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Abstract: This work primarily focuses on an operator inference methodology aimed
at constructing low-dimensional dynamical models based on a priori hypotheses about
their structure, often informed by established physics or expert insights. Stability is
a fundamental attribute of dynamical systems, yet it is not always assured in models
derived through inference. Our main objective is to develop a method that facilitates
the inference of quadratic control dynamical systems with inherent stability guarantees.
To this aim, we investigate the stability characteristics of control systems with energy-
preserving nonlinearities, thereby identifying conditions under which such systems are
bounded-input bounded-state stable. These insights are subsequently applied to the
learning process, yielding inferred models that are inherently stable by design. The
efficacy of our proposed framework is demonstrated through a couple of numerical
examples.
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Novelty statement:

• Learning stability-certified control systems with quadratic nonlinearities.

• Utilizing a stable matrix parameterization for the certification.

• Bounded-input bounded-state stability for quadratic systems with control is
shown under parametrization assumptions.

• Several numerical examples demonstrate the stability-certified results of the
learned models.

1 Introduction

Significant developments have been made recently in the fields of learning dynamical systems
from data, driven by the availability of large amount of data sets and the demand across various
applications such as robotics, epidemiology, and climate science. First principles model construc-
tion often falls short due to the complexity of these applications, paving the way for data-driven
methodologies. Among these, the Dynamic Mode Decomposition (DMD) together with Koopman
operator theory is a common used approach, since it allows to handle complex dynamics by lin-
earizing non-linear systems in a high-dimensional (or even infinite-dimensional) observable space,
see [1, 2]. Additionally, the DMD framework was extended to allow handling control inputs in [3].
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Recent advancements have also seen the emergence of Sparse Identification of Nonlinear Dynamics
(SINDy) for discovering the essential nonlinear terms from extensive libraries through sparse re-
gression, offering an alternative perspective on nonlinear system identification ([4]). Moreover, the
integration of prior knowledge, particularly physics-based, into learning frameworks has also at-
tracted attentions, particularly through the operator inference (OpInf) technique ([5]), which aim
at the construction of data-driven (reduced-order) models by focusing on quadratic (or polynomial)
dynamics.
Many physical phenomena demonstrate stability behavior, i.e., their state variables evolve in

a bounded region of the state space over extended time horizons. Consequently, the accurate
representation of these phenomena necessitates stable differential equations, which is also essential
for the long-term numerical integration. However, the critical aspect of stability is often not
addressed while learning dynamical systems. In this work, our main focus is to learn quadratic
control models of the form

ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) +Bu(t), x(0) = x0, (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm represents the inputs, and A ∈ Rn×n, H ∈ Rn×n2

,
and B ∈ Rn×m are the system matrices. It is worth mentioning that quadratic models emerge
inherently within discretized models of, e.g., fluid mechanics. Furthermore, through a process
known as lifting transformation, smooth nonlinear dynamical systems can be transformed into
quadratic dynamical systems [6]. Also, this transformation was leveraged to operator inference
in [7] to learn physics-based quadratic models for a given data set, and identifying such a lifted
transformation using neural networks was investigated in [8].
Our prior work concentrated on imposing stability on learned (uncontrolled) linear and quadratic

models, see [9, 10]. Therein, we introduced methodologies to ensure local and global stability,
leveraging parametrizations for stable matrices and energy-preserving Hessians to enforce stability
by design, mainly inspired by the results on energy-preserving nonlinearities proposed in [11]. The
approach [9] not only addressed computational challenges but also bypassed the limitations of
conventional stability constraints, thus providing a robust foundation for stable dynamical system
modeling.
Building upon this foundation, our current work extends these concepts to quadratic systems

with control inputs, enhancing their applicability in controlled environments and broadening the
scope of data-driven dynamical system learning. To this aim, firstly in Section 2, we recapitu-
late the operator inference framework for learning quadratic control systems from (possibly) high
dimensional data sets. Then, in Section 3, we revisit the parameterizations of stable matrices
and energy-preserving Hessians used in [10] to impose stability on learned uncontrolled quadratic
models. Then, we establish our main result, which consists of parametrizations of quadratic con-
trol systems that are guaranteed to be bounded-input bounded-state stable. Section 4 leverages
the proposed parametrization to learn stable quadratic control systems. Subsequently, Section 5
extends the presented results to Lyapunov functions of generalized quadratic form. Finally, Sec-
tion 6 illustrates the proposed methodology using a coupled of numerical examples, and Section 7
concludes the manuscript with summary and open avenues.

2 Model Inference of quadratic control systems

We now present a brief overview of the Operator Inference (OpInf) methodology ([5]), focusing
specifically on systems with quadratic nonlinearities. Our discussion starts with learning quadratic
models from high-dimensional data and considers dynamical system having a control input.
We proceed to define the problem of deriving low-dimensional dynamical systems from high-

dimensional data originated from a nonlinear (psossibly quadratic) control system

ẏ(t) = f(y(t),u(t)), t ≥ 0,

where y(t) ∈ RN is the state vector and u(t) ∈ Rm is an control input. We assume the availability
of the state snapshots y(t) at time t ∈ {t0, t1, . . . , tN }. These snapshots are aggregated into the
snapshot matrix:

Y =
[
y(t0), . . . ,y(tN )

]
∈ RN×N . (2)
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Additionally, we assume that the dynamics is actuated by an input function u(t) ∈ Rm and that
we have access to input snapshots at the same time steps, i.e., u(t0), . . . ,u(tN ) which can be
aggregated into the matrix:

U =
[
u(t0), . . . ,u(tN )

]
∈ Rm×N .

Although the dynamics of state y(t) are inherently N -dimensional, it can often be effectively
represented in a low-dimensional subspace. As a result, we can aim at learning dynamics using the
coordinate systems in the low-dimensional subspace. To that end, we identify a low-dimensional
representation for y(t), which is done by determining the projection matrix V ∈ RN×n, derived
from the singular value decomposition of Y and selecting the n most dominant left singular vectors.
This leads to the computation of the reduced state trajectory as follows:

X = V⊤Y, (3)

where X :=
[
x(t0), . . . ,x(tN )

]
with x(ti) = V⊤y(ti). With our quadratic model hypothesis, we

then aim to learn the system operators from the available data. Precisely, our goal is to learn a
quadratic control system of the form (1), where A, H, and B are the system operators.
Next, we cast the inference problem, which is as follows. Having the low-dimensional trajectories

{x(t0), . . . ,x(tN )} and the input snapshots {u(t0), . . . ,u(tN )}, we aim to learn operators A, H,
and B in (1). At the moment, let us also assume to have (estimated) the derivative information
of x at time {t0, . . . , tN }, which is denoted by ẋ(t0), . . . , ẋ(tN ). Using this derivative information,
we form the following matrix:

Ẋ =
[
ẋ(t0), . . . , ẋ(tN )

]
. (4)

Then, determining the operators boils down to solving a least-squares problem, which can be
written as

min
A,H,B

∥∥∥Ẋ−
[
A, H, B

]
D
∥∥∥
F
, (5)

with D =

[
X

X ⊗̃ X
U

]
, where the product ⊗̃ is defined as G ⊗̃ G =

[
g1 ⊗ g1, . . . ,gN ⊗ gN

]
with gi

being the i-th column of the matrix G ∈ Rn×N , and ⊗ denotes the Kronecker product. Addition-
ally, the reader should notice that whenever the provided data in (2) is already low-dimensional
and further compression is not possible, then the projection onto the POD coordinates in equation
(3) is not required.
Although the optimization problem (5) appears straightforward, it poses a couple of major

challenges. Firstly, the matrix D can be ill-conditioned, thus making the optimization problem (5)
challenging. A way to circumvent this problem is to make use of suitable regularization schemes,
and many proposals are made in this direction in the literature, see, e.g., [12–14].
An important challenge—one of the most crucial ones—is related to the stability of the inferred

models. When the optimization problem (5) is solved, then the inferred operators only aim to
minimize the specific design objective. However, solving (5) does not guarantee that the resulting
dynamical system will be stable; The problem of imposing boundedness for quadratic system
without control was studied in [15] using soft constraints. More recently, the authors in [10]
proposed a parametrization for the system operators allowing to impose different types of stability
properties on the learned uncontrolled dynamical models, such as local stability, global stability
and the existence of trapping regions. In this paper, we build upon the concepts established in
[10] for uncontrolled quadratic systems and extend those results to quadratic control system of the
form (1).

3 Stability for quadratic control systems

In this section, our main goal is to parametrize quadratic control systems that are stable. To
this aim, we start by short reviewing the parametrization of stable matrices proposed in [16]).
Thereafter, we discuss the results presented in [10] allowing to parametrize energy preserving
quadratic nonlinearities. Based on these, we subsequently characterize boundness for quadratic
control systems with energy-preserving nonlinearities. These results will then be used to impose
stability while learning of quadratic control systems.
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3.1 Parametrization of a stable matrix

A linear dynamical system
ẋ(t) = Ax(t), (6)

where A ∈ Rn×n is said to be asymptotically stable when all eigenvalues of the matrix A lie strictly
in the left half complex plane. In this case, the matrix A is called Hurwitz.

In the light of this, an important characterization of stable matrices is provided in [16, Lemma 1],
which states that any Hurwitz matrix A can be expressed as:

A = (J−R)Q, (7)

where J = −J⊤ is a skew-symmetric matrix, R = R⊤ ≻ 0, andQ = Q⊤ ≻ 0 are symmetric positive
definite matrices. Moreover, if A can be expressed as in (7), then V(x) = 1

2x
⊤Qx is a Lyapunov

function for the linear dynamical system (6). In particular, the system (6) has E(x) = 1
2x

⊤x as a
(strict) Lyapunov function if and only if the matrix A can be decomposed as

A = J−R, (8)

for J = −J⊤ and R = R⊤ ≻ 0. It this case, we say that the system (6) is monotonically stable,
because the 2-norm of the state, i.e., ∥x(t)∥2, always decreases with time.
It is worth mentioning that the authors in [9] proposed a framework to learn linear stable

dynamical system by levering the parametrization (7). Additionally, in [10], this parametrization
of A together with the notion of energy preserving quadratic nonlinearities plays a crucial role in
learning (uncontrolled) quadratic models from data. In what follows, we recall the notion of energy
preserving quadratic nonlinearities and their parametrization.

3.2 Energy preserving quadratic nonlinearity

Here, we examine quadratic dynamical systems as described in (1) for which the quadratic nonlin-
earity satisfies some algebraic constraints, as proposed e.g., in [11,17]. We refer the Hessian matrix,
or quadratic matrix H in (1) to as energy-preserving when it satisfies the following criteria:

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0, (9)

for each i, j, k ∈ {1, . . . , n}, with Hijk := e⊤i H(ej ⊗ ek), where ei ∈ Rn is the ith canonical basis
vector. The condition (9) can be expressed using Kronecker product notation, see [10], as follows:

z⊤H(z⊗ z) = 0, ∀z ∈ Rn. (10)

Energy preserving nonlinearities typically appear in finite element discretization of fluid mechanical
models with certain boundary conditions, see, e.g., [18,19], as well as, in magneto-hydrodynamics
applications, see [20]. For such uncontrolled quadratic systems (the system (1) with u ≡ 0) with
energy-preserving Hessian, it is possible to establish conditions that ensure the system’s energy,
defined by E(x(t)) := 1

2x
⊤(t)x(t) = 1

2∥x(t)∥22, decreases in a strictly monotonic fashion for all
trajectories, see [10,11]. Additionally, the authors in [10] (Lemma 2) showed that a Hessian matrix

H ∈ Rn×n2

satisfying (10) can be parametrized without loss of generality as

H =
[
H1 . . . Hn

]
, (11)

with Hi ∈ Rn×n being skew-symmetric, i.e., Hi = −H⊤
i . As a consequence, this parametrization is

leveraged in the learning process in [10], leading to the inference of stable quadratic (uncontrolled)
models. Furthermore, the authors in [10] generalized these results to the case of more general
quadratic Lyapunov functions.

3.3 Bounded-input bounded-state stability result

Based on the results presented so far, we now proceed further to establish our main results of this
paper on the stability for quadratic control systems.
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Theorem 1 Consider a quadratic control system as in (1). Assume that the matrix A ∈ Rn×n is
monotonically stable and can be decomposed as A = J−R, where J = −J⊤ and R = R⊤ ≻ 0, and
H ∈ Rn×n2

is an energy-preserving Hessian. Then, if the input function u ∈ L∞, then the state
vector x(t) monotonically converges to the interior of the ball Br(0), where

r =
∥B∥2∥u∥L∞

σmin(R)
,

σmin(·) is the minimum singular value of a matrix and ∥u∥L∞ = ess supt≥0∥u(t)∥2 . Furthermore,
for every input u ∈ L∞, the state vector is bounded

∥x(t)∥2 ≤ max{x0, r}; (12)

thus, the quadratic control system is bounded-input bounded-state stable.

Proof: Let us consider the energy function E(x) = 1
2x

⊤x. We then show that this function is a
Lyapunov function outside of Br(0), which proves the result. We utilize the parameterization of
the matrix A = J−R, where J = −J⊤ and R = R⊤ ≻ 0 and the matrix H to be energy-preserving
. To this aim, the derivative of E(x(t)) along the trajectory x(t) is given by

Ė(x(t)) = x(t)⊤ẋ(t)

= x(t)⊤ (Ax(t) +H (x(t)⊗ x(t)) +Bu(t))

= x(t)⊤ ((J−R)x(t) +H (x(t)⊗ x(t)) +Bu(t))

= −x(t)⊤Rx(t) +
����������:0

x(t)⊤H (x(t)⊗ x(t))

+ x(t)⊤Bu(t)

≤ −σmin(R)∥x(t)∥22 + ∥B∥2∥u∥L∞∥x(t)∥2.

Define r =
∥B∥2∥u∥L∞

σmin(R)
. Then, Ė(x(t)) < 0 for ∥x(t)∥2 > r. Hence, E(x(t)) is a Lyapunov

function for ∥x(t)∥ > r, and hence, it is monotonically decreasing outside of the ball Br(0). As a
consequence, the state norm ∥x(t)∥2 is also a monotonically decreasing function outside of Br(0).
This implies that ∥x0∥2 ≥ ∥x(t)∥ when ∥x0∥2 ≥ r, which proves the result in (12). As a conse-
quence, every input u ∈ L∞ will lead to bounded trajectories and the system is bounded-input
bounded-state stable. □

Theorem 1 shows that if A is monotonically stable and H is energy preserving, the quadratic
control system of the form (1) is bounded-input bounded-state stable, i.e., every input u ∈ L∞
will lead to bounded trajectories x(t) satisfying (12). Additionally, to prove this result we use the
state energy as a Lyapunov function.
Theorem 1 together with the parametrization of monotonically stable matrices in (8) and energy-

preserving Hessians in (11) will allow us to learn quadratic control systems with a stable behavior.

4 Learning bounded control systems

Based on Theorem 1, we establish an inference framework to learn bounded quadratic control
models of the form (1), via the designatedX,U and Ẋ dataset. The inference problem is formulated
as:

argmin
Ĵ,R̂,Ĥ1,...,Ĥn,B̂

∥∥∥Ẋ− ÂX− ĤX⊗ − B̂U
∥∥∥
F
,

where Â = (Ĵ− R̂) and Ĥ =
[
Ĥ1, . . . , Ĥn

]
,

subject to Ĵ = −Ĵ⊤, R̂ = R̂⊤ ≻ 0, and

Ĥi = −Ĥ⊤
i , i ∈ {1, . . . , n}.

(13)

Upon determining the optimal set (J,R,H1, . . . ,Hn,B) solving (13), the matrices A and H are
constructed as:

A = (J−R), H = [H1, . . . ,Hn] , (14)
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yielding a quadratic control system in the form of (1), which is guaranteed to be stable in the
view of Theorem 1. Notice that the problem formulation in (13) imposes certain constraints on

the matrices. To circumvent these restrictions, as used in [9, 10], skew-symmetric matrices Ĵ (or

Ĥk) and symmetric positive (semi)definite matrices R̃ can be parameterized as

Ĵ = J̄− J̄⊤, and R̃ = R̄R̄⊤, (15)

where J̄, R̄ ∈ Rn×n are square matrices with any constraints. With this parametrization, (13)
becomes an unconstrained optimization problem. However, due to the lack of analytical solution
to (13), we solve the problem using a gradient-based approach.

5 Extension to more general quadratic Lyapunov functions

Theorem 1 shows that a quadratic control system with A monotonically stable and H energy
preserving is guaranteed to be bounded-input bounded-state stable. We have proved the result
using the state energy E(x) = 1

2x
⊤x as the Lyapunov function. In this section, we sketch an

extension of this result to the case for which more general quadratic Lyapunov functions are
considered, i.e., functions of the form V(x) = x⊤Qx, where Q = Q⊤ ≻ 0 is a symmetric positive
definite matrix.
Let us assume that the matrices A and H of a quadratic control system of the form (1) can be

written as

A = (J−R)Q and H =
[
H1Q . . . HnQ

]
. (16)

In this case, A is a Hurwitz matrix and H is a generalized energy-preserving Hessian (see [10]).
With similar arguments as those in the proof of Theorem 1, one can show that for bounded
inputs u ∈ L∞, the state x(t) also has a bounded behavior. Indeed, to this aim, one needs to
use V(x) as a Lyapunov function, and the result follows straightforwardly. As a consequence, the
parametrization in (16) can be leveraged within the learning process, i.e., the optimization problem
(13) can incorporate this more general parametrization, thus yielding inferred quadratic control
systems to be stable by construction.

6 Numerical results

In this section, we assess the efficacy of the methodology outlined in (13), referred to herein
as stable-OpInfc, through a coupled of numerical examples. We compare our approach with
operator inference [5], which we denote as (OpInfc). All experiments are carried out using PyTorch,
with 12, 000 updates with the Adam optimizer ([21]) and a triangular cyclic learning rate ranging
from 10−6 to 10−2. Additionally, we regularize the matrix H in quadratic systems by adding
10−4 · ∥H∥l1 in the loss function, where ∥ · ∥l1 denotes l1-norm. The initial values for the matrix
coefficients are randomly generated from a Gaussian distribution with a mean of 0 and standard
deviation of 0.1.

6.1 Low-dimensional example I

Our first numerical example consists of a low-dimensional quadratic control system of the form
(1), where

A =

(
−1 1
−1 −2

)
, H =

(
0 1 0 0

−1 0 0 0

)
, and B =

(
1
1

)
. (17)

We collect the data with zero initial condition and two different training input functions of the
form

u(t) = sin(f1t)e
−f2t + sin(g1t)e

−g2t, (18)

where fi ∈ Z, i = {1, 2} are randomly chosen integers between 0 and 5, and gi ∈ R, i = {1, 2} are
randomly chosen real numbers between 0 and 0.5. We collect 200 points for each training input
in the time-span of [0, 10]. Then, we learn quadratic control models using stable-OpInfc and
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Figure 1: Low-dimensional example I: A performance test for testing control inputs of the inferred
models.

OpInfc. Since the data is low-dimensional, the proper orthogonal decomposition step in (3) is not
performed in this example.
For comparison, we consider two test control inputs of the form

u1(t) = sin(t)e(−0.2·t) + sin(2t)e(−0.6·t) + cos(3t)e(−t)

u2(t) = − sin(2t)e(−0.1·t) − sin(t)e(−0.3·t) + cos(4t)e(−0.5t).

Note that the testing inputs are very different than from the training ones (see (18)). Next,
we compare the time-domain simulations of the learned models with the ground truth and the
results are depicted in Figure 1. We notice a faithful learning of the underlying models using both
approaches; however, the proposed methods stable-OpInfc ensures stability by construction for
any other selected input.

6.2 Low-dimensional example II

Our second numerical example, we consider a slightly different quadratic control system than the
previous example whose the matrix A is as follows:

A = 0.01

(
−1 1
−1 −2

)
,

and the matrices H and B are the same as (17). We collect training data using zero initial
conditions and two controlled inputs with the same setting as the previous example. Moreover,
for this example, we add Gaussian noise of zero mean and 0.02 standard derivation in the training

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-03-04



8

0 10 20
time

−10

−5

0

5

st
at

e
co

m
p

on
en

ts

0 10 20
time

10−2

10−1

m
ea

n-
er

ro
r

ground-truth OpInfc OpInfc-stable

(a) For the testing input w1.

0 10 20 30
time

−30

−20

−10

0

st
at

e
co

m
p

on
en

ts

0 10 20 30
time

10−1

101

m
ea

n-
er

ro
r

ground-truth OpInfc OpInfc-stable

(b) For the testing input w2.

Figure 2: Low-dimensional example II: A performance test for testing control inputs of the inferred
models.

data. Then, we learn quadratic controlled inputs using OpInfc and stable-OpInfc. We compare
the qualities of these two models using testing control inputs, similar to the previous example.
Particularly, to test the stability of both models, we use high-magnitude test control inputs as
follows:

w1(t) = 10 ·
(
sin(t)e(−0.2·t) + sin(2t)e(−0.6·t) + cos(3t)e(−t)

)
w2(t) = 10 ·

(
− sin(2t)e(−0.1·t) − sin(t)e(−0.3·t) + cos(4t)e(−0.5t)

)
.

The time-domain simulations using the learned models for these two test control inputs are
shown in Figure 2. We notice that OpInfc yields unstable behaviors, particularly for the control
w2, whereas stable-OpInfc results into the models which are stable by construction and this
phenomena is also numerically observed.

6.3 High-dimensional Burgers’ example

In our next example, we consider viscus Burgers’ example, whose governing equation is as follows:

∂v

∂t
+ v

∂v

∂ξ
= µ

∂2

∂ξ2
+ f(ξ, t),

v(0, t) = 0, v(L, t) = 0,

v(ξ, 0) = 0,

(21)
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where ξ ∈ [0, L] and t denote space and time, respectively, and v(ξ, t) denotes the state variable
at the spatial location ξ and at time t. We set µ = 0.05 and L = 2. Moreover, f(ξ, t) denotes a
source term, and in this example, we assume that the source term f(ξ, t) is separable, i.e., b(ξ)u(t).
Additionally, we consider

b(ξ) = cos

((
ξ

L
− 1

)
π

2

)
.

Note that the consider Burgers’ example has Dirichlet boundary conditions at both boundary ends.
Hence, the quadratic term is energy-preserving.
We discretize the governing equation using a finite difference scheme by considering 251 points

in the space. For generating training data, we consider the control input u(t) of the form

u(t) = sin(f1t)e
−g1t + sin(f2t)e

−g2t, (22)

where f1 and f2 are randomly drawn from a Gaussian distribution of N (0, 2) and g1 and g2 are
randomly drawn from a uniform distribution of U(0.1, 1.1). We consider 20 different training inputs
and for each train input, we take 1001 points at equidistant in the time [0, 10].
Towards learning quadratic control models, we first aim at determining a suitable low-dimensional

representation of the high dimensional data. It is done by means of singular value deposition of the
training data. We project the high-dimensional data onto a lower dimensional subspace using the
most dominant left singular vectors. We take nine most dominant ones which captures more than
99.90% energy present in the training data. Furthermore, to learn quadratic models, we require
derivative information, which is estimate using 5-order stencils.
Next, we learn quadratic models using OpInfc and stable-OpInfc using the projected low-

dimensional data. To capture the qualities of both these learned models, we consider testing
control inputs, which takes the following form:

u(t) = sin(f1t)e
−g1t + sin(f2t)e

−g2t + cos(f3t)e
−g3t, (23)

where fi ∈ N (0, 2) and gi ∈ U(0.1, 1.1), i ∈ {1, 2, 3}. We run testing for 10 different testing control
inputs which are quite different than the training ones. Among 10 test cases, for one case, we
present time-domain solutions obtained using the learned models and compare with the ground
truth in Figure 3. For a comparison for all 10 test cases, we compute the following measure:

err = mean
(
Xground-truth −Xlearned

)
, (24)

where Xground-truth and Xlearned contain the solutions vector at all time t for the ground truth and
learned quadratic models, respectively. Based on the measure (24), we compute the errors based
on the solutions obtained using OpInfc and stable-OpInfc and plot in Figure 4. We notice that
a slightly better performance for stable-OpInfc despite enforcing stability parameterization.

7 Conclusions

In this paper, we introduced a data-driven methodology designed to ensure a bounded stability
of the learned quadratic control systems. Firstly, under the assumption that the linear operator
is stable and the quadratic operator is energy-preserving, we have showed that quadratic control
systems is bounded-input bounded-state stable. Leveraging our previous work [9], we have parame-
terized the matrices of a quadratic system, satisfying stability and energy-preserving hypotheses by
construction. And we have utilized the matrix parameterizations in a data-driven setting to obtain
stable quadratic control systems. We have discussed the effectiveness of our proposed methodology
using two numerical examples and have compared the results when stability is not enforced. The re-
sults highlight the robust performance ad stability-certificates of the proposed approach, affirming
its potential to significantly advance the field of data-driven learning of dynamical systems.
In our methodology, we require accurate derivative information, which can be difficult to estimate

if data are noisy and sparse. To avoid this requirement, we can incorporate integrating scheme or
the concept of neural ODEs [22]. With this spirit, methodologies to learn uncontrolled dynamical
systems are discussed, e.g., in [23,24] which will be adaopted to controlled cases in our future work.
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(a) Time-domain response.

(b) Absolute error in a log-scale.

Figure 3: Burgers’ example: A performance test for a testing control input of the inferred models.
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Figure 4: Burgers’ example: A comparison of OpInfc and stable-OpInfc for 10 test cases.
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