.
The relationship between longitude and median MOD are less
consistent. For several cases, longitude has no significant effect in
the statistical model.

DISCUSSION
In combining data from species-reporting platforms and identifi-
cation apps, we were able to compile a comprehensive multi-
species dataset allowing us to simultaneously compare the
phenology of 20 plant species across two subsequent years and
locations. Our study shows that opportunistically collected plant
observations capture changes in the phenology of these species
and can provide detailed information on large-scale phenological
patterns along broad geographic gradients. This finding paves the

way for a variety of further studies regarding changes in
bioclimatic patterns not assessable before. Since the number of
available observation records is expected to further increase26, this
data can provide highly relevant large-scale information not
limited by the borders of federal states, which may or may not
monitor the phenology of species, but rather by the occurrence of
the focal species. At the same time, analyses at highly spatially,
taxonomically, and temporally resolved levels become possible.
Due to limited data availability, earlier studies using opportunistic
data had to use records aggregated from several years23,28,
thereby necessarily neglecting the considerable inter-annual
variability, which can be as large as two weeks for some species,
as we have shown in this study. Additionally, very sparse
observation counts can result in inaccurate predictions and
misleading conclusions46, especially if less robust estimates, such
as onset of flowering, are estimated from that data. Being based
on more than two million entirely opportunistic plant observations
and using MOD, a more robust phenometric suitable for
opportunistic observations, our work shows that these data
provide a means to continuously monitor wildflower phenology
on an annual basis.
Plants respond differently to climate change. While some

species may respond with, e.g., earlier flowering, other species
show no trend at all27,47–49. Different aspects of temperature
alone50 do not explain phenological variation of various tempe-
rate plants under experimental warming51. Other factors, such as
the number of chilling days or the length of the photo period
per day are known to affect the phenology of species, too27,41,52.

Ficaria verna Lamium purpureum Glechoma hederacea Alliaria petiolata Ajuga reptans

Chelidonium majus Silene dioica Veronica chamaedrys Geranium robertianum Aquilegia vulgaris

Geum urbanum Sambucus nigra Digitalis purpurea Centaurea cyanus Lysimachia punctata

Echium vulgare Erigeron canadensis Origanum vulgare Tanacetum vulgare Impatiens glandulifera
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Fig. 2 Differences in median observation date (MOD) for each studied species and per analyzed grid cell between 2020 and 2021. Blue
colours indicate an earlier median flowering date in 2020 while green colors indicate an earlier median flowering date in 2021.
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On larger scales, however, accumulating growing degree days
with the standard base temperature of five degrees Celsius
represents a simple, yet accurate model for predicting the
flowering phenology of plants53,54. Summer-flowering species
have been reported to show more inter-annual variation than
spring-flowering species, while the latter are more strongly

correlated to mean monthly temperatures55. Early-flowering
species require larger time spans to accommodate for the smaller
accumulated forcing temperatures early in the vegetation
season56. The results from our showcase covering two years are
in line with those findings. In most parts of Europe, the
accumulated temperatures in 2021 were lower than in 2020. The

Fig. 3 Shift in median flowering date (MOD) in relation to the shift in growing degree days (GDD). The boxplots on the left panel represent
the difference in MOD for each species. Each boxplot shows the distribution of shifts in MOD across grid cells. The species on the x-axis are
arranged according to their median MOD in 2020. The boxplots on the right panel show the difference in shift of GDD 2021-2020 across the
same grid cells at the time when MOD of a particular species occurred in these grid cells. The x-values of the boxplots are identical in both
panels. The grey line represents a smoothing function through the medians of each boxplot with the associated 95 % confidence interval
indicated as a grey shade. For better comparability, we inverted the difference between 2020 and 2021 (i.e. 2021-2020 instead of 2021-2020)
for the shift in GDD, as the relationship between both shifts is complementary. If a species is flowering earlier in 2020 than in 2021, the
difference 2021–2020 would be positive. For the shift in GDD the expectation would than be that the accumulated temperature at the time of
median flowering would be higher in 2020 than in 2021, resulting in a negative difference. Each species is color-coded in the same way across
both panels. Values above zero on the left panel (upper orange arrow) indicate species observed earlier in 2020 than in 2021, while positive
values on the right panel (upper red arrow) indicate that the accumulated temperatures (GDD) were higher in the respective grid cells in 2020
than in 2021. Negative values imply the opposite in both panels, i.e., MOD occurring later in 2020 compared to 2021 and GDD being lower in
2020 compared to 2021.
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Fig. 4 Relationship between shift in elevation (left), latitude (center), and longitude (right); and the median observation date per species
in 2020 (triangles with blue margins) and 2021 (dots with red margins). The filling color of the symbols refers to the particular species.
Median DOY (day of year) on the x-axis refers to the median observation date (MOD) across all gridcells in 2020 (blue dots) and 2021 (red
dots). The species are color-coded and the symbols of the same species are connected with a dotted line. Curves are fitted using a LOESS
smoother with span=1.5 and the shaded area represents the associated 95% confidence intervals. The background grey scales refer to spring
-flowering (light grey) and summer-flowering (dark grey).
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spring-flowering species responded with a larger shift than the
summer-flowering species (SI Table S1). In contrast to the strong
inter-annual differences in the DOY of median observation date,
the same species show much less inter-annual variation in the
GDDs accumulated upon their mean flowering dates (SI Fig. S8).
Elevation- and latitude-induced shifts have previously been

quantified mostly for leaf-out of woody plants36,41,43,57,58. Based
on dedicated phenological observations in the Swiss Alps, Vitasse
et al.43 found that Hopkins’ bioclimatic law of spring phenology
has changed since originally formulated in 1920. The elevation-
induced phenological shift of the tree-leaf-out date decreased by
35% from 34 days per 1,000 m in 1960 to 22 days per 1,000 m in
2016. Although the absolute values differed between the four
observed species, all showed the general trend of decreased
elevation-induced shift. Another estimated delay for leaf-
unfolding in beech trees is reported of being 26 days per 1,000
m increase in elevation57. Our results show even more decreased
shifts for several of the earliest-flowering species, occurring
around the time of tree leaf-out (DOY 100-130). Averaging the
values of the six species whose mean observation dates fall into
this range results in a mean of 15.5 days in 2020 and 13.6 days in
2021, with values ranging from 6.7 days (Glechoma hederacea,
2020) to 33.8 days (Lamium purpureum, 2020) (cp. SI Tab S2). This
elevation-induced shift shows a hump-shaped relationship over
the course of the vegetation season (cp. Fig. 4 left). This indicates
that for later-flowering species, the trend of belated flowering
towards higher elevation and latitude is weakened and ultimately
reversed. Populations of Impatiens glandulifera that stem from
higher latitudes have been shown to produce flowers earlier than
populations from lower latitudes59. Impatiens glandulifera is an
invasive species in Europe and is, among others, limited by
temperature60. As the length of the vegetation season is shorter at
high elevations and latitudes, the earlier median observation dates
in our study are in line with these findings. Hopkins reported a
four-day shift in spring phenology per degree northward and five
degrees westward for the US in 196036. In our study, the mean
estimates for early-flowering species considered for elevation are
2.7 days in both years, which is reasonable considering the
observed decrease in elevation-induced shift. A more recent study
reported a delay of 2.7 days per degree northwards and 21 days
per 1,000 m elevation for the greening in deciduous forests based
on phenocam data41. However, the authors of that study did not
find similar relationships for the greening of other observed
ecosystems (evergreen needle leaf forest and grassland vegeta-
tion). Similar to the elevation-induced shift, the latitude-induced
shift shows a maximum value around DOY 150 as a consequence
of the shorter vegetation period. Only some of the observed
species show a significant response along the longitude
component in our regression models. While latitudinal and
elevational gradients represent fundamental temperature gradi-
ents in temperate climates, the relationship in longitudinal
direction is not that strong and might differ across regions. The
North American land mass, for which Hopkins developed his
bioclimatic law, is likely to show different gradients than the
Central European land mass, e.g., with respect to climatic
continentality.
The large numbers of available community observations also

comes with associated problems. In the following we briefly
discuss the assumptions we made and the potential impact of
biases that are inherent to opportunistic plant observations and to
citizen science data in general. These biases include, e.g., weekend
effects, holiday effects, weather effects or changes in user
motivation61. While fully accounting for this mix of potentially
interdependent biases is not possible, we took some precau-
tionary measures to mitigate their impact. Most importantly, an
evaluation against independent data from dedicated monitoring
efforts can provide information on the reliability of the data. Katal
et al.62 explored how plant observations, collected via a plant

identification app, can be compared to data collected by trained
phenology observers and found largely corresponding patterns in
the onset of flowering estimates for species with a conspicuous
flowering stage. This indicates, on the one hand, a potentially
strong link between flowering phenology and local observation
density, and, on the other hand, a tolerable impact of the
underlying biases on the estimated phenology measure. In
contrast to the latter study, we decided to analyze the median
observation dates, i.e., the 50th percentiles of a Weibull function
fitted on the distribution of observations dates in each gridcell.
This approach has been shown to represent a most robust
phenometric for opportunistic data63. These authors argue that
they achieved unbiased estimates for as few as ten individuals in
some cases63. In order to increase the robustness of this approach
we required at least 25 observations per gridcell to calculate their
MOD. The number of observations per gridcell can vary
considerably, as opportunistic observations are often locally
clustered in highly populated areas34. The probability of recording
extreme data points increases with the number of observations,
which has been shown to affect the estimation of the day of onset
of flowering, but much less the day of median observation64,65.
Therefore, we favored ‘median observation dates’ over ‘first
appearance dates’ in this analysis, as median dates have been
shown to be more accurate and less sensitive to sampling than
the onset of flowering, especially when using partially sparse plant
observations without known phenological stage8,9,66–68.
We used opportunistic observations from 6 different sources.

Flora Incognita and Pl@nt net represent plant identification apps
and contribute almost always considerably more than half of the
observations per species (see SI Fig. S2). The common observation
patterns become already apparent from the overall distribution.
The systematic shift of the peak within Swedish Artportalen and
the Norwegian NCBI represents a phenological consequence, as
observations contributed via theses platforms were collected in
Northern Europe, where mean temperatures are lower than in
Central Europe, where the main fraction of observations from the
other data sources were collected (see SI Fig. S4). However, as the
number of observations from the Nordic sources are very sparse
for some species, the density curves are strongly influenced by
single observations. Another source of error might be that
opportunistically collected images do not carry information on
the exact phenological phase of the plant. However, in order to
compare large-scale patterns, it is not necessary to define the
concrete pheno phase. We assume that user behavior in
documenting plant species is similar for the same species across
regions and years for large observation numbers. The density
curves in Fig. S2 imply that this is a reasonable assumption. Our
approach requires aggregating species’ observations across larger
spatial units, whereas dedicated phenological observations are
usually collected on individual plants. Hence, our derived
phenometric estimate represents the community average of a
series of unstructured presence-only records within the chosen
spatial unit, not individual records. In consequence, small-scale
phenological variability is aggregated on a larger scale, while the
sampling effort is not uniform across the considered spatial
units64. Therefore, our current approach will inevitably be biased
towards densely populated areas as here the number of
observations is higher (see SI Fig. S4)34. In some gridcells,
thousands of observations were available for some species per
year, which would allow for a much higher resolution locally, given
that 25 observations were necessary to estimate median
observation date. There is a general trade-off between smaller
gridcells and better-resolved estimates but more sparse coverage
and larger gridcells with more aggregated estimates but better
coverage. It remains an open question under which circumstances
which approach is more suitable. While this could potentially
influence the absolute phenometric estimates as, e.g., urbaniza-
tion might affect phenology3,27,69, we assume the potential effect
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on the inter-annual differences to be negligible, as population and
observation density are unlikely to shift systematically between
years. This is underpinned by the highly consistent inter-annual
shifts regardless of the observed species (Fig. 2). In recognition of
this extensive list of potential biases and assumptions we argue
that more research is needed to develop statistical frameworks
integrating different measures of phenology and allowing to
mitigate the uncertainties.
Overall, our results indicate that the growing amount of

available opportunistic plant observation data provides reliable
phenological information that already allows to quantify large-
scale bioclimatic relationships for plant species. Opportunistic
plant observations bridge the scales between dedicated individual
human observation of defined phenological stages and remote-
sensed phenology observations of the entire landscape. In
contrast to the former, opportunistic observations are more
numerous, cover more species and are collected across the entire
species distribution range without requiring any additional efforts
or costs. Unlike remote sensing data, opportunistic plant
observations allow to collect species-specific phenology informa-
tion which are urgently needed for community-level analyses and
predictive phenology models. In combination with data collected
within traditional phenological observation networks, these data
can be used to parameterize climate and vegetation models and
are expected to allow for more timely and fine-grained predic-
tions. While we used observations without an explicit attribution
to a specific pheno-phase, a logical next step would be to train
image recognition models that are able to recognize different
phenological stages on the available images70. This would enable
researchers to derive estimates of different phenological stages
per species and allow for even more fine-grained observations of
the phenological development throughout the year.

METHODS
Plant observation data
We selected 20 common and widespread, mostly herbaceous
species with high observation counts and prominent flowering
stage. Further, we considered an easy recognizability and a
complete coverage of the vegetation season as essential. We also
included Sambucus nigra, a woody species which is growing as a
shrub or small tree. Similar to the other considered species it is
widespread and common, has a prominent flowering stage, and
its flowers and leaves are usually in a height reachable to persons
using a smartphone. Observation records stem from multiple
sources collecting opportunistic plant observations in Europe: the
plant identification apps Flora Incognita32 and Pl@ntNet71,72; as
well as the species-reporting platforms: iNaturalist30, Observatio-
n.org73, Artportalen31, and The Norwegian Biodiversity Informa-
tion Centre (NBIC)74 (Fig. S1). Along the underlying selection and
aggregation process we utilized dataset descriptions to make sure
that observations did not follow particular observation patterns or
campaigns but rather were opportunistic in nature. We pooled all
observations into a single data set with 2,040,418 observation
records, with both years showing a similar total observation count
(943,384 in 2020 vs. 1,097,034 in 2021). Each plant observation
documents the presence of a species at a certain location at a
certain time. Therefore, we applied a presence-only modeling
approach. Simulations have shown that phenological predictions
based on presence-only observations are robust, especially when
the central percentiles of the observations are determined63.

Estimation of median observation date
We analyzed the median observation date as it represents a most
robust phenometric for opportunistic data63. We rasterized Europe
into 50 × 50 km grid cells and used all records per grid cell for a
given species and year. For each grid cell we attempted to

calculate the median date of observation as the 50th percentile
based on the Weibull distribution, using the R-package phe-
nesse75. Phenesse uses a parametric bootstrapping approach to
calculate phenological metrics for any percentile based on the
Weibull distribution. In order to reduce error and bias we
conservatively chose a minimum of 25 observations per grid cell
to estimate the median date per grid cell63. As a consequence, we
calculated MOD only for grid cells that exeeded 25 observations
per year (see SI Fig. S5).
Most of our observed species show a more or less symmetric

observation curve with a single prominent peak representing the
stage of a plant when it is most conspicuous and interesting for
opportunistic observers (SI Fig. S2) - i.e. the flowering stage. This is
why in most cases, the median observation date (MOD) will
correspond to the peak flowering date of the plant. We divided
the species into two groups: species with an median MOD in 2020
prior to DOY 172 (onset of summer) were assigned to the group
“spring-flowering", while the species with a median MOD at or
after that day were assigned to the group “summer-flowering"
(Tab S2). We used support vector machine (SVM) regression based
on elevation, latitude and longitude to interpolate the values of
grid cells with too few occurrences within the area of
applicability76. See SI Figs. S3, S5 for a comparison to the directly
observed values. The difference between medians in MOD of all
grid cells between both years was tested using a paired two-sided
Wilcoxon Rank sum test.

Temperature analysis
The gridded daily temperature and elevation data for Europe were
retrieved from Copernicus Climate Change Service77,78 and re-
scaled to our 50 × 50 km grid. In order to mechanistically link
differences in median observation dates with local climatic
conditions, we related the observed shifts per grid cell with the
differences in accumulated temperature in the same area.
Therefore, we used the concept of growing degree days (GDD)
as a measure of thermal time (temperature accumulation above a
certain baseline over time) that is commonly used in agriculture,
where several phenological stages of crops are expected to fall
into highly conservative ranges of GDD79. We calculated GDD as
accumulated mean daily temperatures above a baseline of five
degrees Celsius for each day of the year based on the gridded
minimum and maximum temperatures consistent to previous
studies predicting the flowering phenology of plants53,54,80.

Effects of elevation, latitude, and longitude
Observation shifts in relation to elevation, latitude, longitude were
calculated per species in both years as parameters from a multiple
linear regression equation of the form:

Doyspecies ¼ melev � elev þmlat � lat þmlon � lonþ nþ ϵ (1)

where Doyspecies is the observed day of year per species; elev, lat,
and lon are elevation, latitude, and longitude; melev, mlat, and mlon

are the respective regression coefficients and ϵ denotes the
regression error. P-values were adjusted for multiple testing
according to the Bonferroni-Holm method81. These parameters
were then used separately for elevation, latitude, and longitude to
fit a quadratic regression model and to fit the relationship
between median observation date to each of them (cp. Fig. 4).
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