
Materials Genes of CO2 Hydrogenation on Supported Cobalt
Catalysts: An Artificial Intelligence Approach Integrating Theoretical
and Experimental Data
Ray Miyazaki,* Kendra S Belthle, Harun Tüysüz, Lucas Foppa,* and Matthias Scheffler
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ABSTRACT: Designing materials for catalysis is challenging because the
performance is governed by an intricate interplay of various multiscale
phenomena, such as the chemical reactions on surfaces and the materials’
restructuring during the catalytic process. In the case of supported catalysts,
the role of the support material can be also crucial. Here, we address this
intricacy challenge by a symbolic-regression artificial intelligence (AI)
approach. We identify the key physicochemical parameters correlated with
the measured performance, out of many offered candidate parameters
characterizing the materials, reaction environment, and possibly relevant
underlying phenomena. Importantly, these parameters are obtained by both
experiments and ab initio simulations. The identified key parameters might be
called “materials genes”, in analogy to genes in biology: they correlate with the property or function of interest, but the explicit
physical relationship is not (necessarily) known. To demonstrate the approach, we investigate the CO2 hydrogenation catalyzed by
cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium,
titanium, aluminum, or zirconium, which results in six materials with significantly different performances. These systems mimic
hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the
CH3OH selectivity reflect the reducibility of cobalt species, the adsorption strength of reaction intermediates, and the chemical
nature of the additive metal. By using an AI model trained on basic elemental properties of the additive metals (e.g., ionization
potential) as physicochemical parameters, new additives are suggested. The predicted CH3OH selectivity of cobalt catalysts
supported on silica modified with vanadium and zinc is confirmed by new experiments.

1. INTRODUCTION
Heterogeneous catalysis is one of the essential technologies in
modern societies, since it has been utilized for decomposing
toxic species, generating valuable chemicals, and for many more
industrial applications.1−6 Thus, there is a great demand for
discovering and designing new catalytic materials that show
higher performance than the available ones. Furthermore,
catalysis is not only relevant to industrial applications but also
links to fundamental science. For instance, organic molecules are
generated by CO2 hydrogenation at hydrothermal vents, which
are fissures on the seafloor that discharge heated water.10,11 This
reaction is catalyzed by metal-containing materials. Because
hydrothermal vents existed at the early Earth, they are
considered as one of the candidate systems that produced the
first organic molecules, eventually enabling the emergence of
life.

Identifying key physicochemical parameters that describe the
catalytic performance is a key step to design new catalytic
materials and to understand the underlying phenomena.
However, heterogeneous catalysis is governed by a complex
and intricate interplay of several multiscale processes, such as
transport of reactants, products, and heat in reactors, dynamical

phase and structural transitions of catalytic materials during
reactions, and chemical reactions on catalyst surfaces.1−3,12 The
time scales of those processes are also different. In particular, the
catalytic material is often deposited on a support, for instance,
metal nanoparticles are commonly supported on oxides. In these
systems, the support material can also play a critical role in
catalysis.4,7−9 Thus, we need to consider a vast variety of
physicochemical parameters that could describe the catalytic
performance, and detailed atomic scale information is hard to be
obtained from experimental studies, particularly under catalyst
operating conditions. Additionally, there might be a higher
complexity in real catalysis than what can be described by
conventional theoretical modeling based on electronic structure
calculations and statistical mechanics. In real catalysis, there
might be not just one underlying process, but there is often a
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high intricacy of many underlying processes. Artificial
intelligence (AI) may capture the catalytic progression better
than previous theoretical/computational methods because it
targets correlations and does not assume a single underlying
physical model.

AI has been utilized in heterogeneous catalysis for discovering
new catalytic materials and/or their design rules.13−19 AI can
access correlations describing the measured target catalytic
performance without explicitly modeling all the underlying
phenomena. In particular, the Sure-Independence Screening
and Sparsifying Operator (SISSO)20,21 has been adopted on
data-centric approaches for heterogeneous catalysis.22−25

Analytical expressions describing the target catalytic perform-
ance are identified by SISSO. The expressions contain few key
parameters, out of many offered parameters that characterize the
materials and might be correlated with the underlying processes
triggering, favoring, or hindering the performance. Those key
descriptive parameters composing the SISSO expressions have
been called materials genes,22 in analogy to genes in biology.
Namely, the catalytic function of the material can be described
by the combinations of the materials parameters analogously to
how eye’s color and health characteristics are determined by the
combination of genes. Crucially, SISSO can identify potentially
nonlinear, intricate correlations between (high-quality) small
data sets (e.g., hundreds of target values), and an immense
amount of candidate analytic functions (e.g., millions) is
considered in the analysis. This makes SISSO suitable for
applications in heterogeneous catalysis, where obtaining a large
amount of consistent experimental data (i.e., data generated
according to consistent and reproducible procedures) is usually
time- and resource-consuming. On the other hand, either
experimental or theoretical parameters were used in the previous
SISSO studies on heterogeneous catalysis.22−25 In the present
study, we will combine these different types of data.

Here, we exploit experimental, theoretical, and elemental
parameters (termed primary features) to efficiently model the

catalytic performance and guide materials design (Figure 1).
The experimental parameters consist of catalyst properties
measured experimentally. The theoretical parameters consist of
atomic-scale information obtained by density functional theory
(DFT-RPBE) calculations with atomistic models, such as
adsorption energies of intermediates and charge state of the
catalysts. The elemental parameters are properties of the atoms
composing the catalysts, such as ionization potential and atomic
radius. These different types of parameters might capture
different underlying processes, and they have different
acquisition costs. In particular, the acquisition of elemental
features does not require an experiment or a high-cost
calculation with a large-scale atomistic model. Thus, the
elemental parameters could provide AI models for predicting
the performance of materials that were not yet synthesized or
modeled with an atomistic simulation.

We focus on CO2 hydrogenation catalyzed by cobalt
nanoparticles supported on modified amorphous silica supports
(Co/SBA-15 and Co/M-SBA-15 catalysts in Figure 2).26 Those
catalytic systems mimic the environment of hydrothermal vents,
which are mainly formed by silica-rich mixtures of serpentinized
peridotite and mafic materials. These materials could contain
several metals, such as Al, Ca, and Mg. On the other hand, the
reaction carried out in the gas phase, whereas the environment of
the hydrothermal vent presents an aqueous environment. The
adopted experimental setup corresponds to conditions of
reduced water activity, which prevent hydrolysis,27 and water
is produced in our system via the reverse watergas shift reaction.
Several organic molecules are formed by the CO2 hydrogenation
on the Co/M-SBA-15 catalysts (Figure S16 in the Supporting
Information). We particularly attempt to elucidate the role of
the modified amorphous silica support (M-SBA-15), in which
different additive metals (e.g., M = Ti or Al) are introduced. In
CO2 hydrogenation catalysis, various roles of the support
materials have been reported. For instance, the support can
provide oxygen vacancies and isolated metal sites on its surfaces,

Figure 1. Schematic outline of the present study. By integrating information from different types of materials parameters (primary features) through
the SISSO AI approach, we identify analytical expressions and the key descriptive parameters (materials genes) that are correlated to the measured
(experimental) target catalytic performance. The SISSO models based on primary features with low acquisition costs also accelerate the discovery of
new high-performance catalysts.
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and it can modify the electronic structure and shape of the
supported metal particles, or a mixing (alloying) between metal
oxide supports and the supported metals might take place.4,28,29

Indeed, in the studied systems, the selectivity depends on the
type of incorporated additive metals (see Figure S16).26

However, detailed, realistic microscopic modeling of catalytic
processes on supported catalysts is rather challenging. Thus,
design criteria for efficient support materials toward the desired
catalytic performance have not been established yet. In the
present study, we elucidate the most relevant properties of the
modified silica supports and underlying catalytic mechanisms
that lead to the formation of CH3OH, CH4, and CO by
identifying the key descriptive parameters that correlate with the
selectivity toward thses molecules. Furthermore, new additive
metals that can improve the CH3OH selectivity are explored by
using the SISSO model built only on elemental features (Figure
1). Those results can contribute to understand the key
environments and the underlying mechanisms for the metabolic
intermediate generation. Additionally, the obtained materials
genes and candidate additive metals can be utilized to design
catalysts for CH3OH production via CO2 hydrogenation, which
is a key catalytic reaction toward a sustainable society.3,30−34

2. DETAILS OF AI APPROACH
2.1. SISSO Approach. To identify the materials genes

describing the CO2 hydrogenation catalysis, we adopt the SISSO
AI analysis20,21 implemented in the SISSO++ code.36 Phys-
icochemical parameters potentially correlated to the target
catalytic performance (primary features) are used as input. In
this work, experimental characterization or first-principles
calculations are used to obtain these primary features character-
izing the catalyst materials and possible underlying processes.
Then, mathematical operators, such as addition, division, and
multiplication, are applied to the primary features for generating
an immense number (up to millions) of analytic functions
(descriptor candidates). SISSO then selects a few descriptor
candidates and weighting coefficients by using the sure-
independence screening (SIS) and the l0 regularization. As a
result, an analytical expression that shows the best correlation
with the target performance (S) is obtained as a linear
combination of the selected descriptors

= +
=

S c c d
i

D

i i
SISSO

0
1 (1)

Here, c0 and ci are the weighting coefficients, and di is the
descriptor components. The primary features that appear in the
expression of the descriptor components are the identified
materials genes.

In this study, the multitask SISSO (MT-SISSO) transfer-
learning approach20 is adopted. This approach generates a
different SISSO model for each of the predetermined tasks, but
the descriptor components of these different models are the
same. Just the weighting coefficients are fitted to the training
data points of each task (i.e., the weighting coefficients are
functions of the tasks).

2.2. Primary Features and Target Performance. We
consider experimental, theoretical, and elemental primary
features to model the catalytic performance in CO2 hydro-
genation. Experimental catalyst characterization primary
features, simply denoted as the experimental primary features,
are obtained from experimental characterization data of the Co/
SBA-15 and Co/M-SBA-15 catalysts reported in our previous
study.26 These features are materials properties, such as the
surface area per catalyst weight (specific surface area) measured
by N2 physisorption and the amount of desorbed CO2 measured
by TPD (temperature-programmed desorption). The total
number of experimental primary features is 15, and they are
listed in Table 1. Note that we also adopt measured CO2

conversion (XCO
RGSV

2
) as an experimental primary feature to

Figure 2. CO2 hydrogenation by the Co/M-SBA-15 catalysts. In
addition to the gas-phase molecules shown in the figure, liquid-phase
organic molecules (e.g., formate) are formed by the reaction.26

Formation enthalpies of the different reaction pathways (ΔH @ 298
K35) reflect the selectivity challenge in the CO2 hydrogenation to
methanol. The catalytic performance of the Co/SBA-15 and Co/M-
SBA-15 catalysts is shown in Figure S16.

Table 1. Experimental Primary Featuresa

feature
symbol description technique unit

XCO
RGSV

2
CO2 conversion GC %

THd2
temperature of the first H2
reduction signal

H2-TPR °C

WCo cobalt loading

SEM-EDX

wt %

RM/Si
B bulk M/Si ratio -

RM/Si
S surface M/Si ratio -

Ssurf specific surface area
N2
physisorption

m2 g−1

Vpore total pore volume cm3 g−1

rpore mean pore diameter Å
TPDCO

mass
2

amount of desorbed CO2
per mass

CO2-TPD

μmol CO2 g−1

TPDCO
surf

2
amount of desorbed CO2
per surface area

μmol CO2 m−1

TPR H
mass

2
amount of consumed H2
per mass

H2-TPR

μmol H2 g−1

TPR H
surf

2
amount of consumed H2
per surface area

μmol H2 m−1

νCd5Hd5N difference of wavelength of
pyridine FT-IRb

pyridine FT-IR cm−1

dCo mean cobalt particle
diameter

TEM Å

aExperimental primary features are based on the characterization
schemes of ref 26. GC: gas chromatograph, TPR: temperature-
programmed reduction, TPD: temperature-programmed desorption,
SEM-EDX: scanning electron microscopy with energy dispersive X-
ray analysis, FT-IR: Fourier transform infrared spectroscopy, TEM:
transmission electron microscopy. bDifference of absorption wave-
length of the via vibrational mode between pyridine in the gas phase
and pyridine adsorbed on the catalysts.
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incorporate dependence of the CH3OH selectivity on the CO2
conversion. More details are discussed later in this section.

Theoretical catalyst characterization primary features, simply
denoted as the theoretical primary features, are obtained by
electronic-structure calculations using atomistic models. We use
Co20/M-SiO2 models,26 where a Co20 cluster

37 is supported on
an amorphous silica surface slab,38 as theoretical models of the
Co/SBA-15 and Co/M-SBA-15 catalysts (Figure 3). The
additive metal in the support (i.e., Ti, Zr, Al, Ca, or Mg) is
incorporated in the silica surface. The coordination numbers of
these additive metals in the models are chosen based on their
stable formal oxidation number (+4: Ti and Zr, + 3: Al, and +2:
Ca and Mg). As reported in our previous study,26 a silicon atom
in a SiO4 unit that directly interacts with the cobalt cluster is
replaced by Ti or Zr (Co20/Ti-SiO2 andCo20/Zr-SiO2 models in
Figure 3b,c, respectively). In the Co20/Al-SiO2 model (Figure
3d), the same silicon atom is replaced by Al, and a proton is
incorporated in the AlO4 unit to keep charge of the system
neutral with Al3+. The incorporated site of the proton shown in
Figure 3d (i.e., − Al−O−Co−) is the most stable one compared
with the other three sites in the AlO4 unit (i.e., −Al−O−Si−).
Ca orMg is incorporated in a bridge site between two SiO3−OH
units by removing H atoms from OH groups in those units
(Co20/Ca-SiO2 and Co20/Mg-SiO2 models in Figure 3e,f,
respectively). We considered incorporating Ca or Mg into the
bridge sites around the SiO4 unit where silicon is substituted by
the additive metal in the other Co20/M-SiO2 models, and the
most stable one is adopted. Although Ca andMg are not directly
interacting with cobalt in the atomistic model, the calculated
values of the theoretical primary features, such as adsorption
energies (Figures S3−S8 in the Supporting Information), are
different from those obtained with the Co20/SiO2 model, where
no additive metal is included. By incorporating Ca or Mg, the
local structure around the cobalt cluster is modified, and this can
in turn change the materials properties, including the stability of
adsorbed species, for example, the most stable adsorption sites.
Spin-polarized DFT calculations with the RPBE exchange−
correlation functional39 were performed by using the FHI-aims
code.40 More computational details are given in section S2.1 in
the Supporting Information.

The theoretical primary features are materials properties as
well as quantities reflecting the interaction of the catalysts with
reaction intermediates of CO2 hydrogenation. For instance, the
Hirshfeld charge of the additive metals in the silica support, the
adsorption energies of the key species (e.g., CO2 and oxygen
atom), the formation energies of the proposed intermediates for
the CH3OH formation (e.g., HCOO and CH3OH), and the
electronic and geometric structures of adsorbed CO2 (e.g., O−
C−O angle) are included as the theoretical primary features.
Ten theoretical primary features are used in total. They are listed
in Table 2. We note that reconstructions and dynamical
processes on the catalysts during the reactions are not
considered in the Co20/M-SiO2 models. However, we hope
that these processes, which are missing in our static DFT-RPBE
calculations, are captured by the SISSO analysis. The goal of this
work is not a fully theoretical explanation of the experimental

Figure 3.Co20/M-SiO2models. The Co20 cluster and SiO4 that directly bond with Co20 and/orM are highlighted as the ball and stickmodel. The other
parts are shown as the wireframe model. The Co20/SiO2, Co/Ti-SiO2, and Co20/Zr-SiO2 are reported previously in ref 26.

Table 2. Theoretical Primary Featuresa

feature
symbol description technique unit

Eads
CO2 adsorption energy of CO2 at the

interfacial site

DFT-
RPBE

eV

ΔC−O sum of C−O bond elongation of
adsorbed CO2

b
Å

Δ∠O−C−O degree of O−C−O angle bending of
adsorbed CO2

degree

qCOd2
the Hirshfeld charge of adsorbed CO2 e

qM theHirshfeld charge of the additive metal e
EHCOO formation energy of HCOO at the

interfacial site
eV

ECOOH formation energy of COOH at the
interfacial site

eV

ECO+O formation energy of CO + O at the
interfacial site

eV

ECHd3O formation energy of CH3O at the
interfacial site

eV

Eads
O adsorption energy of O atom at the

interfacial site
eV

aPrimary features obtained by Co20/M-SiO2 models. More details are
given in section S2.1. bSummation of elongations of two C−O bonds
of the adsorbed CO2 compared to the bond lengths in the gas phase.
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findings but rather the identification of theoretical and
experimental parameters that correlate with the measured
performance. Indeed, our approach also includes experimental
parameters that could correlate with reconstructions. For
instance, the temperature of the first H2 reduction signal in
TPR (temperature-programmed reduction) can capture the
transitions between different oxide phases, which could affect
the selectivity of the CO2 hydrogenation.30,41−43

In addition to the experimental and theoretical primary
features, we also employ elemental primary features that are
atomic properties of the additive metals, such as ionization
potential, number of valence electrons, or properties of atomic
dimers reflecting the interaction of metal atoms with C, O, and
H atoms. The eight elemental primary features are listed in
Table 3.

Our target quantity is the experimental CH3OH selectivity,
SCHd3OH
exp , for six catalysts (Co/SBA-15 and Co/M-SBA-15

catalysts with M = Ti, Zr, Al, Ca, or Mg) under four different
reactant gas space velocities (RGSV).26 These are velocities
normalized with respect to the weight of the catalyst in the
reactor. Within the MT-SISSO approach, each RGSV is treated
as a different task, and six data points of CH3OH selectivity are
included in each task. Thus, altogether we have 6 × 4 = 24 data
points. Obviously, this is a very small number, and for most
machine-learning approaches, this data situation would prevent
a proper analysis. However, SISSO can identify potentially
nonlinear, intricate correlations even in such challenging
situation by offering an immensity of descriptor candidates.
To avoid overfitting such small data set, the optimal complexity
of the SISSO model with respect to its predictability is
determined by cross-validation, as described in the next section.

Figure 4 shows SCH OH
exp

3
and the experimental CO2 conversion

(XCO
RGSV

2
) values for the different materials and RGSVs. Because

the selectivity depends on the conversion level, the methanol
selectivity should be analyzed by considering the different CO2
conversions achieved by the different catalysts. Thus, in the
SISSO analysis, CO2 conversion is offered as an experimental
primary feature to incorporate the selectivity dependency with
respect to conversion. At RGSV = 4000 (cm3 h−1 gcat

−1), where
the selectivity and the CO2 conversion are in a reasonable
balance,26 the most selective material is Co/Ti-SBA-15 with a
selectivity value of 35.2% at the conversion of 1.0% (Figure 4).
Co/Zr-SBA-15 shows the second highest CH3OH selectivity
(27.8%), and the remaining materials have SCH OH

exp
3

= 14.6−
20.1%. The conversions are in the range of 1.0−5.8%, and Co/
Ti-SBA-15 and Co/SBA-15 show the lowest and highest
conversion, respectively.

2.3. Choice of SISSOModel Complexity. The complexity
of SISSO models is controlled by the number of times the
mathematical operators are applied (rung: Q) to generate the
descriptor candidates and by the number of descriptor
components in the SISSO model (dimension: D). Thus, Q
and D are hyperparameters and need to be chosen carefully. By
increasing the Q and/or D, the complexity of the SISSO models
also increases, and the training errors can be improved.
However, the prediction errors do not necessarily decrease
with increasing the complexity of the models.48 Thus, the
prediction errors commonly present a minimum at a certain Q
and D.

In this study, the optimal Q and D with respect to
predictability are determined by leave-one-material-out cross-
validation (LOMO−CV).22,23 This allows us to capture the
trade-off between under- and overfitting of the models. In the
LOMO−CV approach, data points related to one specific
catalyst (e.g., Co/Ti-SBA-15) are removed from the training
data. Then, the CH3OH selectivity of the left-out material is
calculated (predicted) by the SISSO model trained on the
remaining data, and root-mean-squared error (RMSE) of the
prediction on the left-out material is obtained (Figure S1). This
procedure is performed for all catalysts, and the average of the
obtained RMSEs (CV-RMSE) is evaluated. The complexity
(i.e., combination of Q and D) that shows the minimum CV-
RMSE is selected as the optimal one.

We obtained models for the CH3OH selectivity considering
all combinations with Q = 1,2 and D = 1,2,3. Additionally, we
compared five different primary feature sets, containing (i) only
the theoretical features (denoted “Theo”), (ii) only the
experimental features (denoted “Exp”), (iii) the theoretical
and experimental features (denoted “Theo + Exp”), (iv) the
theoretical, experimental, and elemental features (denoted
“Theo + Exp + Elem”), and (v) only the elemental features
(denoted “Elem”).

The number of candidate descriptors considered in our
SISSO analysis is on the order of hundreds to millions (Table 4).
For the models obtained with “Theo” and “Exp” primary feature
sets, the optimal complexity identified by LOMO−CV is Q = 1

Table 3. Elemental Primary Features

feature symbol description technique unit

Mcov covalent atomic radius exp. data44 Å
MCrad radius of M1+ DFT-PBE045 Å
EM−C formation energy of a M−C dimer

DFT-PBE0a
eV

EM−O formation energy of a M−O dimer eV
EM−H formation energy of a M−H dimer eV
IP ionization potential exp. data46 eV
PEN Pauling electron negativity exp. data47 -
NVE number of valence electrons - -

aMore details are shown in section S2.2.

Figure 4. Experimental CH3OH selectivity (SCH OH
exp

3
) and CO2

conversion (XCO
RGSV

2
) of the Co/SBA-15 and Co/M-SBA-15 catalysts

at different RGSV.26 The four colors label the different RGSV, and the
six different shapes label the different catalysts. The lines connect RGSV
values of the same catalysts. Reaction temperature and pressure are 180
°C and 2.0 MPa, respectively.
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D = 1. Thus, in these cases, the optimal complexity is the lowest
one considered. In contrast, the optimal Q or D is 2 for the
remaining models (Table 4). These results indicate that only for
the case of the last three primary feature sets a more complex
model is also more predictive. Further details on the LOMO−
CV are given in section S1 in the Supporting Information.

3. RESULTS AND DISCUSSION
3.1. Prediction Accuracy of SISSO Models with

Different Primary Feature Sets. Let us start with the analysis
of prediction errors of SISSO models obtained for different
primary feature sets at the optimal complexity. Figure 5 shows

the box and violin plots of the absolute prediction errors, which
correspond to the absolute CV errors on left-out materials (i.e.,
|ΔMi| in Figure S1). The width of the violin plots represents the
density of data points with a certain error value. For the “Theo”
and “Exp” models, which are built only with the theoretical or
experimental primary features, respectively, the error distribu-
tions are broad (Figure 5). For example, their 95th percentiles of
the prediction error distributions are 32.07 and 18.96%,
respectively. Two catalysts have a particularly high prediction
error for the “Theo” and “Exp” models. These are Co/Zr-SBA-
15 and Co/SBA-15 (see Table S2). Thus, our offered primary
features miss some of the relevant processes. When we offer

experimental and theoretical primary features (“Theo + Exp”
models), the error distribution becomes narrower, and the 95%
error of this model decreases to 13.53%. In particular, Co/Zr-
SBA-15 is now described well (Table S2). The quartile values
(length of the box) and CV-RMSE are also improved
(decreased). The results indicate that both experimental and
theoretical primary features and their combinations are
important to model and describe the experimental CH3OH
selectivity of the CO2 hydrogenation. By further adding the
elemental features along with experimental and theoretical
features, a SISSO model with even lower prediction errors is
obtained (“Theo + Exp + Elem” models in Figure 5). The 95%
error of this model (11.43%) is now almost comparable with the
standard deviation of the target calculated across the entire
training set (10.48%). Note that the training error improves by
increasing the number of the primary features because fitting
gets better when more functions are offered. However, the
prediction error may not improve because too many features
increase the risk for causing overfitting.48 Thus, the improve-
ment of the prediction error in the “Theo + Exp” and “Theo +
Exp + Elem” with respect to “Theo” or “Exp” models is not only
due to the increment of the number of primary features but also
due to the fact that more processes governing the CH3OH
selectivity are synergistically captured by the combination
among features.

3.2. Investigation of the Materials Genes. Equation 2 is
the SISSO model obtained with the theoretical, experimental,
and elemental features (i.e., the “Theo + Exp + Elem” model)
using the entire data set for training.

= +
×

×

l
mooo
n
ooo

|
}ooo
~
oooS c c

M X

E TCH OH
SISSO Full

0
RGSV

1
RGSV cov CO

RGSV

CH O H
3

2

3 2 (2)

This model is based on a one-dimension descriptor. Mcov is
the covalent atomic radius44 of the additive metals, and XCO

RGSV
2

and THd2
are the experimental features, namely, the CO2

conversion and the temperature of the first H2 reduction signal.
ECHd3O is the theoretical formation energy of CH3O intermediate
at the interfacial site with respect to CO2 andH2 in the gas phase.
The training RMSE of this model is 1.24%, and Figure 6 shows
that the experimental CH3OH selectivity of each catalyst is well
described.

The primary features that are selected by the SISSO model
provide insights on the underlying processes. THd2

can be
assigned to reduction temperature for Co3O4 to CoO. Thus, THd2

is related to the materials’ reducibility and its phase transitions.
Indeed, those reconstructions can be crucial in cobalt-based
systems for the CH3OH formation from CO2.

41 XCO
RGSV

2
reflects

the dependence of the selectivity on the conversion. ECHd3O

corresponds to the stability of CH3O, which is one of the key
intermediates for the CH3OH formation as reported in previous
studies about Cu catalysts supported on modified silica with
highly dispersed hetero metal sites.49−52 Because CH3O is
recognized as one of the final intermediates for the CH3OH
formation, the stability of CH3O affects the selectivity. For
instance, lower stability makes the reaction pathway for the
CH3OH formation unfavorable, but too strong interaction
between CH3O and cobalt causes poisoning of the certain
(active) sites.Mcov corresponds to the size of the additive metals,
and such difference of size might induce modification of the

Table 4. Number of Considered Primary Features and
Generated Candidate Descriptors in the SISSO Analysis and
the Optimal Complexity of the Models Identified by the
LOMO−CV

primary feature set

number
of

primary
features

number of
candidate
descriptors
for Q = 1

number of
candidate
descriptors
for Q = 2

Optimal
(Q, D)

Theo 10 235 50,485 (1, 1)
Exp 15 304 63,110 (1, 1)
Theo + Exp 25 923 576,677 (2, 1)
Theo + Exp + Elem 33 1724 2,162,827 (2, 1)
Elem 8 154 24,652 (1, 2)

Figure 5. Box and violin plots of absolute prediction errors of LOMO−
CV for SISSO models with different primary feature sets. The
distribution of the prediction errors for the CH3OH selectivity shows
how the combination of the different types of primary features improves
the performance of the SISSOmodels. The upper and bottom whiskers
of the box plots correspond to the 95th and 5th percentiles, respectively.
The optimal complexity of each SISSO model (rung, dimension) is
shown in parentheses.
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(local) structures ofM-SBA-15. The shape of the cobalt particles
and/or active sites might be affected by such structure difference
of M-SBA-15.

We note that the conversion has been related to the amount of
metallic cobalt in ref 26. We found correlations between XCO

RGSV
2

and the amount of consumed H2 per catalyst mass during TPR
measurement (TPR H

mass
2
). The Pearson correlation coefficients

between these features are close to the unity (0.95, see Figure
S9a).TPR H

mass
2

represents amount of reduced cobalt oxides byH2

and corresponds to amount of metallic cobalt (see Figure S9b).
Namely, it is suggested that Co/SBA-15 has a large amount of
the metallic cobalt compared to Co/Ti-SBA-15. These two
features also correlate with amount of desorbed CO2 per catalyst
mass during TPD measurement (TPDCO

mass
2
), which reflects the

amount of adsorbed CO2 on the catalyst.26 Thus, the metallic
cobalt strongly binds CO2, but apparently, it is not a good
species for CH3OH formation. On the other hand, cobalt silicate
(Co−O−SiOx) at the interfacial region between cobalt and silica
is hardly reducible species and could exist even after the
reductive treatment in H2 (Figure S9b). Thus, Co/Ti-SBA-15
that shows a small TPR H

mass
2

value has relatively large amounts of
cobalt silicate. Therefore, those results suggest that cobalt
silicate is one of the key species for the high CH3OH selectivity.
A similar experimental observation was also reported byWang et
al.42 As observed above, the “Theo + Exp + Elem”model gives us
the key materials properties that are the good starting points for
further investigations toward the understanding of the catalytic
mechanisms.

To investigate how the identified materials genes correlate
with the CH3OH selectivity, we show a “catalyst map” in Figure
7. In order to analyze the effect of materials properties and CO2

conversion separately, we chose XCO
RGSV

2
as the x-axis, and the y-

axis is the remaining part of the descriptor of eq 2,
= ×d M

E Trem
Full cov

CH3O H2
. In this map, RGSV is set to 4000 cm3 h−1

gcat−1. The catalysts are distributed over the whole map. We also
see that the CH3OH selectivity is inversely proportional to
XCO

RGSV
2

: The color in Figure 7 changes from yellow/green to
blue/violet from left to right. For example, the catalyst with the

highest CH3OH selectivity (Co/Ti-SBA-15) shows the lowest
XCO

RGSV
2

and vice versa for Co/SBA-15 (Figures 4 and 7). On the

other hand, an increase of drem
Full (the y-axis) improves the

CH3OH selectivity. This trend is particularly pronounced in the
high XCO

RGSV
2

region. Thus, not only the CO2 conversion but also

drem
Full correlates with the CH3OH selectivity, and this result

reflects the importance of combining different types of features
and intricacy of describing the CH3OH selectivity.

The relevance of these parameters and the underlying
processes that they capture would not be identified by a
traditional theoretical analysis of the electronic structure via
first-principles atomistic simulations or by an AI analysis with
experimental data only (refs 22 and 23) independently, but they
could be unveiled by the strategy introduced in this paper. In
particular, by using theoretical and experimental data with
SISSO, we allow that microscopic calculated parameters and
experimental mesoscopic parameters are combined in a single
analytical expression to model the catalytic performance. This
enables capturing the interplay or coupling of processes
occurring at different length scales.

3.3. Materials Genes for the CH4 and CO Selectivity.
SISSO models for the measured CH4 and CO selectivity of the
Co/M-SBA-15 catalysts were also obtained. Equation 3 shows
the expression of the “Theo + Exp + Elem” model for the CH4
selectivity. The optimal complexity identified for this target is Q
= 2, D = 1 (see Figure S13b), with training- and CV-RMSE of
0.90 and 3.56%, respectively.

= + ×
l
moo
noo

|
}oo
~oo

S c c X
V

MCH
SISSO Full

32
RGSV

33
RGSV

CO
RGSV pore

cov
4 2

3

(3)

XCO
RGSV

2
and Mcov are selected as the materials genes for the

CH4 selectivity. As discussed in the former section, those reflect
the conversion dependence of the selectivity and the
modification of the local structures of the catalysts, respectively.
Vpore is the pore volume of the catalysts, and it can be related to
transport of the reactant and/or products. As shown in Figure
S13c, the CH4 selectivity increases as RGSV decreases. This

Figure 6. Comparison between the experimental selectivity results (y-
axis) and the description provided by SISSO (x-axis). gcat is the weight
of the catalyst. The gray line shows the ideal relationship:SCH OH

exp
3

=

SCH OH
SISSO Full

3
.

Figure 7.Catalyst map for the CH3OH selectivity focusing on XCO
RGSV

2
as

the x-axis. The y-axis corresponds to the remaining part of the
descriptor (drem

Full). White squares are the data points of each catalyst.
White lines correspond to contours (constant values) of CH3OH
selectivity. In this figure, we focus on the values at RGSV = 4000 cm3

h−1 gcat
−1. Note that the regions corresponding to SCH OH

SISSO Full
3

below 0%
are colored with the same colors as for 0%.
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suggests that the transport of the reactant species and the
contact time between the reactant gas and the catalysts both
affect the CH4 selectivity.

Equation 4 shows the expression of the “Theo + Exp + Elem”
model for the CO selectivity. Q = 2, D = 2 is the optimal
complexity for this model (see Figure S13e), with training- and
CV-RMSE of 0.12 and 5.44%, respectively.

= + × ×
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In eq 4, qM and PEN are the Hirshfeld charge and the Pauling
electronegativity of the additive metals, respectively. EM−C is the
formation energy of a M−C dimer and corresponds to the
strength of the interaction between the additive metal and a
carbon atom (see more details in section S2.2 in the Supporting
Information). These three features can be related to the
interaction between the additive metals and reaction inter-
mediates such as CO. For instance, strength of the σ-donation
and π-backdonation between CO and M can be correlated with
those features. RM/Si

B is the bulk M/Si ratio, and it could be
correlated with modification of the framework of SBA-15 and
charge transfer between cobalt and SBA-15. WCo is the cobalt
loading. As discussed above, our SISSO approach can be applied
for the different catalytic performances, and the identified
materials genes can capture the relevant underlying processes for
each considered target. Further details on the analysis of CH4
and CO selectivity are available in section S6 in the Supporting
Information.

3.4. Exploring Other (New) Additive Metals by Using
SISSO Models Trained with the Elemental Features. As
discussed in the previous sections, the model obtained using
experimental, theoretical, and elemental features describes the
experimental CH3OH selectivity with reasonable accuracy. It is
useful to investigate the details of the catalytic mechanisms.
However, the model is not very helpful for predicting the
CH3OH selectivity of new catalysts because we must synthesize
suchmaterials to obtain the experimental features needed for the
evaluation of eq 2. Conversely, by using the SISSO model only
with the elemental features (“Elem” model), exploration of new
additive metals that improve the CH3OH selectivity can be
accelerated because these features are readily available for a wide
range of elements in the periodic table. Although the
distribution of the quartile values of the prediction errors is
broader than that of the “Theo + Exp” and “Theo + Exp + Elem”
models (Figure 5), CV-RMSEs of the “Elem” model and those
two models are comparable (CV-RMSE = 5.78, 5.35, and 6.05%
for the “Theo + Exp”, “Theo + Exp + Elem”, and “Elem”
models). The obtained “Elem” model is shown as eq 5.

= + +
l
moo
noo

|
}oo
~oo

l
moo
noo

|
}oo
~oo

S c c
M

E
c

E
MC

CH OH
SISSO Elem

2
RGSV

3
RGSV cov

M C
4
RGSV rad

M C
3

(5)

This model is based on a two-dimension descriptor. Similar to
the “Theo + Exp + Elem” model, the covalent atomic radius44 of
the additive metals (Mcov) is also selected in the “Elem” model,
suggesting that similar phenomena are being captured by this
model. However, different materials genes are also identified by
eq 5: MCrad is the radius of the additive metal cations (M1+)45

and EM−C. MCrad correlates with redox properties of the additive
metals and might be related with the modification of SBA-15
structure explained in the previous section. EM−C could correlate
with stabilities of intermediates adsorbed (interacted) with the
additive metal sites as also discussed in the former section.

By using eq 5, the CH3OH selectivity of the cobalt catalysts
with new additive metals is calculated. In this study, we focus on
metals in the groups 2−15 up to Bi excluding lanthanoids. As
shown in Figure 8, Co/Co-SBA-15 and Co/Ba-SBA-15 (yellow

circles) show higher CH3OH selectivity than that of Co/Ti-
SBA-15 (gray star), which shows the highest CH3OH selectivity
in the original experimental data set. Interestingly, cobalt itself is
predicted as one of the best additive metals for improving the
CH3OH selectivity. This result is in agreement with the
discussion about the active sites for the CH3OH formation in
the previous section, which is the cobalt species strongly
interacted with silica (Co−O−SiOx). Additionally, we also find
that Co/Sr-, Ru-, Rh-, and Ta-SBA-15 (green squares in Figure
8) show higher CH3OH selectivity than that of Co/Zr-SBA-15
(blue diamond), which shows the second highest CH3OH
selectivity in the training data. As observed above, we predict the
candidate additive metals that can improve the CH3OH
selectivity by using the SISSO model only with the elemental
features. We also create a catalyst map based on the “Elem”
model. As shown in Figure 9, Co/Sr- and Ba-SBA-15 are located
far from the other candidate additive metals that show the high
selectivity. Thus, those catalysts possibly show unique
mechanisms, and for instance, similarities between Co/Sr-
SBA-15 and Co/Ca-SBA-15 are suggested by the map. On the
other hand, Co/Ru-, Rh-, Co-, and Ta-SBA-15 are close to Co/
Ti- and Zr-SBA-15, which are the high-performance catalysts in
the original training data set.

From all the elements considered in our screening, we focus
on Co/V- and Zn-SBA-15 because synthesis procedures of those
support materials are reported.53−55 For these materials, we
estimated the uncertainty of the prediction on the CH3OH

Figure 8. Predicted CH3OH selectivity by the “Elem”model. The x-axis
represents atomic number of the additive metals. The gray and blue
horizontal lines represent the CH3OH selectivity of Co/Ti-SBA-15
(34.02%) and Co/Zr-SBA-15 (29.55%) catalysts calculated by eq 5,
respectively. In this figure, we focus on the CH3OH selectivity at RGSV
= 4000 cm3 h−1 gcat−1.
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selectivity by using SISSO models for LOMO−CV (hereafter
CVmodels) that are trained without onematerials in the original
training data set (i.e., SISSO models w/o M1−4 in Figure S1). In
Figure S10, the CH3OH selectivity of Co/V- and Zn-SBA-15
predicted by each of the CV models is shown. The distribution
of the predicted values for Co/V-SBA-15 is narrower than that
for Co/Zn-SBA-15 (standard deviation is 3.89 and 20.56%,
respectively). More details are discussed in section S4 in the
Supporting Information. We note that only six predicted values
are considered in our uncertainty estimation. Ideally, we should
estimate the uncertainty from a larger ensemble of models.
However, we could only deal with the limited number of models
via LOMO−CV due to the small size of the data set.

To investigate the prediction accuracy of the “Elem” model,
we synthesized Co/V- and Zn-SBA-15 catalysts. We successfully
incorporated V and Zn into SBA-15 by almost comparable M/Si
ratio (∼0.1) with that of the other catalysts in the original
training data set. Additionally, several experimental character-
izations, such as N2 physisorption and SEM-EDX, also show
reasonable results, and more experimental details about the
synthesis are shown in section S7 in the Supporting Information.
Note that we also tried to synthesize the Co/Ba-SBA-15 catalyst
based on a previous work.56 However, we could only synthesize
the Ba-SBA-15 support that has a small M/Si ratio (0.02)
compared with the other catalysts. The CH3OH selectivity of
Co/V- and Zn-SBA-15 at each RGSV is shown in Figure S12c
together with that of the other catalysts, and the selectivity at
RGSV = 4000 cm3 h−1 gcat−1 is 32.5 and 16.9% for Co/V- and
Zn-SBA-15, respectively. The Co/V-SBA-15 shows the second
highest selectivity among all eight tested materials. The
predicted CH3OH selectivity by the “Elem” model is 28.19%
for Co/V-SBA-15 and 9.29% for Co/Zn-SBA-15. Thus, the
prediction errors of the “Elem”model for Co/V- and Zn-SBA-15
are 4.31 and 7.61%, respectively. The prediction error for Co/V-
SBA-15 is within the range of the prediction accuracy of the
“Elem” model estimated by LOMO−CV (Figure 5). However,
the prediction error for the Co/Zn-SBA-15 is higher than the
estimated accuracy. Those differences on the prediction errors
between Co/V- and Zn-SBA-15 are indeed expected from the
uncertainty estimated by the CVmodels. As discussed above and

in section S4, the uncertainty for Co/Zn-SBA-15 is larger. Those
results suggest that, for the present data set, the uncertainty of
the SISSOmodels can be estimated by using the CVmodels, and
the prediction errors for new materials can be estimated by the
computed uncertainty before synthesizing the materials.

By adding the new experimental CH3OH selectivity and the
elemental features of Co/V- and Zn-SBA-15 to the data set, we
retrained and updated the “Elem” SISSO model. The updated
“Elem” model (here after “ElemUp” model) is shown as eq 6.
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The optimal complexity of the “ElemUp” model is also Q = 1,
D = 2 (see Figure S11). EM−H is the interaction energy between a
hydrogen atom and the additive metal. PEN is the Pauling
electronegativity of the additive metals. The training- and CV-
RMSEs are calculated to be 3.75 and 5.71%, respectively. As
shown in Figure S12a, EM−H is strongly correlated with EM−C,
and PEN is negatively correlated withMcov andMCrad. Thus, the
materials genes newly selected in the “ElemUp”model and those
in the “Elem” model possibly have similar roles on the
descriptions for the CH3OH selectivity. To investigate the
effect by the difference of the selected materials genes between
the “Elem” and “ElemUp” models, a catalyst map of the
“ElemUp” model is also investigated (Figure S12b). Compared
with the map of the “Elem” model (Figure 9), Co/Zn-SBA-15
moves to be close to Co/Ca-SBA-15, and those catalysts are
located away from the other catalysts. Interestingly, the CH3OH
selectivity of those catalysts is almost independent of RGSV, and
it is a unique trend in the given data set (Figure S12c). This can
be an indication for a different reaction pathway compared to the
other catalysts. The low number of training materials that
display the RGSV dependency of the selectivity similar to that of
the Co/Zn-SBA-15 material might contribute to the high
prediction error on Co/Zn-SBA-15. On the other hand, in both
maps, Co/V-SBA-15 is close to Co/Ti-SBA-15, and both
catalysts show high CH3OH selectivity. This analysis illustrates

Figure 9. (a) Catalyst map for the CH3OH selectivity based on the “Elem” model. (b) The map focusing on the upper-right region (surrounded by a
pink circle in panel (a)). The x- and y-axis of the maps are the descriptor components of the “Elem” model. Note that the regions corresponding to
SCH OH

SISSO Elem
3

above 100% and below 0% are colored with the same colors as for 100 and 0%.
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how the description of the SISSO models can be updated by
adding the new data points.

4. CONCLUSIONS
To identify the materials genes describing the CO2 hydro-
genation catalysis, we employed the SISSO AI approach with
primary features from experiments and computations. We
focused on the CH3OH selectivity of the Co/M-SBA-15
catalysts, with different additive metals “M” in the support
material. The prediction accuracy estimated by LOMO−CV is
studied for different primary feature sets, and we obtain a model
that well represents the experimental CH3OH selectivity by
combining experimental + theoretical + elemental primary
features. The selected primary features reflect the reducibility of
cobalt species, the adsorption strength of reaction intermediates,
and the chemical nature of the additive metal as important
factors for the selectivity. To accelerate the exploration of new
additive metals that improve the CH3OH selectivity, we also
built a SISSO model only with the elemental features, which
have low acquisition costs. Based on the predicted values by this
model, we find new candidate additive metals that should have
high CH3OH selectivity. We also synthesized cobalt catalysts
with new additive metals, V and Zn. The SISSO model was then
updated by adding the new experimental data of the Co/V- and
Zn-SBA-15 catalysts. The differences of the selected materials
genes in the original and the updated models were investigated
by using the catalyst maps. Those results by our SISSO approach
can be utilized not only to understand the mechanisms of the
organic molecule generation at the early Earth but also to design
CO2 conversion catalysts. We note that the generality of AI
models is limited by the training data set. This also holds for
SISSO though the interpretability of SISSO models and their
physically meaningful primary features provide some hope for a
good description. Importantly, by exploiting predicted metals
and addingmore data points, the generality of the SISSOmodels
can be systematically improved.
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Chemical Processes for a Sustainable Future: Challenges for Industry
and the Max Planck−Cardiff Centre on the Fundamentals of
Heterogeneous Catalysis (FUNCAT). Angew. Chem., Int. Ed. 2022,
61 (50), No. e202209016.
(4) Docherty, S. R.; Copéret, C. Deciphering Metal−Oxide and

Metal−Metal Interplay via Surface Organometallic Chemistry: A Case
Study with CO2 Hydrogenation to Methanol. J. Am. Chem. Soc. 2021,
143 (18), 6767−6780.
(5) Vogt, C.; Weckhuysen, B. M. The concept of active site in

heterogeneous catalysis. Nat. Rev. Chem. 2022, 6 (2), 89−111.
(6) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis:

From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev.
2018, 118 (10), 4981−5079.
(7) Campbell, C. T. Electronic perturbations.Nat. Chem. 2012, 4 (8),

597−598.
(8) Pacchioni, G.; Freund, H.-J. Controlling the charge state of

supported nanoparticles in catalysis: lessons from model systems.
Chem. Soc. Rev. 2018, 47 (22), 8474−8502.
(9) Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.;

Roldan, A.;Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role
of the Support in Gold-Containing Nanoparticles as Heterogeneous
Catalysts. Chem. Rev. 2020, 120 (8), 3890−3938.
(10) De Graaf, R.; De Decker, Y.; Sojo, V.; Hudson, R. Quantifying

Catalysis at the Origin of Life. Chem.�Eur. J. 2023, 29 (53),
No. e202301447.
(11) Preiner, M.; Xavier, J. C.; Sousa, F. L.; Zimorski, V.; Neubeck, A.;

Lang, S. Q.; Greenwell, H. C.; Kleinermanns, K.; Tüysüz, H.;
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(23) Foppa, L.; Rüther, F.; Geske, M.; Koch, G.; Girgsdies, F.; Kube,

P.; Carey, S. J.; Hävecker, M.; Timpe, O.; Tarasov, A. V.; Scheffler, M.;
Rosowski, F.; Schlögl, R.; Trunschke, A. Data-Centric Heterogeneous
Catalysis: Identifying Rules and Materials Genes of Alkane Selective
Oxidation. J. Am. Chem. Soc. 2023, 145 (6), 3427−3442.
(24) Khatamirad, M.; Fako, E.; Boscagli, C.; Müller, M.; Ebert, F.;

d’Alnoncourt, R. N.; Schaefer, A.; Schunk, S. A.; Jevtovikj, I.; Rosowski,
F.; De, S. A data-driven high-throughput workflow applied to promoted
In-oxide catalysts for CO2 hydrogenation to methanol. Catal. Sci.
Technol. 2023, 13, 2656.
(25) Andersen, M.; Levchenko, S. V.; Scheffler, M.; Reuter, K. Beyond

Scaling Relations for the Description of Catalytic Materials. ACS Catal.
2019, 9 (4), 2752−2759.
(26) Belthle, K. S.; Beyazay, T.; Ochoa-Hernández, C.; Miyazaki, R.;
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