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A B S T R A C T   

Reward-based learning and decision-making are prime candidates to understand symptoms of attention deficit 
hyperactivity disorder (ADHD). However, only limited evidence is available regarding the neurocomputational 
underpinnings of the alterations seen in ADHD. This concerns flexible behavioral adaption in dynamically 
changing environments, which is challenging for individuals with ADHD. One previous study points to elevated 
choice switching in adolescent ADHD, which was accompanied by disrupted learning signals in medial prefrontal 
cortex. 

Here, we investigated young adults with ADHD (n = 17) as compared to age- and sex-matched controls (n =
17) using a probabilistic reversal learning experiment during functional magnetic resonance imaging (fMRI). The 
task requires continuous learning to guide flexible behavioral adaptation to changing reward contingencies. To 
disentangle the neurocomputational underpinnings of the behavioral data, we used reinforcement learning (RL) 
models, which informed the analysis of fMRI data. 

ADHD patients performed worse than controls particularly in trials before reversals, i.e., when reward con-
tingencies were stable. This pattern resulted from ‘noisy’ choice switching regardless of previous feedback. RL 
modelling showed decreased reinforcement sensitivity and enhanced learning rates for negative feedback in 
ADHD patients. At the neural level, this was reflected in a diminished representation of choice probability in the 
left posterior parietal cortex in ADHD. Moreover, modelling showed a marginal reduction of learning about the 
unchosen option, which was paralleled by a marginal reduction in learning signals incorporating the unchosen 
option in the left ventral striatum. 

Taken together, we show that impaired flexible behavior in ADHD is due to excessive choice switching (‘hyper- 
flexibility’), which can be detrimental or beneficial depending on the learning environment. Computationally, 
this resulted from blunted sensitivity to reinforcement of which we detected neural correlates in the attention- 
control network, specifically in the parietal cortex. These neurocomputational findings remain preliminary 
due to the relatively small sample size.   
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1. Introduction 

Attention deficit hyperactivity disorder (ADHD), a common child 
and adolescent psychiatric disorder (Faraone et al., 2015), is charac-
terized by its core symptoms of hyperactivity, inattention, and impul-
sivity. Reward-based learning and decision-making are prime 
candidates that may underlie symptoms, as alterations were reported in 
some of these domains (Mowinckel et al., 2015; Marx et al., 2021). 
However, only limited evidence is available regarding the neuro-
computational underpinnings of reward learning and decision-making 
in ADHD. This is particularly true with respect to flexible behavioral 
adaption in dynamically changing environments, which may be chal-
lenging for individuals with ADHD (Humphreys et al., 2018) due to 
attentional and learning deficits. Fig. 1. Example of a sequence from the 
reversal learning task (adapted from Schlagenhauf et al., 2014. 

How individuals learn from positive and negative reward feedback 
and guide decisions accordingly can be formalized by computational 
models of reinforcement learning (Sutton and Barto, 1998). At the core 
of RL models are reward prediction errors (RPEs), which reflect the 
differences between delivered and expected reward. Neurally, predic-
tion errors are signaled by phasic release of midbrain dopamine (Hol-
lerman and Schultz, 1998, Schultz, 2013), with corresponding echoes of 
neural activity in the striatum as well as other brain regions (Pine et al., 
2018). Human functional neuroimaging studies reported correlates of 
RPEs in the midbrain, striatum and several cortical regions (O’Doherty 
et al., 2004; D’Ardenne et al., 2008; Daw et al., 2011; Deserno et al., 
2015b). Individual differences in neurobehavioral correlates of RL have 
been indeed linked to a variety of dopamine measures available in 
humans, including pharmacological manipulations (Pessiglione et al., 
2006; Westbrook et al., 2020; Rostami Kandroodi et al., 2021; Deserno 
et al., 2021), neurochemical positron emission tomography (PET) 
(Deserno et al., 2015b; Westbrook et al., 2020; Calabro et al., 2023) and 

specific genotypes (Frank et al., 2007; Dreher et al., 2009). 
In patients with ADHD, neurochemical studies reported altered 

dopamine neurotransmission and presumably lower baseline dopamine 
levels (Fusar-Poli et al., 2012). Brain activation, measured with fMRI 
during the anticipation and delivery of rewards, was reported to be 
disrupted (Plichta and Scheres, 2014; von Rhein et al., 2015), in 
particular in the ventral striatum during reward anticipation (Plichta 
and Scheres, 2014). This line of work supports hypothetical alterations 
in RL and its neural underpinnings. However, evidence based on studies 
that directly test learning and apply computational modeling (Ziegler 
et al., 2016; Véronneau-Veilleux et al., 2022) is missing. A particular 
challenging scenario for individuals with ADHD is not only to learn from 
reward to guide decision-making but also to strike a balance between 
exploration and exploitation when action-outcome contingencies 
change dynamically. This capacity can be examined using reversal 
learning (Reiter et al., 2017; Waltmann et al., 2023). Reinforcement 
learning has been shown to undergo substantial neurodevelopmental 
changes (Nussenbaum and Hartley, 2019; Weiss et al., 2021; Scholz 
et al., 2023; Waltmann et al., 2023), and has been used to study a wide 
range of psychiatric disorders (Chantiluke et al., 2015; Geisler et al., 
2017; Reiter et al., 2017). Yet, there is only one study available that 
directly examined RL in adolescent ADHD patients during fMRI (Hauser 
et al., 2014). This study revealed noisy switching behavior in ADHD 
patients, which may computationally arise from enhanced levels of de-
cision noise, an impairment in distinctly representing values of alter-
native choice options. In the study by Hauser et al., (2014) this was 
accompanied by reduced activation to RPEs in the medial prefrontal 
cortex. Our study aimed to extend these findings by investigating RL in 
adult ADHD patients. Furthermore, this study explored for the first time 
explicitly whether impaired learning of the selected action or impaired 
simultaneous learning of the unselected action caused the difficulties in 
RL. 

In n = 17 patients and n = 17 controls, we closely followed the study 
by Hauser et al., (2014) by examining reversal learning during fMRI 
with extended RL modelling and more detailed computational fMRI 
analysis. We hypothesized that altered task performance would be 
driven by noisy choice switching, computationally accounted for by 
enhanced decision noise. In our RL models, we addressed not only 
learning from the chosen option (single-update learning) but also 
learning from the option that was not chosen (double-updating). Thus, 
we explored whether differences in these types of learning also 
contributed to the observed behavioral alterations seen in ADHD. On the 
neural level, we dissociated correlates of RPE with respect to single- and 
double-update learning. We further analyzed the neural correlates of 
choice probability, which closely reflects decision noise. We focused 
these analyses on the ventromedial prefrontal cortex and the ventral 
striatum, which were previously reported to be altered in ADHD, and 
where we expected reduced correlates of RPEs and choice probability. 

2. Methods 

2.1. Study protocol 

Before participation, all participants provided written informed 
consent. Ethical approval was obtained through the ethics committee of 
the German Psychological Society (DGPs registration number: 
HSAAS04082008DGPS). Data were collected between 2008 and 2011. 

All participants completed several diagnostic and neuropsychologi-
cal assessments before the MRI acquisition. All patients fulfilled the 
DSM-IV-TR criteria for ADHD combined subtype as assessed by clinical 
experts with the structured assessment scale ‘ADHD Diagnostic Check-
list’ (Rösler et al., 2005). ADHD symptomatology in childhood was 
assessed retrospectively with the ‘Wender Utah Rating Scale – German 
short form’ (WURS, (Retz-Junginger et al., 2002)). The current severity 
of ADHD symptomatology was examined via the ‘Conner’s Adult ADHD 
Rating Scale’ (CAARS, (Christiansen et al., 2013)). To exclude the 

Fig. 1. Example of a sequence from the reversal learning task (adapted from 
Schlagenhauf et al., 2014, Neuroimage). The subjects need to decide between 
two geometric figures and receive feedback in the form of a smiley face. The 
probability of which figure is most likely to elicit positive feedback changes 
over the course of the experiment (reversal). 
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presence of other Axis I or Axis II disorders, subjects were interviewed 
using the SCID-I and –II (Wittchen and Pfister, 1997). Furthermore, the 
specific presence of substance abuse, amongst others due to its role in 
reward processing, was examined via the Composite International 
Diagnostic Interview (Wittchen and Pfister, 1997). To rule out previous 
or current ADHD symptoms or other psychiatric disorders in the control 
group, we used the same diagnostic assessments. Finally, handedness 
was assessed via the ‘Handedness Questionnaire’ (Coren, 1993). Forty- 
eight hours before the study appointment, the ADHD patients dis-
continued their intake of psychostimulants. 

The neuropsychological assessment consisted of a language- 
independent measure for IQ, the Culture Fair Test (CFT-20-R (Weiß 
and Weiß 2008)), a Digit Span task (Von Aster et al., 2006) and the Trail- 
Making-Test (TMT) Part A and B (Reitan, 1958). The Digit Span task 
measures verbal working memory capacity. It consists of two conditions: 
forward and backward. A span of 6–7 is considered an average score. 
The TMT assesses visual attention and processing speed in Part A and 
executive control and flexibility in Part B. The TMT Part B and A dif-
ference score provides a more precise measure of task-switching ability. 
Depending on the homogeneity of variances and normal distribution of 
the data, the neuropsychological data were compared between groups 
via independent samples t-tests, Mann-Whitney-U tests or Welch tests 
using the Jasp Toolbox (JASP Team (2022). JASP (Version 0.16.4) 
[Computer software]). Alpha was set at 0.05. 

Exclusion criteria for HCs were 1) left-handedness, 2) current psy-
chiatric diagnosis according to ICD-10 or DSM-IV-TR, except alcohol 
abuse, 3) the presence of neurological disorders, 4) a first-degree family 
member suffering from a neurological or psychiatric disorder or 5) 
currently taking psychotropic medication. HCs were recruited via ad-
vertisements in the community. 

2.2. Reversal learning paradigm 

During functional MRI (fMRI) acquisition, participants performed a 
reversal learning task (Schlagenhauf et al., 2013; Schlagenhauf et al., 
2014; Deserno et al., 2015a). The task required participants to choose 
between one of two geometric figures with different reward probabili-
ties. After each choice, they received positive (green smiley) or negative 
feedback (red frowning face) (Fig. 1). The chosen stimulus and the 
feedback remained visible for 1 s. If participants did not choose a target 
within 2 s, the trial was rated as incorrect. A fixation cross was shown 
between the trials. The interval had a varying duration of 1 to 6.5 s 
(exponentially distributed). The task consisted of two runs of 100 trials 
each with a short break in between. During each run, the participants 
were exposed to three types of blocks in which the reward probabilities 
for a correct choice (right figure vs. left figure) were 80:20, 20:80 and 
50:50. The block changed based on performance, i.e., after a minimum 
of 10 subsequent trials if participants reached 70 % correct choices, or 
automatically after a maximum of 16 trials. Thus, each block was 
encountered between twice and four times during each run. Learning 
can only take place between in the 80:20 and 20:80 blocks and is not 
possible in 50:50 conditions. Hence, only the former block types were 
included in the initial analysis of choice behavior. 

2.3. Analysis of behavioral data 

Trials with correct choices (regardless of whether positive feedback 
was actually received as a result of the 80/20 probability), coded as 1 vs. 
0, as well as trials with a different chosen response as in the previous 
trial (Switching, coded as 1 vs. 0) were extracted for each trial. An 
analysis of reaction times can be found in the supplementary informa-
tion (Supplementary Figs. S2 and S3). 

As the task has phases with constant and changing probabilities of 
outcomes, we investigated their impact on predicting accuracy in our 
supplementary analysis. This was achieved by integrating diverse in-
terpretations of task dynamics into the model. Following Waltmann 

et al.’s methodology (Waltmann et al., 2023), we evaluated four distinct 
strategies for this integration. The model that differentiated between 
pre-reversal and post-reversal trials provided the most optimal fit, and 
the results derived from this model are presented in our manuscript 
(Supplementary Fig. S1). 

Generalized linear mixed models were used to analyze behavior. We 
used a full random structure (random intercepts, random slopes, cor-
relation of slopes) (Barr et al., 2013). A binomial family was chosen and 
the logit link function was used:  

1. [Correct choices ~ Group * Phase + (1 + Phase |subject)]. 

To analyze accuracy, we use a mixed effects logistic regression pre-
dicting correct choices from group (referring to ADHD or control) and 
task phase (indicating pre- or post-reversal trial), as well as their inter-
action. The full random structure allowed individual slopes and in-
tercepts per subject.  

2. [Switching ~ Group * Previous feedback + (1 + Previous feedback | 
subject)]. 

To analyze switching, we use a mixed effects logistic regression 
predicting trials where subjects switched the chosen response option 
compared to the previous trials from the factors group (referring to 
ADHD or control) and previous feedback (indicating a win or loss in the 
previous trial). Again, the full random structure allowed for individual 
slopes and intercepts per subject. 

2.4. Computational modelling of reinforcement learning 

We analyzed the behavioral data using Q-learning models of rein-
forcement learning (Watkins and Dayan, 1992). Thus, for each model, we 
identified the parameters which best accounted for each individual’s 
observed history of choices and outcomes. The model fitting was con-
ducted on the data of all the subjects from both groups. Our initial model 
was a single-update model, which only updates (or learns) the value of the 
chosen action Qa,t: Qa,t + 1 = Qa,t + α

(
r − Qa,t

)
. This value is updated in 

each trial by the prediction error δ = r − Qa,t. The rate to which prediction 
errors influence the update of Q value is captured by the learning rate α. 
Because reward probabilities of the two available actions in the reversal 
learning task are perfectly anti-correlated, the feedback of the chosen 
action could also influence the Q-value of the non-chosen action. We 
therefore additionally defined a double-update model, which updates 
both actions simultaneously to opposite directions: Qa(unchosen),t + 1 =

Qa(unchosen),t + α((− r) − Qa(unchosen),t). It is conceivable that individuals 
vary in the degree of using double updating and thus we included a 
weighting parameter (κ) that quantifies the degree of double-updating in 
some models: Qa(unchosen),t + 1 = Qa(unchosen),t + κα((− r) − Qa(unchosen),t). 

Further, since there could be inter-individual differences in the 
extent to which the current prediction error impacts updating depending 
on positive or negative feedback (Eppinger and Kray, 2011, Cazé and 
van der Meer, 2013), different learning rates for wins and losses were 
implemented in some models (Qa,t+1 = Qa,t + αwin/loss(r − Qa,t)). 

Lastly, we examined decision noise, which is determined by the de-
gree to which values of choice options are represented distinctly. 
Typically, this is determined by passing values to a sigmoid softmax 
function with an individually varying steepness parameter, which scales 
the differences between values and thus determines choice probabilities. 
Here, we used a slightly different but largely equivalent approach by 
implementing a reinforcement sensitivity parameter (ρ): Qa,t + 1 =

Qa,t + α(ρr − Qa,t). ρ is a free parameter that determines the maximum 
difference between values by defining the upper bound of the Q-values. 
These values scaled by ρ are then entered into a softmax function with 
steepness fixed to 1. While it was shown that this has an equivalent effect 
on choice probability as a steepness parameter, it is straightforward to 
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implement differences in reinforcement sensitivity to positive and 
negative outcomes (Huys et al., 2013). Further, reinforcement sensi-
tivities have improved estimation properties (Huys et al., 2013, Kata-
hira, 2015) and higher reliability (Waltmann et al., 2022). Thus, in some 
of our models, reinforcement sensitivity was again distinguished for 
sensitivity to positive and negative feedback. 

To summarize, by combining different learning rates and levels of 
reinforcement sensitivity, four models were created. These models were 
then estimated for single-update, double-update, and variable double- 
update scenarios, resulting in a total of 12 fitted models. To compare 
these models, the integrated Bayesian Information Criterion (iBIC) was 
used. 

For hierarchical model estimation, we used the emfit toolbox in 
MATLAB R2020b (Huys, 2017). Model estimation was performed to 
obtain maximum a posteriori estimation with empirical priors based on 
the trial-by-trial data of all participants. We have previously shown that 
this hierarchical estimation leads to improved reliability (Waltmann 
et al., 2022). An expectation maximization procedure was used (Huys 
et al., 2012). Since the model with only one reinforcement sensitivity 
can logically only assign positive values for the sensitivity, its value was 
transformed exponentially to ensure positive values. To keep the 
learning rate (α) and weighting parameter (κ) between 0 and 1, these 
parameters were inverse logit transformed. 

The modeling parameters reinforcement sensitivity and learning rate 
(both for positive and negative feedback) were analyzed with linear 
mixed models using the Jasp Toolbox (JASP Team (2022). JASP 
(Version 0.16.4) [Computer software]. This resulted in two models with 
full random structure (1. Reinforcement sensitivity ~ group * feedback 
+ (1 + feedback |subject), 2. Learning rate ~ group * feedback + (1 +
feedback |subject)). The parameter kappa, which expresses the 
weighting between single and double updating, was compared between 
groups with a t-test after testing for normal distribution and equality of 
variance. Pearson correlation coefficients were calculated to discover 
possible associations between symptom expression and modeling pa-
rameters in an exploratory analysis. All variables were z-standardized 
before the correlation analysis. 

2.5. Functional MRI data acquisition 

Imaging was conducted using a 3 Tesla GE Sigma Scanner with an 
eight channel head coil to acquire gradient echo T2*-weighted echo- 
planar images with blood oxygenation level-dependent (BOLD) contrast. 
Twenty-nine slices were acquired, covering the whole brain, with 4 mm 
thickness, 2×2 mm2 in-plane voxel resolution, repetition time (TR) =
2.3 ms, echo time (TE) = 27 ms and a flip angle α = 90◦. T1-weighted 
structural images were acquired with TR = 7.8 ms, TE = 3.2 ms, α =
20◦, matrix size = 256×256, slice thickness = 1 mm, voxel size =
1×1×1 mm. Right before the MRI acquisition, all participants were 
vigilant as assessed by the Stanford Sleepiness Scale (MADHD = 2.12 
±0.60, MHC = 2.35±0.70; p = 0.301, d = − 0.35). 

2.6. Functional MRI data preprocessing 

fMRI data were analysed with SPM8 (Wellcome Department of Im-
aging Neuroscience). ArtRepair was used to remove noise spikes and to 
repair bad slices within a particular scan and bad slices were repaired by 
interpolation between adjacent slices (Mazaika et al., 2005). Data was 
then corrected for delay of slice time acquisition and was motion cor-
rected using realignment. The images were then registered into the 
Montreal Neurological Institute (MNI) space by using the normalised 
parameters generated during the segmentation of each participant’s 
anatomical T1-image (Ashburner and Friston, 2005). Spatial smoothing 
with an isotropic Gaussian kernel of 8 mm full width at half-maximum 
(FWHM) kernel was applied to the images. 

2.7. Model informed fMRI Analysis 

In the first-level general linear model, onsets of feedback, cue and 
missing trials were convolved with the hemodynamic response function 
and the 6 motion parameters were added as regressors of no interest. As 
orthogonalized parametric modulators on the feedback regressor, we 
added, for each person, the trial-by-trial prediction errors (PEs) from the 
best fitting RL model. This included, first, the single update (SU) PEs 
from the best SU model and the double update (DU) PEs from the best- 
fitting model. Due to high collinearity between PEs and to isolate unique 
variance of the DU PEs, we subtracted SU PEs from DU PEs for each trial 
(Daw et al., 2011). This approach has already been applied successfully 
in previous studies (Reiter et al., 2016, Reiter et al., 2017, Waltmann 
et al., 2023). As orthogonalized parametric modulators to the cue onset, 
we added two model-derived trial-by-trial regressors. The choice prob-
ability maps the individual expected values of the choices per trial which 
are drawn from the best fitting DU model. The larger the difference in 
expected values between the two choices, the more likely an individual 
will choose one of the two options. From the choice probabilities, we 
constructed a regressor reflecting trial-by-trial model-fit, where choices 
predicted with below-chance accuracy (<50 %) were coded as 1 (noisy 
or explorative behavior) and 0 otherwise. This regressor addresses brain 
activation associated with noisy or explorative behavior and removes 
variance solely associated with poor model fit (Waltmann et al., 2023). 

At the second level, a full factorial model was used on SU PEs and DU 
PEs with group and type of RPE as predictors. Separate between-group t- 
tests were calculated for choice probability and exploratory trials. Re-
sults were adjusted at the peak level for multiple comparisons using the 
family-wise error control. Small volume correction was performed using 
the following a priori regions of interests (ROIs): 1) the ventral striatum, 
using an anatomical definition of the nucleus accumbens (as obtained in 
the IBASPM atlas as part of the WFU Pick Atlas) with respect to SU and 
DU PEs; 2) the ventromedial prefrontal cortex (vmPFC) because of its 
central role in choice value, which is closely linked to DU PEs and choice 
probability. The vmPFC ROI was defined using a functional ROI of the 
effects of DU RPE and choice probability, respectively, published by a 
previous independent study on development of reversal learning 
(Waltmann et al., 2023); 3) a functional ROI from the same previous 
study (Waltmann et al., 2023) reflecting brain activation to noisy/ 
explorative behavior, covering parts of the insula, thalamus, vmPFC and 
parietal cortex (Supplementary Fig. S4). 

3. Results 

3.1. Descriptive statistics 

17 ADHD patients and 17 age- and gender-matched healthy controls 
were included. Except for two left-handed ADHD patients, all partici-
pants were right-handed. One female participant was included in each 
group. According to the CIDI DIA-X screening interview, two subjects in 
each group fulfilled the diagnostic criteria of alcohol abuse (F10.1). Ten 
subjects in the ADHD group reported nicotine use, of which two subjects 
met criteria for nicotine dependence (F17.2). Four subjects in the control 
group reported nicotine use. In the ADHD group, two subjects had not 
previously been treated with stimulants, seven had been treated with 
methylphenidate in the past, and nine were still taking methylphenidate 
(but discontinued the medication 48 h prior to the study appointment). 
As expected, compared with healthy controls, the ADHD group reported 
stronger ADHD symptom ratings in the CAARS and WURS-K question-
naires, but no differences in other psychiatric symptom ratings accord-
ing to the Symptom Checklist (SCL-90) (Derogatis and Savitz, 1999). 
Descriptive group statistics are presented in Table 1. 

A detailed summary of the neuropsychological testing is presented in 
Table 2. The ADHD group had a lower intelligence in comparison to 
controls and performed worse than controls in working memory (digit 
span) and processing speed (TMT) domains. 
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3.2. Behavorial data 

Accuracy differed only marginally between phases (t = 1.75 (df = 7), 
p = 0.08) and not between groups (t = 0.08 (df = 7), p = 0.94). How-
ever, there was a significant group*phase interaction effect, as ADHD 
patients performed better in the post-reversal phase and worse in the 
pre-reversal phase (t = 4.70 (df = 7), p < 0.001, Fig. 2a). 

All subjects were more likely to switch after previous negative 
feedback (feedback effect: t = 8.14 (df = 7), p < 0.001). ADHD patients 
were more likely to switch (group effect: t = 4.12 (df = 7), p < 0.001), 
irrespectively of previous feedback (group*feedback effect: t = 0.97 (df 
= 7), p = 0.33, see Fig. 2b). 

3.3. Computational modeling of behavior: model comparison 

We compared a total of twelve RL models with respect to their evi-
dence to account for the data based on the integrated Bayesian Infor-
mation Criterion (Huys et al., 2012). The double update model with 
separate learning rates and reinforcement sensitivities, as well as 
weighting of single and double updating, accounted best for the current 
behavioral data (see Fig. 3a). 

3.4. Computational modeling of behavior: Model parameters 

ADHD patients showed an overall lower reinforcement sensitivity 
(group effect: t = 4.30 (df = 6), p < 0.001), especially for positive 
feedback (group*feedback effect: t = 4.00 (df = 6), p < 0.001), see 
Fig. 3b). The learning rate of ADHD patients was increased compared to 
healthy controls (group effect: t = 2.50 (df = 6), p = 0.016), but this 

effect was mainly driven by the higher learning rate for negative feed-
back (group*feedback effect: t = 3.20 (df = 6), p = 0.003, see Fig. 3d). 
The parameter kappa, which defines the strength of the update 
weighting between chosen and unchosen option, showed a marginal 
difference between groups. ADHD patients updated the selected option 
slightly stronger than the unselected option compared to healthy con-
trols (p = 0.09, Cohen’s d = 0.59, see Fig. 3c). 

3.5. Correlations 

In an exploratory analysis, which was not corrected for multiple 
comparisons, we correlated all five modeling parameters and the three 
core symptoms in ADHD patients (inattention, hyperactivity and 
impulsivity). Stronger hyperactivity symptoms (r = -0.50, p = 0.04) and 
marginally stronger impulsivity symptoms (r = -0.42, p = 0.09) were 
associated with a weaker updating of the unchosen option. Stronger 
impulsivity symptoms in ADHD patients were associated with lower 
learning rate for positive feedback (r = -0.51, p = 0.03). Stronger hy-
peractivity symptoms were marginally associated with a lower learning 
rate for negative feedback (r = -0.5, p = 0.07). Scatter plots of the sig-
nificant correlations are shown in Supplementary Fig. S5a and b. 
Exploratory analysis showed no further associations between modeling 
parameters and clinical symptoms (r <0.27, p > 0.3). 

3.6. fMRI analysis 

Across both groups, single update prediction errors were signifi-
cantly correlated with activity in the left and right ventral striatum (xyz: 
− 13/8/− 15, t = 3.51, pFWE = 0.003, cluster size (k): 31 voxel; xyz: 12/ 

Table 1 
Sample Description of Age, Clinical Symptoms and Handedness.   

ADHD HC   

M ± SD M ± SD t-value df p Effect Size 

Age (in years) 22.14 ± 4.07 23.58 ± 3.47 189.000c   0.131  0.31 
CAARS (t-score)       
Inattention 57.53 ± 12.25 46.25 ± 6.94a 3.278b 26  0.003*  1.13 
Hyperactivity 57.47 ± 8.52 42.94 ± 6.32a 5.536 31  <0.001**  1.94 
Impulsivity 54.12 ± 10.59 42.56 ± 7.07a 3.661 31  0.001**  1.28 
Self-Concept 52.76 ± 13.98 43.88 ± 5.03a 2.457b 20  0.023  0.85 
ADHD Index 60.65 ± 11.77 43.13 ± 7.43a 5.075 31  <0.001**  1.78 
GSI t-score (SCL-90-R) 53.06 ± 9.50 50.88 ± 7.33 0.748 32  0.460  0.26 
WURS-K (raw score) 42.76 ± 14.93 22.18 ± 9.14 4.850 32  <0.001**  1.66 
Handedness (raw score) 32.06 ± 7.81 35.12 ± 1.58 1.584b 17  0.131  − 0.54 

Note. CAARS = Conners Adult ADHD Rating Scale (Conners et al., 1998), GSI = Global Severity Index, SCL-90-R = Symptom Checklist-90-R (Franke, 2002), WURS-K, 
Wender Utah Rating Scale’ (Rösler et al., 2008). For the Student t-test and the Welch t-test, effect size is given by Coheńs d. For the Mann-Whitney U test effect size is 
given by the rank biserial correlation. 

a n = 16. b Welch T-Test as equal variances were not assumed. c Mann-Whitney U-Test as not normally distributed. * p < 0.01; ** p < 0.001. 

Table 2 
Neuropsychological Performance of ADHD Patients versus Healthy Controls.   

ADHD HC   

M ± SD M ± SD t-value df p d 

IQ (CFT-20-R) 98.18 ± 15.96 108.82 ± 7.86 2.468a 23  0.021*  -0.85  

Digit Span 
Forward 6.65 ± 1.84 8.47 ± 2.00 2.767 32  0.009**  -0.95 
Backward 6.00 ± 1.73 7.53 ± 1.91 2.447 32  0.020*  -0.84 
Total 12.65 ± 3.26 16.06 ± 3.53 2.930 32  0.006**  − 1.00  

TMT 
Part A (in sec.) 28.09 ± 5.16 23.61 ± 7.65 2.005 32  0.053  0.69 
Part B (in sec.) 79.12 ± 20.92 60.12 ± 18.77 2.787 32  0.009**  0.96 
Part B minus Part A 51.02 ± 21.09 36.51 ± 16.39 2.240 32  0.032*  0.82 

Note. IQ = intelligence quotient, CFT-20-R = Culture Fair Test 20, revised (Weiß & Weiß, 2008), Digit Span (von Aster et al., 2006), TMT = Trail-making-test (Reitan, 
1958). a Welch T-Test as equal variances were not assumed. * p < 0.05; ** p < 0.01. 
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10/− 15, t = 2.55, pFWE = 0.045, k: 46 voxel, see Fig. 4a), but not in the 
ventromedial prefrontal cortex (xyz: 2/33/− 2, t = 2.30, pFWE = 0.520). 
There were no significant differences between groups for the ROIs (VS L: 
xyz: − 18/6/− 15, t = 0.84, pFWE = 0.423; VS R: xyz: 14/3/− 15, t = 1.23, 
pFWE = 0.342; VMPFC: VS L: xyz: − 10/50/0, t = 2.74, pFWE = 0.277) nor 
on the whole brain level. 

Across both groups, double update prediction errors were significant 
in the ventromedial prefrontal cortex cortex (xyz: 0/53/8, t = 3.62, 
pFWE = 0.043, k: 32 voxel) and only marginally significant in left (xyz: 
− 13/10/− 15, t = 2.31, pFWE = 0.060, k: 31 voxel) and right ventral 
striatum (xyz: 7/6/− 8, t = 2.37, pFWE = 0.066, k: 46 voxel). We found a 

marginally higher double update prediction error signal in the right 
ventral striatum of healthy controls (type of PE x group, xyz: 7/6/− 8, t 
= 2.12, pFWE = 0.097, k: 46 voxel, see Fig. 4b) but not in the vmPFC (xyz: 
0/6/− 8, t = 2.95, pFWE = 0.191). No other group effects emerged on the 
whole brain level. 

Across both groups, trial-by-trial choice probability was only 
marginally significantly related to activity in the vmPFC (xyz: 7/50/− 8, 
t = 3.66, pFWE = 0.083, k: 3 voxel). There was no group difference in the 
vmPFC (xyz: 4/16/− 8, t = 2.16, pFWE = 0.690). However, at the whole 
brain level, there was a significantly weaker neural representation of 
choice probability in ADHD as compared to controls in the posterior 

Fig. 2. A) While controls chose the correct option more often during the stable pre-reversal phases, ADHD patients chose the correct answer more frequently during 
the post-reversal phase. Error bars depict standard errors of the mean. b) Subjects chose an option more often if it had been rewarded previously. ADHD patients were 
less likely to choose the same option twice in a row, regardless of the previous feedback. c) Both groups were faster to respond if they had lost in the previous trial. 
ADHD patients responded slower overall than controls. 

Fig. 3. A) Model comparison showing the integrated Bayesian information criterion (iBIC) and delta iBIC (distance from the model with the best evidence) of the 
respective models. The most complex Q-learning model with separate learning rates and reinforcement sensitivities for wins and losses and a weighting parameter 
between single and double updating (marked with an asterisk) showed the best fit to the behavioral data. b) ADHD patients showed an overall lower reinforcement 
sensitivity. Reinforcement sensitivity for positive feedback was especially lower in ADHD patients. c) ADHD patients and healthy controls differed marginally in 
weighting the value of the chosen and non-chosen option to update, with ADHD patients updating the unchosen option slightly weaker. d) ADHD patients showed a 
higher learning rate than controls. This effect was driven by the higher learning rate for negative feedback in ADHD patients. 
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parietal cortex (xyz: − 20/− 54/38, t = 5.82, pFWE = 0.04, k: 167 voxel, 
see Fig. 4c and d). 

Across both groups, we found neural representations of noisy/ 
exploratory trials in the left and right insular cortex in both groups at the 
whole brain level (left: xyz: − 38/16/− 12, t = 7.52, pFWE = 0.001, k: 
527 voxel; right: xyz: 40/28/− 8, t = 6.08, pFWE = 0.024, k: 622 voxel, 
see Supplementary Fig. S6). Using a ROI of activation in these trials 
covering the same regions from an independent study (Waltmann et al., 
2023), there was no group difference in these regions (xyz 40/30/− 8, t 
= 3.34, pFWE = 0.734). 

4. Discussion 

In this study, adult ADHD patients showed impaired performance 
specifically when the learning environment was stable while perfor-
mance was slightly improved after a reversal had occurred. Both effects 
(pre- and post-reversal) can be understood as results of an overall 
enhanced choice switching, which is maladaptive when the environ-
ment is stable but beneficial when environmental changes occur. Our RL 
modelling explains this choice switching most clearly by a blunted 
sensitivity to positive and negative reinforcement. This blunted sensi-
tivity results in in less distinguishable values for each of the two choice 
options. Additionally, an enhanced learning rate after negative feedback 
as well as a subtle tendency for reduced double-updating also contribute 
to elevated levels of choice switching. On the neural level, this was 
mirrored by a weaker representation of choice probability (which is 
scaled by reinforcement sensitivity) in the parietal cortex and weak in-
dications for reduced double-update PEs in the right ventral striatum of 
ADHD patients. These results should be treated with caution, in partic-
ular with regard to double updating, due to the limited sample size of the 

current study. 
A similar study in adolescent ADHD patients and healthy controls 

with a probabilistic reversal learning task in fMRI showed only partially 
overlapping results (Hauser et al., 2014). This is probably partly due to 
different analysis methods such as the underlying models or the inclu-
sion of pre- and post-reversal phases. The study also found no group 
difference in terms of overall accuracy, but did not test for possible 
phase effects, which we found to be significant. While modeling 
implementation was slightly different (in our modeling, we used a fixed 
softmax function and variable reinforcement sensitivities instead of 
variable temperatures of the softmax function) we find comparative 
results indicating enhanced decision noise leading to increased explor-
atory behavior. 

As described above, individuals with ADHD had a significantly 
weaker neural representation of choice probability in the parietal cortex, 
compared to the control group. The parietal cortex is a crucial part of the 
attention network (Rushworth et al., 2001, Ptak, 2012). A weaker 
attentional system might disrupt the processing of reinforcement in-
formation, making it difficult for an individual to accurately perceive 
and control the positive and negative consequences of their actions. This 
in turn might result in a reduced sensitivity to reinforcement, as seen in 
our modeling data, suggesting that ADHD patients probably need 
stronger reinforcements to update their choice values and to maintain 
certainty in decision making. A lower reinforcement sensitivity and a 
weaker processing of choice probability could lead to noisy/exploratory 
choice switching behavior independent of prior feedback, which was 
clearly evident in our behavioral data. 

We did not replicate the weaker prediction error signals found in 
ADHD patients in the ventromedial prefrontal cortex in the previous 
study (Hauser et al., 2014). Instead, we found a trend of weaker learning 

Fig. 4. A) Single update prediction errors of both groups were represented in the left nucleus accumbens (xyz: − 13, 8, − 15). b) There was a marginally significant 
prediction error x group interaction. ADHD patients that had a weaker double update prediction error (DU PEs) signal in the right ventral striatum drove this effect. 
PE: Prediction Error, a. u.: Arbitrary units. c) Choice probability representation in the left posterior parietal cortex was weaker in ADHD patients. Slices MNI co-
ordinates in 4c: − 18, 5, 38. The color bars represent the t-values. The images are radiologically oriented. 
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signals of the double update prediction error in the nucleus accumbens 
in ADHD patients. The decreased reinforcement sensitivity could make it 
more difficult for ADHD patients to build an internal model of contin-
gencies. Therefore, they are more likely to respond to acute changes, 
which is beneficial post-reversal but detrimental pre-reversal. This is in 
line with solid evidence that ADHD patients prefer smaller immediate 
rewards for easier tasks as opposed to larger delayed rewards for more 
difficult tasks (Tripp and Alsop, 2001, De Meyer et al., 2019). For ADHD 
patients, this could also lead to poorer retrieval of internal choice values, 
resulting in more variability in reaction times (Kofler et al., 2013, 
Véronneau-Veilleux et al., 2022). We speculate that this decreased 
reinforcement sensitivity could be linked to our observation of weaker 
learning signals of the ventral striatum that incorporate chosen and 
unchosen action values. This finding could result from a reduced inte-
gration of environmental information (external sensory information or 
internal states) to learning signals due to aberrant dopaminergic neu-
romodulation. Research with animal subjects has already shown that 
dopaminergic neurons have a modulatory effect on neuronal and circuit 
flexibility, which ultimately leads to changes in behavior (Siju et al., 
2021). With further necessary empirical evidence, this could be regar-
ded as an extension of existing ADHD dopamine theories (Tripp and 
Wickens, 2008, Ziegler et al., 2016). In this regard, computational 
modelling is a helpful tool to further elucidate dopamine-based learning 
mechanisms in ADHD. 

The literature regarding the learning rate of ADHD patients is not yet 
congruent. One theory proposes that the performance difficulties of 
ADHD patients in reward learning tasks may not be associated with 
deficits in learning, but with the sensitivity to reinforcements and the 
storing of cue-outcome contingences (Luman et al., 2009). This is sup-
ported by studies with tasks that explicitly test learning from losses and 
wins (Agay et al., 2010). However, in our data and model analyses, 
ADHD patients showed an increased learning rate for negative feedback, 
whereas the learning rate for positive feedback did not differ between 
groups. A higher learning rate for negative feedback would ensure that 
choice values are extinguished more quickly after a reversal and thus 
support enhanced switching (Ziegler et al., 2016) as seen in our data 
(but not in feedback-specific manner). Valence-dependent learning 
deficits have also been observed in a disease in which decreased cerebral 
dopamine concentrations play a role: Parkinson’s disease (PD). In one 
study, unmedicated PD patients learned less well from positive feedback 
compared to healthy controls, but this effect was reversed for negative 
feedback (Frank et al., 2004). The authors attribute this to the different 
direct (D1 receptor) and indirect (D2 receptor) pathways of the basal 
ganglia: While reduced phasic dopamine bursts would decrease sensi-
tivity to positive feedback (via D1 receptors), reduced tonic dopamine 
could provide increased D2 receptor activity supporting learning from 
negative feedback. According to this theory, influences of the tonic 
dopamine concentration and thus on the indirect pathway would in-
fluence the learning behavior of ADHD patients. Lower tonic dopamine 
levels and thus higher D2 receptor activity could thus enhance learning 
from negative feedback and in addition to augmented decision noise 
lead to increased switching behavior. While this would explain our data, 
our study cannot prove this theory. Further animal studies, for example 
by influencing tonic and phasic dopamine bursts by genetic manipula-
tion (Beeler et al., 2010) are necessary to draw clearer conclusions. 

Our observation that the anterior insula plays a role in exploratory 
decisions aligns with findings in the general population reported by 
other studies (Reiter et al., 2017; Li et al., 2021; Zhen et al., 2022; 
Waltmann et al., 2023). Furthermore, in adolescents, the distinction 
between ’explorers’ and ’non-explorers’ during a temporal decision- 
making task is marked by greater resting-state connectivity between 
the rostrolateral PFC and the insula in the ‘explorers’ (Kayser et al., 
2016). Notably, the administration of L-dopa seems to mitigate decision 
uncertainty associated with the anterior insula (Chakroun et al., 2020). 
This suggests a potential mechanism where the insula, as part of the 
salience network, could drive exploration under conditions of 

heightened overall uncertainty. This may involve facilitating a switch 
from the presently exploited option to more uncertain yet discernible 
alternative choices (Chakroun et al., 2020; Li et al., 2021). 

It is interesting to speculate on daily life implications of our findings: 
a generally lower reinforcement sensitivity means that negative and 
positive events have a smaller influence on choice values and, thus, 
subsequent actions. This could result in a situation where the internally 
assigned values of these actions do not significantly differ when deciding 
between action options, which leads to greater uncertainty about which 
decision to take next. In real-life situations where certain conditions 
provide stability and the consequences of actions remain relatively 
constant, ADHD patients might explore different action options more 
due to this higher level of uncertainty, and are less likely to exploit the 
beneficial options. For example, this observation aligns with behaviour 
often seen in children with ADHD, who tend to frequently switch be-
tween play activities. Such behavior presents a potential disadvantage, 
as it contrasts with the inclination of other same-age children to engage 
in a single activity for a more extended period. In adolescents and adults 
with ADHD this may result in switching conversation topics quickly in a 
manner that annoys members of a peer group. This behavior may stem 
from the difficulty in discerning preferences. However, in situations 
where the consequences of actions are unpredictable, quick shifts in 
preferred actions could be advantageous. 

4.1. Limitations 

The sample size of this study, n = 17 per group is too small to draw 
more than preliminary conclusions. Caution is necessary also because 
small sample sizes can inflate effect sizes (Button et al., 2013). While we 
matched the two groups for age, handedness, and gender, group dif-
ferences emerged with respect to nicotine use, intelligence, and working 
memory. While it is known that ADHD patients are more likely to smoke 
(Ilbegi et al., 2018) and perform worse on tests of intelligence (Bridgett 
and Walker, 2006) and working memory (Kofler et al., 2020), these 
differences between groups may explain some of the behavioral differ-
ences. However, we believe that our binary choice task places relatively 
low demands on working memory. Nevertheless, one should be cautious 
in interpreting the results as generalizing to all ADHD patients. Finally, 
the question arises to what extent the task structure can really represent 
exploratory behavior. While there is some uncertainty in the currently 
used task, the strictly anti-correlated structure scarcely represents the 
real complex exploration behavior of ADHD patients in their everyday 
life. The task structure with two response options has another limitation: 
It makes it difficult to pinpoint why ADHD patients perform better in the 
post-reversal phase of the task. One possibility is that ADHD patients 
artificially benefit from this simple task structure. The frequent choice 
switching observed in ADHD patients could align with the task’s 
inherent environmental changes due to frequent reversals. Alterna-
tively, ADHD patients might be able to adjust their internal parameters 
more quickly after the reversal. This could be due to their higher 
learning rate from negative feedback and lower sensitivity to rein-
forcement, allowing them to purposely choose a new option more 
quickly. To clarify this, future studies could use a task design with three 
response options in combination with modelling equipped to tackle state 
space learning. However, a more complex task structure could also be 
associated with drawbacks (e.g., greater dependence on the individual 
working memory of the test subjects). In terms of model fitting, it is 
relevant to note that the same (empirical) priors were used in fitting the 
model to both groups. Thus, we adopted a conservative modelling 
approach in which we assume that parameters of each group are drawn 
from the same distribution. This introduces a conservative bias 
(increasing the risk of type 2 error). However, modelling the data 
separately for each group has the opposite effect – introducing an anti- 
conservative bias – which increases the risk of overestimating group 
differences (type 1 errors). 
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5. Conclusion 

Using computational reinforcement learning models, this study 
provides insight into the neurocognitive processes that facilitate 
behavioral differences in motivational learning and decision making in 
ADHD patients. Noisier behavior of ADHD patients was associated with 
decreased reinforcement sensitivity in our study. This behavior could be 
due to a reduced neural representation of dopaminergic prediction error 
signals in the nucleus accumbens and a reduced representation of choice 
probability in the posterior parietal cortex in ADHD patients. We spec-
ulate that lower tonic dopamine levels might lead to faster relearning 
after negative feedback via D2 receptor activation in ADHD, which may 
prove beneficial in rapidly changing environments. 

CRediT authorship contribution statement 

Hans-Christoph Aster: Formal analysis, Methodology, Visualiza-
tion, Writing – original draft, Writing – review & editing. Maria Walt-
mann: Formal analysis, Methodology, Software, Validation, Writing – 
review & editing. Anika Busch: Formal analysis, Methodology, Writing 
– review & editing. Marcel Romanos: Conceptualization, Funding 
acquisition, Project administration, Writing – review & editing. Mat-
thias Gamer: Formal analysis, Methodology, Supervision, Validation, 
Writing – review & editing. Betteke Maria van Noort: Conceptualiza-
tion, Data curation, Funding acquisition, Investigation, Project admin-
istration, Supervision, Validation, Writing – original draft, Writing – 
review & editing. Anne Beck: Conceptualization, Data curation, Formal 
analysis, Funding acquisition, Investigation, Methodology, Project 
administration, Writing – original draft, Writing – review & editing. 
Viola Kappel: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Validation, Writing – 
original draft, Writing – review & editing. Lorenz Deserno: Conceptu-
alization, Data curation, Formal analysis, Funding acquisition, Investi-
gation, Methodology, Project administration, Resources, Software, 
Supervision, Validation, Visualization, Writing – original draft, Writing 
– review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Funding 

H-CA was supported by a Clinician Scientist Program at the Inter-
disciplinary Centre of Clinical Research at the Medical Faculty of the 
University of Würzburg. LD was supported by the IFB Adiposity Dis-
eases, Federal Ministry of Education and Research (BMBF), Germany, 
GN: 01EO150, and a grant on reinforcement learning in ADHD by the 
German Research Foundation (DFG, 533682086). LD and AB are sup-
ported by the DFG as part of the Collaborative Research Centre 265 
Losing and Regaining Control over drug intake (402170461, Project A02 
and C02). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2024.103588. 

References 

Agay, N., Yechiam, E., Carmel, Z., Levkovitz, Y., 2010. Non-specific effects of 
methylphenidate (ritalin) on cognitive ability and decision-making of ADHD and 
healthy adults. Psychopharmacology 210 (4), 511–519. 

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26 (3), 839–851. 
Barr, D.J., Levy, R., Scheepers, C., Tily, H.J., 2013. Random effects structure for 

confirmatory hypothesis testing: keep it maximal. J Mem Lang 68 (3). 
Beeler, J.A., Daw, N., Frazier, C.R., Zhuang, X., 2010. Tonic dopamine modulates 

exploitation of reward learning. Front Behav Neurosci 4, 170. 
Bridgett, D.J., Walker, M.E., 2006. Intellectual functioning in adults with ADHD: a meta- 

analytic examination of full scale IQ differences between adults with and without 
ADHD. Psychol Assess 18 (1), 1–14. 

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., 
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