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Abstract
Wood density is a fundamental property related to tree biomechanics and hydraulic 
function while playing a crucial role in assessing vegetation carbon stocks by linking 
volumetric retrieval and a mass estimate. This study provides a high-resolution map 
of the global distribution of tree wood density at the 0.01° (~1 km) spatial resolution, 
derived from four decision trees machine learning models using a global database of 
28,822 tree-level wood density measurements. An ensemble of four top-performing 
models combined with eight cross-validation strategies shows great consistency, pro-
viding wood density patterns with pronounced spatial heterogeneity. The global pat-
tern shows lower wood density values in northern and northwestern Europe, Canadian 
forest regions and slightly higher values in Siberia forests, western United States, and 
southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high 
wood density. Climatic predictors explain 49%–63% of spatial variations, followed by 
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1  |  INTRODUC TION

Forests, occupying one-third of the global land areas, play an import-
ant role in absorbing (through photosynthesis) approximately 15.6 
billion metric tons of carbon dioxide from the atmosphere each year 
(Harris et al., 2021). About half of this assimilated carbon is used for 
forest growth and subsequently stored in terrestrial ecosystems for 
a long period (Pan et al., 2011), a process known as carbon seques-
tration. However, our understanding of the magnitude of carbon 
sequestration within terrestrial ecosystems, along with its inherent 
variability, remains inadequately characterized, despite the availabil-
ity of remote sensing products that have recently provided exten-
sive information related to forest coverage (Song et al., 2018), forest 
structure (Burt et al., 2021) and canopy height (Potapov et al., 2021). 
This is because remote sensing mainly provides volumetric proxies, 
which necessitate the incorporation of a density estimate to obtain 
the mass of carbon stocks. One major source of uncertainty con-
cerning the spatial distribution of carbon stocks within forests lies in 
wood density (Chave et al., 2019), which is defined as the ratio of dry 
mass of wood to its green volume and cannot be directly observable 
from space.

Beyond its role in computing carbon sequestration, wood density 
has obtained growing attention as a plant functional trait, particu-
larly for its links to the biomechanical support of trees and hydrau-
lic safety (Serra-Maluquer et al., 2022). Wood density has direct or 
indirect influence on a range of ecological processes, including tree 
growth, tree resistance, resilience and recovery to disturbances, and 
tree mortality primarily through two mechanisms (King et al., 2005; 
O'Brien et  al.,  2017; Roderick & Berry,  2001). First, studies have 
reported a tight relationship between wood density and tree mor-
tality rate or ecosystem carbon turnover, representing the overall 
carbon loss rate over several years or even decades. For example, 
the distinct variations in tree mortality rates observed in eastern 
and western Amazon forests have been attributed to differences in 

wood density, where lower density is associated with higher mortal-
ity rates (Chao et al., 2008). Additionally, plot-level synthetic studies 
have revealed the predictive capacity of wood density in characteriz-
ing forest dynamics in response to abrupt natural and anthropogenic 
disturbances such as extreme weather conditions, fires, and biotic 
attacks. Anderegg et  al.  (2016) demonstrated that wood density 
helped explain the observed variability in tree mortality rates across 
angiosperms. Nevertheless, the role of wood density in explaining 
the response of trees to water stress remains a topic of ongoing de-
bate. Liang et  al.  (2021) and Greenwood et  al.  (2017), drawing on 
global synthesis of seedlings and adult trees' measurements, re-
ported positive relationship between wood density and the drought 
resistance. However, this relationship may take a opposite direction 
in certain regional studies, such as Hoffmann et al. (2011) reported in 
temperate forest that the species with high wood density, owing to 
their insensitivity to water stress, exhibit limited capacity to regulate 
plant water potential. Thus, high wood density species show lower 
resistance and higher mortality rate under extremely severe drought 
conditions.

Up to now, despite several forest inventory data have been used 
for shaping regional wood density distribution, as demonstrated by 
Chave et al. (2009), Poyatos et al. (2018), and Oliveira et al. (2021), 
a reliable global-scale spatially explicit product of tree wood den-
sity is lacking. Here, we conducted a comprehensive collection of 
tree-level wood density measurements spanning all global climate 
biomes. Our primary objective is to generate a global high-resolution 
map of tree wood density and thoroughly assess its robustness. To 
achieve this, we developed a comprehensive global dataset of geo-
referenced species-based wood density observations together with 
basic leaf attributes of the respective species. We then trained four 
distinct machine learning models using forest inventory data, com-
bined with data for climate, edaphic, and vegetation characteristics 
derived from global observation products (Figure S1). We then used 
eight cross-validation methods to assess the predictive capacity of 
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vegetation characteristics (25%–31%) and edaphic properties (11%–16%). Notably, 
leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) 
are the most dominant individual features among all selected predictive covariates. 
Wood density tends to be higher for angiosperm broadleaf trees compared to gymno-
sperm needleleaf trees, particularly for evergreen species. The distributions of wood 
density categorized by leaf types and leaf habit types have good agreement with the 
features observed in wood density measurements. This global map quantifying wood 
density distribution can help improve accurate predictions of forest carbon stocks, 
providing deeper insights into ecosystem functioning and carbon cycling such as for-
est vulnerability to hydraulic and thermal stresses in the context of future climate 
change.
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these models in estimating variations in wood density. Finally, we 
provided an exposition of both the global and regional patterns of 
the wood density product, including an analysis of the associated 
uncertainties, and investigated the predictive factors influencing the 
observed spatial variations in wood density.

2  |  MATERIAL S AND METHODS

2.1  |  Wood density measurements

We requested tree-level measurements for “wood density” (Trait ID 
4 and 3064) from the TRY v6 database (Kattge et al., 2020; https://​
www.​try-​db.​org/​TryWeb/​Home.​php). These measurements are 
mainly sourced from the Biomass And Allometry Database (BAAD), 
RAINFOR trait database, Neotropical trait database, Tropical plant 
trait database, Netherland trait database, Chinese trait database, 
Panama trait database, and Spanish trait database (detailed infor-
mation see Table  S1). It is important to note that we retain only 
those entries pertaining to trees with precise coordinate informa-
tion and documented tree species. In total, 26,709 measurements 
obtained from the TRY database are used in our analysis. Moreover, 
we incorporate 8743 tree-level wood density measurements in the 
Eurasia region from Schepaschenko et al. (2017). This dataset is de-
rived from a compilation of experiments undertaken by the authors, 
along with data extracted from scientific publications. Additionally, 
we include two unpublished databases, one from the Poland Forest 
Research Institute and the other from the UMR AMAP wood density 
database. The former comprises over 48,000 wood density samples, 
which were measured in the year 2018 for 2971 trees within Poland. 
The latter includes a total of 2967 wood density measurements per 
tree originating from New Caledonia, an archipelago situated in the 
southwest Pacific Ocean. To reduce the disparities in sample size 
among regions and achieve a more balanced spatial distribution of 
measurements, we perform a random selection process, retaining 

only 10% of the data from the Poland and UMR AMAP databases 
for our analysis. In summary, we construct a global database con-
sisting of 36,046 tree-level wood density measurements spanning 
every continent where forests are present (Figure 1a). This dataset 
covers a wide range of climate space, although it has only a few data 
in the desert and tundra regions due to their low forest coverage 
(Figure 1b).

2.2  |  Covariates variables

For each species for which we gathered wood density measure-
ment, we identify its specific leaf type (broadleaf or needleleaf) and 
leaf habit type (evergreen or deciduous) from TRY database (Kattge 
et  al., 2020). The attributes of leaf type and leaf habit type serve 
as predictive variables in our wood density prediction model. We 
decided to use leaf type and leaf habit type instead of tree species, 
because a global map of tree species abundance is currently unavail-
able. Besides, to enhance our capacity to predict global wood den-
sity variations, based on the coordinate information, we extract a 
range of proxies for vegetation characteristics, including land cover 
type, tree cover fraction, vegetation carbon productivity, canopy 
greenness, and vegetation water content, which also act as predic-
tive variables (details on Table S2). Furthermore, we extract all the 
climatic variables from the high-resolution database of WorldClim 
version 2 (Fick & Hijmans,  2017), and extracted all relevant soil-
related variables from the global gridded soil information, SoilGrids 
database (https://​soilg​rids.​org/​; Batjes et al., 2020).

When confronted with missing values in the training dataset, 
we addressed them by approximating average values based on the 
spatial proximity of data collection sites. The proportion of missing 
data for climate-  and soil-related covariates is less than 1%; how-
ever, several satellite-based vegetation covariates have a high frac-
tion of missing data (Figure S5a). Specifically, we utilized data from 
the five nearest sites within a geospatial radius of 500 kilometers 

F I G U R E  1 (a) Spatial distribution of the forest plots originating from four datasets used for the wood density maps. The background 
colors indicate the fraction of forest cover from Climate Change Initiative land cover maps. (b) Distribution of the forest plots in a climate 
space defined by annual temperature and total annual precipitation. Red dots represent training data, blue dots testing data.
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to estimate missing values for each data point. In instances where 
the search radius encompassed fewer than five available sites, the 
number of sites used for averaging was determined by the actual 
count of data available points, if the available sites numbered more 
than three, otherwise we opted to compute the average using the 
data from the three closest sites, with the weights inversely propor-
tional to their geographical distance. The coefficients of variation 
of some vegetation covariate values from the nearest sites exhibit 
a notable degree of variability, which has the potential to result in 
biases; however, these vegetation covariates in our machine learning 
models have low importance (Figure S5b; Figure 4). In addition, the 
target value is the pixel-level averaged wood density, calculated as 
the average of all tree-level wood density measurements for each 
leaf type and leaf habit type within the identical geographic grid cell 
(0.01° × 0.01°), since their predictive variables are identical. This cal-
culation is based on the assumption that sample distributions are 
consistent with population distributions. It is important to acknowl-
edge that the pixel-level wood density estimations derived from 
tree-level measurements may be subject to bias when the selection 
of sampling distribution is skewed, particularly in regions with high 
species richness.

2.2.1  | Machine learning models

Our machine learning models are based on decision trees, which 
are inherently interpretable and have been shown to be superior 
compared to neural networks in handling tabular data (Grinsztajn 
et  al.,  2022). Specifically, we utilize two popular training schemes 
for decision tree ensembles: Bagging (Random Forest) and Boosting 
(Gradient Boosting). Furthermore, for each of these schemes, we 
leverage two current state-of-the-art software package implemen-
tations (Table  1). First, regarding random forest schemes, we use 
two models that differ in the treatment of categorical variables: the 
Scikit-Learn Random Forest (Pedregosa et al., 2011) cannot handle 
categorical data explicitly, but instead treats them as continuous 
or using one-hot encoding. In contrast, the LightGBM Regularized 
Random Forest uses categorical information for leaf splitting and 
uses a training routine optimized for speed. Second, we use two 
models based on the gradient boosting schemes with different 
training routines. Extreme gradient boosting tree (XGBoost, Chen 
& Guestrin, 2016), which is known for maximum predictive perfor-
mance, adopts a level-wise tree growth strategy, navigating through 
gradient values and partially aggregating them to assess the quality 
of all possible splits. To mitigate overfitting issues associated with 
increasing tree depth, XGBoost introduces complexity as a regulari-
zation term, seamlessly incorporated into its cost functions. Unlike 
XGBoost's level-wise tree growth strategy, LightGBM adopts a leaf-
wise strategy, efficiently increasing the complexity of the tree struc-
ture to determine branch points through histogram-based methods 
(Ke et  al.,  2017). LightGBM is centered around parallelization and 
is characterized by two innovative techniques: gradient-based one-
side sampling, which reduces the use of low-gradient data during TA
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the training process, and exclusive feature bundling, which groups 
features together. These techniques provide advantages, including 
the acceleration of the training process with high accuracy and re-
duction of memory usage. In this analysis, we randomly partition our 
wood density database into training and testing subsets, allocating 
80% of the measurements to the training set and reserving the re-
maining 20% for testing. Both the training and testing datasets cover 
the identical climate space (Figure 1b).

2.3  |  Cross-validation strategies

To evaluate the performance of these machine learning models, 
we use a leave-one-cluster-out cross-validation method. The clus-
ters for cross-validation are defined using eight different meth-
ods, that is, random fivefold, spatial blocked 10-fold (where the 
global domain was divided into spatial blocks of 5° and randomly 
assigned to one of 10 folds), and classifications based on two sets 
of Köppen climate maps, European Space Agency Climate Change 
Initiative (ESA CCI) land cover types, FAO ecozones, and latitudi-
nal and longitude binning. These cross-validation methods (except 
for random 5-fold method) are chosen to mitigate potential spatial 
auto-correlation and to avoid optimistically evaluating model per-
formance (Ludwig et al., 2023; Ploton et al., 2020). For the assess-
ment of predictive capabilities concerning wood density, we used 
two metrics, namely the root-mean-square error (RMSE) and the 
goodness of fit (R2).

2.4  |  Upscaling and generating global maps

A total of 79 selected vegetation, climatic, and edaphic variables 
(listed in Table  S2) are used to train the four machine learning 
models, to conduct cross-validation analysis, and to upscale the 
global maps. To upscale wood density, we prepare global maps of 
all predictive vegetation, climatic, and edaphic variables. The ini-
tial spatial resolution of climatic, edaphic, and some satellite-based 
vegetation covariates is higher than the target resolution of 1 km 
for the resulting product. These input drivers were subjected to 
spatial aggregation, through the computation of spatial averages 
within 1-km spatial windows. The upscaling procedure is done in 
two steps. First, we use our trained machine learning models to 
predict wood density for distinct leaf type and leaf habit types. 
Then, we use a global map of the fractions of plant function type 
from the ESA CCI as weighting factors for calculating average 
wood density values at the 1 km pixel level. In total, we generate 
an ensemble of 32 gridded tree wood density maps, all character-
ized by a spatial resolution of 1 km. These maps are obtained using 
the four different machine learning models, generated as the aver-
age of maps derived from eight cross-validation methods (shown in 
Figure 2). Furthermore, the overall ensemble average of these four 
maps is calculated (shown in Figure 3).

3  |  RESULTS AND DISCUSSION

3.1  |  Machine learning model evaluation

Overall model performance is high with an R2 value of 0.55 ± 0.03 
(mean ± SD across machine learning models and cross-validation 
splits) and an RMSE of 0.11 ± 0.01 g/cm3 (Figure  S2a) on the test 
data. Between machine learning models as well as across cross-
validation splits, there is little variability. The cross-validation analy-
ses are performed to assess the extrapolation capability of machine 
learning models and provide a more comprehensive understanding 
of the driving factors (Sweet et al., 2023). When using the random 
fivefold cross-validation method, the cross-validation predictions 
from the four machine learning models show high R2 and low RMSE 
(R2 = .50– .56, RMSE = 0.05–0.12 g/cm3), while the predictive capac-
ity exhibits a reduction when using the other cross-validation meth-
ods to reduce the influence of spatial auto-correlation, indicating the 
limited extrapolation capability (Figure S2b). Such reduction could be 
due to the unique features inherent to particular climatic biome or 
ecology zone, so excluding one cluster from a specific climatic biome 
or ecology zone during the training process may result in biases in 
cross-validation predictions, ultimately leading to a decrease in the 
model predictive performance. Thus, it highlights the importance of 
using the data covering all the climatic biomes during the training pro-
cess to mitigate extrapolation when generating a global map.

Our models suffer from a small generalization gap, mainly visi-
ble in the decrease in R2 value from training data to testing dataset. 
Performance on the training set displays an R2 value of 0.68 ± 0.15 
and an RMSE of 0.10 ± 0.15 (g/cm3) (Figure S2a). More specifically, 
however, the drop in R2 value is strong for the Random Forest and 
particularly within the tropical region (30° S–15° N), as well as mid-
latitude areas (45° N–60° N) (Figure S2c,d). This discrepancy in the 
tropical region may be due to high species richness and the limited 
number of wood density measurements in this region, which result 
in the biases found in wood density predictions. In highly diverse 
tropical forests, high phylogenetic endemism among tree species 
is not only affected by current environmental conditions but also 
characterized by long-term climate stability (Guo et al., 2023). For 
instance, even within the same location and forest type, several spe-
cies exhibit varying wood densities. Ideally, incorporating species as 
a categorical variable to refine the analysis would be valuable, but a 
comprehensive global species distribution map is unavailable, pre-
cluding the inclusion of species as a predictor in our machine learn-
ing models.

3.2  |  Global and regional patterns

The global maps of wood density generated by the four machine 
learning models show consistent patterns (Figure  2), character-
ized by pronounced spatial heterogeneity across latitudes and from 
dry to wet regions (notably shown in the zoomed regional maps in 
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Figure 3; Figure S6). The main features are as follows: In the north-
ern high latitudes, wood density values are notably lower in northern 
and northwestern Europe, as well as in the Canadian forest regions, 
where evergreen needleleaf trees predominate. In contrast, Siberia 
exhibits higher wood density values (~0.55 g/cm3), particularly 
in its eastern regions. This disparity can be attributed to the pre-
dominance of deciduous needleleaf trees, primarily the Larix genus, 
within the arid landscapes of eastern Siberia (Sato et al., 2016). Then, 
a slightly higher wood density is observed in temperate regions such 
as western United States and southern China. Moreover, wood den-
sity in the tropical regions generally holds higher values compared to 
the extra-tropical regions. Within the tropics, wood density in wet 
tropical areas tends to be relatively higher than that in dry tropical 
regions.

We further compare our spatial patterns of wood density maps 
with other independent regional wood density products (Chave 
et  al.,  2009; Oliveira et  al.,  2021). Chave et  al.  (2009) used the 
16,468 wood density entries from Dryad data repository, which 
have not been used in our analysis due to the unavailability of geo-
graphic coordinate information, to generate a wood density map 
for North and South America (hereafter JC09). Overall, JC09 prod-
uct and our product both exhibit consistent spatial distributions, 
that is, lower wood density in high latitudes of North America 
and areas near the Andes Mountain while higher wood density is 
primarily observed in the wet and transitional tropical regions of 

South America. But our wood density product depicts relatively 
lower absolute values of wood density in the wet tropical region 
compared to the JC09 product. Furthermore, differences are also 
apparent in the dry tropics and semiarid areas of South America. 
The JC09 product shows higher wood density in these regions, 
compared to the wet tropical areas, while our dataset shows the 
opposite, particularly in eastern Brazil and around Paraguay re-
gion. These discrepancies could be explained either by the lack of 
measurements used in our product or the simplicity of the mul-
tiple regression method utilized in JC09 product. Additionally, a 
recent analysis by Oliveira et al. (2021), which generated a wood 
density pattern for eastern Brazil through data collection and krig-
ing extrapolation approach, exhibits a consistent range of wood 
density values and similar spatial distributions when compared to 
our maps.

3.3  |  Uncertainty analysis

We explore the uncertainty stemming from the selection of machine 
learning models and the application of various cross-validation meth-
ods (Figure  S3). First of all, when using the same machine learning 
model, the utilization of different cross-validation methods for model 
training tends to generate relatively consistent global wood density 
maps. That is, the standard deviation in wood density across eight 

F I G U R E  2 Global 1 km mean wood density maps from four distinct machine learning models: LightGBM (a), LightGBM-RF (b), Random 
Forest (c), and XGBoost (d). Patterns represent the average wood density values derived from models using eight distinct cross-validation 
strategies. These wood density values are presented exclusively within regions where the forest fraction exceeds 10%. The R2 values 
for each machine learning model's prediction of test data are written on the maps. The inset on the right-hand side shows the latitudinal 
averages (black line) and standard deviations (grey shading) of wood density.
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    |  7 of 13YANG et al.

distinct cross-validation strategies is consistently below 0.01 g/cm3, 
albeit some tropical savannas show a relatively high standard devia-
tion (~0.03 g/cm3) (Figure S3a,c). Conversely, the uncertainty associ-
ated with the choice of machine learning models is relatively higher, 
but the standard deviation in wood density remains below 0.05 g/cm3, 
which is less than 8% of the mean values (Figure S3b,d). Regions with 
high uncertainty across machine learning models include northern 
Canada, northern Europe, southern Siberia, southwestern China as 
well as part of tropical savanna regions. Furthermore, we implement 
an analysis of the number of wood density measurements collected for 
44 subregions based on the IPCC subregion reference map (Iturbide 
et al., 2020). Our analysis reveals a significant negative relationship be-
tween the standard deviation in wood density predictions across ma-
chine learning models and the number of observations (Figure S3e,f) 
This suggests that the regions with limited wood density measure-
ments exhibit higher uncertainty in the areas due to the well-known 
low generalizability of machine learning models for small and unbal-
anced sample classes (Jung et al., 2020).

3.4  |  Factors influencing spatial variations

We further assess the feature importance of the four machine 
learning models, aiming to elucidate which and how the factors 
influence spatial variations in wood density (Figure  4). First of all, 
the category of climatic condition plays a critical role, accounting 
for a substantial proportion of spatial variations, with contributions 

ranging from 49% to 63%. Following in significance is the category 
of vegetation characteristics, explaining 25%–31% of the variations, 
while edaphic properties have a discernible and relatively smaller in-
fluence, contributing to 11%–16% of the variations. More precisely, 
the importance of vegetation characteristics category mainly arises 
from attributes associated with leaf type and leaf habit type, which 
is also the most dominant individual feature among all 79 selected 
ones. In contrast, within the category of climatic condition, several 
factors such as temperature seasonality, total annual precipitation, 
and cloud cover have high importance in explaining wood density 
variation.

The importance of species in shaping wood density has been 
highlighted in various prior studies (e.g., Nabais et  al.,  2018; Ogle 
et  al.,  2014; Thurner et  al.,  2014). In our study, leaf type and leaf 
habit types, which are identified based on the species, also serve 
as key dominants in predicting wood density across all four ma-
chine learning models. It is worth noting that forest age and plant 
leaf traits (with the exception of leaf type and leaf habit type) have 
not been incorporated as predictive variables in our analysis, despite 
their potential relevance in explaining wood density, as reported by 
previous studies (Bouriaud et al., 2004, 2005; Chave et al., 2009). 
The primary rationale for the omission is the lack of accurate, 
high-resolution, independent, and global maps for these variables. 
However, we recognize the potential advancements offered by re-
cently published global maps of forest age and plant traits, generated 
through machine learning techniques (Besnard et al., 2021; Huang 
et al., 2021; Moreno-Martínez et al., 2018). First, we acknowledge 

F I G U R E  3 Zoomed-In 1 km wood density map over: North America (a), Europe (b), Siberia (c), South America (d), Africa (e), Southeast Asia 
(f), and Australia (g). Shown is the average wood density prediction from four machine learning models for grid cells with a forest fraction 
above 10%.
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8 of 13  |     YANG et al.

that the forest age map from Besnard et al.  (2021) is incompatible 
with our analysis due to the interdependence with forest biomass 
from GlobBiomass—a critical covariate in predicting forest age. The 
algorithm for biomass in GlobBiomass relies on estimated wood 
density, creating a circular dependency that precludes the use of 
Besnard et al.'s map in our framework. Second, we conducted addi-
tional assessments of model performance, comparing models with 
and without plant leaf traits and forest age as predictive variable. 
The results show no discernible differences in model performance 
(Figure S7). This suggests that the role of plant leaf traits and forest 
age may be effectively replaced by other vegetation and/or climate 
factors with similar spatial distributions in our predictive models. 
Another possible explanation for the lack of new information pro-
vided by leaf traits is that their maps were generated using the same 
machine learning approaches and shared many covariates, such 

as climate data from WorldClim and vegetation indexes (Moreno-
Martínez et al., 2018).

The variation in wood density derived from the four ma-
chine learning models, categorized by leaf types, leaf habit types, 
as well as climatic biomes, aligns with the features observed in 
wood density measurements (Figure  5a). Nonetheless, our ma-
chine learning models have limited capability in predicting the 
variations of wood density within leaf (habit) types and climatic 
biomes. This limitation arises from the fact that wood density 
measurements are tree-level estimations, which exhibit more 
significant variations within the category compared to the pixel-
level predictions generated by the models, where the inter-tree 
variations within a pixel are not considered. In the context of 
different leaf types and leaf habit types, wood density tends to 
be higher for broadleaf trees compared to needleleaf trees. The 

F I G U R E  4 Relative feature importances across machine learning models. The pie plots show the sum of importance of all variables 
in each group (vegetation, climatic, and edaphic). The bar plots show the importance of each predictor. The error bars denote the s.d. of 
importance across cross-validation strategies. The details of predictor covariates are listed in Table S2.
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    |  9 of 13YANG et al.

leaf types can be used to broadly categorize trees into hardwoods 
and softwoods, representing the difference in wood structure, 
specifically characterized by the presence of vessels and fibers in 
hardwoods, and predominantly tracheids in softwoods (Barnett & 

Jeronimidis, 2003; Pallardy, 2010). Among broadleaf trees, decid-
uous species exhibit slightly lower wood density than evergreen 
species. Conversely, among needleleaf trees, deciduous trees of 
gymnosperm tend to have higher wood density than evergreen 

F I G U R E  5 (a) The boxplots show the distribution of wood density for different categories of leaf types and leaf habit types. Both wood 
density measurement (filled boxes) and our estimates derived from four machine learning models (transparent boxes) are shown. In the 
plots, the white dot represents the mean value, and the lines outside and inside the boxes represent, from top to bottom, 90th, 75th, 50th, 
25th, and 10th percentiles. (b–e) The distributions of predicted wood density by machine learning models with the climate, hydrological, and 
radiation spaces defined by temperature seasonality, total annual precipitation, precipitation of coldest quarter, potential evapotranspiration, 
and cloud coverage. The predicted wood density map at 1 km pixels used here corresponds to a forest fraction threshold of 10%. The insets 
in the corners show the values of wood density measurements over the corresponding climate spaces.
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10 of 13  |     YANG et al.

species. Regarding different climatic biomes (Figure  S4), trees 
within tropical biomes exhibit higher wood density values com-
pared to those in temperate biomes. In turn, trees in temperate 
biomes generally have higher wood density than those in boreal 
and polar biomes. The high wood density in tropical regions re-
flects the predominance of shade-tolerant species characterized 
by a slow growth rate replacing the fast-growing, gap-dependent 
pioneer species (Finegan,  1996; Martínez-Cabrera et  al.,  2012; 
Poorter et al., 2008).

The influences of climate variables such as temperature season-
ality, annual precipitation, cloud cover, and potential evapotranspi-
ration (PET) on wood density in our machine learning models are 
further explored (Figure  5b,e). These climate variables hold high 
importance in our machine learning models and exhibit relatively 
low collinearity among them. First of all, the key characteristics of 
the relationship between wood density and these climate covari-
ates in the predicted map exhibit a good agreement with that in 
the observed wood density measurements. More specifically, we 
observed that temperature seasonality, defined as the coefficient 
of variation in monthly mean temperatures, serves to differentiate 
regions with low and high wood density, but has no monotonic re-
lationship with wood density (Figure 5b,c). Furthermore, we found 
that wood density spatially varies with aridity degree, including total 
annual precipitation and PET. Specifically, we observed that under 
drier conditions, characterized by lower precipitation and higher 
PET, trees tend to have higher wood density values. This coincides 
with our previous results showing the prevalence of high wood den-
sity in forests situated within tropical dry and arid zones (Figure 3). 
Additionally, in the arid regions (annual precipitation <1000 mm), 
the influence of cloud cover on wood density is pronounced, that 
is, lower cloud coverage fraction, which may represent higher short-
wave radiation availability, is associated with forests with higher 
wood density (Figures 3e and 5d).

Regarding the climate factors influencing wood density, pre-
vious studies have predominantly focused on the impacts of tem-
perature along with one of precipitation, soil moisture or PET. 
But the impact of cloud coverage or radiation on wood density, 
which plays an important role in our machine learning models, 
has been largely neglected in earlier research. Furthermore, ear-
lier studies have reported the dominant climate factor influencing 
wood density changes over region, for example, Wiemann and 
Williamson (2002) suggested that, within tropical regions, precip-
itation was the primary driver of wood density variations, while 
in extratropical regions, temperature played a key role. However, 
their investigations were limited to linear relationships between 
wood density and climate variables over very large regions such 
as the whole North and South Americas, or mid and high north-
ern latitudes (Chave et  al.,  2009; Ogle et  al.,  2014; Roderick & 
Berry,  2001). In contrast, in our results, the climate covariates 
and wood density show complex nonlinear relationships over 
the global scale. Our findings do not exhibit clear, monotonous 
linear relationships within the observed and predicted patterns. 
It is important to note that our analysis is based on pixel-level 

wood density values in which the characteristics of both gymno-
sperms and angiosperms are combined. This differs from earlier 
studies that reported the significant climate role specifically for 
gymnosperms (Clough et al., 2017). In summary, our study sheds 
light on the multifaceted and nonlinear relationships between 
wood density and climate covariates, challenging previous linear 
assumptions.

4  |  CONCLUSIONS

We provide the first spatially continuous map of wood density 
at a global scale at the 0.01° (~1 km) spatial resolution, using a 
wide set of climate, soils, topography, and vegetation proper-
ties applied to four machine learning models. The four machine 
learning models compared in our analyses all show good capac-
ity to predict tree-level wood density estimates (R2 = 0.55 ± 0.03 
and RMSE = 0.11 ± 0.01 g/cm3). Nevertheless, it is worth noting 
that variations and biases in model predictions tend to be more 
pronounced in regions where wood density measurements are 
scarce. To increase the reliability of our findings, we use eight 
cross-validation strategies, which not only confirm the robust-
ness of our results but also underscore the limitations of machine 
learning models when it comes to extrapolation. This highlights 
the critical need for widespread wood density measurements and 
emphasizes the importance of leveraging measurements with 
global coverage. The spatial patterns of wood density generated 
by machine learning models exhibit a remarkable alignment with 
the leaf type and leaf habit types and climate conditions, which 
reflects the wood structure and growing rates of trees. In the 
northern high latitudes where deciduous and evergreen needle-
leaf trees dominate, wood density values are generally lower 
compared to the evergreen trees in tropical regions. Within the 
tropics, wood density in arid areas tends to be relatively lower 
than in wet regions. It is imperative to acknowledge the models' 
limited capacity to predict tree-level wood density variations in 
the wet tropical regions. Due to the absence of species maps, we 
used leaf types and leaf habit types as predictors, offering par-
tial insights into the wood density variations related to species. 
Nevertheless, this method may limit the models' capacity to accu-
rately predict wood density variations in regions characterized by 
high biodiversity. To overcome this limitation, there is a compel-
ling need for the development of high-resolution global species 
abundance maps in the future, by taking advantage of available 
open-data resources, including complex networks of plot data 
(e.g., sPlot data; Sabatini et al., 2021), national forest inventories 
data, and species occurrences dataset (e.g., GBIF). Nevertheless, 
our newly global spatial explicit dataset will allow us to provide 
more accurate estimations of vegetation carbon stocks and give 
valuable insights into how forests resist and recover from future 
environmental challenges. This provides a valuable opportunity 
to obtain a better understanding of ecosystem function and ser-
vices in the face of future climate change.
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