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Vacuum birefringence produces a differential phase between orthogonally polarized components of
a weak electromagnetic probe in the presence of a strong electromagnetic field. Despite representing
a hallmark prediction of quantum electrodynamics, vacuum birefringence remains untested in pure
light configurations due to the extremely large electromagnetic fields required for a detectable phase
difference. Here, we exploit the programmable focal velocity and extended focal range of a flying
focus laser pulse to substantially lower the laser power required for detection of vacuum birefringence.
In the proposed scheme, a linearly polarized x-ray probe pulse counter-propagates with respect to a
flying focus pulse, whose focus moves at the speed of light in the same direction as the x-ray probe.
The peak intensity of the flying focus pulse overlaps the probe over millimeter-scale distances and
induces a polarization ellipticity on the order of 10−10, which lies within the detection sensitivity of
existing x-ray polarimeters.

I. INTRODUCTION

Vacuum-polarization effects arise from the interac-
tion of electromagnetic fields in vacuum. These effects
are purely quantum in origin, and their discovery con-
trasts one of the most fundamental principles of clas-
sical electrodynamics—the linearity of Maxwell’s equa-
tions and superposition of their solutions. Well before
the foundation of quantum electrodynamics (QED) had
been fully developed, it was realized that the existence
of antiparticles [1] gives rise to nonlinear effects that
modify the propagation of electromagnetic waves in vac-
uum. This idea was first formulated in Refs. [2, 3],
which presented a quantum Lagrangian density for a
slowly-varying, but otherwise arbitrary, electromagnetic
field that included the effects of electron-positron “vac-
uum fluctuations.” This so-called Euler-Heisenberg (EH)
Lagrangian density was later re-derived by Schwinger
who employed the proper-time method and techniques
of the newly formulated QED [4]. Within the frame-
work of the EH-Lagrangian, the importance of nonlinear
effects depends on the strength of the electromagnetic
field as compared to the critical electric and magnetic
fields[2–4]: Ecr = m2c3/ℏ|e| ≈ 1.3 × 1016 V/cm and
Bcr = m2c2/ℏ|e| ≈ 4.4 × 109 T, where m is the electron
mass and e < 0 its charge.

In order to appreciate the exceedingly large values of
the critical fields, they can be compared to some of the
most intense electromagnetic fields produced in the labo-
ratory, i.e., those of high-power lasers. The current world
record for laser intensity is about 1.1 × 1023 W/cm2

[5], corresponding to an electric field of about 6.4 ×
1012 V/cm. There are several laser facilities, either un-
der construction or planned, that may surpass this record
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by one-to-two orders of magnitude (e.g., see Refs. [6–
12] and the Multi-Petawatt Physics Prioritization Work-
shop report [13]). Nevertheless, the intensities produced
at these facilities will still be orders of magnitude be-
low the intensity required to reach the critical fields,
Icr = 4.6 × 1029 W/cm2.

Despite such a large disparity in intensity, vacuum po-
larization effects can, in principle, be observed at much
lower intensities by taking advantage of sensitive detec-
tors, the accumulation of signatures over long interac-
tion lengths, and/or favorable scalings with respect to
the frequency of a probe field. These possibilities have
led to the proposal of several experimental concepts for
detecting vacuum-polarization effects[14–19]. Examples
include harmonic-generation/photon merging and pho-
ton splitting in intense laser fields [20–27], vacuum Bragg
scattering and Cherenkov radiation [28–31], vacuum-
polarization effects in plasmas [32–36], and photon-
photon scattering in a variety of configurations [37–43],
among others [44–49]. As an alternative to pure light
configurations, vacuum-polarization effects have been re-
cently measured in ultra-peripheral heavy-ion collisions
[50]. Of interest here is the vacuum birefringence (and
dichroism) experienced by an electromagnetic wave as it
propagates through a high-intensity laser beam [51–75].

Previously proposed setups to measure vacuum bire-
fringence employed ultra-intense laser pulses to maxi-
mize the observable effects, e.g., the polarization rota-
tion of an x-ray probe, and extremely sensitive diagnos-
tics for their measurement. Here, we propose using the
extended focal range and moving focal point of a fly-
ing focus (FF) pulse [76, 77] to lower the intensity, and
power, required to measure vacuum birefringence by or-
ders of magnitude. The first experimental realization of
a FF pulse used chromatic focusing of a chirped laser
pulse to control the velocity of the focal point over dis-
tances much longer than a Rayleigh range [77, 78]. More
recent concepts would allow for higher focused intensi-
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FIG. 1. Interaction geometries for producing an observable signature of vacuum birefringence. An x-ray probe pulse (blue)
encounters a (red) co-moving flying focus pulse (a) or conventional Gaussian pulse with a stationary focus (b). The three
snapshots from top to bottom show the progression of time. The x-ray probe pulse has a length L, spot size ŵγ , and travels
to the right with a velocity vγ = c. The optical pulse has a spot size ŵℓ, Rayleigh range Zℓ, and a phase velocity vϕ = −c,
where ℓ is either F (FF case) or G (conventional case). The peak-intensity of the FF pulse travels to the right with a velocity
vF = c. By extending the interaction length, the FF pulse produces the same birefringent phase difference with a much lower
laser power.

ties by using axiparabola-echelon optics [79] or nonlinear
media [80, 81]. These concepts have been motivated by
a number of theoretical studies into the unique possibili-
ties that FF pulses offer for laser-based applications and
fundamental physics studies [79, 82–86]. In the realm
of high-field physics, FF beams have been proposed to
enhance observable signatures of the transverse forma-
tion length of electromagnetic radiation in the quantum
regime [87] and radiation-reaction effects at relatively low
laser intensities [88].

In the context of vacuum-polarization, we consider a
setup in which a linearly polarized x-ray probe pulse
counterpropagates with respect to a FF pulse. The focus
of the FF pulse moves in the same direction and with the
same velocity as the probe vF = vγ = c (left column of
Fig. 1). The x-ray probe pulse propagates inside the fo-
cus of the FF pulse over a macroscopic distance that is in-
dependent of the Rayleigh range ZF and limited only by
the energy of the FF pulse. This is in contrast to config-
urations that employ conventional fixed-focus Gaussian
pulses (right column of Fig. 1), which limit the interac-
tion region to their Rayleigh range ZG. In both cases,
vacuum-polarization produces different phase shifts in
the two polarization components of the probe pulse, re-
sulting in an ellipticity that accumulates over the inter-

action length. By extending the interaction length, the
FF configuration results in ellipticities that are measur-
able with state-of-the-art detection techniques at powers
(and intensities) that are orders of magnitude lower than
those required by conventional laser pulses.

II. PHASE DIFFERENCE DUE TO VACUUM
BIREFRINGENCE

The main analytical result of this work is the formula
for the phase difference ∆θℓ between orthogonal polar-
izations of an x-ray probe pulse induced by a counter-
propagating optical laser pulse with energy Eℓ:

∆θℓ ≈
8α2

15π

Eℓ
e2E2

cr

ℏ⟨ωγ⟩
ŵ2

ℓ

ΣℓΛℓ , (1)

where α = e2/(4πε0ℏc) ≈ 1/137 is the fine-structure con-
stant and ⟨ωγ⟩ is the average angular frequency of the x-
ray pulse. This formula was derived by perturbatively
solving Maxwell’s equations for an x-ray probe pulse
propagating in a medium whose magnetization and polar-
ization correspond to the vacuum modified by an optical
laser pulse (see Appendices A-E for the detailed deriva-
tion). Equation (1) accounts for the transverse structure
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FIG. 2. The ratio of laser powers required to achieve a
phase difference ∆θℓ for a given laser pulse energy Eℓ. The
dashed red lines correspond to log10(PF /PG) ∈ {−2,−1, 0}.
The solid blue lines and dash-dotted grey lines indicate the
spot sizes ŵG/F = 2 and 5 µm for the conventional and FF
pulses, respectively. The plot is cut off at ŵG = 2 µm, rep-
resenting the paraxial approximation limit of a λℓ = 1µm
wavelength laser pulse. The vertical dashed line marks the
current threshold for experimental detection. For the param-
eters of the pulses, see the labels and text.

of the interacting pulses through the factor Σℓ and the
lengths and synchronization of the pulses through the
longitudinal form factor Λℓ. Both of these quantities will
be discussed below. The spot size of the laser pulse at fo-
cus is denoted by ŵℓ, where the subscript ℓ is either “F”
for a FF pulse or “G” for a conventional Gaussian pulse.
Equation (1) allows for a straightforward comparison of
FF and conventional Gaussian pulses. A complete de-
scription and justification of the approximations that go
into the derivation of Eq. (1) is presented in Appendix
A.

Figure 2 displays the predictions of Eq. (1) and demon-
strates that for the same laser pulse energy, a FF pulse
can induce the same birefringent phase difference as a
conventional Gaussian pulse at a much lower power Pℓ.
The parameters used to generate Fig. 2 were moti-
vated by current x-ray sources and near-term laser fa-
cilities. Specifically, a 10 keV x-ray pulse with a length
L = 7.5 µm (25 fs) and focal spot ŵγ = 1.5 µm colliding
with a λℓ = 1 µm wavelength optical pulse.

The cycle-averaged powers of rectangular FF and con-
ventional pulses are given by

Pℓ =
Eℓ
τℓ
, (2)

where the pulse duration τℓ determines the interaction
length: Dℓ = τℓ/2 (see Appendix E). In Fig. 2, the inter-
action length of the FF pulse was chosen to be DF = 1
cm based on experimentally demonstrated focal ranges
[77]. Perfect synchronization between the center of the
x-ray probe pulse and intensity peak of the FF pulse was

Name ℏωγ [keV] λγ [nm] ŵγ [µm] L[fs] Ref.

LCLS 25 0.0496 1 50 [90]

European XFEL 15 0.0827 3 25 [91]

SACLA 10 0.124 1.4 10 [92]

PAL-XFEL 9.7 0.128 5 25 [93]

TABLE I. Parameters of the x-ray probe pulses used in the
analytical estimates and numerical simulations for Fig. 3.

also assumed. The interaction length of the conventional
pulse was set to DG = ZG, where ZG ≡ ωGŵ

2
G/2c is

its Rayleigh range and ωG its angular frequency. The
centers of the conventional and x-ray pulses were set to
meet at the focus of the conventional pulse (see Appendix
D). This ensures a near-optimal configuration where the
conventional and x-ray pulses interact over an entire
Rayleigh range of the conventional pulse. For fixed laser
energy and phase difference, the spot sizes of the conven-
tional and FF pulses are nearly equal (Fig. 2), such that
∆θℓ ∝ Eℓ ∝ PFDF ≈ PGDG, or

PF ≈ DG

DF
PG. (3)

Thus the FF reduces the power required for an observ-
able phase difference by extending the interaction length:
DF ≫ DG implies PF ≪ PG.

The vertical dashed line in Fig. 2 indicates the thresh-
old for currently measurable phase differences, i.e., ∆θℓ =
1.8×10−5. The ellipticity of the x-ray pulse δ2 is related
to the phase difference by δ2 ≈ ∆θ2ℓ/4. It is assumed that
the x-ray pulse is initially linearly polarized at an angle
of 45◦ with respect to the fields of the optical pulse and
has polarization purity better than the detection thresh-
old. This can be achieved using a monochromator and
multiple Bragg reflections from channel-cut crystals [89]
and tested by a null experiment without the laser pulse.
A narrow band x-ray pulse (∼ 1 eV bandwidth [89]) is
produced. Ellipticities δ2 ≈ 8 × 10−11 are within the de-
tection limits of existing experimental techniques [51, 89].
As an example, a 1 kJ laser pulse focused to a ŵℓ = 3 µm
spot can induce a phase difference ∆θℓ = 3.5× 10−5 and
an ellipticity δ2 ≈ 3 × 10−10. In the conventional case,
this would require a power of 5.3 PW and an intensity
of 7.8 × 1022 W/cm2, which is nearly equal to the world
record [5]. In the FF case, only 15 TW are needed, cor-
responding to an intensity of 2.2 × 1020 W/cm2, a value
approximately 350 times smaller than the conventional
case.

These examples suggest that vacuum birefringence
measurements could be made experimentally accessible
by pairing a high-energy laser system capable of pro-
ducing a FF pulse with a hard x-ray source. Figure 3
shows the accumulated phase difference ∆θF that could
be achieved with x-ray pulses from currently available
XFELs (see Tab. I for the parameters). For each XFEL
considered, the phase difference reaches measurable val-
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FIG. 3. Accumulated phase difference between orthogonal
polarizations of an x-ray pulse from an XFEL interacting with
a FF pulse as a function of distance relative to the focus of
the x-ray pulse (z = 0). The FF pulse has a λF = 1 µm
wavelength, ŵF = 3 µm spot size, PF = 15 TW, and EF = 1
kJ. See Table I for the XFEL parameters. Phase differences
outside of the red shaded region would be measurable with
current x-ray polarimeters [51, 89]. The analytical results are
plotted as dotted lines.

ues after just a few millimeters of propagation (outside
the red shaded region).

Ultimately, the experimental feasibility of measuring
the phase difference will depend on the sensitivity of ∆θℓ
to the transverse and longitudinal overlap of the opti-
cal and x-ray pulses. In Fig. 2, near-ideal longitudinal
overlap was assumed. For the FF, this means that the
longitudinal center of the x-ray pulse was co-located with
the peak intensity of the FF. For the conventional pulse,
this means that the leading and trailing edges of the x-ray
and optical pulses met symmetrically at points located a
distance ZG/2 from the focus of the optical pulse.

The effect of imperfect longitudinal overlap on ∆θℓ is
captured by the form factor Λℓ and is illustrated in Fig.
4. The full analytic expressions for the Λℓ appear in
Appendices D and E. The expressions can be summarized
as follows. In the FF case, ΛF depends on the length of
the x-ray probe pulse L and the offset of its center from
the traveling intensity peak of the FF d [Fig. 4(a)]. For
ultrashort x-ray pulses (L ≪ ZF ) that are colocated with
the center of the FF intensity peak (d = 0), ΛF ≈ 1. X-
ray pulses that are either offset from the center of the FF
intensity peak or appreciably longer than the Rayleigh
range of the FF will experience a lower intensity. This
causes a smaller value of the form factor and, as a result,
the phase difference.

In the conventional case, ΛG depends on the length of
the x-ray probe pulse L and on the interaction length DG

[Fig. 4(b)]. When DG ≪ ZG, an ultrashort x-ray pulse
(L ≪ ZG) will encounter an approximately constant field
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FIG. 4. Geometric form factor Λℓ for the FF configuration
(a) and a conventional configuration (b). The x-ray probe
pulse has a length L. In the FF configuration, the x-ray pulse
is offset from the center of the FF intensity peak by a distance
d. In the conventional configuration, the interaction length
is DG. For this plot, the spot sizes are ŵγ = 1.5 µm and
ŵℓ = 3 µm. The red dash-dotted line indicates DG = ZG.

amplitude near the center of the fixed focus, such that
ΛG ≈ 1. The near-optimal case of DG = ZG used in Fig.
2 is displayed as the red dash-dotted line in Fig. 4(b).
For longer interactions lengths or x-ray pulse lengths,
the x-ray pulse intersects the conventional pulse while it
is out of focus and has a lower intensity. This decreases
the form factor and results in a smaller phase difference.

The effect of transverse overlap is captured by the fac-
tor Σℓ, which depends solely on the ratio of the x-ray and
optical spot sizes σℓ ≡ ŵγ/ŵℓ:

Σℓ ≡
1 + 2σ2

ℓ

(1 + σ2
ℓ )2

. (4)

As σℓ → 0, Σℓ rapidly approaches 1. Thus, it is unneces-
sary to focus the x-ray pulse to a spot size that is much
smaller than that of the laser pulse. For instance, when
the spot size of the x-ray pulse is half that of the laser
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pulse, σℓ = 0.5 and Σℓ = 0.96. Aside from being easier
to realize in practice, larger x-ray spot sizes improve the
validity of the analytical approximation DF /Zγ ≪ 1 (see
Appendix A) used to derive Eq. (1).

In optimal conditions where ΣF = ΣG = ΛF = ΛG =
1, FF and conventional pulses with equal energies re-
sult in identical phase differences. This means that FF
pulses do not provide any enhancement in the phase dif-
ference when compared to experimentally relevant ultra-
short Gaussian pulses. However, the FF configuration
requires significantly lower laser powers and peak inten-
sities, allowing for more controllable conditions at the
cost of proportionally longer interaction lengths.

III. SUMMARY AND CONCLUSIONS

The extreme field scales inherent to nonlinear QED
complicate experimental efforts to test hallmark predic-
tions of the theory, such as vacuum polarization and bire-
fringence. In order to produce an observable signature
that could test these predictions, an experimental config-
uration must take advantage of strong or high-frequency
fields, long interaction lengths, or sensitive detectors. A
promising configuration for detecting vacuum birefrin-
gence uses the collision of a conventional, high-intensity
laser pulse with an x-ray probe pulse to induce a differ-
ential phase between orthogonally polarized components
of the x-ray pulse. However, even in this configuration,
an extremely high laser intensity is required to produce
an appreciable phase difference. This is because the in-
teraction length is limited by the Rayleigh range of the
laser pulse.

The programmable focal velocity and extended focal
range of a flying focus (FF) pulse allows for the accu-
mulation of the birefringent phase difference over much
longer distances. This reduces the required laser inten-
sity (and power) by orders of magnitude. Unlike a con-
ventional Gaussian pulse, the interaction length of a FF
pulse is independent of the Rayleigh range. Thus the in-
teraction length can be increased without changing the
spot size. As a result, a FF pulse with the same energy
as a conventional pulse can induce the same birefringent
phase difference at a much lower power and intensity.

Specific examples were presented for kJ-class laser
pulses colliding with x-ray pulses from current XFEL fa-
cilities. In one such example, detectable signatures of
vacuum birefringence were possible with either a 5.3 PW
conventional pulse or a 15 TW FF pulse. By mitigating
the need for temporal compression to achieve a high laser
power, the FF configuration could alleviate engineering
constraints on the optical elements. Further, lower laser
powers (and intensities) allow for more reliable in situ
diagnostics of the pulse.

The focal range of the FF pulse used in the examples
was 1 cm, which has already been experimentally demon-
strated [77], albeit at low intensities (1014 W/cm2). Sev-
eral paths to higher intensities have been outlined in

Refs. [79–81]. Kilojoule class short pulse systems, such
as the OMEGA-EP laser [94], are in routine operation,
and tight focusing is regularly used at several facilities
[5, 95–97]. The promise of this work, and others like
it, will continue to motivate the technological develop-
ment of FF pulses at higher intensities. Once realized,
the configuration proposed here would provide a unique
experimental platform for testing properties of the QED
vacuum. For instance, the detectable signatures of other
effects arising from the EH Lagrangian, such as photon
splitting and photon-photon scattering [98], also accu-
mulate with the interaction distance. For photon-photon
scattering in particular, the framework developed in this
paper could be adapted to look at the defocusing of the
probe pulse instead. These effects can be experimentally
distinguished from the effect discussed here by detectors
with frequency or angular discrimination, the details of
which will be left to future studies.
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In the finalization phase of our manuscript, the pa-
per “Enhancement of vacuum birefringence with pump
laser of flying focus” was published in Phys. Rev. A
[99]. Although the authors study the same problem that
is considered here, the theoretical approaches and focus
are different, e.g., we compare the birefringent signals
produced by optimal conventional and flying focus pulses
with the same energy.

Appendix A: Wave equation for the x-ray pulse

The vacuum response to external electromagnetic
fields is described by the Euler-Heisenberg (EH) La-
grangian density [2–4]. This density was computed in
the limit of uniform and constant fields, i.e., it does
not depend on their spacetime derivatives. The char-
acteristic scale for the space (time) variations is deter-
mined by the reduced Compton wavelength (Compton
time) λC = ℏ/mc ≈ 3.9 × 10−11 cm (λC/c = ℏ/mc2 ≈
1.3 × 10−21 s), which is about six orders of magnitude
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smaller than the characteristic wavelength and period of
optical laser pulses. As a result, the derivative corrections
to the EH Lagrangian will be ignored. Until Appendix E
the units ℏ = ε0 = c = 1 are used for the convenience of
derivation.

To illustrate the validity of Eq. (1), consider the un-
derlying assumptions of the model:

1. The paraxial approximation is valid for both the
x-ray and laser pulse. For the x-ray pulse this is a
reasonable assumption because the neglected lon-
gitudinal field is suppressed by a factor λγ/2πŵγ

compared to the transverse components. Correc-
tions to the transverse field are suppressed by the
square of this factor. For 10 keV pulse focused to
ŵγ = 1 µm this factor is 2 × 10−5. For the laser
pulse the transverse field correction is zero on axis
and suppressed by the factor (r2λ2

ℓ)/2πŵ4
ℓ off axis.

As a result, this correction is negligible when ei-
ther a) the focused spot size ŵℓ > 2λγ or b) the
focused spot size of the x-ray pulse ŵγ < ŵℓ. The
longitudinal field of the laser pulse can be neglected
outright, because it only contributes to the birefrin-
gence calculation when multiplied by the negligible
longitudinal field of the x-ray pulse.

2. Only frequencies composing the initial x-ray pulse
are detected. This can be achieved experimentally
by using a spectral filter or spectrometer.

3. The period (wavelength) of the x-ray probe pulse
is much shorter than its duration (length), i.e., the
slowly varying envelope approximation (SVEA) can
be applied. For a typical 10 fs long 10 keV x-
ray pulse, the period is four orders of magnitude
smaller than the duration.

4. The nonlinear vacuum response is small, and the
solutions need only be found to first order in the
field intensity ∝ Ê2

ℓ /E
2
cr. This is justified for laser

intensities much lower than the critical intensity
∼1029 W/cm2, which is certainly the case for any
available or foreseeable laser pulse.

5. The x-ray probe pulse can be modeled as a Gaus-
sian beam with a rectangular temporal profile. This
assumption holds because the x-ray probe pulse
does not need to be tightly focused. Other tem-
poral profiles can be accommodated by averaging
over intensity.

6. The interaction length Dℓ is much smaller than the
Rayleigh range of the x-ray probe pulse Zγ . This
is readily satisfied for conventional, high-intensity
Gaussian pulses, which are typically only tens of
femtoseconds (tens of microns) long. With FF
pulses, on the other hand, the interaction can be
sustained over millimeter-scale distances. Thus,
depending on the interaction length, higher x-
ray photon energies or more weakly focused x-ray

pulses may be required. For all FF and x-ray pa-
rameters considered here, the assumption is valid.

7. The temporal profiles of the laser pulses can be ap-
proximated as rectangles. It is primarily the total
energy of the optical pulse, not its temporal profile,
that determines ∆θℓ (see Appendix F).

These assumptions are referenced in the Appendices A-D
and when applicable, the order of neglected terms is in-
cluded. The last two assumptions have only been made
to simplify the analytical calculations. Numerical sim-
ulations that make neither of these assumptions are in
excellent agreement with Eq (1), see Appendix F.

The wave equation for the electric field of the x-ray
probe pulse in the medium (polarized vacuum in this
case) is derived from Maxwell equations and is given by
[100]

(∇2 − ∂2
t )Eγ = 4π[∇× ∂tM + ∂2

tP −∇(∇ ·P )] . (A1)

The polarization P and the magnetization M of the
quantum vacuum are obtained from the EH Lagrangian
as [44, 52]

P =
α

180π2E2
cr

[2(E2 −B2)E + 7(E ·B)B] , (A2)

M =
α

180π2E2
cr

[2(B2 − E2)B + 7(E ·B)E] , (A3)

where E = Eℓ +Eγ and B = Bℓ +Bγ are the combined
electric and magnetic fields of the intense laser and probe
pulses, respectively [101]. In the configuration considered
here, the laser field is polarized in the positive x̂ direction
and has a phase velocity in the negative ẑ direction

Eℓ(t,x) =
Eℓ(t,x)

2
e−iωℓ(t+z)x̂

+ c.c. + O (1/ωℓŵℓ) ,
(A4)

Bℓ,⊥(t,x) = −Eℓ(t,x)

2
e−iωℓ(t+z)ŷ

+ c.c. + O (1/ωℓŵℓ) ,
(A5)

where Eℓ(t,x) is the slowly-varying, complex envelope
and ωℓ = 2π/λℓ is laser frequency. The x-ray probe pulse
is polarized in the x̂ and ŷ directions and has a phase
velocity in positive ẑ direction

Eγ(t,x) =
Eγ,x(t,x)x̂ + Eγ,y(t,x)ŷ

2
e−iωγ(t−z)

+ c.c. + O(1/ωγŵγ) ,
(A6)

Bγ(t,x) =
Eγ,x(t,x)ŷ − Eγ,y(t,x)x̂

2
e−iωγ(t−z)

+ c.c. + O(1/ωγŵγ) ,
(A7)

where the Eγ,j(t,x) are the slowly-varying, complex en-
velopes for the orthogonal polarization components and
ωγ = 2π/λγ is the x-ray photon frequency.
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Equations (A4)-(A7) employ the paraxial approxima-
tion (Approx. 1) and include only the dominant elec-
tric field components, i.e., those in the polarization di-
rections. With these prescriptions, the field invariants
F = (1/2)(B2−E2) and G = −E ·B are identically zero
when evaluated using the laser and x-ray fields indepen-
dently. However, cross-terms in the invariants, which
correspond to interactions of the fields, are non-zero be-
cause the phase velocities of the two pulses are equal and
opposite. These cross terms provide the largest contri-
bution to the vacuum birefringence experienced by the
x-ray pulse.

The exact fields of a conventional Gaussian or FF beam
have non-zero field invariants off axis (see Supplemental

Material of [88]). While this would introduce additional
terms in P and M , these terms are either (1) too small
to significantly affect the propagation of the laser pulse
or (2) negligible compared to the dominant terms that af-
fect the propagation of the x-ray pulse. More specifically,
these terms are ∼ λ2

ℓ/(4π2eEŵ
2
ℓ ) times smaller than the

dominant contributions [88], where eE = 2.718 is Eu-
ler’s number. This factor is approximately 10−3 for the
parameters considered here, ŵℓ = 3λℓ. Therefore the
non-zero contributions to the individual invariants will
be neglected, and P and M will only include the domi-
nant contributions to the invariants from the interaction
terms.

Using Eqs. (A4) - (A7), the interaction terms in the
invariants are given by

E2 −B2 = 4

(
Eℓ(t,x)

2
e−iωℓ(t+z) + c.c.

)(
Eγ,x(t,x)

2
e−iωγ(t−z) + c.c

)
+ O(ν) , (A8)

E ·B = −2

(
Eℓ(t,x)

2
e−iωℓ(t+z) + c.c.

)(
Eγ,y(t,x)

2
e−iωγ(t−z) + c.c

)
+ O(ν) . (A9)

where ν ≡ max(1/ωγŵγ , 1/ωℓŵℓ). Then, to linear order in the probe field

Pωγ (t,x) =
1

2π

[
ηx

(
Eγ,x(t,x)

2
e−iωγ(t−z) + c.c

)
x̂ + ηy

(
Eγ,y(t,x)

2
e−iωγ(t−z) + c.c

)
ŷ

]
×
(
Eℓ(t,x)

2
e−iωℓ(t+z) + c.c.

)2

+ O(ν) ,

(A10)

Mωγ
(t,x) =

1

2π

[
ηx

(
Eγ,x(t,x)

2
e−iωγ(t−z) + c.c

)
ŷ − ηy

(
Eγ,y(t,x)

2
e−iωγ(t−z) + c.c

)
x̂

]
×
(
Eℓ(t,x)

2
e−iωℓ(t+z) + c.c.

)2

+ O(ν) ,

(A11)

where

ηx ≡ 4α

45πE2
cr

, ηy ≡ 7α

45πE2
cr

. (A12)

Thus, in Pωγ
and Mωγ

, only the terms that oscillate
at ωγ were retained, see the assumption in Approx. 2.
The neglected oscillatory terms, once substituted into the
wave equation, would produce sidebands at frequencies
2ωγ ± ωℓ etc., which can be excluded in an experiment
with a spectral filter or spectrometer.

Upon substituting the resulting expressions for Pωγ

and Mωγ
into Eq. (A1), the wave equation can be re-

duced to a simpler form by making the slowly varying
envelope approximation (SVEA - Approx. 3). This ap-
proximation uses the fact that

κ ≡ max

( |∇Eℓ,γ |
|ωγEℓ,γ |

,
|∂tEℓ,γ |
|ωγEℓ,γ |

)
≪ 1 (A13)

to drop higher order derivatives. On the right-hand side
of Eq. (A1), the second time derivative of the polariza-
tion simplifies to

4π∂2
tPωγ (t,x) =

− 1
2ω

2
γ{ηx[Eγ,x(t,x)e−iωγ(t−z) + c.c.]x̂

+ ηy[Eγ,y(t,x)e−iωγ(t−z) + c.c.]ŷ}
× {|Eℓ(t,x)|2 + [ 12E

2
ℓ (t,x)e−2iωℓ(t+z) + c.c.]}

+ O(ν, κ) ,

(A14)

and similarly for the magnetization

4π∇× ∂tMωγ
(t,x) =

− 1
2ω

2
γ{ηx[Eγ,x(t,x)e−iωγ(t−z) + c.c.]x̂

+ ηy[Eγ,y(t,x)e−iωγ(t−z) + c.c.]ŷ}
× {|Eℓ(t,x)|2 + [ 12E

2
ℓ (t,x)e−2iωℓ(t+z) + c.c.]}

+ O(ν, κ) ,

(A15)
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which is equal to the polarization term. The third and
final term on the right-hand side of Eq. (A1) is propor-
tional to ∇(∇·P ) and does not have an ω2

γ contribution.
Expressions (A6,A14,A15) are substituted into Eq.

(A1), which is broken into two equivalent equations for
the non-conjugate and conjugate components. On the
left-hand side of Eq. (A1), the terms arising from ∂2

t and
∂2
z which are proportional to ω2

γ cancel, and the remain-
ing second derivative terms are dropped in accordance
with the SVEA. What remains is an equation for the
amplitude components Eγ,j(t,x) where j ∈ {x, y}. After

multiplying by 2eiωγ(t−z), one finds

[2iωγ(∂z + ∂t) + ∇2
⊥]Eγ,j(t,x)

= −2ω2
γηj |Eℓ(t,x)|2Eγ,j(t,x)

− ω2
γηjEγ,j(t,x)[E2

ℓ (t,x)e−2iωℓ(t+z) + c.c.]

+ O(ν̃, κ) .

(A16)

This time ν̃ ≡ max(1/ωγŵγ , 1/ω
2
ℓ ŵ

2
ℓ ) since the longitu-

dinal components proportional to 1/ωℓŵℓ were dropped.
The oscillatory terms in the last expression vanish upon
averaging over a laser cycle. Performing a change of vari-
ables to the moving frame coordinates ξ = t−z and z̃ = z
with the associated derivatives ∂t = ∂ξ and ∂z = −∂ξ+∂z̃
yields the differential equation

(2iωγ∂z + ∇2
⊥)Eγ,j(ξ,x)

= −2ω2
γηj |Eℓ(ξ,x)|2Eγ,j(ξ,x) + O(ν̃, κ)

(A17)

for the components of the complex envelope of the x-ray
probe pulse Eγ,j(ξ,x), where z̃ has been renamed as z.

Appendix B: FF and conventional laser pulse profiles

The squared magnitude of the laser field can be ex-
pressed as

|Eℓ(ξ,x)|2 = Ẽ2
ℓ (ξ, z)g2ℓ (ξ + 2z)e−2r2/w2

ℓ (ξ,z) , (B1)

where gℓ(t+ z) = gℓ(ξ+ 2z) is the temporal profile of the

pulse and r ≡
√
x2 + y2 is the radial distance from the

propagation axis. The amplitude and spot size of the FF
pulse are given by

ẼF (ξ, z) = ẼF (ξ) =
ÊF√

1 + (ξ/ZF )2
, (B2)

wF (ξ, z) = wF (ξ) = ŵF

√
1 + (ξ/ZF )2 , (B3)

where ZF ≡ ωℓŵ
2
F is the Rayleigh range and ŵF is the

spot size at focus [82, 87]. Note the factor of two differ-
ence from the standard formula [81, 102]. Because the fo-
cus moves at the speed of light in the positive z direction,
ẼF and wF depend only on ξ = t− z. The conventional
Gaussian pulse has a stationary focus at z = 0, such that

ẼG(ξ, z) = ẼG(z) =
ÊG√

1 + (z/ZG)2
, (B4)

wG(ξ, z) = wG(z) = ŵG

√
1 + (z/ZG)2 , (B5)

where ZG ≡ ωℓŵ
2
G/2 is the Rayleigh range and ŵG is the

spot size at focus. In this case, both functions depend
only on z.

Appendix C: Evolution of the x-ray probe pulse

Each time slice of the x-ray pulse travels at the speed
of light. As a result, the electric field of each time slice
can be parameterized by its value of ξ and described by
the ansatz

Eγ,j(ξ,x) = Ẽγ,j(ξ, z)

× exp

(
iθj(ξ, z) − r2

w2
j (ξ, z)

+ i
ωγr

2

2Rj(ξ, z)

)
,

(C1)

where Ẽγ,j(ξ, z), θj(ξ, z), wj(ξ, z), and Rj(ξ, z) are all
real functions of z. This ansatz has been chosen so that
the unknown functions take familiar functional forms in
the absence of vacuum-polarization effects, i.e., those of
Gaussian optics. Plugging Eq. (C1) into Eq. (A17), mul-
tiplying through by E∗

γ,j(ξ,x), and separating the real
and imaginary components provides the equations

w4
j

(
Ẽ′

γ,j

Ẽγ,j

+
1

Rj

)
+2wj

(
w′

j −
wj

Rj

)
r2 = O(ν̃, κ) , (C2)

[ω2
γw

4
j (R′

j − 1) + 4R2
j ]r2 − 2R2

jw
2
j (2 + ωγw

2
j θ

′
j)

= −2ω2
γηjẼ

2
ℓ g

2
ℓR

2
jw

4
j e

−2r2/w2
ℓ + O(ν̃, κ) ,

(C3)

where the prime denotes a partial derivative with respect
to z, and the dependence of all quantities on ξ and z has
been omitted for brevity. Integrating Eqs. (C2) and (C3)

over 2πe−2r2/w2
j rdr yields

Ẽ′
γ,j

Ẽγ,j

= −
w′

j

wj
+ O(ν̃, κ) , (C4)

and

ω2
γw

4
j (R′

j − 1) − 4R2
j − 4R2

jωγw
2
j θ

′
j

= −4ω2
γηjẼ

2
ℓ g

2
ℓR

2
jw

2
j

w2
ℓ

w2
j + w2

ℓ

+ O(ν̃, κ) .
(C5)

Similarly, integrating Eqs. (C2) and (C3) over

2πe−2r2/w2
j r3dr yields

w′
j

wj
=

1

Rj
+ O(ν̃, κ) (C6)

and

ω2
γw

4
j (R′

j − 1) − 2R2
jωγw

2
j θ

′
j

= −2ω2
γηjẼ

2
ℓ g

2
ℓR

2
jw

2
j

w4
ℓ

(w2
j + w2

ℓ )2
+ O(ν̃, κ) .

(C7)
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Combining Eqs. (C5), (C6), and (C7) provides differen-
tial equations for the spot sizes wj(ξ, z) and phase shifts
θj(ξ, z) of the x-ray probe pulse

w′′
j − 4

ω2
γw

3
j

[
1 − ω2

γηjẼ
2
ℓ g

2
ℓ

w2
ℓw

4
j

(w2
j + w2

ℓ )2

]
= O(ν̃, κ) ,

(C8)

θ′j +
2

ωγw2
j

− ωγηjẼ
2
ℓ g

2
ℓ

w2
ℓ (2w2

j + w2
ℓ )

(w2
j + w2

ℓ )2
= O(ν̃, κ) .

(C9)

In addition, Eqs. (C4) imply conservation of power,

w2
j (ξ, z)Ẽ2

γ,j(ξ, z) ≈ constant, and the radii of curvature
Rj(ξ, z) can be found from Eq. (C6) once wj(ξ, z) is
known.

Appendix D: Perturbative solution

Equations (C8) and (C9) can be solved perturbatively
by expanding in orders of the small dimensionless pa-
rameter ηjÊ

2
ℓ (Approx. 4). The spot sizes and phases

are written as

wj(ξ, z) = w(0)(z) + δwj(ξ, z) , (D1)

θj(ξ, z) = θ(0)(ξ, z) + δθj(ξ, z) . (D2)

The zeroth-order solutions are equal to the spot size and
phase of a Gaussian beam (Approx. 5) in the absence of
vacuum polarization effects:

w(0)(z) = ŵγ

√
1 + z2/Z2

γ , (D3)

θ(0)(ξ, z) = θ0(ξ) − arctan(z/Zγ) , (D4)

where θ0(ξ) is an arbitrary real function and Zγ ≡
ωγŵ

2
γ/2. Equations (C4) and (D3) imply that the zeroth-

order amplitudes Ẽ
(0)
j (ξ, z) ∝ 1/w(0)(z) depend only on

z.
The corrections δwj(ξ, z) and δθj(ξ, z) arise from

vacuum-polarization effects. To first order in ηjÊ
2
ℓ (Ap-

prox. 4), the corrections satisfy the differential equations

δw′′
j +

12δwj

ω2
γ(w(0))4

+ 4ηjẼ
2
ℓ g

2
ℓw

2
ℓ

w(0)

[(w(0))2 + w2
ℓ ]2

= O(ν̃, κ, ε2) ,

(D5)

δθ′j −
4δwj

ωγ(w(0))3
− ωγηjẼ

2
ℓ g

2
ℓw

2
ℓ

2(w(0))2 + w2
ℓ

[(w(0))2 + w2
ℓ ]2

= O(ν̃, κ, ε2) ,

(D6)

where ε ≡ Ê2
ℓ /E

2
cr. This system of equations can be used

to find numerical solutions for δwj(ξ, z) and δθj(ξ, z). In
order to derive analytical estimates for these quantities,

the equations will be solved in the region where z2/Z2
γ ≪

1 (Approx. 6). Further, the temporal profiles of the laser
pulses will be approximated as rectangles, i.e., gℓ = 1
for the duration of the interaction and gℓ = 0 otherwise
(Approx. 7).

1. FF pulse

For the FF pulse, ẼF (ξ) and wF (ξ) are given by Eqs.
(B2) and (B3). When the length of the x-ray pulse
L is much smaller than the interaction length DF , the
initial conditions δwj(−DF /2) = δw′

j(−DF /2) = 0,
δθj(−DF /2) = 0 can be imposed. The leading order
solution for z ∈ (−DF /2, DF /2) is then

δwF
j (ξ, z) = −2ηjẼ

2
F (ξ)

ŵγw
2
F (ξ)

[ŵ2
γ + w2

F (ξ)]2

×
(
z +

DF

2

)2

+ O(ν̃, κ, ε2, d3) ,

(D7)

δθFj (ξ, z) = ωγηjẼ
2
F (ξ)

w2
F (ξ)[2ŵ2

γ + w2
F (ξ)]

[ŵ2
γ + w2

F (ξ)]2

×
(
z +

DF

2

)
+ O(ν̃, κ, ε2, d2) ,

(D8)

where higher order terms in d ≡ Dℓ/Zγ were neglected
(Approx. 6). Thus in obtaining this solution, the terms
proportional to δwj in Eqs. (D5) and (D6) were omit-
ted. By substituting the solution back into these equa-
tions, one can verify that this is a valid approximation
consistent with Approx. 6.

The vacuum-polarization nonlinearity depends on po-
larization, i.e., it is birefringent. This results in a differ-
ent δθ for each polarization component of the x-ray pulse.
The difference in these phase shifts, ∆θF = δθy−δθx, pro-
vides a measurable signature of the birefringence. Specif-
ically,

∆θF (ξ, z) =
2α

15

(
ẼF (ξ)

Ecr

)2
w2

F (ξ)[2ŵ2
γ + w2

F (ξ)]

[ŵ2
γ + w2

F (ξ)]2

× z + DF /2

λγ
+ O(ν̃, κ, ε2, d2) .

(D9)

The value of ξ determines the synchronization of a par-
ticular time slice of the x-ray pulse with respect to the
peak intensity of the flying-focus pulse. For the temporal
slice of the x-ray pulse that is colocated with the inten-
sity peak of the FF, ξ = 0, and this expression reduces
to

∆θF (0, z) =
2α

15

(
ÊF

Ecr

)2
z + DF /2

λγ
ΣF

+ O(ν̃, κ, ε2, d2) ,

(D10)
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where the transverse overlap factor ΣF is given by

ΣF ≡ 1 + 2σ2
F

(1 + σ2
F )2

(D11)

and σF ≡ ŵγ/ŵF . The phase difference increases as
σF → 0. However, if this limit is achieved by focusing
the x-ray pulse too tightly, the approximation DF /Zγ ≪
1 would not be valid. Nevertheless, for σF ≪ 1 and
z = DF /2 the phase difference reduces to

∆θF

(
0,

DF

2

)
=

2α

15

(
ÊF

Ecr

)2
DF

λγ

+O(ν̃, κ, ε2, d2) ,

(D12)

which matches the result for the interaction of a probe
with a strong plane wave field over a length DF (see, e.g.,
Ref. [103]).

Experimentally, it is infeasible to temporally resolve
the polarization of the x-ray pulse after its interaction
with the FF pulse. This motivates averaging Eq. (D9)
over all ξ within the x-ray pulse:

∆θF (z) ≡ 1

L

∫ L/2+d

−L/2+d

∆θF (ξ, z)dξ

=
2α

15

(
ÊF

Ecr

)2
z + DF /2

λγ
ΣF ΛF (L, d)

+ O(ν̃, κ, ε2, d2) .

(D13)

This is an exact result for the approximate expression
in Eq. (D9). The longitudinal form-factor ΛF (L, d) de-
pends on the initial synchronization and geometry of the
pulses and is given by

ΛF (L, d) ≡ 1

2

ρF /L

1 + 2σ2
F

×
[

σ2
Fu

1 + u2
+ (2 + 3σ2

F ) arctanu

]L/2+d
ρF

−L/2+d
ρF

.

(D14)

In Eq. (D14), L is the length of the x-ray probe pulse,
d is the longitudinal displacement of its center from the
peak intensity of the FF pulse, and ρF ≡ ZF

√
1 + σ2

F .
With d = 0 and in the limit as L → 0, ΛF (L, d) → 1.

2. Conventional Gaussian pulse

For the conventional laser pulse, ẼG(z) and wG(z) are
given by Eqs. (B4) and (B5). In this case, the length of
the x-ray pulse L is comparable to the interaction length
DG and must be accounted for explicitly. A best case sce-
nario of perfect synchronization is assumed so that the
centers of both pulses meet at the focus of the conven-
tional pulse z = 0. This means that leading and trail-
ing edges of both pulses meet symmetrically around the

focus at z = −DG/2 + L/4 and z = DG/2 − L/4, re-
spectively. This ensures that each temporal slice of the
x-ray pulse interacts with the laser pulse in the vicinity
of its focus over the entire interaction length. The tem-
poral slices of the x-ray pulse are again parameterized by
ξ ∈ (−L/2, L/2) but this time with no offset. The lead-
ing order solution of Eq. (D6) after the entire interaction
is then

δθGj (ξ) =
1

2
ηjÊ

2
G

ωγZG

(1 + σ2
G)3/2

×
[

σ2
Gu

1 + u2
+ (2 + 3σ2

G) arctanu

]uf (ξ)

ui(ξ)

+ O(ν̃, κ, ε2, d2) ,

(D15)

where ρG ≡ ZG

√
1 + σ2

G, σG ≡ ŵγ/ŵG, and

uf (ξ) ≡ DG/2 + ξ/2

ρG
, ui(ξ) ≡ −DG/2 + ξ/2

ρG
. (D16)

As in the FF case, the terms proportional to DG/Zγ (Ap-
prox. 6), i.e., δwj in Eqs. (D5) and (D6) were neglected.
The phase difference ∆θG = δθy − δθx is given by

∆θG(ξ) =
α

15

(
ÊG

Ecr

)2
ZG

λγ(1 + σ2
G)3/2

×
[

σ2
Gu

1 + u2
+ (2 + 3σ2

G) arctanu

]uf (ξ)

ui(ξ)

+ O(ν̃, κ, ε2, d2) .

(D17)

After averaging over all ξ within the x-ray pulse, one finds

∆θG =
1

L

∫ L/2

−L/2

∆θG(ξ)dξ

=
2α

15

(
ÊG

Ecr

)2
2ρG
λγ

ΣGΛ̃G(L,DG)

+ O(ν̃, κ, ε2, d2) ,

(D18)

which is an exact result for the approximate expression
in Eq. (D17). Here, the transverse and longitudinal form
factors are

ΣF ≡ 1 + 2σ2
F

(1 + σ2
F )2

, (D19)

Λ̃G(L,DG) ≡ ρG
L

1

1 + 2σ2
G

[W (u)]
uf (L/2)

uf (−L/2) (D20)

and the auxiliary function

W (u) ≡ (2+3σ2
G)u arctanu−(1+σ2

G) ln(1+u2) . (D21)

In the limit of an ultrashort x-ray pulse (L → 0) and for

small interaction lengths (DG ≪ ZG), Λ̃G ≈ DG/2ρG.
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Appendix E: Phase difference as a function of laser
pulse energy

In this appendix, the factors ℏ, ε0, and c are made
explicit for clarity. The cycle-averaged power of a laser
pulse with a Gaussian transverse profile is given by

Pℓ =
π

4
ε0cÊ

2
ℓ ŵ

2
ℓ + O(1/ω2

ℓ ŵ
2
ℓ ) . (E1)

The energy of the pulse is Eℓ = τℓPℓ, where τℓ is the
duration.

The duration of the FF pulse is determined by the
focal range DF and velocity of the focus vF : τF = |c−1−
v−1
F |DF [81, 88, 102]. For vF = −c,

EF =
2DF

c
PF =

π

2
ε0Ê

2
FDF ŵ

2
F + O(1/ω2

F ŵ
2
F ) . (E2)

Substituting Ê2
F into Eq. (D13), setting z = DF /2, and

averaging over the x-ray frequency spectrum yields

∆θF =
8α2

15π

EF
e2E2

cr

ℏ⟨ωγ⟩
ŵ2

F

ΣF ΛF (L, d)

+ O(ν̃, κ, ε2, d2) .

(E3)

The phase difference is independent of the focal range
DF and linearly proportional to the laser pulse energy.
Given an energy and a focal range, the average power
can be calculated as

PF =
cEF
2DF

, (E4)

which does not depend on the spot size ŵF .
The duration of the conventional pulse is set to en-

sure that the x-ray pulse and conventional pulse overlap
over the entire interaction length, i.e., τG = 2DG/c. The
energy of the pulse is then

EG =
2DG

c
PG =

π

2
ε0Ê

2
GDGŵ

2
G + O(1/ω2

Gŵ
2
G) . (E5)

Substituting Ê2
G into Eq. (D18) and averaging over the

x-ray frequency spectrum yields

∆θG =
8α2

15π

EG
e2E2

cr

ℏ⟨ωγ⟩
ŵ2

G

ΣGΛG(L,DG)

+ O(ν̃, κ, ε2, d2) ,

(E6)

where the form factor ΛG contains an additional coeffi-
cient that depends on the interaction length DG

ΛG(L,DG) ≡ 2ρG
DG

Λ̃G(L,DG) . (E7)

Other than the form factors Λℓ, the phase difference for
a given pulse energy is identical in the FF [Eq. (E3)] and
conventional cases [Eq. (E6)]. Given an energy and an

0.0 0.1 0.2 0.3 0.4
DF/Zγ

2.0

2.5

3.0

3.5

∆
θ F

×10−5

Analytical estimate

Numerical result

FIG. 5. Phase difference for a short, perfectly synchronized
10 keV x-ray pulse due to vacuum birefringence in a FF pulse
with λF = 1 µm, ŵF = 3 µm, EF = 1000 J, and PF = 15 TW.
The interaction length is DF = 1 cm. The phase difference
is plotted as a function of DF /Zγ for the numerical solution
[solving Eqs. (D5) and (D6) for both polarizations] and the
analytical approximation in Eq. (E3). The range of DF /Zγ

values corresponds to spot sizes ŵγ ∈ (1, 5) µm.

interaction length, the average power of the conventional
pulse can be calculated as

PG =
cEG
2DG

. (E8)

Typically, the interaction length should be comparable
to the Rayleigh range. For the purposes of Fig. 2, DG =
ZG.

Appendix F: Numerical implementation

In order to numerically solve Eqs. (D5) and (D6) in the
FF case, the envelope function gF needs to be specified.
Here a smooth polynomial function is employed, which
is more realistic version of the rectangular pulse profile
used for the analytical estimates. Specifically,

gF (z) =


10z̃3+ − 15z̃4+ + 6z̃5+, z̃+ ∈ (0, 1) ,

1, z̃+ ∈ [1, D̃F ] ,

−10z̃3− − 15z̃4− − 6z̃5−, z̃− ∈ (−1, 0),

0, otherwise ,

(F1)

where z̃± ≡ (z ±DF /2 ± Lr/2)/Lr, D̃F ≡ DF /Lr, and
Lr is the ramp length. The length of the ramps are set
to be 0.5% of the interaction length. This ensures that
the ramps are long compared to the wavelength of the
laser, but short compared to the overall pulse duration.

The system of Eqs. (D5) and (D6) was solved using
the 4th order Runge-Kutta integration scheme [104] with
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a step ∆z = 0.1 µm. The phase difference ∆θF was cal-
culated by subtracting the solutions for each polarization
∆θF = δθFy − δθFx .

As was discussed in Sec. D, the approximation allow-
ing for an analytical solution begins to break down when
the Rayleigh range of the x-ray pulse Zγ becomes com-
parable to the interaction length DF . To determine the
accuracy of the analytical results, the case of a perfectly
synchronized (d = 0), short (L ≪ ZF ) 10 keV x-ray
probe pulse was simulated using Eqs. (D5) and (D6). In
the simulations, the phase accumulated over an interac-
tion length of 1 cm in a vacuum polarized by a FF pulse

with a spot size ŵF = 3 µm and an energy EF = 1 kJ.
Figure 5 shows the phase difference predicted by the an-
alytical result [solid line, Eq. (E3)] and the numerical
integration (discrete points) as a function of the small
parameter DF /Zγ . The results are in excellent agree-
ment for the range of x-ray spot sizes considered, ŵγ =
1 - 5 µm. The small discrepancy for tightly focused x-
ray pulses disappears if higher x-ray photon energies are
considered (thus increasing ZF ). Moreover, focusing the
x-ray probe pulse much tighter than the laser pulse does
not appreciably modify the phase difference (see discus-
sion in the main text).
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