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General Introduction
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“Already know you that which you need.”
Master Yoda  –  George Lucas

Humans are exquisitely adept at finding patterns in their 
environment, including their language input. Take the following two 
examples: First, imagine a baby listening to their mother speaking. 
Even though the mother might adjust her language to the child, 
speaking in child-directed speech, she will not mark word boundaries 
in any obvious way comparable to blank spaces between words in 
written language. In the beginning, the baby does not understand 
anything, and in order to learn their first words, they first need to 
identify the words within their continuous speech input; but neither 
does the baby know anything about how the language works or to what 
they should pay attention. However, they can rely upon their cognitive 
abilities to detect patterns, and sure enough, they will start to recognise 
words themselves within their first year of life (Bergelson & Swingley, 
2012).

Second, imagine yourself living in a foreign country where the 
community language is a language you do not know. Since you have 
not attended a formal class, you will not have any knowledge of the 
formal rules (i.e., patterns) of the language. Consequently, you do not 
understand much in the beginning. Yet, after a little while, you pick up 
on some words and phrases such as, for instance, hallo ‘hello’ and 
Guten Morgen ‘good morning’; later you notice that verbs end in -e 
when they describe actions of the speaker (ich ‘I’) but in -st when they 
describe actions of the listener (du ‘you’).

In both examples, statistical learning (SL) likely plays a key role in 
detecting frequent usage patterns and in generalising across multiple 
individual instances to begin the process of constructing a language. SL 
can be described as the process of learning temporal or spatial co-
occurrence patterns in the environment (cf. Frost et al., 2019). In other 
words, when two or more things often occur together, we pick up on 
this and learn the pattern. This has been found from birth and across the 



human lifespan (e.g., Aslin et al., 1998; Saffran, Aslin, et al., 1996; 
Saffran et al., 1997; Teinonen et al., 2009). In the first example above, 
the baby listens to speech in which the boundaries between words are 
not clear. Therefore, the baby might, for instance, first implicitly chunk 
together syllable pairs that frequently co-occur to form likely word 
candidates in the language. On the basis of these first word candidates, 
they can then draw conclusions about other patterns (e.g., words mostly 
being stressed on the first syllable), which can then help to extract more 
words from the speech stream.

In the second example, the same happens to you in an unfamiliar 
language, showing that SL remains relevant when processing and 
learning language throughout our lifetime (Alexander et al., 2022; and 
see e.g., Batterink & Paller, 2017, Perruchet & Desaulty, 2008, and 
Saffran, Newport, et al., 1996, for further examples of adults acquiring 
a second, but artificial, language via SL). It is also found at different 
levels within our input. For example, two syllables can be chunked 
together based on their frequent co-occurrence in the word hallo, two 
words can be chunked together based on their frequent co-occurrence 
in the phrase Guten Morgen, and two non-adjacent morphemes can be 
associated with one another in the person and number agreement of the 
pronouns with the morphological verb markers -e and -st.

The two examples demonstrate the power of SL for language 
learning, which has held promise as a key mechanism underlying 
language acquisition and use since the publication of Saffran et al.’s 
(1996) seminal paper on SL in eight-month-old infants. Despite over a 
quarter of a century of research on SL, there are many aspects of SL and 
its role in language that are still unknown. The aim of this thesis was 
twofold: first, to examine the availability and reliability of word 
segmentation cues in natural child-directed speech (Chapter 2) and 
second, to investigate how prior knowledge which participants gained 
in their natural environment (as studied in Chapter 2) influences their 
subsequent language processing and word segmentation (Chapters 3 to 
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5). In the remainder of this chapter, I will address each of these topics 
in further detail.

Word segmentation in infancy

One of the first puzzles infants need to solve in order to acquire 
language is identifying the boundaries between words. That is, before a 
baby can start to learn their first words, they first need to find those 
words within their speech input. This is no easy feat since word 
boundaries are not marked in any one completely reliable way. 
However, infants can rely on a variety of cues to help them break into 
the speech stream. For instance, if words in a language are almost 
always stressed on the first syllable then stress can be considered to 
provide a reliable cue to word onset in that language. Crucially, the 
availability and reliability of cues varies between languages (Cutler, 
2012). It is therefore important to gain an overview of the availability 
and reliability of a broad range of cues in a language in order to better 
understand the input babies receive. Establishing the landscape of cues 
for a given language sheds light on the learners’ pathway to language 
acquisition by permitting theorising on how children draw on these 
cues during learning and by opening the door to cross-linguistic 
comparison which can critically shape our understanding. 

In this thesis, I studied five potential word segmentation cues in 
German child directed speech: word stress, transitional probabilities 
(TPs), lexical and sublexical frequencies, word length, and single word 
utterances. I discuss these cues below.

Word stress

In stress-timed languages such as English, word stress can be a 
good indicator for word boundaries. In these languages, at least one 
syllable per word often stands out by being louder, higher in pitch, or 
longer in duration. When this prominent marker follows a regular 
pattern, it can be considered a reliable cue for word segmentation. 
According to the World Atlas of Language Structure (WALS), Irish and 



Czech, for example, follow a word-initial stress pattern while Hebrew 
and Berber follow a word-final stress pattern (Goedemans & van der 
Hulst, 2013a). This means that in Irish or Czech, where the first syllable 
of a word is stressed, a stressed syllable indicates to the child that a new 
word starts. In Hebrew and Berber, on the other hand, where the last 
syllable of a word is stressed, a stressed syllable indicates to the child 
that a word ends.

Research has shown that babies are indeed sensitive to word stress 
(Sansavini et al., 1997; Spring & Dale, 1977). That is, they can 
distinguish between different stress patterns and develop a preference 
for the pattern found in their native language within their first year of 
life (Jusczyk et al., 1993). Furthermore, they actively use this stress 
pattern to establish word boundaries, with infants initially also inferring 
these boundaries in the wrong position when words do not follow the 
dominant pattern (Jusczyk et al., 1999). This shows how heavily young 
(American-English) infants seem to rely on stress as a cue to word 
segmentation, assuming word boundaries also in the wrong location 
until they learn to rely on multiple cues, helping them to correctly 
assign word boundaries in atypically stressed words at the age of 10.5 
months (Jusczyk et al., 1999).

Most of the research on language acquisition has investigated 
phenomena in the English language (Kidd & Garcia, 2022). Even 
though English and German are closely related, one cannot assume that 
empirical findings in the English language also apply to the German 
language, including the availability and reliability of segmentation 
cues. However, research suggests that German five-month-old infants 
can also discriminate between iambic and trochaic stress patterns, 
equally showing a preference for trochaic over iambic stress, similar to 
the English infants (Friederici et al., 2007; Höhle et al., 2009; 
Tippmann, 2015; Weber et al., 2004), and they have also been shown to 
use stress to segment words from speech (Höhle et al., 2001).
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This suggests that word stress is an important cue to word 
segmentation in stress-timed languages such as English or German. In 
English, a study revealed that 90% of content words are stressed on 
their initial syllable (Cutler & Carter, 1987), supporting the children’s 
intuition to heavily rely on this cue as it proves to be highly reliable. In 
Chapter 2, I investigated how reliable the stress pattern is in German 
child-directed speech.

Transitional probabilities

A second potential cue to word segmentation are TPs1. TPs between 
syllables indicate how often one syllable occurs in combination with 
another syllable compared to how often it occurs overall. TPs within 
words are generally higher than TPs at word boundaries (Saksida et al., 
2017), meaning that infants can chunk together syllable pairs with high 
TPs or assume word boundaries at low-TP transition points. Take, for 
instance, the phrase pretty baby – the syllable pre is often followed by 
the syllable ty in English, resulting in a high TP of .8, while the syllable 
ty is only rarely followed by the syllable ba in English, resulting in a 
low TP of .0003 (Saffran, 2003). The high TP of the syllable pair pre ty 
is an indication that the two syllables form a word while the low TP of 
the syllable pair ty ba is an indication that the two syllables might 
belong to different words.

This is an important cue to word segmentation because it does not 
require any prior knowledge to break into the speech stream. To use 
word stress, for example, the baby first needs to know which stress 
pattern their language follows. To be able to form a hypothesis about 
the pattern, they first need to know a few words over which they can 
generalise. In comparison, TPs can be used without any initial 
hypotheses. Babies can implicitly chunk together syllable pairs that 

1 Note that I refer to TPs throughout this thesis as a measure of how frequently 
syllables co-occur. I do not intend to suggest that humans consciously track those TPs 
but rather that the frequent co-occurrence strengthens the connection between those 
syllables, with high TPs indicating such frequent co-occurrence (see e.g., Perruchet, 
2019, for a review).



often occur in combination. These first chunks can then help to form 
hypotheses about other cues to wordhood, which might then be more 
reliable or prominent in their language.

As already established, learners of all ages have been found to be 
sensitive to TPs as a word segmentation cue (e.g., Aslin et al., 1998; 
Saffran, Aslin, et al., 1996; Saffran et al., 1997; Teinonen et al., 2009). 
In these experiments, the participants were able to segment words from 
continuous speech relying solely on TPs to guide their segmentation. 
Remarkably few studies have been conducted on SL in German. It has 
been shown that German adults can segment words from speech based 
on TPs (Matzinger et al., 2021), but adults as well as six-month-old 
infants rely more on word stress than TPs when the two cues collide 
(Marimon Tarter, 2019). However, TPs might still be an important cue 
for German babies to break into the speech stream and acquire the stress 
pattern of the language before stress becomes the dominant cue.

Importantly, TPs can not only be determined within and between 
words but also in two different directions: Forwards TPs describe how 
likely the present syllable is followed by the next one (e.g., how likely 
the syllable ba is followed by the syllable by in the word baby) while 
backwards TPs describe how likely the present syllable is preceded by 
the previous one (e.g., how likely the syllable by is preceded by the 
syllable ba in the word baby). Both directions have been shown to be 
informative (Perruchet & Desaulty, 2008); however, which direction is 
more informative differs between languages. Infants have been shown 
to develop a preference for the direction which is more informative in 
their native language by the age of 13 months (Thiessen et al., 2019). It 
is therefore crucial to establish the precise numbers of within-word and 
between-word, forwards and backwards TPs in a language before 
investigating SL in that language (see also Monaghan & Rowland, 
2017, for an account on how corpus analyses, experimental and 
computational studies can go hand in hand). In consequence, I 
established the precise TP distributions in German child-directed 

G������ I�����������

17



C������ 1

18

speech (cf. Chapter 2) before investigating SL in German populations 
(cf. Chapters 3 to 5).

Lexical and sublexical frequencies

The frequency of syllable co-occurrences is, of course, not the only 
frequency that influences language acquisition. The influence of the 
frequency of a word on how quickly we learn it and how well we 
remember it is unquestionable (e.g., Ebbinghaus, 1885, 1913), a fact 
that has been directly incorporated into theories of child language 
acquisition (see Ambridge et al., 2015, and Lieven, 2010, for reviews). 
In natural languages, some words occur more frequently than others, 
following Zipf’s law (Zipf, 1935, 1949). Zipf’s law states that a word’s 
token frequency and its rank are inversely related, which means that the 
most frequent word in a corpus occurs approximately twice as often as 
the second most frequent word, approximately three times as often as 
the third most frequent word, and so on. Such frequency distributions 
have been shown to facilitate word segmentation (Kurumada et al., 
2013; but see Lavi-Rotbain & Arnon, 2022, for evidence that it is rather 
the predictability than the skew of the distribution which facilitates 
segmentation). Due to their salience, the frequent words stand out and 
can be segmented in the early exposure phases. Subsequently, they can 
act as anchors in the speech stream to aid segmentation of adjacent 
words (see e.g., Bortfeld et al., 2005; Peters, 1983; Pinker, 1984).

Zipf’s observations were based on corpus data of written German 
(Kaeding, 1897). Since language changes over time and because 
spoken and child-directed speech might differ from written adult-
directed speech, it is essential to study the frequency distribution of the 
child’s input in German, which I did in Chapter 2. Additionally, I 
investigated the frequency distribution at the syllable level and also 
extended my analysis to syllable structures (i.e., consonant-vowel 
patterns underlying the syllables). The latter was included to examine 
whether some patterns are predominantly found word-initially or word-
finally, guiding segmentation in a similar way as phonotactics.



Word length

Another factor that might influence word segmentation is word 
length. In natural languages, words normally have different word 
lengths (see e.g., Alonso et al., 2011, for an analysis of Spanish word 
length; and Li & Shirai, 2000, for an analysis of English word length). 
This can also be explained by Zipf’s law, which states that languages 
are optimised for efficient communication (Zipf, 1935, 1949). This 
means that frequently repeated words are usually short, reducing the 
communicative effort for the speaker, while less frequently repeated 
words might be longer, potentially to reduce the input rate of new 
information for the listener (i.e., if all words were monosyllabic the 
listener would receive a lot of information within a short amount of 
time while longer words reduce this input rate). 

In German, too, approximately 50% of words in a written language 
corpus have been found to be monosyllabic, approximately 30% 
disyllabic, and approximately 20% tri- or multisyllabic (Kaeding, 1897; 
Sigurd et al., 2004). However, variation in word length has been found 
to be detrimental for statistical word segmentation (Johnson & Tyler, 
2010; Lew-Williams & Saffran, 2012; but see Perruchet & Vinter, 1998, 
for computational counter-evidence). Therefore, child-directed speech 
might consist of shorter words, standardising the word lengths to 
potentially facilitate speech segmentation and language acquisition. 
This has been suggested for Norwegian child-directed speech in 
comparison to Norwegian adult-directed speech (Garmann et al., 2019). 
On the other hand, different word lengths have been suggested to guide 
word category assignment (i.e., suggesting that child-directed speech 
does not differ from adult-directed speech in word length), with 
monosyllabic words indicating that a word might belong to the closed 
class and multisyllabic words indicating that a word might belong to the 
open class (see e.g., Segal et al., 2009, for an analysis of Hebrew child-
directed speech). In both cases it is relevant to know the exact 
distribution of word lengths in the speech input to German children, 
which I investigated in Chapter 2.
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Single-word utterances

The final cue to word segmentation which I investigated for this 
thesis was single-word utterances. Sometimes words are produced in 
isolation, for instance, when we greet other people (hello), call them 
(John), or express our agreement or disagreement (yes/no). Because 
these words are detached from the continuous speech stream, they stand 
out to the listener and can be learnt more easily (Junge et al., 2012). 
Afterwards, these words can act as anchors in the subsequent input to 
aid the segmentation of adjacent words similar to the frequent words in 
the Zipfian distribution above (see e.g., Bortfeld et al., 2005; Peters, 
1983; Pinker, 1984).

Previous research has shown that adults use single-word utterances 
in child-directed speech and even repeat approximately a third of those 
utterances in close temporal proximity, enhancing the probability that 
the child will pick up on those words (Aslin et al., 1996; Brent & 
Siskind, 2001). Corpus analyses of English and Hebrew child-directed 
speech suggest that approximately 15% of utterances comprise single 
words (MacWhinney & Snow, 1985; Segal et al., 2009) while another 
analysis of English gives an even higher estimate of approximately 
26% of utterances (Monaghan & Christiansen, 2010). I expanded this 
investigation to German child-directed speech in Chapter 2, asking how 
many utterances comprised single words, how often words were 
repeatedly produced in isolation, and how often the child’s name (as an 
especially prominent cue) was produced in isolation.

Statistical learning in child- and adulthood

Does the output of statistical learning influence future statistical 
learning?

After studying the availability and reliability of word segmentation 
cues in child-directed speech (cf. Chapter 2), the second part of my 
thesis is concerned with SL in child- and adulthood (cf. Chapters 3 to 
5). We are already born with the ability to extract patterns from the 



environment and can use this ability to segment words from continuous 
speech as described above. It has been proposed that during SL, 
syllables that often occur together are being chunked together, with this 
chunk then being stored in long-term memory (Batterink & Paller, 
2017). However, little is known about how this knowledge influences 
future processing and learning.

That prior knowledge facilitates learning has long been known 
(Ebbinghaus, 1885, 1913). With regard to SL, studies showed that 
different kinds of prior knowledge already affect future learning in 
infancy (Lai & Poletiek, 2011; Lew-Williams & Saffran, 2012). For 
example, Lew-Williams & Saffran (2012) found that when nine- to ten-
month-old infants expected to hear disyllabic words they could not 
segment trisyllabic words from continuous speech and vice versa. 
Studies in adults have found that experience with tone helps to segment 
other tonal languages (Potter et al., 2017; but see Wang & Saffran, 
2014) and learning of simpler non-adjacent dependency structures 
facilitates learning of more complex non-adjacent dependency 
structures later on (Lany & Gómez, 2008; Zettersten et al., 2020).

These studies showed that a variety of prior expectations and 
experiences influences SL. Other studies investigated how the direct 
output of SL in long-term memory affects future SL, however, mostly 
in terms of phonotactics. Phonotactics describe linguistic patterns 
regarding the positions of phonemes within a syllable. For example, the 
phonemes /mn/ do not appear in this combination in English while they 
do in Russian (e.g., много ‘a lot’). As the example shows, phonotactic 
patterns differ between languages and can be learned via SL. The output 
of this SL has been shown to guide future SL. For instance, Finn and 
Hudson Kam (2008) found that English adults relied on the 
phonotactics of their native language (i.e., SL knowledge from natural 
language) to segment novel words from continuous speech, even 
though the speech stream contained statistical cues suggesting different 
word boundaries (see also Mersad & Nazzi, 2011, for related findings 
in French; and Toro et al., 2011, for related findings in Catalan).

G������ I�����������

21



C������ 1

22

While the acquisition of phonotactics takes place at the phoneme 
level, SL is also often studied at the syllable level (see studies described 
above) because the chunking of syllables leads to the acquisition of 
words and the formation of a lexicon. However, little is known about 
how the learning unfolds and how the learned units are subsequently 
influencing the processing and learning of new linguistic material. In a 
recent EEG study, Batterink and Paller (2017) played participants 
continuous speech which comprised either novel words (structured 
condition) or completely random syllable combinations (unstructured 
condition). During the early phases of the exposure, participants’ brains 
entrained to the syllable frequency of the speech. During the later 
phases of the exposure, however, participants of the structured 
condition became continuously more entrained to the word level 
frequency (which was not the case in the unstructured condition where 
the speech did not contain any words). This finding provides important 
insights into how SL unfolds over time and suggests that syllables get 
chunked together as learners identify frequently occurring syllable 
combinations, with the chunks (i.e., words) most likely being stored in 
long-term memory.

Regarding the question of whether the output of SL influences 
future SL, two highly relevant papers were published during my PhD. 
Siegelman et al. (2018) investigated why SL of visual and auditory 
material did not show a high positive correlation, even though SL was 
supposed to be a domain-general process. They conducted a series of 
experiments but most importantly, they found that participants’ 
performance in SL of auditory linguistic material was influenced by 
how much individual experimental items resembled words in the 
participants’ native language, as measured by independent ratings of 
each word. This provided indirect evidence that participants’ prior 
knowledge gained via SL in the real world (the acquisition of Hebrew) 
influences subsequent SL of new linguistic input.

Building on this finding, Elazar et al. (2022) developed a more 
direct test of how frequent syllable combinations in the participants’ 



native language influence participants’ subsequent SL of new linguistic 
material. They tested Spanish participants in either a Spanish-like 
condition or a Spanish-unlike condition. Participants of both conditions 
were exposed to a continuous speech stream containing experimental 
words and were afterwards tested on a lexical decision task. 
Importantly, the experimental words in the Spanish-like condition 
consisted of syllable combinations found frequently in natural Spanish 
while the experimental words in the Spanish-unlike condition consisted 
of syllable combinations rarely found in natural Spanish. Participants’ 
performance on the lexical decision task was highly influenced by their 
familiarity with the syllable co-occurrences, such that participants in 
the Spanish-like condition were better at accepting (Spanish-like) 
experimental words than participants in the Spanish-unlike condition 
were at accepting (Spanish-unlike) experimental words. Furthermore, 
participants in the Spanish-like condition were worse at rejecting 
(Spanish-like) foils than participants in the Spanish-unlike condition 
were at rejecting (Spanish-unlike) foils. This finding provides more 
direct evidence that participants’ SL is influenced by their prior 
knowledge of syllable co-occurrences acquired via SL in their native 
language.

In parallel to these studies, I examined in this thesis how prior 
knowledge of syllable co-occurrences (acquired via SL in the 
participants’ native language) influences participants’ subsequent 
language processing and learning. Crucially, I studied how the learning 
unfolded incrementally over the course of the exposure in adult (cf. 
Chapter 3) and child populations (cf. Chapter 4) and investigated how 
the children’s language proficiency influenced their SL performance.

Does the frequency distribution of the new input matter?

After exploring how previous knowledge of syllable co-
occurrences alone affects future SL (cf. Chapters 3 and 4), I expanded 
the research question and asked how the factor of previous knowledge 
interacts with another factor influencing SL, namely the frequency 
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distribution in which the new stimuli are presented (cf. Chapter 5). As 
described above, previous studies have found that the type of input 
distribution might affect statistical word segmentation (Kurumada et 
al., 2013; Lavi-Rotbain & Arnon, 2022). Kurumada et al. (2013) 
concluded that learning from a Zipfian frequency distribution facilitates 
SL in comparison to learning from a uniform frequency distribution 
(though see Lavi-Rotbain & Arnon, 2022, for evidence that it is the 
predictability of the words rather than their precise skew which 
influences word segmentation). In Chapter 5, I asked whether German 
adults’ word segmentation benefits from a combination of participants’ 
prior knowledge of syllable co-occurrences and the stimuli being 
presented in a Zipfian frequency distribution.

Thesis outline

In this thesis, I investigated the availability and reliability of word 
segmentation cues in German child-directed speech and tested whether 
prior knowledge of German syllable co-occurrences influences 
subsequent learning of input adhering to those familiar syllable 
distributions. 

Chapter 2 lays the foundation for my thesis by examining the 
availability and reliability of five word segmentation cues in a corpus 
analysis of German child-directed speech. For this chapter, I analysed 
approximately one day worth of speech input to a child (approximately 
15,000 words). I obtained the words from utterances on the CHILDES 
database (MacWhinney, 2000) and coded for lexical stress, syllable TPs 
within and between words, word and syllable frequencies as well as 
syllable structure frequencies, word length, and single-word utterances.

Chapter 3 investigates how adults’ prior knowledge of syllable co-
occurrences influences their subsequent learning and processing of new 
input based on those familiar syllable distributions. The adults 
performed a serial recall task, which required them to repeat sequences 
of eight syllables. Three different types of sequences were presented 
auditorily: naturalistic sequences, non-naturalistic sequences, and 



unstructured foil sequences. Naturalistic and non-naturalistic sequences 
contained disyllabic experimental words. Crucially, the words in the 
naturalistic sequences were frequently co-occurring syllable pairs in 
natural German (i.e., they occur with high TPs in German, without 
forming a German word by themselves). Words in the non-naturalistic 
sequences, on the other hand, comprised syllable pairs not found in a 
corpus of natural German (i.e., they could only be learned without prior 
knowledge during the experiment). I hypothesised that the adults had 
formed long-term memory representations of highly frequent syllable 
pairs in natural German, which would boost their repetition of the 
naturalistic sequences, with their knowledge helping them to chunk the 
syllables into pairs (i.e., experimental words) in the early phases of the 
experiment, reducing the memory load from remembering eight 
syllables to four words per sequence. Unstructured foil sequences did 
not contain any learnable patterns.

Chapter 4 turns from adults’ language processing in the previous 
chapter to how seven- to nine-year-old children’s prior knowledge of 
syllable co-occurrences influences their subsequent learning. The 
children performed the same serial recall task as the adults but with 
shorter sequences of six syllables. I hypothesised that children, too, 
would benefit from their prior knowledge of syllable co-occurrences in 
the naturalistic condition from the early stages of the experiment. 
Additionally, the children’s language proficiency was assessed, and I 
explored whether their language proficiency predicted the children’s 
performance on the serial recall task.

Chapter 5 studies the interaction of two factors influencing SL, 
namely participants’ prior knowledge of syllable co-occurrences and 
the kind of frequency distribution in which the experimental words are 
presented. The chapter reports three online experiments with German 
adults. In the first experiment, the adults were exposed to an artificial 
language for three minutes, followed by a two-alternative forced choice 
(2AFC) segmentation task. The experiment had a 2x2 between-
participants design, with participants being randomly assigned to one 
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of four groups: Naturalistic + Zipfian, Naturalistic + Uniform, Non-
naturalistic + Zipfian, or Non-naturalistic + Uniform. The two 
naturalistic conditions contained the six experimental words from the 
naturalistic sequences in Chapters 3 and 4, and the non-naturalistic 
conditions contained the six experimental words from the non-
naturalistic sequences in Chapters 3 and 4. These words were either 
presented in a Zipfian distribution in the two Zipfian conditions or in a 
uniform distribution in the two uniform conditions. I hypothesised that 
participants in the Naturalistic + Zipfian condition would outperform 
participants in the other conditions on the 2AFC segmentation task, 
given that they could benefit from both prior knowledge of the syllable 
co-occurrences and the Zipfian distribution of their experimental input. 
Likewise, I expected participants in the Non-naturalistic + Uniform 
condition to reach the lowest 2AFC scores since they had no facilitatory 
factors influencing their SL. However, unexpected results required two 
follow-up experiments. Potential reasons for the unexpected findings 
are discussed.

Finally, Chapter 6 summarises and discusses the findings of 
Chapters 2 to 5 and outlines potential future research.
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Chapter 2
Word segmentation cues in 
German child-directed speech: 
A corpus analysis
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Abstract2

To acquire language, infants must learn to segment words from 
running speech. A significant body of experimental research shows that 
infants use multiple cues to do so; however, little research has 
comprehensively examined the distribution of such cues in naturalistic 
speech. We conducted a comprehensive corpus analysis of German 
child-directed speech (CDS) using data from the Child Language Data 
Exchange System (CHILDES) database, investigating the availability 
of word stress, transitional probabilities (TPs), and lexical and 
sublexical frequencies as potential cues for word segmentation. Seven 
hours of data (~15,000 words) were coded, representing around an 
average day of speech to infants. The analysis revealed that for 97% of 
words, primary stress was carried by the initial syllable, implicating 
stress as a reliable cue to word onset in German CDS. Word identity 
was also marked by TPs between syllables, which were higher within 
than between words, and higher for backwards than forwards 
transitions. Words followed a Zipfian-like frequency distribution, and 
over two-thirds of words (78%) were monosyllabic. Of the 50 most 
frequent words, 82% were function words, which accounted for 47% of 
word tokens in the entire corpus. Finally, 15% of all utterances 
comprised single words. These results give rich novel insights into the 
availability of segmentation cues in German CDS, and support the 
possibility that infants draw on multiple converging cues to segment 
their input. The data, which we make openly available to the research 
community, will help guide future experimental investigations on this 
topic.

2 This chapter is based on Stärk, K., Kidd, E., & Frost, R. L. A. (2022). Word 
segmentation cues in German child-directed speech: A corpus analysis. Language and 
Speech, 65(1), 3–27. https://doi.org/10.1177/0023830920979016
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Introduction

One of the first puzzles that children must solve during language 
acquisition is finding boundaries between individual words in speech. 
However, this is no easy feat, since there are no perfectly reliable cues 
that learners can draw upon (Aslin et al., 1996; Lehiste, 1970). Instead, 
children must look to a broad range of imperfect, probabilistic cues 
(e.g., stress patterns, phonotactic and allophonic regularities, and 
information about syllable co-occurrences), and use these in 
combination (Monaghan, 2017). Importantly, each language differs in 
the availability and likely combination of cues for segmentation, 
meaning each solution will necessarily be language-specific (see 
Cutler, 2012). Studying the distribution of cues to segmentation in a 
variety of different languages is therefore critical for shaping our 
understanding of whether and how they aid infants’ language 
acquisition.

There is a substantial literature documenting the prevalence of 
various particular segmentation cues across different languages, most 
prominently in European languages such as English (see e.g., Aslin et 
al., 1996; Brent & Siskind, 2001; Cutler & Carter, 1987; Piantadosi, 
2014) and French (e.g., Shi & Lepage, 2008; see Aslin et al., 1996, and 
Kabak et al., 2010, for related results from Turkish and French, and see 
Saksida et al., 2017, for a larger cross-linguistic comparison), though 
comparatively less is known about the way such cues occur in German. 
Moreover, there is a notable absence of comprehensive corpus studies 
seeking to quantify the availability of individual cues in combination in 
the input. In the current chapter, we present one such study of German 
child-directed speech (CDS). Building upon past research that has 
focused on single prominent cues to segmentation (e.g., word stress:
Cutler & Carter, 1987; transitional probabilities (TPs): Saksida et al., 
2017; single-word utterances: Brent & Siskind, 2001), we provide a 
rare comprehensive assessment of a broad range of cues that have been 
shown to help learners to locate word boundaries in speech, giving a 

31

W��� ������������ ���� �� G����� �����-�������� ������: A ������ ��������



32

rich overview of the way these cues exist in German CDS. We address 
each cue that we study in turn below.

Word stress

One well-established cue to word segmentation is stress; the 
emphasis of a particular syllable within a word over the others. Regular 
stress patterns in a given language can help mark particular positions 
within words, and thus can provide a strong indication of word 
boundaries. For instance, in English, words are typically stressed on the 
first syllable (Cutler, 1996; Cutler & Norris, 1988), whereas in Hebrew 
stress usually occurs in a word-final position (Glinert, 1989) – flagging 
word onset and offset, respectively. Infants’ use of stress as a cue for 
speech segmentation has been shown to be guided by the basic rhythm 
of the language being acquired; infants acquiring syllable-timed 
languages such as French, Italian, and Cantonese (i.e., languages in 
which syllables tend to have similar durations) start with segmentation 
based on the syllable, while infants acquiring stress-timed languages 
such as English and German (i.e., languages in which stressed syllables 
are longer and more emphasised than unstressed syllables) might break 
into the speech stream by assuming a trochaic foot (see e.g., Goyet et 
al., 2010; Nazzi et al., 2006).

Cutler and Norris (1988) proposed that the occurrence of a strong 
syllable triggers word segmentation in English, with English speakers 
interpreting this as the onset of a new word (Curtin et al., 2005; Echols 
et al., 1997; Houston et al., 2004; Jusczyk et al., 1999; Norris et al., 
1995). In English, this strategy promises a high success rate, as 90% of 
content words begin with a strong syllable (Cutler & Carter, 1987). 
Jusczyk et al. (1999) reported developmental evidence in support of 
this claim: in a series of experiments, they showed that 7.5-month-old 
English infants treated strong syllables as indicators for word onset 
(e.g., interpreting “guiTAR is” as “gui TARis”), and only learnt to 
segment words following an atypical stress pattern at a later point in 
development (10.5 months).
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Studies in a range of languages have documented infants’ 
sensitivity to prosodic cues from a very young age (Bull et al., 1984, 
1985; Eilers et al., 1984; Spring & Dale, 1977) – perhaps even from 
birth (Nazzi et al., 1998; Sansavini et al., 1997), with infants developing 
a preference for the stress pattern of their native language over the 
course of development (Jusczyk et al., 1993). For German, there is 
evidence that young infants (around five months old) can discriminate 
between trochaic and iambic stress, showing a preference for trochaic 
stress over the less common iambic stress pattern (Friederici et al., 
2007; Höhle et al., 2009; Tippmann et al., 2015; Weber et al., 2004). 
Critically, research has shown that infants can use this information to 
guide word segmentation (Höhle et al., 2001). Here, we examined the 
precise way in which lexical stress cues are distributed across words in 
German CDS, providing key evidence for the widely assumed 
dominant trochaic stress pattern in German.

Transitional probabilities

Another likely cue to word segmentation is the TP between 
syllables (Saffran, Aslin, et al., 1996; Saksida et al., 2017). TPs express 
the likelihood that particular syllables will occur alongside each other 
in speech, given their prior co-occurrence in the input (both together, 
and with other items). Languages typically have higher TPs within than 
between words, such that word boundaries can be inferred at the point 
at which the subsequent syllable is hard to predict, given the prior 
syllable. For instance, in the sequence pretty baby the within-word 
syllable transitions from pre to ty and from ba to by have higher TPs 
(and are therefore easier to predict) than the between-word transition 
from ty to ba (Saffran, 2003, reports a TP of .8 for the transition from 
pre to ty compared to a TP of .0003 from ty to ba).

In an extensive body of research, learners of all ages have been 
found to be highly sensitive to the transitional information contained 
within speech (e.g., Saffran, Aslin, et al., 1996; Saffran et al., 1997), and 
from an early age, infants can use this co-occurrence information to 
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calculate the likely locations of word boundaries in speech (Aslin et al., 
1998; Teinonen et al., 2009; see Black & Bergmann, 2017, for a meta-
analytic review). This process, termed statistical learning, has been 
investigated with speakers of a variety of languages (e.g., German:
Marimon Tarter, 2019; Matzinger et al., 2019; English: Saffran et al., 
1996; Finnish: Teinonen et al., 2009; French: Franco et al., 2015; 
Hebrew: Siegelman et al., 2018). Moreover, TPs have been found to be 
informative in both directions, for both forwards transitions (i.e., a 
subsequent syllable being predictable based on the preceding syllable, 
e.g., predicting by from ba in the word baby) and backwards transitions 
(e.g., predicting ba from by; Perruchet & Desaulty, 2008). Critically 
though, as a cue, TPs have significant language-specific properties. 
Notably, languages differ on whether forwards or backwards TPs are 
most informative (Onnis & Thiessen, 2013). In the current study, we 
determined the strength of both forwards and backwards TPs as cues to 
word identity in German.

Lexical and sublexical frequency

Frequency has been found to play an important role in language 
acquisition (see Ambridge et al., 2015, for a review). In natural 
language, word frequency follows Zipf’s law (Zipf, 1935, 1949), 
whereby a small number of words occur very frequently, whereas the 
vast majority of words are only rarely used. Zipfian distributions have 
been found to aid word segmentation in adult statistical learning 
studies, especially for larger lexica (Kurumada et al., 2013), 
presumably because highly frequent sequences enable rapid 
segmentation, which can act as anchors in subsequent utterances. This 
anchor effect has been found to benefit word segmentation in infant 
(Altvater‐Mackensen & Mani, 2013; Bortfeld et al., 2005; Mersad & 
Nazzi, 2012; Shi & Lepage, 2008) and adult learners (Cunillera et al., 
2010; Valian & Coulson, 1988), and in recent work, Cunillera et al. 
(2016) documented the neural signature of this effect – demonstrating 
that anchor words elicited greater stimulus-preceding negativity (a 
marker of expectation) in adults’ electroencephalography (EEG) data 
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compared to less frequent words. Further support for the role of high 
frequency words in segmentation comes from the computational 
modelling literature; Monaghan and Christiansen (2010) demonstrated 
that their PUDDLE model of speech segmentation could quickly 
extract high frequency words from utterances contained within corpora 
of CDS, and use them to segment the remainder of the input.

Since frequency has been found to play a pivotal role in language 
acquisition, it follows that the benefits of highly frequent items may 
extend beyond word frequency, to the frequency of the syllables that 
words contain, and their syllabic structure. Syllable structures describe 
the patterns of consonants and vowels within a syllable (e.g., the 
syllable ba consists of a consonant and a vowel, abbreviated as a CV 
structure). These structures might follow a certain distribution, which 
might help segmentation in a similar way to the phonotactics of a 
language (see e.g., Boll-Avetisyan, 2018). That is, certain combinations 
of consonants and vowels might occur more often in specific positions 
and provide cues to word-hood. Consequently, we examined the 
frequency distributions of word types, word tokens, syllables, and 
syllable structures in German CDS.

Word length

For many of the world’s languages, the length of individual words 
can vary quite substantially. However, Zipf’s law (Zipf, 1935, 1949) 
states that word length is optimised for efficient communication, such 
that the most frequent words in a language are typically short. Support 
for this notion can be found for a range of languages, including English 
(see e.g., Li & Shirai, 2000, frequency counts for CDS corpora 
comprising 2.6 million words), Spanish (e.g., Alonso et al., 2011), and 
Swedish (Sigurd et al., 2004). In German, prior analyses revealed that 
approximately 50% of (written) words were monosyllabic, whereas 
around 30% were disyllabic, and approximately just 20% were longer 
still (Kaeding, 1897; Sigurd et al., 2004). While heterogeneity among 
word lengths is commonplace within language, a number of studies 
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have demonstrated that having a variety of word lengths in speech 
poses a significant challenge to speech segmentation (Johnson & Tyler, 
2010; Lew-Williams & Saffran, 2012; Kurumada et al., 2013; but see 
Perruchet & Vinter, 1998, for computational counter-evidence) – 
though this difficulty may be eased when speech contains additional 
cues (Frost et al., 2020; Johnson & Tyler, 2010; Lew-Williams & 
Saffran, 2012). Conceivably, caregivers may remove some of the 
complexity associated with varying word length by providing a more 
uniform signal in CDS (Garmann et al., 2019; but see Segal et al., 
2009). We investigated this possibility here.

Single-word utterances

Finally, another potential cue for identifying word boundaries is the 
occurrence of words in isolation, in single-word utterances. Research 
has found that most caregivers use single-word utterances in 
conversations with their infants, repeating around a third of these 
within close temporal proximity (Aslin et al., 1996; Brent & Siskind, 
2001). Previous studies have estimated that up to 26% of utterances in 
English CDS comprise single words (Monaghan & Christiansen, 2010; 
but see MacWhinney & Snow, 1985, for a more conservative 
estimation of 14%). These single-word utterances have been suggested 
to help segmentation by first facilitating learning of these items (Junge 
et al., 2012), then flagging the boundaries of neighbouring items in 
subsequent multi-word utterances (Peters, 1983; Pinker, 1984) – 
similar to the way in which high frequency words have been proposed 
to assist segmentation. In the present study, we examined how many 
single-word utterances occurred in German CDS and how many single-
word utterances were repeatedly produced, supposedly boosting the 
facilitated segmentation effect.

Aims and hypotheses

Past research has revealed that infants are sensitive to a range of 
cues to speech segmentation, and that the prevalence of these cues 
within the speech that children hear is subject to marked cross-
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linguistic variation. However, much remains to be done to determine 
the relative weighting of these cues across the world’s languages. In the 
current study, we adopt a corpus-based approach to determine cue 
availability in German CDS. Using High German as our target 
language, we took the equivalent of one day’s worth of input to a 
German-acquiring infant, and coded it for primary word stress, TPs, 
word frequency, word length, and the occurrence of words in single-
word utterances. We hypothesised that we would find a dominant 
trochaic stress pattern for German similar to the one found in English 
(Cutler & Carter, 1987). In addition, we expected to see higher within-
word than between-word TPs, and higher backwards than forwards 
TPs, similar to the results found in English (another right-branching 
language; Onnis & Thiessen, 2013; Saksida et al., 2017). With regard 
to word frequency, we expected to find a Zipfian-like distribution of 
word types, word tokens, and syllables (Zipf, 1935, 1949), as has been 
found for a variety of the world’s languages, with a small number of 
words occurring with comparatively higher frequency than the 
remainder of words in the corpus. In terms of word length, we expected 
to find a greater proportion of shorter than longer words (Piantadosi et 
al., 2011; Zipf, 1935, 1949). Based on corpus analyses of English, we 
hypothesised that the corpus may contain a large proportion of single-
word utterances (MacWhinney & Snow, 1985; Monaghan & 
Christiansen, 2010), with a large amount of these occurring repeatedly 
(Brent & Siskind, 2001; Monaghan & Christiansen, 2010).

Method

Data

Our data are openly available on the Open Science Framework 
(OSF): https://osf.io/vpdu6/. Our corpus comprised 20 German datasets 
from the Child Language Data Exchange System (CHILDES) database 
(MacWhinney, 2000). All datasets contained CDS spoken to children 
under two years of age. In order for our corpus to contain a 
representative sample of speech, we included files from a number of 
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different children, recorded in different contexts (e.g., playing with 
toys, reading books, eating, or bathing). This reduced the likelihood 
that speaker-specific patterns would influence our results. In total, we 
included data from 19 individual speakers talking to ten different 
children, taken from the Caroline (Von Stutterheim, 2010), Manuela 
(Wagner, 2006), Miller (Miller, 1979), Rigol (Rigol, 2007), and Wagner 
(Wagner, 1974, 1985) corpora, with the age of the children at the time 
of recording ranging from 00;06.13 to 01;08.13 years. Together this 
totalled 07:32 hours of recording, during which caregivers (and 
occasionally siblings or researchers) provided 3967 utterances of CDS 
input, comprising an overall total of 16,474 words, and 14,660 words 
after filtering out proper names, sounds, and unintelligible speech (see 
the Appendix for further information on the included datasets). We 
estimate that this represents approximately one day’s worth of input3.

Coding

We coded the data by word tokens, that is, individual occurrences 
of words in CDS (so, with one entry for each of the 16,474 words). We 
defined a word as a unit that the child needs to segment to assign 
meaning4. For each word, we coded for information at the word and 
syllable levels (for the full coding scheme see our OSF page). At the 
word level, we coded for word type (i.e., grouping different 
pronunciations of words, which result in different word tokens, into one 
word type), parts of speech (i.e., whether a word is a noun or a verb, 
etc.) and resulting categorisation as content or function words, with 
content words comprising nouns, verbs and adjectives, and function 
words comprising all remaining word categories. We also coded for 
word length (number of syllables), and word stress (the position of 
3 A recent study by Donnelly and Kidd (2021) using daylong recordings found that, at 
twelve months, the average number of words a child hears is 14,572 (SD = 6826), 
based on a large sample of over 100 children acquiring Australian English as a first 
language. This number increases slightly across the next year, to 16,827 words at 24 
months. Note that this estimates the words in the environment, only a subset of which 
is likely to be child-directed speech.
4 This is different from a phonological word as those comprise chunks such as haste
for has(t) de [: du] (‘have you’), which we treated as two different words.
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stress within words). At the syllable level, we coded the phonetic 
representation and syllable structure for each syllable of the word (i.e., 
describing the pattern of consonants and vowels which the syllable 
comprised, e.g., CV for the syllable [ba]). Sounds and unintelligible 
material were excluded from the analyses. Proper names were excluded 
from all analyses, except for the analysis which sought to establish the 
occurrence of proper names in single-word utterances.

Results

We will first outline the results for our analyses of word stress, TPs, 
and word and syllable frequencies. We will then present our findings for 
word length, and finally for those cues that can facilitate segmentation 
by flagging word boundaries (i.e., highly frequent words and single-
word utterances). Our analyses and results are openly available on 
OSF: https://osf.io/vpdu6/. Additional analyses (such as analyses on 
subsets of the data, for instance, excluding monosyllabic words) can be 
found in the “Additional Analyses” section in our analysis file. All 
analyses were performed in R 3.6.3 (R Core Team, 2022).

Word stress

We examined the position of primary within-word stress, to 
establish how reliable the widely assumed dominant trochaic stress 
pattern is as a potential cue for segmentation in German. This analysis 
was performed on the whole corpus, excluding proper names and 
sounds.

The vast majority of words in our corpus of CDS were found to 
carry word-initial stress; in total, approximately 97% of words were 
stressed on the first syllable, whereas around 3% were stressed on the 
second, and less than 1% on the third to seventh syllables, but with no 
words being stressed on the sixth syllable (see Table 2.1). In addition to 
this primary analysis, which used the entire corpus (thereby providing 
the closest approximation to the full input), we ran two further 
iterations – the first of which excluded repetitions (examining unique 
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word tokens only), and the second of which was run on word tokens but 
excluded monosyllabic words (which can only be stressed on their first 
and only syllable). This was vital for establishing whether the observed 
stress pattern is generalisable, and is not reliant on particular tokens.

For both of these iterations, we analysed the resulting corpus in the 
same way as before. Both analyses yielded the same pattern of results: 
excluding repetitions, 87% of words were stressed on the first syllable, 
11% on the second, and 2% on the third to seventh syllables (with no 
words carrying stress on the sixth syllable). Excluding monosyllabic 
words, 86% of words were stressed on the first syllable, 12% on the 
second, and 2% on the third to seventh syllables (again with no words 
carrying sixth-syllable stress). Thus, these data provide strong evidence 
to suggest that German CDS has a dominant trochaic stress pattern (i.e., 
word-initial stress).

Transitional probabilities

We next examined the way in which TPs between syllables varied 
according to two key aspects: context (i.e., for transitions within versus 
between words); and direction (i.e., probabilities of syllable co-
occurrence for forwards versus backwards transitions). To do this, we 
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Syllable
position

Primary word stress:
All word tokens

Primary word stress:
Unique word tokens

Primary word stress:
Word tokens excluding 
monosyllabic words

Count % Count % Count %
1 14,206 96.90 1,536 87.03 2,771 85.92
2 398 2.71 191 10.82 398 12.34
3 47 0.32 31 1.76 47 1.46
4 6 0.04 5 0.28 6 0.19
5 1 0.01 1 0.06 1 0.03
6 0 – 0 – 0 –
7 2 0.01 1 0.06 2 0.06
8 0 – 0 – 0 –
Total 14,660 1,765 3,225

Table 2.1. Frequency of primary word stress at each syllable position.



extracted pairs of syllables from either within or between words within 
utterances only (i.e., not crossing utterance boundaries, which are 
typically indicated by a pause or a switch in speakers), and calculated 
forwards and backwards TPs for both contexts. Forwards TPs were 
calculated following Equation (1a), and backwards TPs following 
Equation (1b). That is, the forwards TPs within the word baby, for 
instance, were calculated by dividing the number of times the two 
syllables ba and by co-occurred by the total number of times the 
syllable ba occurred:

Figure 2.1 shows that both backwards and forwards TPs are higher 
within than between words. To test whether the TPs varied according to 
context and direction, we fitted a linear mixed-effects model using the 
lme4 1.1-23 package (Bates et al., 2015). The dependent variable was 
TP, and context and direction were entered as fixed effects. We used 
deviation contrasts for context (within words: –0.5, between words:
0.5) and direction (forwards: –0.5, backwards: 0.5). We fitted the 
maximal model supported by the data (Barr et al., 2013), controlling for 
the syllable pair as a random intercept with direction5 as a random 
slope. To examine the effects of the model predictors, we used 
likelihood-ratio (χ²) comparisons to obtain p-values (through serial 
decomposition), and bootstrap simulations (Runs = 1000) to calculate 
95% confidence intervals for the beta estimates. The marginal and 
conditional R² effect sizes are also reported as goodness-of-fit 
estimates. These denote the proportion of the variance explained by the 
model both with (conditional R²) and without (marginal R²) controls for 
sources of random variance (Johnson, 2014; Nakagawa et al., 2017; 
Nakagawa & Schielzeth, 2013).
5 Direction is included as a random slope because forwards and backwards TPs are 
calculated for each syllable pair. Context, however, is not included as a random slope 
because within-word and between-word TPs are almost exclusively calculated on 
different syllable pairs.
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There was a significant main effect of context, with TPs being 
higher within words than between words (within words: M = 0.33, SD 
= 0.41; between words: M = 0.11, SD = 0.21). There was also a 
significant effect of direction, with TPs being higher for backwards 
transitions than for forwards transitions (backwards: M = 0.17, SD = 
0.29; forwards: M = 0.13, SD = 0.26; see Figure 2.1 and Table 2.2). 
There was a significant interaction between context and direction, 
driven by a larger difference between the two contexts for the 
backwards TPs (forwards: within words: M = 0.30, SD = 0.39; between 
words: M = 0.10, SD = 0.21; backwards: within words: M = 0.36, SD = 
0.44; between words: M = 0.12, SD = 0.22). The maximal model with 
context and direction as fixed predictors accounted for approximately 
10% of the variance in the data without the random effects structure, 
and 46% of the variance with the random effects structure.
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Figure 2.1. Density plot of transitional probabilities (TPs) between 
syllables in the corpus. The panels on the left and right show the 
frequency data for backwards and forwards transitions, respectively. 
TPs within words are indicated in green, whereas TPs between words 
are indicated in orange.



Frequency

Word frequency

We examined the frequency distribution of words in the input, in the 
light of the suggestion that highly frequent words and a Zipfian-like 
frequency distribution (Zipf, 1935, 1949) can support segmentation 
(Kurumada et al., 2013).

There was a Zipfian-like frequency distribution (Zipf, 1935, 1949) 
for both word tokens and word types (see Figure 2.2 for a density plot 
of word token frequencies; see our OSF repository for the same plot but 
with word types), with the corpus containing a large amount of low 
frequency words (i.e., open class words such as nouns, which were high 
in quantity, but were rarely repeated, amounting to 31% of words in the 
corpus), and a small amount of words with much higher frequencies 
(i.e., closed class words such as determiners, which were used in 
combination with all nouns, e.g., ein Fuchs “a fox”, ein Häschen “a 
rabbit”, and ein Laster “a lorry”, amounting to 69% of words in the 
corpus). This was in line with our hypothesis. A summary of the word 
frequency density (i.e., the percentage of individual words in the corpus 
occurring once, twice, three times, etc.) is provided in Table 2.3, 
alongside the analogous results from Kaeding’s (1897) study of written 
German. Both studies revealed a Zipfian-like frequency distribution 
(i.e., in both sets of input, approximately half of the words occurred just 
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Parameter b 95% CI SE χ2 df p
(Intercept) 0.220 [0.215,   0.225] 0.003 – – –
Context –0.219 [–0.229, –0.209] 0.005 1556.53 1 < .001
Direction 0.047 [0.035,   0.059] 0.006 52.46 1 < .001
Context × Direction –0.041 [–0.063, –0.018] 0.012 11.24 1 < .001

Table 2.2. Summary of the linear mixed-effects model for transitional 
probabilities (TPs).

Notes: Model fit: AICc = 2151; BIC = 2211; R²marginal = 0.098; R²conditional = 0.464.

https://osf.io/vpdu6/
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once; 49% of words in Kaeding’s study, 50% of words in the current 
corpus; and approximately 15% of words occurred twice, etc.).

We focused our subsequent frequency analyses on the 50 most 
frequent items (computing analyses for both word tokens and word 
types), to shed light on the properties of the words that infants were 
hearing the most. For word tokens, the 50 most frequent items 
constituted 54% of the corpus (7896 out of 14,660 words; see Figure 
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Word token frequency Kaeding (1897) Current dataset
1 49.14% 49.76%
2 13.37% 15.12%
3 6.61% 7.65%
4 4.31% 4.34%
5 3.04% 3.37%
6–10 7.76% 7.47%

Table 2.3. Summary of word token frequencies in Kaeding’s (1897) 
study of written German and in the present corpus of German child-
directed speech.

Figure 2.2. Density plot of word token frequencies, indicating the 
extent to which words occur with particular frequencies in the corpus.



2.3 Panel A), and were almost exclusively monosyllabic, with wieder
(“again”, 91 occurrences) and aber (“but”, 54 occurrences) being the 
only multi-syllabic exceptions. For word types, the 50 most frequent 
items constituted 59% of the corpus (8602 out of 14,660 words; see 
Figure 2.3 Panel B). As with word tokens, the vast majority of word 
types were monosyllabic, with six exceptions; wieder (“again”, 91 
occurrences), eine (“a”, 78 occurrences), aber (“but”, 54 occurrences), 
einen (“a”, 54 occurrences), danke (“thanks”, 52 occurrences) and 
haben (“have”, 51 occurrences), which were all disyllabic. Thus, these 
data suggest that the vast majority of the most frequent words in 
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Figure 2.3. Frequencies for the 50 most frequent words in the corpus. 
Panel A (left) shows word tokens, and Panel B (right) shows word 
types.
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German CDS are monosyllabic, with a small number of disyllabic 
exceptions.

To investigate which kind of words were most frequent, we 
distinguished between function and content words. Of the 50 most 
frequent words, 41 tokens (82%) or 39 types (78%) were function 
words (e.g., das “the” or ja “yes”), whereas just nine tokens (18%) or 
eleven types (22%) were content words (e.g., guck “look” or schön
“nice”). These highly frequent function words accounted for 
approximately 47% of word tokens in the entire corpus (6834/14,660), 
and 50% of word types (7290/14,660). The vast majority were 
monosyllabic (39/41 tokens, and 35/39 types). These highly frequent 
monosyllabic function words accounted for approximately 46% of 
word tokens in the entire corpus (6689/14,660), and 48% of word types 
(7039/14,660).

Syllable and syllable structure frequency

We examined the frequencies of individual syllables, and particular 
syllable structures. For instance, the word Baby consists of two 
syllables, [be:] and [bi] with the respective syllable structures CVV and 
CV. Our corpus comprised 18,736 syllable tokens in total, and 
particular syllables were seen to occur with a Zipfian-like distribution 
(Zipf, 1935, 1949; see OSF for a density plot of syllable frequencies). 
Because of the large quantity of monosyllabic words within the corpus, 
the most frequent syllables were identical to the most frequent word 
tokens (see Figure 2.4 Panel A). Of particular interest, then, are 
syllables occurring in multisyllabic words. The results of our additional 
analyses excluding monosyllabic words, as well as focusing 
particularly on disyllabic and trisyllabic words (as used in most 
artificial language learning studies) can be found on OSF in Section 5 
of the analysis file. Since children, however, encounter the 
monosyllabic words in their input, we draw our conclusions from the 
complete dataset, reporting only the results for the whole corpus 
(including all word lengths) here. We summarise our findings for 
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multisyllabic words, as well as disyllabic and trisyllabic words in the 
Supplementary material folder on OSF.

For syllable structure, there was again a Zipfian-like distribution 
(Zipf, 1935, 1949; see OSF for a density plot of syllable structure 
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Figure 2.4. Syllable and syllable structure frequencies in the corpus. 
Panel A (left) shows the 50 most frequent syllables, and Panel B (right) 
shows all 45 different syllable structures. Because we consider syllabic 
consonants such as [ṇ] as consonants, it is possible to have syllables 
with multiple consonants but no vowels (e.g., the second syllable of the 
verb putzen [pʊtsṇ] “clean” consists of three consonants); similarly, 
because we code long vowels as VV, it is possible to have syllables with 
multiple vowels (e.g., the word er [e:ɐ̯] “he” consists of three vowels).

https://osf.io/vpdu6/
https://osf.io/vpdu6/
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frequencies), with a small number of structures occurring much more 
frequently than others. We examined the frequencies with which 
particular syllable structures occurred at different positions within 
words, to explore the possibility that patterns of regularity may indicate 
word boundaries (for instance, if certain structures are mostly found at 
word edges).

There were 45 different syllable structures within our corpus (see 
Figure 2.4 Panel B). In initial and final positions, there were 42 different 
structures; in medial positions, there were 24. We observed slight 
differences dependent on syllable position; the most common structure 
in medial positions was an open syllable (CV as in [gə]; comprising 
40% of medial syllables), whereas the most common structures in 
initial and final positions were closed (CVV as in [da:] or CVC as in 
[das]). Word-initial syllables ended most often in a long vowel (i.e., 
CVV; comprising 22% of initial syllables), whereas syllables in word-
final positions ended most often in a consonant (i.e., CVC; comprising 
23% of final syllables). However, these three structural types (CV, 
CVV, and CVC) were found to occur in all positions within words with 
a high degree of frequency, constituting the most frequent syllable 
structures for all three locations – limiting the extent to which these 
structures may serve to cue segmentation. The difference between 
structure occurrence in initial versus final positions is particularly 
subtle (initial: CVV 22%, CVC 21%; final: CVV 18%, CVC 23%), 
possibly because of the large amount of monosyllabic words in the 
corpus. Again, syllable structures occurring in multisyllabic words can 
provide further insights. We summarise our findings for multisyllabic 
words, as well as disyllabic and trisyllabic words in the Supplementary 
material folder on OSF.

Word length

Next, we examined word length, and the frequency with which 
different word lengths occurred in the input. Table 2.4 lists this for the 
number of word tokens, the number of unique word tokens, and the 
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number of unique word types. Word tokens provided the raw frequency 
counts of every word in the corpus. Unique word tokens represent the 
number of different words in the corpus regardless of the number of 
repetitions of this item (e.g., a list containing: “one, one, two” would 
count three word tokens but only two unique word tokens). The unique 
word types column combines different pronunciations of the same word 
(e.g., a list containing: “not, not, n’t,” would count three word tokens, 
two unique word tokens but only one unique word type). We computed 
the word length of unique word tokens and unique word types as a 
measure of robustness to ensure the reliability of the findings and to 
control for potential correlations with other effects such as word 
frequency.

The words in our corpus were between one and eight syllables long 
(with the longest words being nominal compounds). In total, 11,435 
(78%) of all words were monosyllabic, 2550 (17%) disyllabic, 545 
(4%) trisyllabic, and 130 (1%) between four and eight syllables long 
(with seven-syllable words never occurring). After controlling for 
frequency (via excluding repetitions) there was a slight shift in this 
pattern, with disyllabic words occurring slightly more often (40%) than 
monosyllabic words (37%), followed by trisyllabic words (17%), and 
words with four to eight syllables (6%). This pattern shift indicates that 
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Number of 
syllables

Number of
word tokens

Number of unique
word tokens

Number of unique
word types

Count % Count % Count %
1 11,435 78.00 655 37.09 553 34.33
2 2,550 17.39 715 40.49 672 41.71
3 545 3.72 293 16.59 285 17.69
4 98 0.67 78 4.42 76 4.72
5 21 0.14 17 0.96 17 1.06
6 9 0.06 7 0.40 7 0.43
7 0 – 0 – 0 –
8 2 0.01 1 0.06 1 0.06
Total 14,660 1,766 1,611

Table 2.4. Frequency statistics for word length (measured in number 
of syllables).
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shorter (monosyllabic) words were subject to a greater degree of 
repetition in the corpus. Interestingly, although German allows 
significant compounding, only 2% of word tokens in our corpus were 
compounds.

Single-word utterances

Finally, we examined the corpus for single-word utterances, which 
may aid segmentation by subsequently flagging the boundaries of 
adjacent words in multi-word utterances. Of the 3513 utterances 
(excluding proper names and sounds), 527 utterances (or 15%) 
comprised single words (898 of 3967 utterances, or 23%, including 
proper names and sounds). Although we excluded proper names and 
sounds from all of our prior analyses, proper names – particularly the 
child’s – have been found to be highly salient anchors for infants’ 
segmentation of multi-word utterances (Bortfeld et al., 2005). Thus, we 
examined how often proper names occurred in single-word utterances. 
Across the whole corpus, single-word utterances comprising proper 
names occurred just 42 times – amounting to 7% of single-word 
utterances, and 1% of all utterances (including proper names, but 
excluding sounds).

The remainder of the single-word utterances were found to largely 
comprise function words (71% of single-word-utterances, excluding 
proper names and sounds). The most frequent words were particles 
such as ja (“yes”), which amounted to 17% of single-word utterances 
(3% of all utterances in the corpus), nein (“no”, 6% of single-word 
utterances), danke (“thanks”, 4% of single-word utterances), and bitte
(“please”, 3% of single-word utterances), adverbs such as so (“like 
this”, 10% of single-word utterances), and da (“there”, 9% of single-
word utterances), the pronoun was (“what”, 5% of single-word 
utterances), and the interjection hallo (“hello”, 2% of single-word 
utterances). 29% of single-word utterances were content words such as 
the imperative komm (“come”, 3% of single-word utterances), and the 
noun Baby (“baby”, 3% of single-word utterances). A list of all single-
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word utterances, including the remaining ones which occurred less than 
10 times, can be found in the Supplementary material folder on OSF.

Discussion

This study offers the first corpus analysis investigating the 
availability of word segmentation cues in German CDS, and the first to 
combine an analysis of a broad range of possible cues. We analysed 
approximately one day’s worth of input data from the CHILDES 
database (MacWhinney, 2000), examining a variety of potential word 
segmentation cues in German CDS: word stress, TPs, word and syllable 
frequencies, syllable structures, word length, and single-word 
utterances. We discuss the results for each of the cues in turn.

Word stress

Analyses of the corpus revealed a dominant and reliable trochaic 
stress pattern, with almost all words (97%) being stressed on the first 
syllable – providing strong evidence for the widely assumed trochaic 
stress pattern in German (Friederici et al., 2007; Höhle et al., 2001, 
2009; Tippmann et al., 2015; Weber et al., 2004). Crucially, the trochaic 
stress pattern persisted even when monosyllabic words were withheld 
from the analysis – indicating that infants may be able to use stress to 
inform segmentation of words of various lengths. These findings are 
comparable to findings on English word stress, where 90% of content 
words contained word-initial stress (Cutler & Carter, 1987; compared 
to 93% in the current study).

In the German linguistics literature there is still somewhat of a 
controversy about the rules underlying the predominant stress pattern 
in German, with some researchers claiming a universal rule assigning 
stress from the right word-edge (e.g., Giegerich, 1985; Vennemann, 
1990; Wiese, 1996), and others claiming a different rule for stress 
assignment in words of Germanic origin (word-initial stress) versus 
more recent borrowings (right-edge stress) (Benware, 1980; Braches, 
1987; Féry, 1986; Wurzel, 1970, 1980; see Goedemans & van der 
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Hulst, 2013a, 2013b, for a classification; and Jessen, 1999, for a 
discussion). We note, though, that since 95% of the words in our corpus 
were monosyllabic or disyllabic, establishing whether primary stress 
occurred on the first versus the penultimate syllable would not be 
possible. That is, for infants segmenting the speech detailed in our 
corpus, both of these possible stress patterns would be interpreted as 
containing word-initial stress.

Nevertheless, given the data reported here, we can assume that 
German CDS largely adheres to a word-initial stress pattern, which 
children can draw upon with high return given its ubiquity in the input 
(potentially with a small number of exceptions due to affixation – 3% 
in our corpus). This is consistent with experimental work on infant 
segmentation, which has shown that children make use of stress cues 
early in development (e.g., Höhle et al., 2001; Houston et al., 2000).

Transitional probabilities

The analysis of the TPs provided support for another cue to word 
segmentation in German CDS, with TPs being significantly higher 
within than between words. This finding builds on prior demonstrations 
that TPs are informative cues to word-hood in a variety of languages 
(e.g., Saffran, 2003; Saksida et al., 2017) – extending this to German. 
Together with the many experimental demonstrations of TP-based 
segmentation in experiments (Saffran, Aslin, et al., 1996; see Black & 
Bergmann, 2017, for a review), the naturalistic data lend credence to 
the possibility that infants draw on these statistics during language 
acquisition.

There are two additional features of the TP results that deserve 
discussion. The first concerns the magnitude of within-word TPs, which 
appear to be rather small compared to experimental studies, where 
words are typically defined by TPs that are much higher (indeed, in 
psycholinguistic experiments these are often perfect, i.e., TP = 1.0). 
Thus, if children draw on TPs to aid segmentation “in the wild,” they 
are doing so in a much noisier channel. Nevertheless, there is good 
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reason to believe that they do. For instance, Pelucchi et al. (2009) 
showed that eight-months-old infants can segment words from a 
foreign natural language (English-acquiring infants segmenting Italian 
speech) under experimental conditions following a short exposure 
phase.

The quasi-regular nature of this cue is a necessary outcome of the 
generative nature of language, and might actually be a key to learning. 
Kidd et al. (2012) argue that infants demonstrate a Goldilocks effect, 
such that they prefer to attend to events that are neither highly 
predictable nor unpredictable, thus avoiding making generalisations 
that are either too simple or too complex. A recent computational model 
of word learning suggests that cue variability may indeed serve to help, 
rather than hinder, learning – guiding the creation of a robust, canalised 
language system that is resistant to noise in the input (Monaghan, 
2017). This possible utility of noise in learning is underpinned by the 
principle that variation in the availability and reliability of 
distributional cues may encourage learners to seek guidance from 
multiple possible information sources, reducing the importance of a 
particular individual cue, and increasing the resilience of the language 
system to noise. Variability within various distributional statistics has 
been found to have advantages for segmentation (Kurumada et al., 
2013), word learning (Hendrickson & Perfors, 2019; Monaghan et al., 
2017), semantic category learning (Lany, 2014), and acquisition of 
syntactic structure (Gómez, 2002). Here, we raise the possibility that 
this may also extend to variability among TPs.

Interestingly, we found backwards TPs to be significantly higher 
(and thus, more informative) than forwards TPs, and the magnitude of 
the difference between within-word and between-word TPs was larger 
in the backwards direction. This finding provides further support for the 
notion that TPs are informative in both directions, as has been observed 
in English (Perruchet & Desaulty, 2008). Further, these data lend 
critical support to the idea that backwards TPs are more informative 
than forwards TPs in right-branching languages such as English (Onnis 

53

W��� ������������ ���� �� G����� �����-�������� ������: A ������ ��������



54

& Thiessen, 2013), extending this to German. This is in contrast to the 
distributional patterns observed for left-branching languages such as 
Korean, where forwards TPs are held to be more informative (Onnis & 
Thiessen, 2013). The generalisation here is that there are distinct 
influences of typology on probabilistic distributions in language; in 
particular, head-direction creates conditions in which one prominent 
element grounds a dependent one (e.g., compare red wine in English to 
vino rosso in Italian). Ultimately, this means that any statistical learning 
mechanism useful for segmentation must rapidly attune to the target 
language (Onnis & Thiessen, 2013; Thiessen et al., 2019).

Taken together, the results concerning stress and TPs suggest that, 
in German, stress is a dominant segmentation cue; consistent with 
recent experimental work by Marimon Tarter (2019), who found that 
German-acquiring six-month-old infants and German-speaking adults 
preferentially attended to stress over statistical information during a 
segmentation task. This is the opposite pattern than has been observed 
for English (Thiessen & Saffran, 2003), suggesting an unexpected 
cross-linguistic difference in the two, highly-related, languages. Further 
research will be necessary to unpack these differences.

Lexical and sublexical frequency

With regard to frequency, we found Zipfian-like distributions (Zipf, 
1935, 1949) for every feature that we analysed; words, syllables, and 
syllable structures, replicating Kaeding’s (1897) work on written 
German. These findings provide further evidence for the well-
established ubiquity of Zipfian distributions in natural language. In 
recent work, such distributions have been suggested to help speech 
segmentation (Kurumada et al., 2013). In terms of word frequency, 
highly frequent items have been proposed to aid segmentation by acting 
as anchor points for subsequent segmentation to occur around; these 
words are believed to undergo early extraction from the speech stream, 
before flagging the boundaries of the words they appear alongside in 
subsequent speech (Altvater‐Mackensen & Mani, 2013; Bortfeld et al., 
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2005; Kurumada et al., 2013; Mersad & Nazzi, 2012; Monaghan & 
Christiansen, 2010; Shi & Lepage, 2008). The precise utility of Zipfian 
distributions among syllables and syllable structures remains to be 
established; however, it is conceivable that these may serve 
segmentation in a similar way. This possibility requires empirical 
investigation.

Word length

Regarding word length, we found the majority of words to be 
monosyllabic, with only 22% of words having more than one syllable, 
and only 5% of words having more than two syllables. The amount of 
monosyllabic words reported here was considerably higher than that 
described in previous reports on German (78% here, versus 50% in 
Kaeding, 1897 – which Zipf’s calculations were based upon). This 
discrepancy may be traced back to the contrast between spoken and 
written language, with spoken language shortening words by the use of 
contractions; or the difference may be due to the contrast between 
child-directed and adult-directed speech, with CDS potentially being 
defined not only by the use of a higher pitch and shorter utterances (e.g., 
Cristia, 2013), but also by the use of shorter words in general (Garmann 
et al., 2019; but see Segal et al., 2009). This resulted in a much larger 
proportion of monosyllabic words here than in Kaeding’s (1897) 
frequency dictionary (though a comparison of our data with data for 
more recent adult-directed speech, collected in a similar manner, would 
be necessary to draw more firm conclusions). In any case, data from our 
corpus indicate that caregivers may optimise word length (via 
simplification) for efficient communication to a greater extent in child- 
compared to adult-directed speech (see Garmann et al., 2019), with 
even more monosyllabic words than would be predicted by Zipf’s law 
(Zipf, 1935, 1949). This in turn offers an interesting new perspective on 
the finding that a variety of word lengths adds difficulty to segmentation 
(Johnson & Tyler, 2010; Lew-Williams & Saffran, 2012). It appears 
that, if word length is a problem for segmentation, for German infants, 
this may well be circumvented by a fairly uniform input consisting of 
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mostly monosyllabic words (see Perruchet & Vinter, 1998, for 
computational evidence in support of this proposal).

Our analyses of word length also provide another instance where 
cues appear to converge. We found the vast majority of the 50 most 
frequent words, and almost two-thirds of the whole corpus to be 
monosyllabic function words. Importantly, those words are more 
stressed in German than in English, and therefore perfectly detectable 
by the infant (Höhle & Weissenborn, 2003; but see also Gerken, 1994; 
Gerken & MacInthosh, 1993; Shafer et al., 1992, for evidence of the 
detection of function words in English). In consequence, infants can 
detect and segment those highly frequent function words – and 
subsequently use them as anchors to facilitate acquisition of the words 
surrounding them (Bortfeld et al., 2005; Mersad & Nazzi, 2012).

Single-word utterances

Finally, 15% of the utterances in our corpus were single words, 85% 
of which were words that were repeated in isolation at least once, and 
62% occurred in isolation between ten and 90 times. The amount of 
single-word utterances in German CDS is similar to that observed for 
English CDS, although it falls towards the lower boundary of the 
estimations made in prior research (estimated at around 14% by 
MacWhinney & Snow, 1985; and 26% by Monaghan & Christiansen, 
2010). Nevertheless, this yields a fairly substantial amount of isolated 
words, which can potentially be segmented more easily, and in turn 
subsequently aid segmentation of adjacent words in multi-word 
utterances (Peters, 1983). Previous research found that approximately 
33% of single-word utterances were repeated in close temporal 
proximity (Brent & Siskind, 2001). Even though we did not examine 
temporal proximity here, we can add that 85% of single-word 
utterances were indeed repeated within the corpus.

In addition, we found that 1% of all utterances comprised proper 
names presented in isolation. This was mostly the child’s own name 
(74%), but also included names of siblings (17%), and others (9%). The 
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number of occurrences concerning children’s names here is comparable 
to prior observations in English CDS (1%, Monaghan & Christiansen, 
2010), and accounts for 20% of all the times a child’s name occurred in 
the speech (compared to 24% of instances in English; Monaghan & 
Christiansen, 2010). These isolated occurrences of names may help 
increase their prominence to young learners, with names being 
suggested to enjoy a privileged position as salient anchor words that 
lend significant benefits to segmentation (Bortfeld et al., 2005; Mersad 
& Nazzi, 2012), operating in a similar way to high frequency words. 
Thus, these findings indicate that single-word utterances (Brent & 
Siskind, 2001; Monaghan & Christiansen, 2010), and particularly 
isolated incidences of children’s names, may serve segmentation to a 
similar degree in German CDS as has been previously suggested for 
other languages.

Limitations and future directions

Despite addressing a broad variety of segmentation cues, there are 
a number of potential cues not addressed here that may be valuable 
during language acquisition. For instance, we did not assess 
phonotactics or allophonic variation. Future assessments may wish to 
include these features to provide an extensive overview of the potential 
segmentation cues in German CDS. Additionally, while our results 
paint a strong picture of the prevalence of several individual cues in 
German CDS, indicating their potential importance for speech 
segmentation, determining how these cues interact requires further 
exploration. Moreover, establishing the way in which learners draw on 
these cues together during learning requires much empirical 
investigation. One way to address this topic is to combine cross-
linguistic research, including corpus studies as well as experimental 
studies, with computational modelling approaches (cf. Monaghan & 
Rowland, 2017).

We note too that the syllable serves as the segmentation unit for 
many of these cues, which raises the question of how infants come to 
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identify the precise boundaries of a given syllable (which would be 
necessary in order for it to inform subsequent learning). This capability 
is likely the outcome of several distinct, and perhaps converging, 
sources of information – such as the phonotactics of a language, in 
addition to its prosody, as well as broader distributional properties (e.g., 
permissible syllable structures and TPs). Since the majority of words in 
our corpus of German CDS were monosyllabic and stressed word-
initially, it is difficult to speculate on the relative contributions of other 
cues for this task, but this would be an insightful avenue for future 
research.

We also acknowledge that our results are based on what may be 
considered a relatively small amount of data, particularly given the 
recent surge in studies using day-long recordings (e.g., Casillas et al., 
2019; Donnelly & Kidd, 2021; Weisleder & Fernald, 2013). However, 
there is evidence to suggest that corpus size does not lead to significant 
changes in distributional statistics (see Gambell & Yang, 2006; and see 
Saksida et al., 2017, for TP analyses on nine different languages using 
similar-sized corpora). Thus, it is unlikely that the results we observed 
would vary significantly with a larger corpus. We note, too, that the 
kinds of in-depth, fine-grained analyses we conducted are atypical of 
studies using day-long recordings, which are based on fairly course 
estimates of language, computed via automated algorithms or through 
transcription of small subsets of the data. Rather, our focus on the 
minutiae of lexical and sublexical distributional information required a 
good degree of hand-coding.

Finally, it is important to acknowledge that we are generalising over 
a large age range. While we restricted our analyses to speech directed 
at infants aged six to 20 months, it is likely that at least some properties 
of CDS change across this time frame (see e.g., Kunert et al., 2011; 
Raneri et al., 2020; Vosoughi & Roy, 2012). For instance, Kunert et al. 
(2011) reported evidence to suggest that two of the cues investigated in 
the current study (syllable structure and word length) become more 
complex in English CDS as children get older and start to use more 

C������ 2



complex syllables and words themselves. Therefore, longitudinal 
research of the type we have reported here would be a valuable addition 
to the literature.

Conclusion

We conducted the first corpus analysis investigating a broad range 
of word segmentation cues in German CDS, finding a highly reliable 
word-initial stress pattern, higher within-word and backwards TPs, and 
a Zipfian-like distribution (Zipf, 1935, 1949) of word and syllable 
frequencies. We also found slight differences of syllable structures 
between positions within a word, a prevalence of monosyllabic words, 
and especially highly frequent, short function words, and finally, a 
significant amount of single-word utterances. All of the cues we 
examined have the potential to aid word segmentation, and of course, 
might boost the effect when infants can draw on a combination of cues, 
as is the case in natural language (Brent & Cartwright, 1996; Matzinger 
et al., 2019).
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Chapter 3
Close encounters of the word kind: 
Attested distributional information 
boosts statistical learning
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Abstract6

Statistical learning, the ability to extract regularities from input 
(e.g., in language), is likely supported by learners’ prior expectations 
about how component units co-occur. In this study, we investigated 
how adults’ prior experience with sublexical regularities in their native 
language influences performance on an empirical language learning 
task. Forty German-speaking adults completed a speech repetition task 
in which they repeated eight-syllable sequences from two experimental 
languages: one containing disyllabic words comprised of frequently 
occurring German syllable transitions (naturalistic words) and the other 
containing words made from unattested syllable transitions (non-
naturalistic words). The participants demonstrated learning from both 
naturalistic and non-naturalistic stimuli. However, learning was 
superior for the naturalistic sequences, indicating that the participants 
had used their existing distributional knowledge of German to extract 
the naturalistic words faster and more accurately than the non-
naturalistic words. This finding supports theories of statistical learning 
as a form of chunking, whereby frequently co-occurring units become 
entrenched in long-term memory.

6 This chapter is based on Stärk, K., Kidd, E., & Frost, R. L. A. (2023). Close 
encounters of the word kind: Attested distributional information boosts statistical 
learning. Language Learning, 73(2), 341–373. https://doi.org/10.1111/lang.12523
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Introduction

Humans are exquisitely sensitive to the regularities in their 
environment. Statistical learning (SL), the ability to draw on these 
regularities, is hypothesised to underlie learning across all sensory 
domains. Although it is indisputable that humans are capable of SL 
(which might rely upon multiple interacting mechanisms, see Frost et 
al., 2015), the totality of the parameters influencing SL are still yet to 
be mapped out. In our study, we examined the degree to which SL of 
linguistic stimuli is influenced by prior knowledge of attested syllable 
transitions present in natural language. That is, we asked whether and 
how adults’ prior experience with the sublexical regularities in their 
native language in the form of syllable bigrams would permeate into the 
laboratory, such that it would enhance the adults’ performance on an 
empirical language learning task when the distributional properties of 
the to-be-learned material aligned with those of the natural language.

In a canonical auditory SL task using linguistic stimuli, participants 
listen to a stream of speech that contains to-be-discovered words that 
are defined by statistical regularities (e.g., Saffran, Newport, et al., 
1996). The discovery of the statistical segmentation effect heralded 
great promise for non-nativist approaches to language acquisition 
because it suggested the existence of a powerful learning mechanism 
(or mechanisms) that can induce structure from the input and thus 
questioned the need to postulate innately specified language-specific 
knowledge. That even very young infants are capable of SL is not 
controversial; however, the parameters that influence the process are 
still not well understood. This is partly due to the fact that much of the 
research on the topic has been conducted independently from other 
fields in cognitive psychology (Frost et al., 2019), such that connections 
to older disciplines concerned with learning and memory have not 
always been made. Yet, any task concerning learning of linguistic 
stimuli should be expected to conform to well-known properties of 
verbal memory, with SL being no exception (Isbilen et al., 2020; Vlach 
& DeBrock, 2017; Vlach & Sandhofer, 2014).

65

C���� ���������� �� ��� ���� ����:
A������� �������������� ����������� ������ ����������� ��������



66

Since as far back as Ebbinghaus (1885, 1913), researchers have 
known that verbal learning is most effective when learners build upon 
prior experience. Accordingly, if researchers are to take the results of 
SL research to be ecologically valid, they should not expect participants 
to come into the laboratory without prior implicit assumptions about 
how linguistic stimuli like phonemes and syllables are ordered (Dal 
Ben et al., 2021; Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; 
Siegelman et al., 2018) and should instead expect participants to learn 
best when the target language is consistent with those assumptions. 
Such historically-contingent and in many instances top-down
influences on performance suggest that the output of SL shapes future 
learning.

Background literature

A growing number of studies have shown that prior knowledge and 
expectations derived from a speaker’s native language shape 
subsequent SL in a number of ways. This process begins very early. For 
example, Lew-Williams and Saffran (2012) found that infants’ 
statistical segmentation of novel words from continuous speech was 
guided by their experience with words of the same versus a different 
length in a pre-training phase such that segmentation was only possible 
when words were the same length in both exposure phases. Similarly, 
research has revealed a significant benefit of starting small during 
incremental SL, with learners bootstrapping upon initial experience 
with simpler structures. Zettersten et al. (2020) demonstrated that 
adults’ prior experience with a simplified nonadjacent dependency-
learning task boosted later learning of a more complex instantiation of 
the same structure (see also Lany & Gómez, 2008, for similar findings 
with infants). In related work, Lai and Poletiek (2011) found that 
exposure to simple AB dependencies helped subsequent learning of 
longer, more complex strings containing centre-embeddings. Together, 
these findings provide converging evidence that prior experience 
scaffolds for future learning of related material.

C������ 3



Importantly, similar transfer effects have been found to emerge 
through experience with natural as well as artificial languages and 
across different learning contexts. For instance, Potter et al. (2017) 
documented a language-experience effect in novice learners of 
Mandarin after just two semesters of study. In Potter et al.’s study, 
participants completed a SL task in which the artificial language 
overlapped with Mandarin insofar as it was tonal in nature (see also 
Wang & Saffran, 2014) to see whether participants’ experience with 
related material would impact learning. Participants completed the task 
at two time points separated by an interim learning period of six 
months. Although participants’ performance was initially at chance, 
there were significant improvements at Time 2, with participants 
achieving accuracy scores of 66% on a two-alternative forced-choice 
(2AFC) segmentation test, indicating that participants’ SL performance 
had been critically shaped by their experience with relevant linguistic 
input. Non-Mandarin-learning controls exhibited no such 
improvements, performing at chance on both occasions.

Other studies have investigated how statistical distributions in 
naturalistic language constrain SL in laboratory settings, with a large 
focus on phonotactic probabilities (for reviews of how phonotactics 
impact on early acquisition see Johnson, 2016; Jusczyk, 2002). For 
instance, Finn and Hudson Kam (2008) showed that participants could 
only successfully segment statistically defined novel words from 
continuous speech when the words contained syllables that followed 
phonotactic constraints of English (see also Toro et al., 2011). Mersad 
and Nazzi (2011) showed that the presence of words containing high 
phonotactic probability served as anchors that successfully aided 
segmentation compared to a condition in which all words had a uniform 
but lower phonotactic probability. Dal Ben et al. (2021) replicated this 
latter effect using a more narrowly defined difference in phonotactic 
probability across experimental conditions. Overall, these studies 
provide strong evidence for the suggestion that fine-grained features of 
natural language, in this case phonotactic probability, shape 
participants’ subsequent expectations about how their input is shaped. 
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This is consistent with results reported by Siegelman et al. (2018), who 
found that performance on an auditory SL segmentation task was 
predicted by post hoc ratings of how word-like test items and foils 
were.

These findings provide converging support for the notion that prior 
experience can shape future learning at multiple levels of description, 
boosting performance when the properties of the input align. Building 
on this, Elazar et al. (2022)7 investigated the specific hypothesis that 
entrenched memory traces for syllable co-occurrences in natural 
language boost SL. They tested two groups of Spanish-speaking 
participants on an auditory SL task. One group listened to a Spanish-
like speech stream in which transitional probabilities (TPs) of the 
experimental words were highly attested in Spanish while the other 
group listened to a Spanish-unlike speech stream in which TPs of the 
experimental words were rarely attested in Spanish. Participants were 
tested on a lexical decision task for experimental words and respective 
Spanish-like or Spanish-unlike foils. Elazar et al. found that 
participants in the Spanish-like condition were better at accepting 
words than participants in the Spanish-unlike condition, indicating that 
participants’ prior knowledge of Spanish syllable trigrams facilitated 
their SL. Furthermore, participants in the Spanish-like condition were 
worse at rejecting (Spanish-like) foils than participants in the Spanish-
unlike condition were at rejecting (Spanish-unlike) foils, suggesting 
that participants’ knowledge of Spanish also (mis)led them to accept 
familiar foils. Overall, the results suggest that participants indeed 
entered the experiment with entrenched memory traces for syllable co-
occurrences on which they drew to process and learn new input.

The present study

In our study, on which we worked in parallel to Elazar et al.’s 
(2022) study, we tested the almost identical hypothesis that entrenched 
memory traces for syllable bigrams in natural language boost SL. 
7 Elazar et al.’s (2022) paper was published during the review process of the paper, 
upon which this chapter is based.
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However, Elazar et al. (2022) used a between-participants design 
following the typical exposure-phase–test-phase structure, whereas we 
used a within-participants design using verbal repetition. This within-
participants design allowed for a more stringent test of the 
entrenchment hypothesis because differences between conditions could 
not be attributed to differences between participants, in addition to 
allowing us to track the emergence of learning across the course of the 
experiment. In using verbal repetition, we built upon recent 
developments in the measurement of SL that have been inspired by the 
verbal learning literature. Participants’ recall on verbal tests of short-
term memory has been shown to be both sensitive to newly learned 
material (e.g., Majerus et al., 2004) and mediated by their long-term 
lexical knowledge (e.g., Kowialiewski & Majerus, 2018; Majerus et al., 
2004, 2012). In recent work building upon Majerus et al. (2004), Isbilen 
et al. (2020) investigated the utility of verbal recall as a measure of 
auditory SL in a triplet segmentation task. Isbilen et al. showed that, 
after familiarisation with continuous speech, adult participants were 
better able to repeat syllable sequences that followed the statistical 
distribution of the familiarisation stream than they were to repeat 
random and unattested syllable sequences (for similar results from 
children see Kidd et al., 2020). In some cases, performance was 
predicted by distributional statistics derived from spoken and written 
corpora. Isbilen et al. suggested that the results were consistent with 
chunking models of SL (e.g., Christiansen & Chater, 2016; Jones, 2012; 
Perruchet & Vinter, 1998; Robinet et al., 2011) in which the repetition 
of syllable sequences creates word-like phonological units via their 
association strength; specifically, their high TPs.

These processes and their explanation seem functionally equivalent 
to another effect in the literature – the Hebb repetition effect (Hebb, 
1961; see also Page & Norris, 2009; Smalle et al., 2016; Szmalec et al., 
2012). However, the one difference between auditory SL tasks and 
Hebbian learning tasks is that, although SL tasks typically measure the 
outcome of learning following familiarisation, Hebbian learning tasks 
track learning of sequence regularities across time. This is an important 
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gap in SL research, with researchers not yet knowing how learning 
proceeds during familiarisation. The evidence that exists has suggested 
that learners gradually come to recognise structured sequences as 
containing higher level chunks over the course of exposure, suggesting 
that learners engage in the dual processes of (i) binding/chunking 
adjacent syllables together and (ii) storing them in long-term memory 
(Batterink & Paller, 2017).

In our study, we used a sequence-repetition method common in 
Hebbian learning studies to also investigate how existing knowledge of 
sublexical regularities influences the trajectory of SL over time. Our 
article makes two contributions to the literature: (i) we report detailed 
corpus data on syllable transitions in German, and (ii) we determine 
how these attested transitions contribute to SL across the course of 
learning. Thus, building on previous investigations of the effect of prior 
knowledge on SL (e.g., Dal Ben et al., 2021; Finn & Hudson Kam, 
2008; Mersad & Nazzi, 2011; Siegelman et al., 2018; Toro et al., 2011), 
we examined how knowledge of the statistical properties of 
participants’ native language – focusing on syllable bigrams – 
influences subsequent processing and learning of an artificial language 
that is built with those properties in mind. We extracted the TPs 
between syllable pairs in natural German and used this information to 
create artificial language sequences containing words that were either 
based on the natural German TPs (i.e., naturalistic sequences) or not 
(i.e., non-naturalistic sequences), examining learning of these 
sequences relative to scrambled foils.

Under the assumption that SL for language involves the tracking 
and subsequent long-term registration of distributional information, we 
hypothesised that learners would use their existing distributional 
knowledge of German to shape their processing of new input. To test 
this hypothesis, we measured learning using a speech production task 
in which the participants repeated either unstructured sequences of 
random syllable combinations (foils) or structured sequences 
containing novel words – with these words either adhering to German 
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syllable distribution (i.e., naturalistic sequences), or not adhering to 
German syllable distribution (i.e., non-naturalistic sequences). We 
predicted that, overall, participants’ repetition (and therefore learning) 
of the structured sequences would be better than their repetition of the 
foils, but that participants’ repetition of the naturalistic sequences 
would be better than their repetition of the non-naturalistic sequences. 
An advantage of our method was that, in contrast to past research 
measuring learning via 2AFC and repetition after familiarisation, it 
enabled us to track learning across the three conditions across the 
course of the experiment. We also predicted that, over time, 
participants’ repetitions would improve for both types of structured 
sequences. Importantly, we expected to see the strongest improvements 
for naturalistic sequences and predicted that performance would 
improve more rapidly for naturalistic than for non-naturalistic 
sequences because naturalistic sequences better aligned with German 
syllable distributions.

Method

All materials, data, analyses, and results for this article are openly 
available via the Open Science Framework (OSF; https://osf.io/
4dsmy); the results of the experiment testing the validity of the stimuli 
can also be accessed via OSF (https://osf.io/p9fcm).

Participants

Forty native German-speaking adults (28 self-identified female, 12 
self-identified male; Mage = 23.9 years, SD = 5.58) without any known 
hearing, speech, or language disorders participated in the experiment. 
The participants registered via the Max Planck Institute’s internal 
database; we made additional announcements at Radboud University 
Nĳmegen and on social media, which also allowed participants to 
register via email. The sample size of 40 participants was informed by 
a power analysis conducted in R 4.0.2 (R Core Team, 2022) using the 
package simr 1.0.5 (Green & MacLeod, 2016). We based the 
simulations on data collected by Isbilen et al. (2017), who had 
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compared two conditions similar to our non-naturalistic and 
unstructured foil sequences in a serial recall task following an exposure 
phase. Our simulations indicated that a sample of 16 participants would 
be sufficient to detect an effect size of a –0.1 syllable recall difference 
between naturalistic and non-naturalistic sequences as well as between 
non-naturalistic and foil sequences during the later stages of our 
experiment, which is comparable to the test phase in Isbilen et al.’s 
study (for more details, see the Analysis folder on OSF). We increased 
the sample size to 40 because the participants in our experiment were 
exposed to multiple experimental languages while performing the serial 
recall task (i.e., without prior exposure phase), which would decrease 
the effect and also make the model more complex (because we included 
the additional variable block, which was not present in Isbilen et al.’s 
study). We decided to not perform an analysis modelling our entire 
experiment (including block) because this would have entailed a 
considerably more complex simulation that would have been based 
purely on our own intuitions rather than on previous data.

The study was approved by the Ethical Committee of the Faculty of 
Social Sciences, Radboud University Nĳmegen, and was carried out in 
accordance with the World Medical Association Declaration of 
Helsinki. All participants gave written informed consent prior to their 
participation in the study. They were free to withdraw at any time and 
were compensated (€8) upon completing the 45-minute session.

Design

We employed a serial repetition task based on studies of the Hebb 
repetition effect (Hebb, 1961; Page & Norris, 2009), which required the 
participants to repeat sequences of syllables aloud, with these 
repetitions then being scored for accuracy. The study had a within-
participants design, with all the participants receiving three different 
types of sequences: (i) naturalistic sequences, (ii) non-naturalistic 
sequences, and (iii) unstructured foils. The naturalistic and non-
naturalistic sequences were structured, with each containing four 
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disyllabic experimental words, whereas foils were unstructured, 
containing the same syllables as the structured sequences but in a 
scrambled order.

Materials

Corpus analysis

We created the speech stimuli from a pool of 12 German syllables 
(fa, ge, gei, mi, mo, nu, pa, sa, su, ti, ver, zu) obtained from a corpus 
analysis of the 1,000 most frequent German words in the CHILDES 
database (MacWhinney, 2000)8, which corresponded to over three 
million word tokens. We chose to draw our materials from child-
directed language for two reasons. First, because words that are highly 
frequent in child-directed language will also have an early age-of-
acquisition, we logically deduced that these words would have 
sublexical transitions (i.e., bigrams) that would have the greatest 
likelihood of being entrenched. Second, this study was part of a larger 
project that tested the effects under investigation in developmental 
populations (cf. Chapter 4). We chose the syllables from syllable pairs 
(i.e., bigrams) occurring with high within-word backwards TPs, relying 
on backwards TPs because our corpus analysis of child-directed speech 
in Chapter 2 showed that backwards TPs were significantly more 
reliable cues to wordhood than forwards TPs in German speech (Stärk 
et al., 2022; for a similar cross-linguistic analysis see Saksida et al., 
2017)

We then used the syllables to form 12 disyllabic “words”: six words 
for each of the two structured sequence types (naturalistic: gefa, minu, 
moti, pagei, versu, zusa; non-naturalistic: fazu, geimi, nuver, samo, 
suge, tipa). As summarised in Table 3.1, the extracted bigrams yielded 
the six naturalistic words in which the two syllables co-occurred with 
8 We included the following corpora from the CHILDES database (MacWhinney, 
2000) in our analysis: Caroline (Von Stutterheim, 2010), Grimm (Grimm, 2006, 
2007), Leo (Behrens, 2006), Manuela (Wagner, 2006), Miller (Miller, 1979), Rigol 
(Rigol, 2007), Stuttgart (Lintfert, 2010), TAKI (Lintfert, 2010), and Wagner (Wagner, 
1974, 1985).
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relatively high backwards TPs in natural German speech but 
importantly were not recognisable alone as words (TP > .20, MTP = .69, 
range = .21–1.00)9. To create the non-naturalistic words, we 
concatenated the same 12 syllables in a different order, such that their 
syllable pairs did not co-occur in natural German (TP = 0). Each 
syllable occurred once in each set of words, and we counterbalanced the 
position of syllables within words such that, if a syllable appeared 
word-initially in the naturalistic set of words, it was word-final in the 
non-naturalistic set, and vice versa. For the unstructured foil sequences, 
we scrambled the syllables, such that these sequences contained no 
learnable regularities. We carefully constructed the foils to avoid 
inadvertently creating words from both German and the experimental 
languages. Because all three sequence types comprised the same 12 
syllables, the frequencies of the syllables in natural German presented 
in Table 3.1 applied to all conditions. However, the non-naturalistic 
words comprised syllable pairs which did not occur in our corpus 
sample of natural German (i.e., their pair frequencies as well as their 
forwards and backwards TPs were 0). Likewise, the unstructured foils 
did not comprise any patterns found in the corpus.

9 In an analysis of TPs in child-directed speech across nine languages, Saksida et al. 
(2017) reported a mean between-word TP of .11, compared to a mean within-word TP 
of .25, whereas for German, we reported a mean between-word TP of .11 and a mean 
within-word TP of .33 in Chapter 2 (Stärk et al., 2022). Thus, our naturalistic words 
were, on average, more indicative of word-like units than between-word transitions.

C������ 3

Frequency Transitional probability
Pair Syllable 1 Syllable 2 Pair Forwards Backwards
mi nu 6,472 454 454 .070 1.000
pa gei 46,359 368 368 .008 1.000
ver su 14,010 344 344 .025 1.000
ge fa 1,839,597 3,133 1,586 .001 .506
zu sa 14,460 4,670 1,994 .138 .427
mo ti 1,748 2,467 525 .300 .213

Table 3.1. Syllable frequencies, pair frequencies, and forwards and 
backwards transitional probabilities of the stimuli derived from the 
corpus analysis.



Our design involved the explicit assumption that high TPs are more 
word-like and, thus, that the participants would require less exposure to 
chunk adjacent syllables into words. The implicit assumption of our 
sequence repetition method was that these transitions would thus be 
easier to repeat. In order to collect independent evidence in support of 
the explicit assumption that the naturalistic words would be more word-
like, we conducted a separate experiment in which we asked German-
speaking participants to select our naturalistic or non-naturalistic words 
for wordiness in comparison to foils in a 2AFC task without 
familiarisation (i.e., the participants had no prior training on the words). 
The participants successfully identified the naturalistic words at above 
chance levels in comparison to foils but did not do so for the non-
naturalistic words. These results were consistent with the argument that 
our naturalistic words, when presented in isolation, were more 
identifiable as German-like than our non-naturalistic words (for full 
details, see Chapter 5’s Experiment 3 or Appendix S1 in the Supporting 
Information online).

Stimuli characteristics

The stimuli were recorded by a female native speaker of German, 
who recorded individual unaccentuated syllables in isolation. We 
adjusted the syllable recordings using the sound editing program 
Audacity (Audacity Team, 2018) to ensure uniformity in length, 
resulting in an average syllable duration of 377 ms (range = 352–416).

Within the context of the experiment, each structured sequence type 
contained perfect within-word TPs (structured sequences: within-word 
TPs = 1.00, between-word TPs ≤ .25; compared to unstructured 
sequences where TPs between all syllables were generally low, with 
TPs ≤ .125). Note, however, that participants were tested on all three 
sequence types. Thus, across the whole experiment, accounting for the 
repeated use of syllables across each type of sequence, within-word TPs 
for both structured sequences were .33, and TPs for all other syllable 
pairs were less than or equal to .125.
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Syllables were combined into 72 sequences, 24 of each sequence 
type. Each sequence was eight syllables long, which equated to four 
experimental words (i.e., bigrams). Within sequences, each syllable 
was followed by 500 ms of silence, and the final syllable of a sequence 
was followed by a beep to indicate the beginning of the repetition 
portion of the trial. Because the syllables had an inter-stimulus interval 
of 500 ms, we emphasise that our study was not a segmentation task in 
the classical sense. Rather, our choice of method allowed us to 
determine (i) whether attested syllable bigrams are more naturally 
grouped during recall and (ii) how this attested knowledge influences 
learning incrementally across time. In order to track the participants’ 
incremental learning, we divided the experiment into 12 blocks of six 
sequences, with each block containing two sequences of each type. 
Within each block, sequences were presented pseudo-randomly, with 
no direct repetition of a particular sequence type. Across the whole 
experiment, each word occurred 16 times in total, with words appearing 
equally often in each position within a sequence (for more information 
on the stimuli and their creation, see the Materials folder on OSF).

Procedure

We sent the participants an informed consent document one day 
prior to the day that the study took place. Upon arrival in the laboratory, 
they were reminded of the task instructions and were told that the study 
was to investigate adults’ repetition of language, but no mention was 
made of the learnable patterns contained within the input. The 
participants completed the study in isolation in a sound-attenuated 
booth, with sequences being played over closed-cup headphones using 
the software Presentation (Neurobehavioral Systems, 2014). The 
participants repeated the sequences into a microphone, and these were 
recorded by the computer for offline coding.

Before the experiment began, the participants first received three 
(unstructured) practice sequences that were six syllables long, 
comprising a different scrambled set of syllables (ba, fun, gi, re, se, to). 
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After completing the practice sequences, the participants proceeded to 
the main experiment. In each trial, the participants heard a sequence of 
eight syllables followed by a beep (see Figure 3.1). Upon hearing the 
beep, they were required to repeat the sequences as best they could. At 
the halfway point, the participants were given the opportunity to take 
an optional break. At the end of the session, they were debriefed and 
paid for their time.

Data preparation

To prepare the data for our analyses, we first transcribed the 
recordings of the participants’ verbal responses. All responses were 
transcribed by the experimenter, and two naïve coders each transcribed 
10% of the recordings (i.e., data for four participants) for the purpose 
of performing reliability checks. Inter-transcriber reliability analyses 
revealed strong reliability between transcribers, following the more 
conservative interpretation of the kappa statistic suggested by McHugh 
(2012) (syllable level: observed agreement = 83.0%; κ = 0.87 with 95% 
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Figure 3.1. Three example experimental sequences. On each trial, 
participants listened to an eight-syllable sequence and then repeated it. 
(1) = one naturalistic sequence; (2) = one unstructured foil sequence; 
(3) = one non-naturalistic sequence.
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CIs of [0.84, 0.89]; bigram level: observed agreement = 87.2%; κ = 
0.88 [0.84, 0.92]).

We coded the accuracy of participants’ responses sequence-by-
sequence, comparing the verbal response against the sequence that the 
participants had heard. We computed scores at the syllable level and at 
the bigram level. At the syllable level, the participants received 1 point 
for each syllable repeated correctly in the correct position (for a 
maximum of 8 points per sequence). At the bigram level, the 
participants received 1 point for each bigram (i.e., syllable pair) 
repeated correctly in the correct position (for a maximum of 4 points 
per sequence). A bigram denoted an experimental word in the 
structured sequences. The participants’ performance at this level, 
therefore, provided crucial information about whether they had recalled 
sequences better because of learning the experimental words, rather 
than indirectly assessing the learning solely at the syllable level. In the 
unstructured sequences, the four bigrams per sequence were the 
random syllable pairs in Positions 1 and 2, 3 and 4, 5 and 6, and 7 and 
8 (with different syllable combinations in each position across each 
sequence). Table 3.2 illustrates how we applied the coding scheme to 
potential repetitions by the participants.

This strict coding scheme was conservative in the sense that it 
required the participants to recall elements in the correct position and 
thus did not give any credit for syllables recalled in the correct order 
after only one syllable was missed or added in the repetition (e.g., as in 
the “B C D E F G H A” and “A X B C D” cases in Table 3.2). We also 
used two further coding schemes, including a serial order coding 
scheme based on Isbilen et al.’s (2017) study, which relaxed the strict 
positional requirement and which were thus more lenient and gave 
more credit to the participants. However, because all three analyses 
converged in the same direction, we have chosen to report only the most 
conservative scheme here. The analyses for all three coding schemes 
can be found in the Analysis folder on OSF.
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Results

The aims of our analyses were twofold: (i) to examine performance 
on each type of sequence and (ii) to examine the time course of 
learning. We predicted that the participants would recall naturalistic 
sequences better than non-naturalistic sequences and non-naturalistic 
sequences better than unstructured foil sequences. We also predicted 
that the participants would improve faster on the naturalistic sequences 
than on the non-naturalistic sequences. To test the hypotheses regarding 
the incremental learning throughout the study, we ran our analyses by 
experimental block and exposure phase, that is, we combined blocks to 
determine early, intermediate, and late exposure phases, respectively.

Analysis by experimental block

We analysed the data in R 4.1.3 (R Core Team, 2022) using 
generalised linear mixed-effects models. We specified a Poisson 
distribution because the dependent variables (i.e., syllable and bigram 
recall) were count data. The models were computed using the package 
lmerTest 3.1-3 (Kuznetsova et al., 2017; based upon lme4 1.1-28 by 
Bates et al., 2015). We computed the same models with syllable recall 
and bigram recall as the dependent variables to test overall recall and 
recall of the experimental words. Models were fit with a fixed effect of 
sequence type using sliding contrasts (naturalistic: .5 vs. non-
naturalistic: –.5, and non-naturalistic: .5 vs. foil: –.5) to examine 
whether learning differed across the experimental conditions and with 
a fixed effect of block entered as a centred continuous variable to 
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Repetition Syllable score Bigram score
A B C D F H   – 4 (A B C D) 2 (AB CD)
A X B C D   – 1 (A) 0
A B   – 2 (A B) 1 (AB)
X Y C D X Z G H 4 (C D G H) 2 (CD GH)
B C D E F G H A 0 0

Table 3.2. Example scorings of participants’ repetitions of the 
sequence A B C D E F G H where each letter represents one syllable.
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examine learning over the course of the experiment as well as the 
interaction of the two variables. We fit the maximal model supported by 
the data (Barr et al., 2013; Bates et al., 2018), controlling for 
participants and items as random intercepts, with sequence type and 
block as random slopes of participants (due to our within-participants 
design, with participants being exposed to all sequence types and 
blocks) but not as random slopes of items (because sequences differed 
between sequence types and blocks).

We checked the models for evidence of singularity in the variance-
covariance matrix and for evidence of overfitting the random effects 
structure by conducting a principal component analysis. Models 
showing evidence of singularity or overfitting were simplified (for the 
documentation, see the Analysis folder on OSF). To determine 
significance, we used an alpha level of .05. Furthermore, we have 
reported bootstrapped 95% confidence intervals for the beta estimates 
of the model predictors, based on 1,000 iterations, as well as the 
marginal and conditional R² effect sizes of the models as goodness-of-
fit estimates. These R² values denote the proportion of the variance 
explained by the model both with (conditional R²) and without 
(marginal R²) controls for sources of random variance (Johnson, 2014; 
Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013).

Crucially, there was a significant main effect of sequence type at 
both the syllable and bigram level, with participants displaying better 
recall for naturalistic than non-naturalistic sequences (see Table 3.3), in 
line with our experimental hypothesis. Recall was also better for non-
naturalistic sequences than for unstructured foil sequences (for a 
visualisation of participants’ syllable and bigram recall accuracy, see 
Figure 3.2 and Figure 3.3, respectively).

Regarding participants’ performance over time, there was a main 
effect of block, with participants improving over the course of the 
experiment. Critically, there was also a significant interaction of 
sequence type and block, with participants’ recall improving more 
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Parameter b 95% CI SE t p
Syllable level

(Intercept) 1.00 [0.87, 1.12] 0.06 15.90 < .001
Nat. vs. Non-nat. 0.10 [0.06, 0.14] 0.02 4.70 < .001
Non-nat. vs. Foils 0.04 [0.00, 0.07] 0.02 2.20 .03
Block 0.11 [0.07, 0.14] 0.02 6.65 < .001
Nat. vs. Non-nat. × Block 0.03 [0.01, 0.06] 0.01 2.28 .02
Non-nat. vs. Foils × Block 0.03 [0.01, 0.05] 0.02 1.72 .09

Bigram level
(Intercept) –0.12 [–0.29, 0.04] 0.09 –1.43 .15
Nat. vs. Non-nat. 0.17 [0.10, 0.23] 0.03 4.97 < .001
Non-nat. vs. Foils 0.09 [0.03, 0.15] 0.03 3.02 .003
Block 0.14 [0.11, 0.18] 0.02 7.35 < .001
Nat. vs. Non-nat. × Block 0.04 [0.00, 0.09] 0.02 1.88 .06
Non-nat. vs. Foils × Block 0.03 [–0.03, 0.08] 0.03 1.11 .27

Table 3.3. Summary of the linear mixed-effects models investigating 
the influence of sequence type and block on participants’ syllable and 
bigram recall.

Figure 3.2. Mean recall of syllables (out of eight per sequence) for the 
three sequence types given by experimental Blocks 1–12. The three 
sequence types were naturalistic, non-naturalistic, and unstructured 
foils. Error bars indicate ±1 standard error.

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Model fit syllable level: AIC = 
10,975; BIC = 11,052; R²marginal = .079; R²conditional = .091; model fit bigram level: AIC 
= 7,047; BIC = 7,125; R²marginal = .058; R²conditional = .313.
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rapidly over the course of the experiment for naturalistic sequences 
than for non-naturalistic sequences. However, at the bigram level, this 
did not meet the alpha level that we had chosen for determining 
significance. Participants did not improve significantly over time when 
recalling the non-naturalistic sequences in comparison to the 
unstructured foil sequences; however, participants’ recall of non-
naturalistic sequences numerically improved after the break at the 
halfway point between Blocks 6 and 7. The random-effects structure 
improved the model-fit in both cases.

Analysis by exposure phase

Although the above results depicted the participants’ overall 
improvement throughout the entire experiment, they did not reveal at 
which point learning began to emerge within the task. To unpack this, 
we divided the experiment into three phases (early exposure: Blocks 
1–4; intermediate exposure: Blocks 5–8; late exposure: Blocks 9–12), 
testing the hypothesis that learning in the naturalistic condition would 
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Figure 3.3. Mean recall of bigrams (out of four per sequence) in the 
three sequence types given by experimental Blocks 1–12. The three 
sequence types were naturalistic, non-naturalistic, and unstructured 
foils. Error bars indicate ±1 standard error.



be faster than in the non-naturalistic condition. The variable exposure 
phase was added as a fixed effect into a new analysis instead of block. 
We fit the maximal model supported by the data (Barr et al., 2013; Bates 
et al., 2018) with sequence type (sliding contrast: naturalistic: .5 vs. 
non-naturalistic: –.5, and non-naturalistic: .5 vs. foil: –.5) and 
exposure phase (sliding contrast: early exposure: –.5 vs. intermediate 
exposure: .5, and intermediate exposure: –.5 vs. late exposure: .5) as 
well as their interaction as fixed effects, and random intercepts and 
slopes for participants and items, where appropriate (as described 
previously).

In addition to a significant main effect of sequence type, there was 
a main effect of exposure phase, with the participants improving 
between the early and intermediate exposure phase (see Table 3.4 for 
the analysis at the syllable level and Table 3.5 for the analysis at the 
bigram level; for figures illustrating the syllable and bigram recall 
accuracy over the three phases see the Analysis folder on OSF). The 
participants also improved numerically between the intermediate and 
late exposure phase, but this did not meet the level that we had set for 
significance. Importantly, the interaction of sequence type and exposure 
phase was significant, with greater improvements on naturalistic 
relative to non-naturalistic sequences between the early and 
intermediate exposure phase. There was no difference in improvement 
between naturalistic and non-naturalistic sequences between the 
intermediate and late exposure phase. Improvement in recall of the non-
naturalistic sequences did not differ from the improvement in recall of 
unstructured foil sequences, either between the early and intermediate 
exposure phase or between the intermediate and late exposure phase.

Discussion

Prior knowledge of syllable co-occurrences facilitates statistical 
learning

SL is assumed to underlie learning across many fundamental 
domains of cognition, most prominently language (e.g., Christiansen & 
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Parameter b 95% CI SE t p
(Intercept) –0.12 [–0.29, 0.06] 0.09 –1.44 .15
Nat. vs. Non-nat. 0.16 [0.10, 0.23] 0.03 4.96 < .001
Non-nat. vs. Foils 0.09 [0.03, 0.15] 0.03 3.18 .001
Early vs. Intermediate 0.14 [0.09, 0.18] 0.02 5.79 < .001
Intermediate vs. Late 0.04 [–0.01, 0.08] 0.02 1.53 .13
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.07 [0.02, 0.13] 0.03 2.61 .009

Nat. vs. Non-nat. × 
Intermediate vs. Late

0.00 [–0.05, 0.05] 0.03 –0.08 .93

Non-nat. vs. Foils × Early vs. 
Intermediate

–0.01 [–0.07, 0.06] 0.03 –0.17 .86

Non-nat. vs. Foils × 
Intermediate vs. Late

0.02 [–0.05, 0.07] 0.03 0.58 .56

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Model fit: AIC = 7,048; BIC = 7,143; 
R²marginal = .061; R²conditional = .313.

Parameter b 95% CI SE t p
(Intercept) 1.00 [0.88, 1.13] 0.06 15.95 < .001
Nat. vs. Non-nat. 0.10 [0.06, 0.14] 0.02 4.73 < .001
Non-nat. vs. Foils 0.03 [0.00, 0.07] 0.02 2.09 .04
Early vs. Intermediate 0.09 [0.05, 0.12] 0.02 5.04 < .001
Intermediate vs. Late 0.03 [0.00, 0.06] 0.02 1.89 .06
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.05 [0.02, 0.09] 0.02 3.18 .001

Nat. vs. Non-nat. × 
Intermediate vs. Late

0.00 [–0.03, 0.04] 0.02 0.22 .83

Non-nat. vs. Foils × Early vs. 
Intermediate

0.00 [–0.03, 0.04] 0.02 0.12 .91

Non-nat. vs. Foils × 
Intermediate vs. Late

0.01 [–0.02, 0.05] 0.02 0.68 .50

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Model fit: AIC = 10,986; BIC = 
11,135; R²marginal = .047; R²conditional = .344.

Table 3.5. Summary of the linear mixed-effects model investigating the 
influence of sequence type and exposure phase on participants’ bigram 
recall.

Table 3.4. Summary of the linear mixed-effects model investigating the 
influence of sequence type and exposure phase on participants’ syllable 
recall.



Chater, 2016; Lidz & Gagliardi, 2015; Saffran, Newport, et al., 1996; 
Saffran & Kirkham, 2018). Although the existence of a human capacity 
for SL is clear, precisely how SL both depends and builds upon existing 
knowledge is still unclear (but see Elazar et al., 2022). Past research has 
shown that phonotactic probability constrains SL (Dal Ben et al., 2021; 
Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; Toro et al., 2011). 
In our study, we asked whether participants would draw on their prior 
knowledge of statistical distributions of syllables to inform their 
learning and processing of new linguistic input. We created two 
experimental languages for our native German-speaking participants; 
one informed by the naturally occurring TPs in German, as extracted 
from corpora, and another that was completely devoid of attested TPs. 
Breaking away from the classic format of SL paradigms that typically 
comprise separable training and testing phases, we presented these 
languages using a sequence-repetition speech-production task and 
tracked learning across the experiment. We hypothesised that the 
participants’ repetitions would be more accurate and would improve 
more rapidly for naturalistic than for non-naturalistic sequences.

As we had predicted, recall accuracy was higher for naturalistic 
than non-naturalistic sequences, suggesting that the participants had 
drawn on their prior distributional knowledge of German to process the 
new experimental input. Additionally, the participants’ prior experience 
boosted further learning of the naturalistic words in the initial stages of 
the experiment, increasing the recall advantage of the naturalistic 
sequences compared to the non-naturalistic sequences between the 
early and intermediate exposure phases. These findings are consistent 
with the idea that learners not only track syllable co-occurrences but 
that they also draw on this knowledge when processing subsequent 
input (Elazar et al., 2022; Siegelman et al., 2018), which in our study 
led to accelerated learning of naturalistic sequences from the beginning 
of the experiment. Thus, what we observed could be described as a kind 
of Matthew Effect for SL concerning syllable transitions (Merton, 1968; 
for similar arguments regarding literacy, see Stanovich, 1986), where 
those bigrams that were attested in the participants’ native language 
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provided an advantage for future learning. This interpretation is 
consistent with older claims from the verbal learning literature, which 
has long argued that learning is a historically-contingent process that 
builds upon past experience (Ebbinghaus, 1885, 1913).

Overall, the results support the suggestion that participants draw 
upon their rich repository of existing knowledge during learning 
(Bertels et al., 2015; Finn & Hudson Kam, 2008; Lew‐Williams et al., 
2011; Lew-Williams & Saffran, 2012; Mersad & Nazzi, 2011; Onnis & 
Thiessen, 2013; Potter et al., 2017). An important issue concerns 
exactly how this existing knowledge is both represented and how it 
subsequently aids learning. Although many details are still to be ironed 
out, SL for language logically involves the discovery and registration of 
perceptual regularities that are then re-described into higher level 
representations based on existing knowledge and generalisation 
processes. Thus, in classic domains of enquiry like speech 
segmentation, TPs act as initial local cues alongside others like stress to 
help the listener bootstrap into the language (Cutler, 2012; Mattys & 
Bortfeld, 2016), after which lexical knowledge provides crucial 
anchors and top-down expectations about new to-be-learned material 
(e.g., Bortfeld et al., 2005; Lew‐Williams et al., 2011; Mersad & Nazzi, 
2012; for further evidence of top-down influence on the learning of 
adjacent dependencies, see Wang et al., 2020). We did not study 
segmentation per se, although we have no reason to postulate a different 
learning mechanism to explain our results. Accordingly, we suggest 
that the advantage that we observed for attested bigrams derived from 
this existing well-entrenched lexical knowledge providing expectations 
about how the input is structured, acting as local attractors through 
which the participants could chunk the stimuli better than when they 
had no, or indeed incorrectly biasing, expectations such as in the non-
naturalistic condition (comparable to the bias for Spanish-like foils 
observed by Elazar et al., 2022).

Accordingly, we suggest that the results provide support for the idea 
that syllable co-occurrences are tracked and become more entrenched 
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with each encounter (Isbilen et al., 2017, 2020; Jost & Christiansen, 
2017; Siegelman et al., 2018). Such entrenchment can be seen as a form 
of chunking that facilitates subsequent processing and production 
because participants can draw on stored chunks instead of individual 
syllables (e.g., Christiansen & Chater, 2016; Jones, 2012; Jones et al., 
2021; Perruchet & Vinter, 1998; Robinet et al., 2011). The learning 
advantage seen for the sequences comprising attested TPs exemplified 
this further, with higher accuracy and faster learning seen for sequences 
that adhered to a distribution that should already have been well-
entrenched within the participants due to their prior experience with 
German. This is in line with previous studies showing that participants 
drew on their long-term lexical knowledge to guide recall in short-term 
memory tasks (e.g., Jones & Macken, 2018; Kowialiewski & Majerus, 
2018; Majerus et al., 2012; for neuroimaging evidence, see Tremblay et 
al., 2016). Together with Elazar et al.’s (2022) study, our study 
demonstrated that long-term linguistic knowledge guides future 
learning at the level of syllable transitions, thus complementing work 
on phonotactic probability (e.g., Dal Ben et al., 2021; Finn & Hudson 
Kam, 2008; Mersad & Nazzi, 2011).

There are potential parallels between our data and those from 
electroencephalogram (EEG) studies that have tracked SL across 
familiarisation. Notably, Batterink and colleagues have demonstrated 
that SL is a gradual, two-staged process of chunking adjacent syllables 
and storing them in long-term memory (Batterink, 2020; Batterink & 
Paller, 2017). The properties of the EEG signal suggested that 
participants initially treated the speech signal as a stream of syllables. 
However, across familiarisation participants entrained to higher levels 
of linguistic organisation as the syllables in the stream became more 
familiar to them, that is, participants were able to identify that some 
adjacent syllables frequently co-occurred and treated them as word-
like, storing these frequently co-occurring syllable combinations in 
long-term memory. With this in mind, one interpretation of our data is 
that our participants were building upon their attested knowledge of 
German syllabic regularities to implicitly treat naturalistic syllable 
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pairs as word-like sooner than they did in the non-naturalistic 
condition, thus accounting for the difference in learning rate during the 
early and intermediate exposure phases of the experiment. Acquiring 
word-like representations of the non-naturalistic sequences compared 
to the foil sequences was more difficult for the participants and did not 
interact with the exposure phase. There are two likely reasons for this. 
First, the non-naturalistic sequences contained unattested TPs, and so, 
given the assumption that these matter, the participants were starting 
from the lowest of bases. Second, the non-naturalistic sequences 
contained the same syllables as the naturalistic sequences, which means 
that there could have been some interference from long-term 
knowledge of German.

Related to this latter point, the comparative difficulty that the 
participants experienced with learning the non-naturalistic sequences 
might have been due to the difficulty of simultaneously learning 
multiple languages, especially with the same syllables occurring in 
multiple words across sequence types. This is consistent with work by 
Page et al. (2013), who have shown that Hebbian learning is slower 
when structured sequences have item overlap (see also Antovich & 
Graf Estes, 2018, for evidence that bilingual but not monolingual 
infants can extract words from multiple experimental languages when 
these languages are presented interleaved). In previous studies of SL, 
adults learned only the first of two subsequently presented artificial 
languages, unless (i) there were contextual cues indicating the change 
between languages or (ii) the exposure to the second language was 
either tripled or initiated before a certain level of entrenchment was 
reached for the words of the first language (Bulgarelli & Weiss, 2016; 
Gebhart et al., 2009). In our study, this level of entrenchment had 
presumably already been reached for the naturalistic words when the 
participants entered the experiment, such that participants’ 
predisposition for (and enhanced learning of) the naturalistic words 
might have biased learning in favour of the naturalistic sequences at the 
expense of the others. Ultimately, however, there was significant 
evidence that the participants did learn in the non-naturalistic condition 
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compared to the foil condition, and so acquiring multiple syllable 
transitions across different sequence types, even when the sequence 
types were drawn from the same syllable inventory, was not impossible 
in the context of the task.

The serial recall task as a window into statistical learning

On a methodological note, this study offers an alternative 
behavioural method to track SL in real time, with participants’ training 
and testing being critically intertwined. This method builds on the 
classic Hebbian repetition paradigm (Hebb, 1961; see also Page & 
Norris, 2009; Smalle et al., 2016; Szmalec et al., 2012), as well as on 
more recent studies that have used recall tasks to examine learning after 
a period of exposure to a new artificial language (Isbilen et al., 2018, 
2020; Kidd et al., 2020; Majerus et al., 2004). Here, we have shown that 
recall tasks of this nature, in the absence of an initial exposure phase, 
can serve as an insightful window onto learning and may be an 
advantageous method for future studies of SL. Accordingly, we believe 
that the task can serve as a valuable addition to the toolkit of methods 
used to study SL. One advantage of the task that we have already 
discussed is the ability to use it to track learning across the course of an 
experiment. Another notable benefit of the repetition paradigm is that it 
is, in the words of Christiansen (2019), a processing-based measure of 
learning. This contrasts with reflection-based measures of SL, such as 
traditionally used measures of SL like the 2AFC task. The difference 
between the two is that processing-based tasks require less meta-
cognitive effort because, unlike reflection-based measures, they do not 
ask participants to reflect upon and choose between two possible 
candidate words. Although 2AFC tasks have their advantages, there are 
circumstances under which they are not always optimal, including 
when testing auditory SL in developmental populations and when the 
aim is to measure individual differences (see Arnon, 2019; Isbilen et al., 
2020, 2022; Kidd et al., 2020). Our suggestion is that verbal repetition 
may be particularly useful in circumstances where researchers are 
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interested in the course of learning or when reflection-based measures 
such as 2AFC do not yield reliable results.

With this in mind, one obvious question concerns exactly how 
verbal recall relates to other measures of SL and to the bigger question 
of how it relates to the mechanism underlying SL (or the multiple 
interacting mechanisms underlying it, see Frost et al., 2015). These 
questions are not mutually exclusive, and we cannot hope to provide a 
compelling answer to them here. What is clear is that there are many 
different measures of SL, going from verbal repetition to sequence 
reproduction (e.g., Conway et al., 2010) to 2AFC following 
familiarisation (e.g., Saffran, Newport, et al., 1996) to reaction times to 
structured sequences, as in the serial reaction time task (Nissen & 
Bullemer, 1987). It is interesting that, although all the measures capture 
learning of probabilistic distributions and thus are billed as measures of 
SL, performances on these tasks are often unrelated (see e.g., 
Siegelman & Frost, 2015). There are likely to be many reasons for this. 
One obvious methodological reason is that any mode of measurement 
is an imperfect way of tapping a psychological concept, and so any one 
task will have non-overlapping measurement error that it does not share 
with other tasks. More interestingly, the processes underlying SL have 
been argued to be complex and multi-componential (Arciuli, 2017; 
Frost et al., 2015), and thus different tasks may differentially implicate 
different components. This lack of understanding of these individual 
components limits the understanding of the mechanism(s) underlying 
SL.

What we see as the value of verbal sequence repetition is in its 
potential for elucidating the role of SL in language learning. Repetition 
has had a long history of use in the verbal learning literature beginning 
with Hebb (1961) and has also been used to measure linguistic 
proficiency. For instance, non-word repetition is highly sensitive to 
speakers’ distributional knowledge of their language (e.g., Jones et al., 
2007, 2014; Szewczyk et al., 2018), and sentence repetition reliably 
taps grammatical parsing procedures underlying sentence production 
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and comprehension (Acheson & MacDonald, 2009; Potter & 
Lombardi, 1990). Thus, verbal sequence repetition appears to be a 
relatively direct way of observing both (i) existing knowledge and, as 
we have shown here, (ii) how that knowledge may result in different 
learning trajectories across time. Studying verbal repetition in a 
learning paradigm, as we have done in our study (see also Isbilen et al., 
2020), is one way to study the dynamics of SL across time (see also 
Batterink, 2020; Batterink & Paller, 2017).

Limitations and future directions

Our results, alongside those of Elazar et al. (2022), reveal positive 
evidence in favour of the argument that humans identify frequently 
occurring linguistic units and encode them as long-term memory 
representations that are subsequently used for future learning. A key 
promise of this effect is that it captures what is assumed to be the output 
of SL; participants are better at learning naturalistic distributions 
because they have prior experience with them, distributions that they 
have presumably discovered via SL. However, as with most laboratory-
based studies of SL, we have only tested the learning of simple 
statistical computations. How this scales up to the acquisition of 
language proper, with all of its complexities, is unclear. Domain-
general processes like chunking no doubt play an important role in 
acquisition and in processing (e.g., Bannard & Matthews, 2008; 
Christiansen & Chater, 2016; Jones et al., 2021; Lieven et al., 1997). 
Indeed, Isbilen et al. (2022) have recently shown that adults’ chunking 
of syllables in verbal repetition is related to their recall of highly 
frequent sequences of words, suggesting a partially shared basis for 
learning and processing across the different linguistic levels. However, 
it is important to be mindful of the limits of such effects as they relate 
to the entirety of language. In particular, because studies of SL typically 
limit themselves to formal aspects of language (i.e., relationships 
between linguistic elements devoid of meaning), how a process like SL 
works within the maelstrom of natural language and how it works in 
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concert with other key learning mechanisms is still very much an open 
question and thus a matter for future research.

Conclusion

To conclude, in this study, we demonstrated that adult participants’ 
prior knowledge of TPs derived from their native language forms a 
robust foundation upon which subsequent learning and processing 
occur. Our data thus lend further support to the notion that prior 
knowledge can have a critical impact on future learning (Bertels et al., 
2015; Dal Ben et al., 2021; Ebbinghaus, 1885, 1913; Finn & Hudson 
Kam, 2008; Lew‐Williams et al., 2011; Lew-Williams & Saffran, 2012; 
Mersad & Nazzi, 2011; Onnis & Thiessen, 2013; Potter et al., 2017), 
providing further evidence that laboratory-based learning is shaped by 
the (mis/)alignment between the properties of the input and 
participants’ prior expectations. Implementing a sequence repetition 
task in the absence of a familiarisation phase provided a rich real-time 
behavioural assessment of SL (though see e.g., Batterink, 2020; 
Batterink & Paller, 2017, for related online assessments using EEG). 
We suggest that dynamic speech-production measures may serve as a 
useful vehicle for further exploring the nature and time course of SL in 
future research.
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Abstract10

Statistical learning (SL) is assumed to lead to long-term memory 
representations. However, the way that those representations influence 
future learning remains largely unknown. We studied how children’s 
existing distributional linguistic knowledge influences their subsequent 
SL on a serial recall task, in which 49 German-speaking seven- to nine-
year-old children repeated a series of six-syllable sequences. These 
contained either (i) disyllabic words based on frequently occurring 
German syllable transitions (naturalistic sequences), (ii) disyllabic 
words created from unattested syllable transitions (non-naturalistic 
sequences), or (iii) random syllable combinations (unstructured foils). 
Children demonstrated learning from naturalistic sequences from the 
beginning of the experiment, indicating that their implicit memory 
traces derived from their input language informed learning from the 
very early stages onward. Exploratory analyses indicated that children 
with a higher language proficiency were more accurate in repeating the 
sequences and improved most throughout the study compared to 
children with lower proficiency.

10 This chapter is based on Stärk, K., Kidd, E., & Frost, R. L. A. (2022). The effect of 
children’s prior knowledge and language abilities on their statistical learning. Applied 
Psycholinguistics, 43(5), 1045–1071. https://doi.org/10.1017/S0142716422000273
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Introduction

Statistical learning (SL), the ability to use probabilistic co-
occurrence to group elements present in the environment, has been 
argued to support development across multiple sensory and cognitive 
domains. One domain in which SL has been identified as playing a role 
is language development (Romberg & Saffran, 2010; Saffran, Aslin, et 
al., 1996), where it has been linked to learning across the sub-domains 
of phonology (e.g., Kuhl, 2004), segmentation and word learning (e.g., 
Hay et al., 2011; Lany & Saffran, 2010), and grammar (Kidd & Arciuli, 
2016). A common assumption of research in this field is that SL results 
in detailed long-term memory representations for learned stimuli; 
however, how these representations endure and how they influence 
children’s performance in experiments is largely unknown. In the 
current chapter, we explore this issue by asking how children’s 
knowledge of their native language influences their performance on an 
auditory SL task, and whether variation in performance is linked to 
their language proficiency.

There is significant evidence in favour of the argument that 
participants’ prior linguistic experience guides their SL of linguistic 
stimuli. Notably, many studies have shown that adult participants’ 
segmentation of words and grammatical patterns (e.g., non-adjacent 
dependencies) from running speech is constrained both by language-
specific phonotactic constraints (i.e., rules) and, within the class of legal 
sequences, phonotactic probabilities within and across languages (e.g., 
Bonatti et al., 2005; Dal Ben et al., 2021; Finn & Hudson Kam, 2008; 
Mersad & Nazzi, 2011; Onnis et al., 2005; Trecca et al., 2019). 
Although infants and children have much less experience with 
language, their prior knowledge also influences SL. For instance, Lew-
Williams and Saffran (2012) found that nine- and ten-month-old 
infants’ statistical speech segmentation was guided by their 
expectations about word length, which were forged through pre-
exposure to words that were either consistent or inconsistent in length 
with items in the to-be-segmented stream. These findings are echoed in 
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work by Thiessen et al. (2019), who demonstrated that 13-month-old, 
but not seven-month-old, native English-learning infants showed a 
preference for attending to backwards versus forwards transitional 
probabilities (TPs) in an ambiguous artificial language. That is, older 
infants attended to the direction which aligned with the structural 
properties of their native language (i.e., the head-initial nature of 
English, which favours backwards processing; see Onnis & Thiessen, 
2013, for related findings with adults). Taken together, these data 
provide converging evidence that learners’ expectations about 
linguistic input emerge over experience with language and can 
permeate into the laboratory to shape participants’ performance on SL 
tasks.

In the current study, we ask a related though crucially different 
question: do children draw upon their distributional knowledge of 
syllable transitions when processing new statistically defined linguistic 
input? Specifically, does the presence of attested and therefore highly 
probable bigrams from participants’ native language boost SL? 
Attention to TPs has featured prominently in explanations of SL, since 
this is how higher units of linguistic organisation (i.e., “words” in 
studies of segmentation) have been defined (Saffran, Aslin, et al., 
1996). Successful learning on these tasks indicates that participants 
either track TPs or chunk co-occurring syllables into bigger units (Aslin 
et al., 1998; Perruchet, 2019; Perruchet & Vinter, 1998). The underlying 
assumption that the output of SL – the acquisition of statistical structure 
as defined by TPs – leads to long-term representations that aid future 
learning is less frequently tested. Accordingly, we ask whether 
participants use these prior expectations about TPs in their ambient 
language, which they have presumably acquired across development, to 
process new input.

There is growing evidence from adults in support of this proposal. 
In a series of studies investigating the interrelationships between visual 
SL and auditory SL for linguistic and non-linguistic stimuli, Siegelman 
et al. (2018) reported that, while visual SL and auditory SL for non-
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linguistic stimuli were related (suggesting a common underlying 
capacity for performance across modalities), auditory SL for linguistic 
stimuli was not related to the other two. Indeed, they reported poor 
internal consistency for their linguistic auditory SL task, suggesting that 
participants showed little overlap in performance across individual test 
items within the task. However, Siegelman et al. found that 
performance on the linguistic SL task was predicted by independent 
ratings of “wordness” for the test items. That is, the more closely a test 
word resembled a real word in the participants’ native language 
(Hebrew), the more likely they would be to segment it from the speech 
stream and recognise it as a word at test, suggesting that participants 
entered the experiment with entrenched linguistic knowledge affecting 
their performance on the SL tasks based on linguistic items.

Two more recent studies with adult populations provide more direct 
evidence for this entrenchment effect. In a between-participants design, 
Elazar et al. (2022) tested Spanish-speaking participants on an auditory 
SL task using one of two speech streams. In a “Spanish-like” condition, 
participants listened to a stream of continuous speech containing test 
words defined by TPs that were highly attested in Spanish corpora. In a 
“Spanish-unlike” condition, the test words were defined by TPs that 
were rarely attested. Overall, the authors reported a pattern of results 
that was suggestive of a learning advantage for Spanish-like stimuli, 
thus providing evidence in favour of the argument that participants 
build expectations of likely syllable transitions, which they use as 
priors when parsing new input.

In a study that we build upon in the current chapter (cf. Chapter 3), 
Stärk et al. (2023) investigated whether native German-speaking adults 
drew on their prior knowledge of German syllable co-occurrences (i.e., 
syllable pairs with high TPs) to acquire new but distributionally 
consistent linguistic input. Unlike Elazar et al. (2022), the authors 
tested the influence of attested TPs in a within-participants design, a 
more stringent test of the entrenchment hypothesis since any across-
condition differences could not be attributed to differences across 
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participants. Doing so required a different method of measuring SL. 
Accordingly, participants heard and repeated three different kinds of 
sequences in a serial recall task: two of which were structured, while 
the other sequences were unstructured foils, with the dependent 
measure being recall accuracy. The structured sequences contained 
disyllabic experimental words that were either based on likely German 
syllable transitions (naturalistic sequences) or were devoid of attested 
transitions (non-naturalistic sequences). The unstructured sequences 
were scrambled combinations of syllables, serving as baseline. 
Findings indicated that adults drew on their knowledge of German 
syllable transitions during the task and did so from the early phases of 
the experiment onward, showing higher recall accuracy and faster 
improvement for the naturalistic sequences over the other two sequence 
types. The participants also performed significantly better on recall of 
the non-naturalistic sequences in comparison to foils, demonstrating 
that they were able to acquire knowledge of two sequences within the 
context of the task, despite the fact that there was likely a degree of 
interference across conditions because all sequences were constructed 
from the same syllable inventory.

Overall, the work of Elazar et al. (2022) and Stärk et al. (2023) 
provides converging evidence in support of the hypothesis that adults 
draw on their prior linguistic knowledge to process and learn 
subsequent input, which raises the question of whether children differ 
from adults in their weighing of prior knowledge and the input 
statistics, given their ability to pick up on new statistics present in a SL 
task. This may or may not differ from adults, depending on the 
paradigm (see Raviv & Arnon, 2018; Shufaniya & Arnon, 2018). 
Notable differences between adults and children have been found in 
studies of verbal learning. For instance, Smalle et al. (2017) showed 
that nine- to ten-year-old children require substantially less exposure to 
implicitly acquire phonotactic restrictions on novel words than adults 
do. Additionally, Smalle et al. (2018) have reported that eight- to nine-
year-old children retain implicitly learned phonological sequences 
better than adults, as demonstrated through Hebbian Repetition 

C������ 4



Learning. This raises the possibility that, while still within the sensitive 
period for language acquisition, children differ from adults. 
Consequently, we investigate whether children draw on their prior 
distributional knowledge when processing subsequent linguistic input, 
as previously reported in adults (Elazar et al., 2022; Stärk et al., 2023).

Furthermore, we address the issue concerning whether and how 
performance in laboratory-based SL tasks relates to children’s real-
world language development. Typically developing children’s language 
proficiency (as measured with assessments of their expressive and 
receptive vocabulary) has been found to be correlated with their SL 
ability (e.g., Evans et al., 2009; Frost, Jessop, et al., 2020; Kidd & 
Arciuli, 2016; Lany, 2014; though the relationship is not always 
observed and appears to be task-dependent, see West et al., 2021). Here 
we take a slightly different approach and ask: do individual differences 
in language proficiency result in different learning trajectories 
throughout the course of SL (e.g., as measured over the course of our 
experiment)? If SL constitutes an individual ability that supports 
natural language learning (Siegelman et al., 2017), we should expect 
children of different language abilities to be differentially sensitive to 
statistically defined sequences, under the assumption that superior SL 
abilities (and its component processes, Arciuli, 2017) have supported 
acquisition throughout development.

Thus, in the present study, we examined the effect of prior 
distributional knowledge on the learning of statistically defined 
linguistic input in seven- to nine-year-old German-speaking children. 
We utilised the repetition paradigm from Chapter 3 (Stärk et al., 2023) 
as described above, adjusting it for children’s lower working memory 
capacity by shortening the sequence length. We hypothesised that 
children would recall naturalistic sequences better than non-naturalistic 
sequences and show faster improvement for the naturalistic than non-
naturalistic sequences, similar to the findings with adults (Elazar et al., 
2022; Stärk et al., 2023). Additionally, we investigated whether 
children’s language proficiency was related to their SL. While past 
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studies have reported correlational analyses between SL performance 
and language proficiency, including studies utilising sequence 
repetition (e.g., Smalle et al., 2018), we were interested in how 
differences in language proficiency influenced the dynamics of learning 
throughout the task. Since no similar study exists, this analysis was 
exploratory.

Method

This study was preregistered on AsPredicted: https://aspredicted.
org/546hk.pdf. All of our materials, data, analyses, and results are 
openly available on the website of the Open Science Framework (OSF): 
https://osf.io/t5qf4/.

Participants

Forty-nine seven- to nine-year-old native German-speaking 
children (29 female, 20 male; mean age = 8;7 years; months, SD = 0;6, 
range: 7;6–9;11) without any known hearing, speech, or language 
disorders were included in the final sample (N = 49). We had planned 
to test 60 children, but recruitment and testing were hindered by the 
COVID-19 pandemic. Despite not being able to recruit our originally 
planned sample, our power analysis suggests that a sample of 49 is 
sufficient to detect an effect size of 0.2 syllables recall difference 
between naturalistic and non-naturalistic sequences as well as between 
non-naturalistic and foil sequences (i.e., an effect size half the size of 
the one found in adults, compensating for children’s cognitive 
development). The analysis was conducted in R 4.1.2 (R Core Team, 
2022) using the package simr 1.0.6 (Green & MacLeod, 2016) and 
relied upon data from Chapter 3 (Stärk et al., 2023) of which we 
adjusted the design for the current study (see the Analysis folder on 
OSF for a detailed description of this and two post hoc power analyses).

Participants were recruited from a German primary school in 
Leipzig, Germany. Invitations for participation were sent to the parents 
of all second- and third-graders (with German second-graders being 7–
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8 years old and third-graders being 8–9 years old). Of these, 55 
consented to participating in our experiment. Data for six children were 
excluded from analyses: two did not fulfil the inclusion criteria 
regarding language proficiency (see Design section for more details), 
two found the serial recall task (i.e., our SL measure) too difficult to 
complete, and two were excluded due to technical failure. The study 
was approved by the Ethical Committee of the Faculty of Social 
Sciences, Radboud University Nĳmegen, and was carried out in 
accordance with the World Medical Association Declaration of 
Helsinki. Children were free to withdraw at any time. They received a 
certificate and stickers for their participation.

Design

The experiment utilised a serial recall task, in which participants 
were presented with sequences of six syllables and repeated them out 
loud (see Figure 4.1). The task is based on studies of the Hebb 
repetition effect (Hebb, 1961; Page & Norris, 2009), and was modified 
from Chapter 3’s related study with adults (Stärk et al., 2023) to be 
suitable for children. Specifically, we reduced the length of the 
sequences (sequences comprised 6 syllables, rather than 8), thereby 
making allowances for the fact that working memory (Cowan, 2016) 
and other cognitive processes supporting performance (e.g., processing 
speed, Kail & Salthouse, 1994) improve across childhood. The study 
had a within-participants design, in which all participants received all 
three sequence types: naturalistic, non-naturalistic, and unstructured 
foils. The naturalistic and non-naturalistic sequences were structured, 
with each containing three disyllabic experimental words, whereas 
unstructured sequences comprised the same syllables as the structured 
sequences but in a scrambled order (see the Materials section for further 
details). Participants’ repetitions of the sequences were scored for 
accuracy, and we examined performance across the task to gain insights 
into learning over the course of exposure.
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Materials

Language proficiency assessments

We assessed the children’s language proficiency to ensure that both 
their lexical and morphosyntactic knowledge was representative of the 
average German-speaking seven- to nine-year-old. To measure their 
lexical knowledge, we used the German Peabody Picture Vocabulary 
Test version IV (PPVT; Lenhard et al., 2015). This is a test of receptive 
vocabulary, in which children are shown four pictures per trial and have 
to identify the picture that best matches a word they were given. Their 
correct responses are counted and converted into an age-dependent 
score. Children whose performance was 1.5 SDs below the average of 
their age group were excluded from the main analyses.

C������ 4

Figure 4.1. Three example experimental sequences. On each trial, 
participants listened to a six-syllable sequence and then repeated it. (1) 
= one naturalistic sequence; (2) = one unstructured foil sequence; (3) 
= one non-naturalistic sequence. Design adapted from Chapter 3 
(Stärk et al., 2023).



To measure the children’s morphosyntactic knowledge, we used the 
German LITMUS sentence repetition task (SRT; Abed Ibrahim et al., 
2018; Hamann et al., 2013; Hamann & Abed Ibrahim, 2017). This test 
consists of 45 sentences with varying degrees of difficulty, which 
children listen to and repeat. Their correct responses are counted and 
form their score. If performance was 2.5 SDs below the average 
estimated from our own sample, children were excluded from the main 
analyses. A more lenient cut-off for the SRT was chosen because the test 
is not standardised.

Experimental stimuli

For the serial recall task (i.e., our SL measure), participants repeated 
sequences of six syllables. There were three different sequence types 
presented pseudo-randomly throughout the exposure: (i) naturalistic 
sequences, (ii) non-naturalistic sequences, and (iii) unstructured foil 
sequences. The first two sequence types were structured, meaning that 
they contained experimental words which participants could segment, 
while the unstructured foil sequences did not contain any learnable 
patterns. Importantly, the words contained in the naturalistic sequences 
differed from the words contained in the non-naturalistic sequences, in 
that the naturalistic words comprised frequently co-occurring German 
syllable pairs while the non-naturalistic words comprised unattested 
syllable pairs. That is, neither sequence type contained natural German 
words but the naturalistic words might appear familiar to German 
speakers because of their high TPs in natural German. They represent 
the outcome of participants’ SL in natural German. In the current study, 
we investigate whether seven- to nine-year-old children draw on this 
prior knowledge (i.e., the outcome of previous SL in natural language) 
to process a new experimental language (as modelled by the six 
naturalistic words). This is compared to participants’ SL in a language 
without prior knowledge (as modelled by the six non-naturalistic 
words).
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The experimental words were created via a corpus analysis, which 
analysed the TPs of the 1000 most frequent words of German child-
directed speech on the CHILDES database (MacWhinney, 2000)11. Six 
syllable pairs (i.e., bigrams) occurring with high within-word 
backwards TPs were selected for use as the naturalistic words 
(naturalistic words: gefa, minu, moti, pagei, versu, zusa; see Chapter 2 
or Stärk et al., 2022, for evidence that backwards TPs are more reliable 
cues to ‘wordness’ than forwards TPs in German speech). These were 
in turn used to create the naturalistic sequences. Importantly, the 
experimental naturalistic words did not comprise existing German 
words, but the high TPs (TP > .20, with an average TP = .69 and a range 
of .21–1) between the syllables within each pair make them potentially 
familiar to German speakers. There was no repetition of syllables 
across the words. The non-naturalistic words were created by switching 
the first and second syllables of the naturalistic words and combining 
each final syllable with a different first syllable, such that the syllable 
pairs neither form German words nor have high TPs (TP = 0) in natural 
German (non-naturalistic words: fazu, geimi, nuver, samo, suge, tipa). 
Unstructured foil sequences consisted of the same 12 syllables 
presented in a scrambled order, such that these sequences contained 
neither learnable patterns nor German or experimental words.

Within the context of the experiment, both types of structured 
sequences had perfect within-word TPs (structured sequences: within-
word TPs = 1, between-word TPs ≤ .25), while the TPs between 
syllables in the unstructured foil sequences were generally low 
(unstructured sequences: TPs ≤ .17). Since participants repeated all 
three sequence types, with syllables being repeated across types, 
within-word TPs for both structured sequences were TP = .33, and TPs 
for all other syllable pairs were TPs ≤ .14, calculated over the entire 
exposure. Forwards and backwards TPs were equal within the 
11 We included the following corpora from the CHILDES database (MacWhinney, 
2000) in our analysis: Caroline (Von Stutterheim, 2010), Grimm (Grimm, 2006, 
2007), Leo (Behrens, 2006), Manuela (Wagner, 2006), Miller (Miller, 1979), Rigol 
(Rigol, 2007), Stuttgart (Lintfert, 2010), TAKI (Lintfert, 2010), and Wagner (Wagner, 
1974, 1985).
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experimental sequences (see Stimuli file on OSF for the precise 
numbers and the details of the stimuli creation).

Each syllable was recorded in isolation by a female native speaker 
of German. The recordings were adjusted using Audacity (Audacity 
Team, 2018) to ensure uniformity of length, resulting in an average 
syllable duration of 377ms (range: 352ms–416ms). The experiment 
comprised 72 sequences in total, 24 of each sequence type. Each 
sequence consisted of six syllables (i.e., three experimental words in 
the structured sequences), separated by 500ms of silence. Thus, while 
we refer to our structured sequences as containing “words,” it is 
important to remember that to the participant, the stimuli were lists of 
syllables; thus, any grouping of the syllables based on TPs, be it from 
existing naturalistic knowledge or knowledge gained through the 
course of the task, is evidence of SL, which in this case can be 
interpreted as the chunking of co-occurring syllables. The final syllable 
of each sequence was followed by a beep, which indicated that 
participants could start their repetition.

The experiment was divided into 12 blocks of six sequences, which 
contained two items of each sequence type. Within each block, 
sequences were presented pseudo-randomly, with no direct repetition of 
a particular sequence type (e.g., there was no adjacent presentation of 
naturalistic sequences). There were four experimental lists, which 
differed in the order of blocks (and with which sequence type the 
experiment started). Participants were randomly assigned to one list. 
Across the entire experiment, each word occurred 12 times in total, 
appearing equally often in each position within a sequence (for more 
information on the stimuli and their creation see the Materials folder of 
the project on OSF).

Procedure

Children whose parents signed the consent form were invited for 
two experimental sessions at their after-school club. The children were 
tested over two sessions of approximately 30 minutes. In the first 
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session, children completed the German PPVT (Lenhard et al., 2015) 
and the SRT (Abed Ibrahim et al., 2018; Hamann et al., 2013; Hamann 
& Abed Ibrahim, 2017). In the second session, they completed the serial 
recall task (i.e., our main task, measuring children’s SL). Both sessions 
took place in a quiet, private room at the school. Stimuli were played 
over closed-cup headphones via a laptop, and the children repeated the 
sequences into a microphone, with repetitions being recorded for 
subsequent offline coding. The serial recall task was conducted using 
the software Presentation (Neurobehavioral Systems, 2014).

If the children fulfilled the language proficiency inclusion criteria in 
the first session, they were invited for the second session on the 
following day. The serial recall task was introduced as a game, which 
had the aim of helping an alien to repair their broken spaceship and fly 
back to their home planet. The children were told that they could help 
the alien by repeating what it says. First, they received six unstructured 
practice trials: three four-syllable sequences and three six-syllable 
sequences, comprising a different set of syllables than the experimental 
sequences (ba, fun, gi, re, se, to), before receiving the 72 experimental 
sequences. The children received a sticker and were told more 
components of the alien story after the practice trials, during the two 
breaks (after Sequences 24 and 48), and after completing the 
experiment. At the end of the session, the children were debriefed and 
received a certificate.

Data preparation

Language proficiency assessments

The PPVT was coded online by the experimenter, while the SRT 
was transcribed and coded offline upon completion by the experimenter 
and a trained assistant. The SRT data were coded for identical repetition 
following Hamann and Abed Ibrahim (2017). That is, children received 
a point for each sentence repeated entirely verbatim. Five participants’ 
SRT recordings (10%) were transcribed by both coders for inter-
transcriber reliability analyses, which revealed a strong reliability 
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between the two transcribers (observed agreement = 94.7%; κ = 0.83 
with 95% CIs of [0.74, 0.93]; following the more conservative 
interpretation of the kappa statistic suggested by McHugh, 2012). 
Furthermore, Cronbach’s alpha (α) was calculated for the SRT to 
determine task-internal reliability, which revealed good internal 
consistency (α = .81 [.74, .88]). This justifies its use as individual 
differences measure in our exploratory analysis (see OSF for almost 
identical values of McDonald’s omega).

Serial recall task

Sequence repetitions were transcribed by the experimenter and a 
trained assistant. Participants’ repetitions were scored at both the 
syllable and the bigram level, with a bigram being an experimental 
word in the two structured conditions and random syllable pairs in the 
unstructured condition (therefore referred to as “bigram level” rather 
than “word level” here). At the syllable level, participants received one 
point for each syllable repeated correctly in the correct position (max. 
6 points per sequence). At the bigram level, participants received one 
point for each bigram (i.e., “word” or syllable pair) repeated correctly 
in the correct position (max. 3 points per sequence), providing valuable 
information about whether participants recalled sequences better 
because of learning the experimental words (i.e., bigrams) in the 
structured sequence types. In the unstructured sequences, the three 
bigrams per sequence were the random syllable pairs in Syllable 
positions 1 and 2, 3 and 4, and 5 and 6 (with syllable combinations 
varying between sequences).

Recall scores at the syllable and bigram level were highly correlated 
for all three sequence types (naturalistic sequences: r(47) = .96, p < 
.001; non-naturalistic sequences: r(47) = .94, p < .001; unstructured 
foil sequences: r(47) = .88, p < .001). Data for five participants were 
transcribed by both coders for inter-transcriber reliability analyses, 
revealing a moderate to strong reliability between the two transcribers 
(syllable level: observed agreement = 79.2%; κ = 0.74 [0.69, 0.79]; 
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bigram level: observed agreement = 88.3%; κ = 0.80 [0.74, 0.86]; again 
following the more conservative interpretation of kappa suggested by 
McHugh, 2012). Furthermore, Cronbach’s alpha (α) was calculated for 
the serial recall task as measure of task-internal reliability, revealing 
acceptable to excellent internal consistency (see Table 4.1, and see OSF 
for almost identical values of McDonald’s omega).

We preregistered two different coding schemes for the serial recall 
task, the one described above and a serial-order coding scheme, which 
grants participants points more generously for repeating a syllable or 
bigram in the correct serial order rather than in the exact position within 
the sequence (see Isbilen et al., 2020, and Kidd et al., 2020). We report 
the results of the former coding scheme only, since the strict scheme is 
more conservative. However, the results of all coding schemes can be 
found in the Analysis folder of our OSF project. The results do not 
differ substantially between the different coding schemes.

Results

All of the analyses presented in this chapter were performed in R 
4.1.3 (R Core Team, 2022) using RStudio (RStudio Team, 2022). Data 
preprocessing and visualisation were performed using the package 
tidyverse 1.3.1 (Wickham, 2017; Wickham et al., 2019).

C������ 4

Syllable level Bigram level
Sequence type α 95% CI α 95% CI
Overall .95 [.93, .97] .93 [.90, .96]
Naturalistic sequences .85 [.80, .91] .81 [.74, .89]
Non-naturalistic sequences .89 [.84, .93] .87 [.82, .92]
Unstructured foil sequences .85 [.79, .91] .77 [.67, .86]

Note: α = Cronbach’s alpha.

Table 4.1. Task-internal consistency measures for the serial recall 
task.

https://osf.io/t5qf4/
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Language proficiency assessments

On the PPVT, the children scored on average 54.63 (SD = 9.07, 
range: 38–73), which is slightly higher than the normed average of 50. 
One child performed below our inclusion threshold of 1.5 SDs below 
the norming average (PPVT = 35) and was thus excluded from the 
analyses. On the SRT, the children scored on average 34.89 (SD = 5.36, 
range: 23–44). One child scored 2.2 SDs below the group average on 
the standard scoring criteria, but below the inclusion threshold of 2.5 
SDs on more sensitive coding schemes (see preregistration, coding 
scheme, and analysis files on OSF). This participant was excluded from 
the analyses.

Serial recall task

Analysis by experimental block

We analysed the data using generalised linear mixed-effects models 
(package lmerTest 3.1-3; Kuznetsova et al., 2017; based on lme4 1.1-
28; Bates et al., 2015), with syllable recall and bigram recall as the 
dependent variables to test overall recall and recall of the experimental 
words, respectively. We specified a Poisson distribution with a log-link, 
since the dependent measures were count variables. Models were fitted 
with a fixed effect of sequence type using sliding contrasts 
(naturalistic: 0.5 vs. non-naturalistic: −0.5, and non-naturalistic: 0.5 
vs. foils: −0.5) to examine whether recall differed across the 
experimental conditions, and a fixed effect of block was entered as a 
centred continuous variable to examine learning over the course of the 
experiment. Additionally, the interaction between the two factors was 
included as a fixed effect. We fitted the maximal model supported by the 
data (Barr et al., 2013), controlling for participants and items as random 
intercepts, with sequence type and block (as well as their interaction) as 
random slopes for participants, but not items as those differed between 
sequence types and blocks. The marginal and conditional R² effect sizes 
are also reported as goodness-of-fit estimates. These denote the 
proportion of the variance explained by the model both with 

111

T�� ������ �� ��������’� ����� ��������� ��� �������� ��������� �� ����� ����������� ��������

https://osf.io/t5qf4/


112

(conditional R²) and without (marginal R²) controls for sources of 
random variance (Johnson, 2014; Nakagawa et al., 2017; Nakagawa & 
Schielzeth, 2013).

There was a significant main effect of sequence type at both the 
syllable level and the bigram level, with participants displaying better 
recall for naturalistic than non-naturalistic sequences (see Table 4.2). At 
the bigram level, participants also showed better recall for the non-
naturalistic than the unstructured foil sequences, indicating that the 
non-naturalistic words were also learnt, even though this did not 
facilitate the overall syllable recall for those sequences (for a 
visualisation of participants’ syllable and bigram recall accuracy, see 
Figure 4.2 and Figure 4.3, respectively). There was no significant main 
effect of block, and no significant interaction between block and 
sequence type, suggesting that the conditional differences across 
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Parameter b 95% CI SE t p
Syllable level

(Intercept) 0.29 [0.14, 0.44] 0.08 3.74 < .001
Nat. vs. Non-nat. 0.10 [0.04, 0.17] 0.03 3.21 .001
Non-nat. vs. Foils 0.05 [–0.01, 0.10] 0.03 1.66 .10
Block 0.01 [–0.04, 0.05] 0.02 0.25 .80
Nat. vs. Non-nat. × Block 0.02 [–0.01, 0.06] 0.02 1.17 .24
Non-nat. vs. Foils × Block 0.01 [–0.03, 0.05] 0.02 0.49 .63

Bigram level
(Intercept) –1.15 [–1.39, –0.91] 0.13 –9.17 < .001
Nat. vs. Non-nat. 0.24 [0.11,   0.36] 0.06 4.07 < .001
Non-nat. vs. Foils 0.14 [0.04,   0.23] 0.05 2.90 .004
Block 0.01 [–0.06,   0.09] 0.04 0.37 .71
Nat. vs. Non-nat. × Block 0.03 [–0.04,   0.09] 0.03 0.82 .42
Non-nat. vs. Foils × Block 0.02 [–0.05,   0.09] 0.04 0.65 .52

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Model fit syllable level: AIC = 
10,961; BIC = 11,023; R²marginal = 0.027; R²conditional = 0.088; ICC = 0.063; RMSE = 
1.248; σ = 1; model fit bigram level: AIC = 5661; BIC = 5742; R²marginal = 0.046; 
R²conditional = 0.415; ICC = 0.387; RMSE = 0.599; σ = 1.

Table 4.2. Summary of the linear mixed-effects models investigating 
the influence of sequence type and block on the children’s syllable and 
bigram recall.



113

T�� ������ �� ��������’� ����� ��������� ��� �������� ��������� �� ����� ����������� ��������

Figure 4.2. Mean recall of syllables (out of six per sequence) for the 
three sequence types given by experimental Blocks 1–12. The three 
sequence types were naturalistic, non-naturalistic, and unstructured 
foils. Error bars indicate ±1 standard error.

Figure 4.3. Mean recall of bigrams (out of three per sequence) in the 
three sequence types given by experimental Blocks 1–12. The three 
sequence types were naturalistic, non-naturalistic, and unstructured 
foils. Error bars indicate ±1 standard error.
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sequence types reflected the overall performance of children across the 
experiment.

Analysis by exposure phase

While there were no effects of block in the previous analyses, 
performance across the experiment was not totally even. Chapter 3 
found that adult performance in the current task varied across phases of 
the experiment (early, intermediate, and late; Stärk et al., 2023). We 
conducted the same analysis, dividing the exposure into three phases, 
separated by breaks during the data acquisition (early exposure: Blocks 
1–4; intermediate exposure: Blocks 5–8; late exposure: Blocks 9–12). 
Accordingly, we added exposure phase instead of block as a fixed effect 
in the models examining children’s syllable and bigram recall. We fitted 
the maximal model supported by the data (Barr et al., 2013) with 
sequence type (sliding contrast: naturalistic: 0.5 vs. non-naturalistic:
−0.5, and non-naturalistic: 0.5 vs. foils: −0.5), exposure phase (sliding 
contrast: early exposure: −0.5 vs. intermediate exposure: 0.5, and 
intermediate exposure: −0.5 vs. late exposure: 0.5), and their 
interaction as fixed effects, and random intercepts and slopes for 
participants and items, where appropriate.

Comparable to the results of the previous analysis, we found 
significant main effects of sequence type but neither a main effect of 
exposure phase nor an interaction between the two factors (see Table 
4.3). For an illustration of syllable and bigram recall accuracy over the 
three phases see Figure 4.4 and Figure 4.5.

The relationship between language proficiency and statistical 
learning

We next report our exploratory analyses investigating whether 
differences in children’s performance on the SL task were related to 
their native-language proficiency. We obtained two measures of 
language proficiency – vocabulary size, as measured by the PPVT, and 
morphosyntactic processing, as measured by the SRT. Table 4.4 shows 
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the bivariate correlations between all variables, in addition to partial 
correlations between repetition of structured sequences and language 
proficiency, controlling for foil repetition. All bivariate correlations 
between repetition of syllable sequences and the SRT and PPVT were 
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Parameter b 95% CI SE t p
Syllable level

(Intercept) 0.29 [0.12, 0.44] 0.08 3.64 < .001
Nat. vs. Non-nat. 0.12 [0.05, 0.19] 0.03 3.60 < .001
Non-nat. vs. Foils 0.05 [–0.02, 0.10] 0.03 1.61 .11
Early vs. Intermediate –0.01 [–0.06, 0.04] 0.02 –0.52 .61
Intermediate vs. Late 0.03 [–0.02, 0.07] 0.02 1.30 .19
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.01 [–0.03, 0.05] 0.02 0.41 .68

Nat. vs. Non-nat. × Intermediate 
vs. Late

0.02 [–0.02, 0.06] 0.02 1.03 .30

Non-nat. vs. Foils × Early vs. 
Intermediate

0.02 [–0.03, 0.06] 0.02 0.89 .37

Non-nat. vs. Foils × Intermediate 
vs. Late

–0.02 [–0.07, 0.03] 0.02 –0.79 .43

Bigram level
(Intercept) –1.13 [–1.36, –0.88] 0.12 –9.47 < .001
Nat. vs. Non-nat. 0.17 [0.06,   0.28] 0.05 3.16 .002
Non-nat. vs. Foils 0.14 [0.04,   0.24] 0.05 2.92 .003
Early vs. Intermediate 0.05 [–0.03,   0.13] 0.04 1.21 .23
Intermediate vs. Late 0.01 [–0.06,   0.08] 0.04 0.20 .84
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.03 [–0.05,   0.10] 0.04 0.76 .45

Nat. vs. Non-nat. × Intermediate 
vs. Late

0.01 [–0.07,   0.08] 0.04 0.21 .84

Non-nat. vs. Foils × Early vs. 
Intermediate

0.03 [–0.05,   0.12] 0.04 0.67 .50

Non-nat. vs. Foils × Intermediate 
vs. Late

0.00 [–0.09,   0.09] 0.05 –0.05 .96

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Exposure phase: Early, Intermediate, 
Late. Model fit syllable level: AIC = 10,962; BIC = 11,085; R²marginal = 0.024; R²conditional
= 0.394; ICC = 0.379; RMSE = 1.246; σ = 1; model fit bigram level: AIC = 5674; 
BIC = 5761; R²marginal = 0.045; R²conditional = 0.084; ICC = 0.041; RMSE = 0.598; σ = 
1.

Table 4.3. Summary of the linear mixed-effects models investigating 
the influence of sequence type and exposure phase on the children’s 
syllable and bigram recall.
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Figure 4.4. Mean recall of syllables (out of six per sequence) for the 
three sequence types given by exposure phase. The three sequence types 
were naturalistic, non-naturalistic, and unstructured foils. The three 
exposure phases were early, intermediate, and late. Error bars indicate 
±1 standard error.

Figure 4.5. Mean recall of bigrams (out of three per sequence) for the 
three sequence types given by exposure phase. The three sequence types 
were naturalistic, non-naturalistic, and unstructured foils. The three 
exposure phases were early, intermediate, and late. Error bars indicate 
±1 standard error.



positive and all but two were significant. The partial correlations testing 
the relationship between syllable recall and language proficiency 
controlling for foil repetition were lower. Only the partial correlation 
between naturalistic repetition of bigrams and SRT performance was 
significant.

While the simple correlations between sequence recall and PPVT or 
SRT were significant, we chose the latter measure as our individual 
differences variable because the recall task and the SRT both involve 
sequencing linguistic units in the same modality, but with different units 
(syllables versus morphemes). Finding that the two are systematically 
related would provide evidence in support of the idea that sequencing 
of syllables and morphemes share an underlying common and 
statistically sensitive mechanism (Isbilen et al., 2022). Thus, we next 
analysed whether SRT performance influenced children’s performance 
on the experiment. We fitted the maximal model supported by the data 
(Barr et al., 2013) with sequence type (sliding contrast: naturalistic: 0.5 
vs. non-naturalistic: −0.5, and non-naturalistic: 0.5 vs. foils: −0.5), 
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Syllable level Bigram level
Non-nat. Foils SRT PPVT Non-nat. Foils SRT PPVT

Nat. .74 *** .83 *** .70 ***

(.24)
.38 **

(.07)
.64 *** .74 *** .62 ***

(.30 *)
.30 *

(.05)
Non-
nat.

– .85 *** .67 ***

(.13)
.27

(–.16)
– .81 *** .58 ***

(.17)
.16

(–.23)
Foils – .74 *** .41 ** – .63 *** .36 *

SRT – .40 ** – .40 **

PPVT – –

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. N = 49; * p < .05, ** p < .01, *** p 
< .001

Table 4.4. Pearson bivariate correlations between children’s recall in 
the three sequence types (naturalistic, non-naturalistic, and foil 
sequences) and their performance on the language proficiency 
assessments (SRT and PPVT) at the syllable (left) and bigram level 
(right). Partial correlations between language assessments and 
structured sequences, controlling for foil repetition, appear in brackets.
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block (centred continuous variable) and SRT (centred continuous 
variable), as well as the interactions between the three factors, as fixed 
effects, and random intercepts and slopes for participants and items, 
where appropriate. In addition to the main effects of sequence type 
described above, there was a significant main effect of SRT score 
(syllable level: β = 0.41 [0.32, 0.50], t = 8.34, p < .001; bigram level: β
= 0.59 [0.41, 0.76], t = 6.55, p < .001), with children who scored higher 
on the SRT displaying better syllable and bigram recall on the 
experimental task. Furthermore, there was a significant interaction 
between sequence type and SRT performance (syllable level: β = −0.05 
[−0.09, 0.00], t = −2.04, p = .04; bigram level: β = −0.11 [−0.20, −0.02], 
t = −2.36, p = .02), with a greater recall difference between naturalistic 
and non-naturalistic sequences for children with lower SRT scores 
compared to their higher SRT scoring peers. At the syllable level, there 
was an additional significant interaction between block and SRT 
performance (syllable level: β = 0.05 [0.00, 0.09], t = 2.25, p = .03), 
with children with higher SRT scores showing greater improvement in 
syllable recall throughout the experiment, although the effect was not 
significant at the bigram level (see analysis file on OSF for full details).

Given that linguistic proficiency was related to performance across 
the experiment, we scrutinised this further by replacing the variable of 
block with the more interpretable variable of phase (early, intermediate, 
late). We fitted the maximal model supported by the data (Barr et al., 
2013) with sequence type (sliding contrast: naturalistic: 0.5 vs. non-
naturalistic: −0.5, and non-naturalistic: 0.5 vs. foils: −0.5), exposure 
phase (sliding contrast: early exposure: −0.5 vs. intermediate exposure: 
0.5, and intermediate exposure: −0.5 vs. late exposure: 0.5), and SRT 
performance (centred continuous variable), as well as the interactions 
between the three factors, as fixed effects, and random intercepts and 
slopes for participants and items, where appropriate. The outcomes of 
the model analysing the data at the syllable level are given in Table 4.5, 
and the outcomes of the model analysing the data at the bigram level 
are given in Table 4.6. As in the previous models, we found significant 
main effects of sequence type (with syllable recall only differing 
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between naturalistic and non-naturalistic sequences, and bigram recall 
additionally differing between non-naturalistic and foil sequences) and 
SRT performance. The main effect of exposure phase was not 
significant. At the syllable level, we found two significant interactions. 
The interaction between SRT performance and sequence type indicated 
that children with lower SRT scores showed a greater recall difference 
between naturalistic and non-naturalistic sequences than children with 
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Table 4.5. Summary of the linear mixed-effects model investigating the 
influence of sequence type, exposure phase, and SRT score on the 
children’s syllable recall.

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Exposure phase: Early, Intermediate, 
Late. Model fit: AIC = 10,924; BIC = 11,103; R²marginal = 0.225; R²conditional = 0.395; 
ICC = 0.219; RMSE = 1.246; σ = 1.

Parameter b 95% CI SE t p
(Intercept) 0.29 [0.18, 0.39] 0.05 5.46 < .001
Nat. vs. Non-nat. 0.12 [0.05, 0.19] 0.03 3.65 < .001
Non-nat. vs. Foils 0.05 [–0.02, 0.10] 0.03 1.52 .13
Early vs. Intermediate –0.01 [–0.05, 0.04] 0.02 –0.49 .63
Intermediate vs. Late 0.02 [–0.02, 0.07] 0.02 1.04 .30
SRT 0.41 [0.31, 0.50] 0.05 8.33 < .001
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.01 [–0.04, 0.05] 0.02 0.21 .83

Nat. vs. Non-nat. × Intermediate vs. 
Late

0.03 [–0.02, 0.08] 0.02 1.35 .18

Non-nat. vs. Foils × Early vs. 
Intermediate

0.02 [–0.04, 0.06] 0.02 0.66 .51

Non-nat. vs. Foils × Intermediate vs. 
Late

0.00 [–0.06, 0.05] 0.03 –0.17 .87

Nat. vs. Non-nat. × SRT –0.05 [–0.10, 0.00] 0.02 –2.06 .04
Non-nat. vs. Foils × SRT 0.01 [–0.03, 0.05] 0.02 0.39 .69
Early vs. Intermediate × SRT 0.06 [0.02, 0.11] 0.02 2.85 .004
Intermediate vs. Late × SRT 0.00 [–0.04, 0.04] 0.02 –0.05 .96
Nat. vs. Non-nat. × Early vs. 
Intermediate × SRT

0.01 [–0.04, 0.05] 0.02 0.47 .64

Nat. vs. Non-nat. × Intermediate vs. 
Late × SRT

–0.03 [–0.07, 0.02] 0.02 –1.23 .22

Non-nat. vs. Foils × Early vs. 
Intermediate × SRT

0.01 [–0.04, 0.06] 0.02 0.38 .71

Non-nat. vs. Foils × Intermediate vs. 
Late × SRT

–0.04 [–0.08, 0.01] 0.03 –1.53 .13
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higher SRT scores. The interaction between SRT performance and 
exposure phase indicated that children with higher SRT scores showed 
stronger improvement between the early and intermediate exposure 
phase than children with lower SRT scores (see Figure 4.6, which plots 
performance for “High” and “Low” SRT performers, determined by 
median split).

C������ 4

Parameter b 95% CI SE t p
(Intercept) –1.13 [–1.30, –0.94] 0.09 –12.97 < .001
Nat. vs. Non-nat. 0.19 [0.08,   0.29] 0.06 3.49 < .001
Non-nat. vs. Foils 0.14 [0.03,   0.25] 0.05 2.75 .006
Early vs. Intermediate 0.02 [–0.06,   0.10] 0.04 0.43 .67
Intermediate vs. Late 0.02 [–0.06,   0.10] 0.04 0.48 .63
SRT 0.57 [0.39,   0.73] 0.09 6.71 < .001
Nat. vs. Non-nat. × Early vs. 
Intermediate

0.02 [–0.07,   0.11] 0.04 0.48 .63

Nat. vs. Non-nat. × Intermediate vs. 
Late

0.03 [–0.06,   0.11] 0.04 0.67 .50

Non-nat. vs. Foils × Early vs. 
Intermediate

0.05 [–0.04,   0.16] 0.05 1.13 .26

Non-nat. vs. Foils × Intermediate vs. 
Late

–0.01 [–0.11,   0.10] 0.05 –0.13 .89

Nat. vs. Non-nat. × SRT –0.08 [–0.17,   0.01] 0.04 –1.84 .07
Non-nat. vs. Foils × SRT 0.00 [–0.08,   0.09] 0.04 0.08 .93
Early vs. Intermediate × SRT 0.09 [0.00,   0.17] 0.04 1.96 .05
Intermediate vs. Late × SRT –0.04 [–0.11,   0.04] 0.04 –0.89 .37
Nat. vs. Non-nat. × Early vs. 
Intermediate × SRT

0.03 [–0.06,   0.11] 0.04 0.60 .55

Nat. vs. Non-nat. × Intermediate vs. 
Late × SRT

–0.06 [–0.14,   0.02] 0.04 –1.37 .17

Non-nat. vs. Foils × Early vs. 
Intermediate × SRT

–0.06 [–0.16,   0.03] 0.05 –1.28 .20

Non-nat. vs. Foils × Intermediate vs. 
Late × SRT

0.01 [–0.09,   0.11] 0.05 0.20 .84

Table 4.6. Summary of the linear mixed-effects model investigating the 
influence of sequence type, exposure phase, and SRT score on the 
children’s bigram recall.

Notes: Sequence type: Nat. = naturalistic sequences, Non-nat. = non-naturalistic 
sequences, Foils = unstructured foil sequences. Exposure phase: Early, Intermediate, 
Late. Model fit: AIC = 5647; BIC = 5789; R²marginal = 0.222; R²conditional = 0.254; ICC = 
0.041; RMSE = 0.599; σ = 1.



Children’s performance showed a dramatic decrease in the final 
block, most likely driven by fatigue, which could potentially obscure 
learning effects across the later part of the experiment. To rule out this 
possibility, we ran one final exploratory analysis without Block 12, 
reducing the late exposure phase to Blocks 9 to 11, and fitted the same 
four models predicting participants’ syllable or bigram recall by 
sequence type, block or exposure phase, and SRT performance (as well 
as their interactions). Importantly, all previously observed effects 
remained significant, with most effects becoming even slightly larger 
than in the original models including all 12 blocks. The two models 
including the factor block showed the same overall outcome whether 
Block 12 was included or not. In the model predicting bigram recall by 
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Figure 4.6. Mean recall of syllables (top) and bigrams (bottom) per 
sequence of the children with an SRT score higher than the median split 
(left) and lower than the median split (right) for the three sequence 
types given by exposure phase. The three sequence types were 
naturalistic, non-naturalistic, and unstructured foils. The three 
exposure phases were early, intermediate, and late. Error bars indicate 
±1 standard error.
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sequence type, phase, and SRT performance, the two interactions 
already observed in the other models now also reached the traditional 
significance threshold. These were the interactions between sequence 
type and SRT performance, indicating that children with a lower SRT 
score showed a higher recall difference between naturalistic and non-
naturalistic sequences than children with a higher SRT score (β = −0.14 
[−0.23, −0.03], t = −2.83, p = .005), and the interaction between 
exposure phase and SRT performance, indicating that children with a 
higher SRT score improved more in the early stages of the experiment 
than children with a lower SRT score (β = 0.09 [0.00, 0.18], t = 1.97, p
= .049). Finally, an interaction between sequence type, phase, and SRT 
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Figure 4.7. Mean recall of syllables (top) and bigrams (bottom) per 
sequence of the children with an SRT score higher than the median split 
(left) and lower than the median split (right) for the three sequence 
types given by exposure phase when removing the final block. The three 
sequence types were naturalistic, non-naturalistic, and unstructured 
foils. The three exposure phases were early, intermediate, and late (with 
the late exposure phase = Blocks 9–11). Error bars indicate ±1 
standard error.



performance became significant at the syllable level, indicating that the 
recall difference between naturalistic and non-naturalistic sequences 
decreased for children with higher SRT scores as compared to children 
with lower SRT scores towards the end of the experiment (β = −0.05 
[−0.10, 0.00], t = −2.02, p = .04). Figure 4.7 illustrates high-SRT and 
low-SRT children’s recall across the three exposure phases when Block 
12 is removed.

Discussion

There is a growing body of evidence to suggest that SL is influenced 
by related prior knowledge – including phonotactic knowledge (e.g., 
Dal Ben et al., 2021; Finn & Hudson Kam, 2008; Mersad & Nazzi, 
2011; Onnis et al., 2005), expectations about word length (Lew-
Williams & Saffran, 2012), and knowledge of language structure 
(Thiessen et al., 2019). Since learners have been shown to form 
enduring memory representations for statistically defined input (see 
e.g., Batterink & Paller, 2017), it is conceivable that the influence of 
prior knowledge on SL also extends to prior knowledge of linguistic 
TPs (e.g., in the form of chunked syllables), obtained via exposure to 
natural language. There is promising early evidence for this possibility 
in adults (Elazar et al., 2022; Siegelman et al., 2018; Stärk et al., 2023); 
however, little is known about the way in which knowledge of syllable 
co-occurrences might influence SL in children. Here, we investigated 
whether seven- to nine-year-old German-speaking children used 
existing distributional knowledge to recall sequences of syllables and 
whether this was related to their language proficiency.

Children’s recall was significantly better for naturalistic sequences 
(i.e., those which complemented the distributional properties of their 
native language) than non-naturalistic sequences, in line with our 
experimental hypothesis. This echoes the findings of related work with 
adults (Elazar et al., 2022; Stärk et al., 2023) and indicates that children 
too (in this case, seven- to nine-year-old native speakers of German) 
have well-entrenched memory traces of frequently co-occurring 
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syllables, forged through experience with their native language and 
which shape their subsequent learning of related material (Siegelman et 
al., 2018). Past research has demonstrated that both infants and adults 
draw upon prior experience with language structure to guide their use 
of forwards versus backwards TPs when processing new input (Onnis 
& Thiessen, 2013; Thiessen et al., 2019). The present study goes further 
by demonstrating that children use the precise TPs previously 
encountered in their native language to both recall and hierarchically 
group (or chunk) syllable sequences. That is, we demonstrated that 
children had acquired the syllable co-occurrence patterns in natural 
German and implicitly brought these to bear to process new linguistic 
input.

Children also showed better recall for non-naturalistic sequences 
over unstructured foil sequences at the bigram level, demonstrating 
once more how children readily acquire new words from input 
regularities (Evans et al., 2009; Kidd et al., 2020; Saffran et al., 1997). 
The absence of the effect at the syllable level suggests that, while the 
children were sensitive to the in-experiment bigrams in the non-
naturalistic condition, this advantage did not extend to a greater 
window as measured by the syllable recall measure. We suspect that the 
effect was not visible at the syllable level because of the difficulty of 
learning simultaneous sequences constructed from the same syllable 
inventory. Thus, with participants receiving sequences of all three 
sequence types simultaneously, the immediate advantage of the 
naturalistic sequences might have drawn participants’ attention to these 
patterns first, leading to a disadvantage for any other learnable pattern 
in the input, such as in the non-naturalistic sequences (cf. Antovich & 
Graf Estes, 2018; Bulgarelli & Weiss, 2016; Gebhart et al., 2009).

Contrary to our expectations, at the group level, children’s recall did 
not improve over the course of the task. Thus, we did not replicate the 
pattern of within-experiment learning observed in adults in Chapter 3 
(cf. Stärk et al., 2023). There are two potential explanations for this 
result. First, this could be explained by an implicit learning advantage 
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for children relative to adults. That is, that the effect emerged early and 
did not change thereafter could be because children rapidly identified 
(parts of) the patterned sequences and did not learn anything more 
thereafter. There is some recent evidence in support of children’s more 
rapid acquisition of statistical patterns in comparison to adults. Smalle 
et al. (2017) showed that nine- to ten-year-old children implicitly 
acquire phonotactic restrictions on novel words faster than adults do. 
Additional work by Smalle et al. (2018) using the Hebbian repetition 
paradigm suggests that eight- to nine-year-olds show greater retention 
of implicitly learnt syllable sequences than adults four hours and one 
week after they were first tested. Thus, it appears that, in repetition 
learning tasks at least, children can learn faster and retain verbal 
information better than adults, general differences in cognition like 
working-memory span notwithstanding. This finding is consistent with 
the generally held belief that there is a critical period for language 
learning (Hartshorne et al., 2018; Newport, 1990). One tentative 
possibility is that the difference between the current data and that of 
Chapter 3 (Stärk et al., 2023), where children seize upon the naturalistic 
sequences earlier, reflects children’s greater ability to identify 
distributional patterns.

While possible, we think this explanation might be less likely than 
a second explanation that appeals both to the complex nature of the task 
and to individual differences in children’s performance on the task. As 
outlined above, the fact that all three sequences came from the same 
syllable inventory introduced a complexity to the task that is not seen, 
for instance, in studies of Hebbian learning, which typically have 
patterned and foil sequences without syllable overlap, and which 
typically observe improvement in the repetition of the patterned 
sequence relative to foil repetition across time (e.g., Smalle et al., 
2018). This interference across sequence conditions may have 
prevented us from observing any interaction with block or phase, with 
the end result being that we only observed overall differences across the 
conditions.
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Individual differences seem to have also impacted on learning 
across the experiment, with the children’s language proficiency, as 
measured by the SRT task, interacting with learning over the course of 
the experiment. We observed a significant correlation between the SRT 
and performance in the naturalistic condition, even after partialling out 
variance attributable to foil repetition, suggesting that higher language 
proficiency was associated with better performance in that condition. 
Intriguingly, in our statistical models, we found that language 
proficiency interacted with the overall magnitude of the difference 
between the naturalistic and non-naturalistic conditions: children with 
lower SRT scores had a greater difference in sequence recall than 
children with higher SRT scores. One possible explanation for this 
effect is that the magnitude of the difference was smaller in the more 
proficient speakers because, in addition to learning the transitions in the 
naturalistic condition, they were also building more robust knowledge 
of the non-naturalistic sequences than were the children with lower 
proficiency. This interpretation is consistent with the fact that the high-
SRT children showed a decreasing trend in their recall of the 
naturalistic sequences relative to the non-naturalistic sequences in the 
latter part of the experiment, which emerged as an effect when we 
removed Block 12 from the analyses. If the children were also 
acquiring more robust knowledge of the non-naturalistic sequences 
during the latter half of the experiment, this newly acquired knowledge 
may have interfered with their performance in the naturalistic 
condition, given that the sequences contained the same syllables but 
different transitions. That is, the simultaneous learning of naturalistic 
and non-naturalistic sequences may have come at a price, with the 
acquisition of non-naturalistic sequences interfering with the 
naturalistic ones as their exposure to both sequences increased across 
time.

Our individual differences analyses revealed some suggestive 
patterns, but we stress that they should be interpreted with caution and 
treated as preliminary. Although our measures had good internal 
consistency (cf. Arnon, 2020), our sample size was not large and was 
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further restricted due to circumstances outside of our control. Future 
studies could improve upon ours by recruiting a larger sample and by 
recruiting a larger age range. Language proficiency is correlated 
imperfectly with age, which may be due to the fact that the mechanisms 
underlying language acquisition vary across individuals in ways that 
are not completely age-dependent (Kidd & Donnelly, 2020; Kidd et al., 
2018). Thus, more high-powered studies with wider age ranges may 
better elucidate the role of language proficiency in auditory SL of 
syllable sequences. At the moment, our data suggest that these 
individual differences exist and may be related to proficiency in 
nontrivial ways.

One final discussion point concerns the mechanism by which 
children are learning the syllable transitions in the task (and 
presumably, how they are learning the knowledge of syllable transitions 
they bring to the task). While the statistical structure of our sequences 
was defined in terms of TPs, we suspect that the process underlying 
learning is more likely to be the chunking of frequently co-occurring 
syllables into higher units – in our case, disyllabic words – following 
models of SL and language that identify chunking as a basic learning 
mechanism (Christiansen & Chater, 2016; Frank, Goldwater, et al., 
2010; Perruchet, 2019; Perruchet & Vinter, 1998). One benefit of 
conceiving of SL as chunking is that it builds natural bridges to related 
areas of the literature on verbal learning (e.g., Isbilen et al., 2020; Jones, 
2012; Jones et al., 2007), thus grounding the field within the broader 
cognitive domain of learning and memory. Tasks like serial recall are 
well-suited to exploring the overlap in these literatures since recall is 
sensitive to long-term knowledge and learning effects (e.g., Kidd et al., 
2020; Smalle et al., 2018; Szewczyk et al., 2018).

Limitations and future directions

In the current study, we showed that seven- to nine-year-old 
children draw on their prior knowledge of syllable co-occurrences in 
their native language when processing new linguistic input, which has 
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previously been found in adults (Elazar et al., 2022; Stärk et al., 2023). 
We also found that children’s learning of attested and unattested 
syllable transitions was related to their language proficiency, as 
measured by sentence recall. The general conclusion from these data is 
that children form long-term representations for distributional 
information acquired over language development and use this 
knowledge to process new input. This skill may vary across individuals. 
We see these results as consistent with the general observation that 
language acquisition involves attending to and inducing abstract 
knowledge from regularly occurring sequences of linguistic units (e.g., 
Arnon, 2021; Bannard & Matthews, 2008; Saffran, Aslin, et al., 1996). 
However, we stress that we are not reducing acquisition purely to SL. 
From a very young age, children begin to build abstract knowledge at 
multiple levels of description. Thus, our demonstration that seven- to 
nine-year-olds are sensitive to distributional information does not entail 
that only this information is represented, but rather shows that this is 
one source of information that likely matters for learning. We note that 
almost every theory of language acquisition incorporates SL to some 
degree (e.g., Chang et al., 2006; Lidz & Gagliardi, 2015; Pearl, 2021; 
Tomasello, 2003), but exactly how SL contributes in these theories 
differs substantially. An important future direction is accurately placing 
SL within the broader enterprise of language acquisition.

Conclusion

To conclude, we investigated the influence of children’s prior 
distributional knowledge on their auditory SL performance and 
examined whether this effect was related to the children’s language 
proficiency. Children drew upon their prior knowledge of TPs of their 
native language (i.e., highly frequent syllable co-occurrences) to 
process and learn new linguistic input, demonstrating that, like adults 
(cf. Chapter 3; Stärk et al., 2023), German-speaking children had 
indeed developed entrenched knowledge of German syllable co-
occurrences, which permeated through into the experiment to shape 
subsequent learning. In exploratory analyses, we found that children’s 
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performance on the SL task interacted with their language proficiency, 
with the results suggesting that children with higher proficiency were 
more sensitive to both the naturalistic and non-naturalistic patterned 
sequences. This is consistent with the idea that there are meaningful 
individual differences in SL that are related to language acquisition 
(Kidd et al., 2018; Siegelman et al., 2017), although significant 
additional work in this space is required to determine the exact nature 
of the effect.
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Abstract12,13

Past research has shown that statistical word segmentation can be 
facilitated by different variables, such as the learners’ prior knowledge 
of syllable co-occurrences and words being presented in a Zipfian 
rather than a uniform frequency distribution. Here, we investigated how 
these two variables, previously studied individually, interact. In 
Experiment 1, participants were tested on an auditory statistical 
learning (SL) task. They were assigned to one of four conditions, which 
manipulated (i) their familiarity with the syllable pairs that the words 
contained (‘naturalistic’ attested bigrams versus ‘non-naturalistic’ 
unattested bigrams) and (ii) the frequency distribution of these words 
within the speech stream (Zipfian versus uniform distribution). We 
hypothesised that naturalistic and Zipfian conditions would improve 
participants’ SL performance. However, while participants were above 
chance in all conditions, we found the opposite pattern. Experiment 2 
examined whether the advantage of non-naturalistic over naturalistic 
words was driven by the length of the familiarisation phase. However, 
participants in the non-naturalistic condition still outperformed 
participants in the naturalistic condition. Consequently, we tested 
whether the effect was driven by the experimental words (Experiment 
3). This did not seem to be the case: participants demonstrated a 
significant preference for attested over unattested bigrams when they 
received no exposure stream at all. Overall, the data are consistent with 
the suggestion that existing language knowledge and skewed 
distributions influence statistical word segmentation; however, the 
direction of the results are difficult to definitively explain in light of past 
research. We discuss possible reasons for the unexpected results.

12 This chapter is based on Stärk, K., Kidd, E., & Frost, R. L. A. (in prep.). The 
influence of prior knowledge and a Zipfian frequency distribution on statistical 
learning.
13 We originally planned to conduct an EEG study, investigating the influence of 
infants’ prior knowledge of syllable distributions on the infants’ statistical learning 
performance. However, due to the COVID-19 pandemic, we had to adjust those plans 
and conduct this online study with adult participants instead.
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Introduction

Speech comprises a variety of cues that help the learner to 
successfully segment and process their language input. One reliable 
segmentation cue is the frequency with which syllables co-occur: 
transitional probabilities (TPs; see e.g., Perruchet & Desaulty, 2008; 
Saffran, Newport, et al., 1996; and see Saksida et al., 2017, and Chapter 
2, Stärk et al., 2022, for corpus analyses investigating TPs in natural 
speech). High TPs can indicate that syllables belong to the same word 
while low TPs can indicate that syllables belong to different words. 
That is, the learner can group together frequently co-occurring syllables 
and assume word boundaries when TPs are low. While ample studies of 
statistical learning (SL) have examined this process of grouping 
syllables into words based on high TPs (e.g., Aslin et al., 1998; 
Batterink & Paller, 2017; Raviv & Arnon, 2018; Saffran, Aslin, et al., 
1996; Saffran et al., 1997; Teinonen et al., 2009), recent studies have 
started to investigate how prior knowledge of syllable co-occurrences – 
acquired through exposure to the speaker’s native language – influences 
their subsequent SL (Elazar et al., 2022; Siegelman et al., 2018; Stärk 
et al., 2023, i.e., Chapter 3). However, it is not yet clear how the 
facilitatory effect of prior knowledge interacts with other factors 
influencing SL, such as the frequency distribution of word tokens in a 
language.

In natural languages, words follow a Zipfian frequency distribution, 
which is a power law probability distribution stating that a word’s token 
frequency and its rank are inversely related (Kaeding, 1897; Piantadosi, 
2014; Zipf, 1935, 1949). This means that the most frequent word (e.g., 
the article “the”) occurs approximately twice as often as the second 
most frequent word (e.g., the preposition “of”), approximately three 
times as often as the third most frequent word (e.g., the conjunction 
“and”), and so on. In consequence, there are only a few high frequency 
words but many low frequency words (e.g., the adjective 
“magniloquent”). Such skewed distributions have been shown to 
facilitate speech segmentation (Kurumada et al., 2013; see also Lavi-
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Rotbain & Arnon, 2022). In the current chapter, we set out to 
investigate how a combination of familiar or unfamiliar syllable co-
occurrences and a Zipfian or uniform frequency distribution influence 
participants’ SL.

Prior knowledge of syllable co-occurrences

TPs are an important cue to word segmentation since they are often 
assumed to not require any prior knowledge of the to-be-learnt 
language, allowing learners to break into the speech stream and detect 
other language-specific patterns (e.g., Saffran, Aslin, et al., 1996). 
However, this does not mean that learners do not build upon prior 
knowledge of the language. For instance, the reliability of TPs as well 
as which direction of TP prediction is more informative (forwards TPs:
e.g., predicting the succeeding syllable by from the syllable ba in baby, 
or backwards TPs: e.g., predicting the preceding syllable ba from by in 
baby; Perruchet & Desaulty, 2008) is language-dependent (Onnis & 
Thiessen, 2013), which means that learners first need to establish these 
reliabilities from the input. Importantly, once learners have established 
these reliabilities in their language, they are influenced by this 
knowledge in their way of processing new input (e.g., English 
participants rely on backwards TPs while Korean participants rely on 
forwards TPs to segment new, ambiguous language input; Onnis & 
Thiessen, 2013; and see Thiessen et al., 2019, for related findings in 
infants acquiring their languages’ preferences).

The influence of prior knowledge on SL has been investigated in a 
variety of studies (e.g., Elazar et al., 2022; Finn & Hudson Kam, 2008; 
Mersad & Nazzi, 2011; Onnis & Thiessen, 2013; Siegelman et al., 
2018; Stärk et al., 2023; Toro et al., 2011). While earlier studies showed 
that prior phonotactic knowledge (i.e., knowledge of phoneme co-
occurrences) influences participants’ word segmentation (Finn & 
Hudson Kam, 2008; Mersad & Nazzi, 2011; Toro et al., 2011), more 
recent studies have shown that prior knowledge of syllable co-
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occurrences also influences participants’ word segmentation and SL 
(Elazar et al., 2022; Siegelman et al., 2018; Stärk et al., 2023).

Frequently co-occurring syllables likely resonate as chunks in long-
term memory, with recent studies showing that experimental stimuli are 
more readily learnt if the patterns of syllable co-occurrence are more 
similar to those in participants’ native language. For instance, 
Siegelman et al. (2018) showed that participants’ performance on a SL 
task was better on experimental items rated as more ‘word-like’ by a 
separate set of Hebrew speakers. This is consistent with two subsequent 
experimental studies that directly manipulated syllable transitions in 
their materials. In the first study, Elazar et al. (2022) familiarised 
Spanish-speaking participants with one of two experimental languages. 
In the ‘Spanish-like’ condition, participants listened to a speech stream 
comprising experimental words based on high TPs in Spanish (i.e., 
syllable combinations that frequently occur in Spanish). In the 
‘Spanish-unlike’ condition, participants listened to a speech stream 
comprising experimental words based on low TPs in Spanish (i.e., 
syllable combinations that rarely occur in Spanish). Participants in the 
‘Spanish-like’ condition were better at accepting target words in a 
subsequent lexical decision task than participants in the ‘Spanish-
unlike’ condition but worse at rejecting foils that had a high 
resemblance with Spanish words. This provides further evidence that 
participants’ prior knowledge of syllable co-occurrences in their native 
language influences subsequent processing and learning of new 
language input.

In the second study, Stärk et al. (2023; cf. Chapter 3) tested 
German-speaking participants in a serial recall task that required them 
to repeat eight-syllable sequences. The sequences belonged to one of 
three sequence types: (i) naturalistic sequences, (ii) non-naturalistic 
sequences, or (iii) unstructured foil sequences. The naturalistic and 
non-naturalistic sequences contained experimental words, such that 
participants could chunk the syllables into words with sufficient 
exposure. This facilitated the sequence repetition and became 
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detectable in participants’ responses. Importantly, the composition of 
words was critically different across the sequence types: in the 
naturalistic sequences, words were based on German syllable 
transitions (i.e., syllables co-occurring in the participants’ native 
language, comparable to Elazar et al.’s ‘Spanish-like’ condition), while 
the words in the non-naturalistic sequences were completely devoid of 
any attested transitions (comparable to Elazar et al.’s ‘Spanish-unlike’ 
condition). As hypothesised, native speakers of German drew on their 
prior knowledge of German syllable co-occurrences to chunk the new 
linguistic input from the early phases of the experiment, with higher 
recall and faster improvement in the naturalistic sequences compared to 
the other two sequence types. In this chapter, we build on this finding 
by examining how prior knowledge of syllable co-occurrences interacts 
with the frequency distribution of the to-be-learnt words in statistical 
speech segmentation.

Zipfian frequency distribution

A second segmentation cue is word frequency. In natural language, 
words follow a Zipfian frequency distribution, which means that a 
small amount of words occurs very frequently while the remainder of 
words occurs increasingly less often (Kaeding, 1897; Piantadosi, 2014; 
Stärk et al., 2022; Zipf, 1935, 1949). For example, an article such as 
“the” occurs very frequently, followed by different nouns, while each 
noun itself occurs less often (e.g., “dog”, “shoe”, etc.).

Previous studies on adults’ SL have found that languages in which 
words follow a Zipfian distribution provide better learning contexts 
than languages in which words follow a uniform distribution (i.e., when 
each word is equally frequent; Kurumada et al., 2013; see also Lavi-
Rotbain & Arnon, 2022). Kurumada et al. (2013) argued that 
segmentation is facilitated in a Zipfian distribution by the frequent 
repetition of some words, which can be segmented early on due to the 
frequent repetitions hindering a decay of the memory representation 
(Ebbinghaus, 1885, 1913; Perruchet & Vinter, 1998). Subsequently, 
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these frequent words can aid the segmentation of adjacent words by 
serving as anchor points in the speech stream (Altvater‐Mackensen & 
Mani, 2013; Bortfeld et al., 2005; Cunillera et al., 2010, 2016; 
Kurumada et al., 2013; Mersad & Nazzi, 2012; Shi & Lepage, 2008; 
Valian & Coulson, 1988; for computational evidence see Monaghan & 
Christiansen, 2010; but see Lavi-Rotbain & Arnon, 2022, for evidence 
that the effect is driven by predictability of the words in a language 
rather than an anchoring effect).

To test their hypothesis, Kurumada et al. (2013) examined the 
influence of the lexicon size (i.e., the number of word types presented 
in the exposure stream: 6, 9, 12, or 24 items) and the type of input 
distribution (i.e., Zipfian or uniform) on participants’ speech 
segmentation performance. Their results suggest that highly frequent 
words in a Zipfian distribution are indeed acquired more easily and act 
as anchor points to aid segmentation of adjacent words (i.e., contextual 
facilitation). Qualitatively, their findings seem to point into the 
direction that a Zipfian distribution could be increasingly more helpful 
for languages with larger lexica where anchor words become 
increasingly more beneficial.

Interestingly though, Lavi-Rotbain and Arnon (2022) found that a 
Zipfian distribution can also facilitate segmentation in a small lexicon 
of only four words. They investigated whether the predictability of 
words in a distribution rather than the distributions’ precise skew (e.g., 
Zipfian or binary, which is mostly a uniform frequency distribution, 
except for one highly frequent word) facilitates word segmentation. To 
examine this, they exposed participants to a speech stream comprising 
four trisyllabic word types that were presented in either a uniform, 
binary, or Zipfian frequency distribution. The results suggest that 
language-like efficiency (i.e., greater word predictability than in a 
uniform distribution because of some words occurring repeatedly) 
leads to better segmentation performance than reduced or perfect 
efficiency (as found in a uniform distribution where the next word is 
difficult to predict; see their Experiment 2). Whether the distribution 
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was Zipfian or binary in nature did not affect the outcome above the 
main effect of efficiency (see their Experiment 3). Importantly, this 
suggests that a Zipfian distribution can equally facilitate word 
segmentation in a small lexicon. In this chapter, we build on these 
findings by further investigating how a Zipfian distribution in 
comparison to a uniform distribution affects speech segmentation, 
especially in interaction with participants’ prior knowledge of syllable 
co-occurrences within those distributions.

The present study

The past literature on SL shows that both prior knowledge of 
syllable co-occurrences (i.e., attested TPs) and skewed distributions 
facilitate learning. In the present study, we went a step further and 
investigated how these two cues interact by employing a 2x2 design, 
with two levels of prior knowledge: naturalistic and non-naturalistic
experimental words, and two levels of word frequency distribution: 
Zipfian and uniform. We implemented a SL task with a familiarisation 
and test phase, using the experimental words from Stärk et al.’s (2023) 
study on the effect of prior knowledge of TPs on participants’ 
subsequent language learning (i.e., Chapter 3). Words were presented 
in either Zipfian or uniform distributions. We predicted that participants 
who were familiarised with the naturalistic words would score higher 
on the two-alternative forced-choice (2AFC) segmentation task than 
participants who were exposed to the non-naturalistic words (cf. Elazar 
et al., 2022; Siegelman et al., 2018; Stärk et al., 2023). We also 
predicted that participants who were familiarised with words presented 
in a Zipfian distribution would score higher than participants who were 
exposed to words presented in a uniform distribution (cf. Kurumada et 
al., 2013; Lavi-Rotbain & Arnon, 2022). Finally, we expected 
participants in the Naturalistic + Zipfian condition to perform best on 
the segmentation task because they could benefit from both facilitatory 
effects.
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Experiment 1

Method

All of our materials, data, analyses, and results are available on the 
website of the Open Science Framework (OSF): https://osf.io/eq7xk/.

Participants

All experiments presented in this chapter were approved by the 
Ethical Committee of the Faculty of Social Sciences, Radboud 
University Nĳmegen, and were carried out in accordance with the 
World Medical Association Declaration of Helsinki. Participants gave 
informed consent prior to their participation by checking the consent 
box provided within the experimental software Gorilla (Anwyl-Irvine 
et al., 2020). They were free to withdraw at any time and were 
compensated ₤3.55 upon completing the 15-minute session.

In Experiment 1, 240 native German-speaking adults were included 
in the analysis (89 female, 147 male, 4 non-binary; mean age = 25.7 
years, SD = 4.5 years, range = 18–35 years), with approximately 60 per 
condition (see Table 5.1 for demographic information by condition). 
The sample size was informed by a previous study investigating the 
effect of prior distributional knowledge on adults’ SL in a serial recall 
task (cf. Chapter 3; Stärk et al., 2023) which, in a sample of 40 
participants, found a syllable recall difference of 10% between the 
condition in which participants could build on prior distributional 
knowledge and the condition in which they could not. We increased the 
sample size to 60 participants per condition to accommodate the 
differences in design and testing mode, applying a 2AFC task between-
participants instead of the serial recall task within-participants while 
testing unsupervised and online instead of supervised in the laboratory. 
Participants were recruited via the online recruitment platform Prolific
(Prolific, 2021). They were native German speakers who grew up 
monolingually in Germany, with normal hearing and linguistic abilities, 
living in Germany. Seven additional participants were tested but 
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excluded from the final sample for either failing to meet the inclusion 
criteria (i.e., currently living outside of Germany with less regular 
exposure to the German language; N = 1) or failing the auditory 
attention check during the familiarisation phase (N = 6).

Design

We used a between-participants 2x2 design to study the influence of 
stimuli naturalness (i.e., whether experimental words comprised 
syllable transitions present in natural German or not) and word 
frequency distribution on auditory SL. The two levels of the factor 
“naturalness” were naturalistic and non-naturalistic. Naturalistic 
words were based on syllable pairs occurring with high TPs in natural 
German, while non-naturalistic words were based on syllable pairs not 
occurring in this combination in a corpus of natural German. The two 
levels of the factor “frequency distribution” were Zipfian and uniform. 
In the Zipfian conditions, experimental words followed a Zipfian 
frequency distribution while in the uniform conditions, experimental 
words appeared with equal frequency. The dependent variable was 
participants’ performance on a 2AFC speech segmentation test (see the 
Materials section for further details regarding the exposure streams and 
the segmentation task).
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Condition Number of 
participants

Gender Age
Female Male Non-

binary
M SD Min Max

Naturalistic
+ Uniform

61 22 38 1 25.26 4.55 18 35

Naturalistic
+ Zipfian

58 26 31 1 25.38 4.11 18 33

Non-naturalistic
+ Uniform

61 21 40 0 26.18 4.53 18 35

Non-naturalistic
+ Zipfian

60 20 38 2 25.93 4.80 18 35

Table 5.1.   Participant information for Experiment 1 by condition.



Materials

Exposure streams. The experimental stimuli were adapted from 
Chapter 3 (Stärk et al., 2023). Words were created from a pool of 12 
German syllables (fa, ge, gei, mi, mo, nu, pa, sa, su, ti, ver, zu), obtained 
from a corpus analysis of the 1000 most frequent German words in the 
CHILDES database (MacWhinney, 2000). These syllables were 
concatenated to form six disyllabic naturalistic words (gefa, minu, 
moti, pagei, versu, zusa) and six disyllabic non-naturalistic words 
(fazu, geimi, nuver, samo, suge, tipa). Critically, the naturalistic words 
were extracted from naturally co-occurring German syllable pairs (i.e., 
syllable pairs occurring in German speech with high backwards TPs, 
which were found to be more reliable than forwards TPs in natural 
German; cf. Chapter 2; Stärk et al., 2022; TP > .20) while the non-
naturalistic words consisted of non-co-occurring syllable pairs (TP = 
0).

In the present study, we used the six naturalistic words in the 
Naturalistic + Zipfian and Naturalistic + Uniform conditions and the six 
non-naturalistic words in the Non-naturalistic + Zipfian and Non-
naturalistic + Uniform conditions. For each of the four conditions, we 
concatenated the words into a three-minute-long speech stream 
containing 300 word tokens, with words presented in a pseudo-random 
order, avoiding direct repetition of words. In the two uniform 
conditions, each word occurred exactly 50 times, while in the two 
Zipfian conditions, words occurred with different frequencies following 
a Zipfian-like distribution (i.e., 130, 65, 40, 30, 20, and 15 times, 
respectively). To control for item-specific effects in the Zipfian 
conditions, we created twelve different Zipfian languages (six 
naturalistic and six non-naturalistic languages), with each word 
occurring with a different frequency in every language (i.e., every word 
occurred 130 times in one language, 65 times in another language, etc.; 
see the Stimuli folder on OSF for more details). Participants in the 
Zipfian conditions were automatically assigned to one of the languages 
by the experiment platform Gorilla (Anwyl-Irvine et al., 2020). There 
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was a five-second fade-in and fade-out to mask word boundaries at the 
beginning and end of the exposure streams.

Since the experiment was conducted online, we included a beep-
detection attention check in the speech streams to ensure that 
participants were attentive throughout the familiarisation phase. All 
streams contained six beeps, which occurred either 20s or 30s apart 
from each other. The location of beeps was counterbalanced, such that 
three occurred within words and three occurred at word boundaries, to 
avoid cueing segmentation. To pass the attention check, participants 
were required to correctly press the space bar when they heard a beep 
at least five out of six times, ensuring that they were listening to the 
entire exposure stream.

Test stimuli. The 2AFC segmentation task comprised 24 test pairs. 
Each target word (i.e., the six words of the experimental language) was 
presented four times, paired with four different part words. Part words 
were constructed to share one syllable with the target word, by either 
adding a syllable before the initial syllable of the target word (e.g., the 
target word zusa was paired with the part words tizu and geizu, sharing 
the first syllable of the target word), or by adding a syllable after the 
final syllable of the target word (e.g., the target word zusa was paired 
with the part words samo and sapa, sharing the second syllable of the 
target word). The order of target word and part word in a test pair was 
counterbalanced, with each target word occurring once before and once 
after a word with which it shared its first syllable, and once before and 
once after a word with which it shared its second syllable. More 
information about the exposure streams and test items can be found in 
the Materials folder on OSF.

Procedure

Participants were recruited via the online recruitment platform 
Prolific (Prolific, 2021), which screened for the required inclusion 
criteria (see Participants section) and automatically redirected 
participants to the experiment on Gorilla (Anwyl-Irvine et al., 2020). 
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They first received an informed consent form, which they had to sign 
by checking a tick box in order to participate. After filling in a short 
demographic questionnaire, participants were given the chance to 
adjust their volume and ensure that the automatic play of audio files was 
enabled in their browser. Because of the online format of the study, we 
included a headphone check to control for participants’ audio setup (a 
German translation of the headphone check used in Milne et al., 2021), 
which required participants to correctly identify which of three snippets 
of white noise contained a beep. There were six trials, and participants 
were required to achieve 100% accuracy to ensure that they were 
wearing headphones with a decent sound quality in a reasonably quiet 
environment. After passing the headphone check, participants 
proceeded to the main experiment, where they were automatically 
assigned to one of the experimental groups. Participants who failed the 
headphone check were asked to terminate their participation but were 
free to rerun the entire session by contacting the experimenter (since 
they had not entered the main experiment yet). The main experiment 
consisted of a familiarisation and a test phase. During the 
familiarisation phase, participants were asked to listen carefully and 
press the space bar when hearing a beep to ensure that they were 
continuously attentive throughout the familiarisation. During the 2AFC 
test phase, participants heard two words per trial, an experimental word 
and a foil, and were asked to decide which one best resembles the 
language to which they were previously exposed. Finally, participants 
were debriefed and paid via electronic transfer.

Analysis

All analyses were performed in R 4.2.2 (R Core Team, 2022) using 
RStudio (RStudio Team, 2022). Data pre-processing and visualisation 
were carried out using the package tidyverse 1.3.2 (Wickham, 2017; 
Wickham et al., 2019). Mixed-effects models were calculated using the 
package lmerTest 3.1-3 (Kuznetsova et al., 2017; based on lme4 1.1-31; 
Bates et al., 2015) while the models’ performance was assessed and the 
model fits calculated using the package performance 0.10.2 (Lüdecke 
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et al., 2021). The model details are given in the Results section below 
(and see OSF for the analysis scripts).

Results

Contrary to our predictions, participants in the non-naturalistic 
conditions had a higher segmentation score than participants in the 
naturalistic conditions, and participants in the uniform conditions had a 
higher segmentation score than participants in the Zipfian conditions, 
with participants in the Non-naturalistic + Uniform condition scoring 
the highest and participants in the Naturalistic + Zipfian condition 
scoring the lowest (see Figure 5.1).

Participants’ responses differed from chance across all conditions, 
indicating learning was independent of the experimental words’ 
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Figure 5.1. Pirate plot illustrating the proportion of correct responses 
in the four experimental conditions: the naturalistic conditions (left in 
green) and the non-naturalistic conditions (right in orange), as well as 
the Zipfian conditions (triangles) and the uniform conditions (dots). 
Columns indicate overall means in the segmentation task, while dots 
and triangles represent individual participant means, with the outline 
indicating the distribution.

https://osf.io/eq7xk/


naturalness or frequency distribution (see Table 5.2 for the descriptive 
statistics as well as chance comparisons of all four conditions). To test 
whether the observed differences between the conditions were 
meaningful, we analysed the data using a generalised linear mixed-
effects model, specifying a binary distribution with a log-link to 
account for the binary response of the 2AFC test. The fixed effects were 
the naturalness (effects coding: naturalistic: +1, and non-naturalistic:
–1) and the frequency distribution (effects coding: Zipfian: +1, and 
uniform: –1) of the words contained in the speech stream, as well as 
their interaction. The only random effect added to the model was the 
random intercept of participants, which constituted the maximal model 
supported by the data (Barr et al., 2013; Bates et al., 2018; Matuschek 
et al., 2017) since we used a between-participants design, with 
participants of each condition being exposed to a different speech 
stream and different test items (i.e., ruling out a random intercept of 
items and any random slopes of participants or items). The model 
output showed the two observed main effects to be significant, with 
participants correctly choosing the target word more often in the non-
naturalistic conditions than in the naturalistic conditions and more often 
in the uniform conditions than in the Zipfian conditions (see Table 5.3 
for the model results). There was no interaction between the two 
factors.

Discussion

We found clear evidence of statistical segmentation, with 
participants’ performance differing from chance on the 2AFC task in all 
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Condition Descriptive statistics Comparison to chance (μ = 0.5)
M SD t df p

Naturalistic + Uniform 0.63 0.48 10.40 1463 < .001
Naturalistic + Zipfian 0.59 0.49 6.98 1391 < .001
Non-naturalistic + Uniform 0.78 0.41 26.14 1463 < .001
Non-naturalistic + Zipfian 0.72 0.45 18.10 1439 < .001

Table 5.2. Descriptive statistics and comparisons to chance for the 
four conditions.
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conditions – in line with a vast body of literature on adults’ ability to 
segment speech via SL (e.g., Saffran et al., 1997; and see Frost et al., 
2019, for a review). That is, participants showed segmentation in both 
naturalistic and non-naturalistic conditions (i.e., whether they had prior 
knowledge of syllable co-occurrences or not) and in both Zipfian and 
uniform conditions. However, unexpectedly, participants in the non-
naturalistic conditions showed better segmentation performance than 
participants in the naturalistic conditions (in contrast to previous 
findings regarding the effect of prior knowledge on SL; cf. Elazar et al., 
2022; Siegelman et al., 2018; Stärk et al., 2023), and participants in the 
uniform conditions showed better segmentation performance than 
participants in the Zipfian conditions (in contrast to previous findings 
regarding the effect of a Zipfian frequency distribution on SL; cf. 
Kurumada et al., 2013).

We expected participants in the Zipfian conditions to outperform 
participants in the uniform conditions due to the salience of the frequent 
word, which can be segmented early on and subsequently serve as an 
anchor point to facilitate segmentation of less frequent words 
(Kurumada et al., 2013; and see Bortfeld et al., 2005, for anchor word 
effects; but see also Lavi-Rotbain & Arnon, 2022, for arguments in 
favour of word predictability rather than anchor words guiding 
segmentation). However, we found the opposite effect, although there 
are some findings in the literature that are similar. While Kurumada et 
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Parameter b 95% CI SE t p
(Intercept) 0.82 [0.73,   0.92] 0.04 18.53 < .001
Naturalness –0.34 [–0.43, –0.26] 0.04 –7.66 < .001
Distribution –0.14 [–0.23, –0.06] 0.04 –3.11 .002
Naturalness × Distribution 0.05 [–0.04,   0.14] 0.04 1.18 .24

Table 5.3. Summary of the generalised linear mixed-effects model 
investigating the influence of naturalness and frequency distribution of 
the words contained in the exposure streams on participants’ 
segmentation scores.

Notes: Model fit: AIC = 6973; BIC = 7006; R²marginal = 0.037; R²conditional = 0.109; ICC 
= 0.075; RMSE = 0.443; σ = 1.



al. (2013) found evidence for facilitated segmentation from Zipfian 
compared to uniform distributions, they rather found it in the form of 
contextual facilitation. That is, the more often participants had heard 
the word preceding the target word before, the more likely they were to 
correctly segment the target word itself. Kurumada et al. (2013) did not 
find a significant main effect of distribution type, but their results 
numerically pointed towards Zipfian distributions being more 
beneficial for larger lexica of at least nine word types (while our 
experimental languages only comprised six word types). On the other 
hand, another study indirectly showed that participants’ segmentation 
of a lexicon as small as four word types can be facilitated by a Zipfian 
distribution as compared to a uniform distribution (Lavi-Rotbain & 
Arnon, 2022). We will discuss this point further in the General 
Discussion.

With respect to our second variable, learning from naturalistic and 
non-naturalistic stimuli, we expected participants to show better 
segmentation performance in the naturalistic conditions, in which 
participants could benefit from their prior knowledge of German 
syllable co-occurrences to segment and store the experimental words. 
Even though we used the same experimental words as in Chapter 3 
(Stärk et al., 2023), where we found the expected effect in a serial recall 
task with German adults, we unexpectedly found the opposite effect in 
the current study, with participants in the non-naturalistic conditions 
reaching higher segmentation scores than participants in the naturalistic 
conditions. The explanation for this discrepancy likely lies within the 
differences in design of the two studies, with the current study using a 
classical familiarisation and test phase (cf. Saffran et al., 1997) and the 
study in Chapter 3 (Stärk et al., 2023) using a serial recall task. 
Crucially, we tested the effect of naturalistic versus non-naturalistic 
syllable transitions within-participants in Chapter 3: the simultaneous 
exposure to several experimental languages in the serial recall task 
might have delayed participants’ learning of the non-naturalistic words 
because they were less salient in comparison to the naturalistic words. 
However, participants in the current study were only familiarised with 

147

T�� ��������� �� ����� ��������� ��� � Z������ ��������� ������������ �� ����������� ��������



148

one language, meaning that while participants can be assumed to draw 
on prior knowledge to acquire the naturalistic words, they can still 
acquire the non-naturalistic words fairly quickly, relying on pure SL 
without prior knowledge. Therefore, the opposite finding might have its 
origins in the method of exposure, with the familiarisation phase 
potentially not only being long enough for participants in the non-
naturalistic condition to catch up with participants in the naturalistic 
condition, but also to favour the acquisition of the non-naturalistic 
words. Hence, it is possible that a shorter familiarisation phase could 
yield the originally expected results, with participants in the naturalistic 
condition already benefitting from their prior knowledge but 
participants in the non-naturalistic condition not having enough time to 
catch up (and outperform) participants in the naturalistic condition yet. 
We test this hypothesis in Experiment 2.

Experiment 2

In Experiment 2, we set out to test the hypothesis that the 
unexpected effect of prior knowledge hindering segmentation in 
Experiment 1 was driven by the amount of familiarisation that 
participants had received (i.e., the length of the exposure stream). In 
Experiment 1, participants were exposed to an artificial language for 
three minutes (300 word tokens of six word types). Participants in the 
non-naturalistic condition (pure SL without prior knowledge) 
performed better than participants in the naturalistic condition. We 
hypothesised that the familiarisation phase of three minutes was long 
enough for participants in the non-naturalistic conditions to reach an 
excellent level of segmentation, concealing any initial advantage of the 
naturalistic conditions (cf. Chapter 3; Stärk et al., 2023) or somehow 
even favouring acquisition in the non-naturalistic conditions. The 
hypothesis that the familiarisation phase was long enough is supported 
by previous findings in the literature where a SL effect is even observed 
after a shorter familiarisation phase than in Experiment 1. In the 
landmark study by Saffran and colleagues, for instance, infants already 
showed a SL effect after a 180-word exposure of two minutes (Saffran, 
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Aslin, et al., 1996) while adults, too, have been found to show an early 
SL effect after an approx. 125-word exposure of two minutes, even in a 
potentially more difficult task with varying word lengths (Giroux & 
Rey, 2009).

We therefore shortened the familiarisation phase in Experiment 2 to 
one minute (or 100 word tokens, one third of the original length) and 
only considered the uniform distribution to investigate the effect of 
prior knowledge more closely. This way, each word was presented 
around 17 times. We hypothesised that this would be sufficient 
exposure for statistical segmentation in both contexts (with or without 
prior knowledge of syllable co-occurrences) but not too much exposure 
to override the advantage of the naturalistic stimuli (as in Experiment 
1). Finally, we also halved the amount of test trials in the 2AFC task. 
An analysis of Experiment 1 showed that 12 instead of 24 test trials 
were sufficient to reveal any effects. Importantly, this allowed us to 
present target words only twice during the test, reducing the amount of 
possible learning that could take place in the test phase (rather than the 
familiarisation phase). We hypothesised that participants in the 
naturalistic condition would show better segmentation performance 
than participants in the non-naturalistic condition because they could 
draw on their prior knowledge of syllable co-occurrences in natural 
German to segment their input.

Method

Participants

A different set of participants was recruited for Experiment 2 via 
Prolific (Prolific, 2021). Eighty (N = 80) native German-speaking 
adults were included in the analysis (23 female, 55 male, 2 non-binary; 
mean age = 26.6 years, SD = 4.5 years, range = 18–35 years), 40 per 
condition (see Table 5.4 for demographic information by condition). As 
in Experiment 1, participants were monolingual, native German-
speakers, with normal hearing and linguistic abilities, living in 
Germany. The sample size was determined via a power analysis 
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conducted in R 4.0.2 (R Core Team, 2022) using the package simr 1.0.5 
(Green & MacLeod, 2016), for which data of the two uniform 
conditions (Naturalistic + Uniform and Non-naturalistic + Uniform) of 
Experiment 1 were entered into a generalised linear mixed-effects 
model with analogous specifications as described in the Results section 
below. The sample size was increased from N = 50 to N = 150 in 
increments of 10 participants, with 1000 Monte Carlo simulations 
being performed at each step (see the Analysis folder on OSF for the 
details). The results showed that a sample of 80 participants completing 
12 trials (i.e., half of the amount of 2AFC segmentation trials presented 
in Experiment 1) would provide 91% power (95% CI: [89%, 93%]) to 
detect a log odds ratio of –0.363 (i.e., a small effect). Following this 
justification, we reduced the sample size to 40 participants per 
condition (in comparison to 60 in Experiment 1) and 12 2AFC trials (in 
comparison to 24 in Experiment 1; see Materials for more information 
on the stimuli). Participants received a compensation of ₤3.55 upon 
completion of the session.

Design

We adjusted the design from Experiment 1 by reducing it to a single 
between-participants comparison, only studying the influence of 
naturalness of the words contained in the exposure stream on 
participants’ auditory SL. The two levels of the factor “naturalness”
remained naturalistic and non-naturalistic, presented exclusively in the 
uniform frequency distribution. Importantly, we shortened the 
familiarisation phase from three minutes to one minute (i.e., from 50 to 
approximately 17 occurrences of each word) to test whether the length 
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Condition Number of 
participants

Gender Age
Female Male Non-

binary
M SD Min Max

Naturalistic 40 10 29 1 26.77 4.60 18 35
Non-naturalistic 40 13 26 1 26.40 4.29 19 35

Table 5.4. Participant information for Experiment 2 by condition.

https://osf.io/eq7xk/


of exposure influenced participants’ SL in Experiment 1. The dependent 
variable was the participants’ segmentation score.

Materials

Exposure streams. We adjusted the materials of Experiment 1 by 
shortening the familiarisation phase to one minute, or 100 words (i.e., 
one third of the original familiarisation phase). We only used the two 
uniform languages (naturalistic and non-naturalistic) and selected the 
part of the original exposure streams where the six words occurred with 
the most balanced distribution (naturalistic: 18 times gefa and versu, 
17 times pagei, 16 times minu and zusa, and 15 times moti; non-
naturalistic: 18 times fazu and suge, 17 times samo, 16 times geimi and 
tipa, and 15 times nuver). The attention check during the familiarisation 
phase was adjusted to the new length of the speech stream and required 
participants to correctly detect at least one out of two beeps.

Test stimuli. We halved the amount of trials in the 2AFC task (to 
12 trials, two per target word) by reducing the part words to one sharing 
the target words’ first syllable and one sharing the target words’ second 
syllable, such that, for example, zusa would be paired with sapa and 
tizu (see the Materials folder of the OSF project for further details).

Procedure

The procedure was identical to that of Experiment 1, only with a 
shortened familiarisation and test phase.

Analysis

The analysis was identical to that of Experiment 1, with the adjusted 
model description given in the Results section below.

Results

Participants in the non-naturalistic condition reached a higher 
segmentation score than participants in the naturalistic condition (see 
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Figure 5.2), which is in line with our observations in Experiment 1 but 
the opposite pattern we predicted. Participants’ responses differed from 
chance in both conditions (naturalistic: M = .56, SD = .50; t(479) = 
2.85, p = .005; non-naturalistic: M = .67, SD = .47; t(479) = 7.74, p < 
.001). As in Experiment 1, we analysed the data using a generalised 
linear mixed-effects model with participants’ segmentation 
performance as the dependent variable. Due to the simplified design, 
only naturalness (effects coding: naturalistic: +1, and non-naturalistic:
–1) was added as a fixed effect, with the random intercept of 
participants added as the only random effect. The model output showed 
the main effect of naturalness to be significant, with participants 
correctly choosing the target word more often in the non-naturalistic 
condition than in the naturalistic condition (see Table 5.5 for the model 
results).

C������ 5

Figure 5.2. Pirate plot illustrating the proportion of correct responses 
in the naturalistic (left in green) and the non-naturalistic condition 
(right in orange). Columns indicate overall means in the segmentation 
task, while dots represent individual participant means, with the outline 
indicating the distribution.



Discussion

As in Experiment 1, participants’ performance differed from chance 
in both conditions, indicating successful statistical segmentation (cf. 
Saffran, Newport, et al., 1996; Saffran et al., 1997; and see Frost et al., 
2019, for a review). That is, participants segmented both naturalistic 
and non-naturalistic conditions, independent of whether they had prior 
knowledge of syllable co-occurrences in the experimental languages or 
not. However, even though the effect of naturalness decreased in 
comparison to Experiment 1, participants in the non-naturalistic 
condition still showed better segmentation performance than 
participants in the naturalistic condition (the opposite of our 
hypothesised finding, based on previous literature reporting prior 
knowledge facilitating SL; cf. Elazar et al., 2022; Onnis & Thiessen, 
2013; Siegelman et al., 2018; Stärk et al., 2023).

We expected participants in the naturalistic condition to show better 
segmentation performance than participants in the non-naturalistic 
condition because the naturalistic condition provided the opportunity to 
draw on prior knowledge of syllable co-occurrences to segment the 
experimental words. Participants already showed the opposite effect in 
Experiment 1, where we speculated that the length of the 
familiarisation phase might have helped participants in the non-
naturalistic condition to catch up with, and even outperform, 
participants in the naturalistic condition. After shortening the 
familiarisation phase in Experiment 2 to one minute (one third of the 
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Parameter b 95% CI SE t p
(Intercept) 0.50 [0.33,   0.65] 0.08 6.06 < .001
Naturalness –0.23 [–0.40, –0.06] 0.08 –2.77 .006

Table 5.5. Summary of the generalised linear mixed-effects model 
investigating the influence of naturalness of the words contained in the 
exposure streams on participants’ segmentation scores.

Notes: Model fit: AIC = 1268; BIC = 1283; R²marginal= 0.015; R²conditional = 0.065; ICC 
= 0.051; RMSE = 0.468; σ = 1.
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original length), we still found the same unexpected result of a non-
naturalistic advantage. This is surprising since the same stimuli 
previously helped participants to recall sequences of the same 
naturalistic words better than sequences of the same non-naturalistic 
words (cf. Chapter 3; Stärk et al., 2023; see also Elazar et al., 2022; 
Onnis & Thiessen, 2013; and Siegelman et al., 2018, for further 
evidence of prior linguistic knowledge facilitating SL). However, it 
might be possible that the task’s simultaneous exposure to naturalistic 
and non-naturalistic words in Chapter 3 (Stärk et al., 2023), paired with 
the higher salience of the familiar naturalistic words, led to the 
observed advantage (because the salient naturalistic words received 
participants’ attention first). It might further be that the non-naturalistic 
words on their own were also perceived as word-like by native German 
speakers, leading to a similar advantage when tested between-
participants (without the direct comparison to the naturalistic words), 
as in the current study. We therefore conducted Experiment 3 to test 
whether the naturalistic or non-naturalistic words sounded more word-
like to native speakers.

Experiment 3

In Experiment 3, we examined whether the non-naturalistic words 
were biased in appearing word-like by design, making them easier to 
segment and learn than the naturalistic words. This would explain the 
better performance in the non-naturalistic conditions compared to the 
naturalistic conditions in Experiments 1 and 2. We therefore asked 
participants in Experiment 3 to judge which word of two options 
sounded more word-like. That is, we omitted the familiarisation phase 
and directly presented participants with the 2AFC task. They either 
heard naturalistic or non-naturalistic target words paired with part 
words, as in the previous experiments (giving them the full 24 test items 
as in Experiment 1). We expected participants to select the naturalistic 
words more often as word-like in comparison to their part words, 
providing evidence for their sound creation as words based on high-
transition syllable combinations in natural German. On the other hand, 
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we expected participants to select non-naturalistic words equally often 
as more word-like as their part words, providing evidence that the non-
naturalistic words were created as plausible but neutral words (with low 
syllable transitions in natural German) and the part words were created 
as good distractors. However, if participants selected non-naturalistic 
words more often as word-like in comparison to their part words, it 
would suggest that the participants in Experiments 1 and 2 may have 
perceived them as equally or even more word-like than their naturalistic 
counterparts, potentially explaining the segmentation advantage.

Method

Participants

A new set of participants was recruited for Experiment 3 via Prolific
(Prolific, 2021). The final sample comprised 42 native German-
speaking adults (37 female, 5 male, 0 non-binary; mean age = 22.7 
years, SD = 4.5 years, range = 18–35 years), with approximately 20 per 
condition (see Table 5.6 for demographic information by condition). As 
before, participants were monolingual, native German speakers, with 
normal hearing and linguistic abilities, living in Germany. They 
received a compensation of ₤3.55 upon completion of the session.

Design

We adjusted the design from Experiment 1 such that there was no 
familiarisation phase, and thus, we tested participants’ judgement of the 
experimental words to identify potential biases (as expected in the 
naturalistic condition but unwanted in the non-naturalistic condition). 
The two levels of the factor “naturalness” remained naturalistic and 
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Table 5.6. Participant information for Experiment 3 by condition.
Condition Number of 

participants
Gender Age

Female Male Non-
binary

M SD Min Max

Naturalistic 20 19 1 0 23.55 4.74 18 34
Non-naturalistic 22 18 4 0 22.00 4.03 18 35
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non-naturalistic. The dependent variable was the participants’ 2AFC 
wordiness score.

Materials

Test stimuli. We adjusted the materials of Experiment 1 by 
removing the exposure streams. The 2AFC segmentation task 
comprised the same 24 test pairs as in Experiment 1, however, without 
the prior familiarisation, no longer testing segmentation but rather 
whether target words sounded more word-like than foils.

Procedure

Recruitment and screening were identical to Experiments 1 and 2, 
with the exception of the removal of the familiarisation phase. Upon 
passing the headphone check, participants immediately completed the 
2AFC task, with the instruction to pick the word which sounded most 
word-like. Finally, participants were debriefed and paid as before.

Analysis

The analysis was identical to that of Experiment 1, with the adjusted 
model description given in the Results section below.

Results

Naturalistic words were rated more often as word-like in 
comparison to part words than non-naturalistic words were (see Figure 
5.3). Notably, participants’ responses differed from chance only in the 
naturalistic condition but not in the non-naturalistic condition, 
indicating that naturalistic target words resembled German words while 
non-naturalistic target words did not (naturalistic: M = .68, SD = .47; 
t(479) = 8.51, p < .001; non-naturalistic: M = .52, SD = .50; t(527) = 
1.04, p = .30). As in Experiments 1 and 2, we additionally analysed the 
data using a generalised linear mixed-effects model with participants’ 
performance on the 2AFC task as the dependent variable. Naturalness 
(effects coding: naturalistic: +1, and non-naturalistic: –1) was added 
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as the only fixed effect. Here, this refers to the naturalness of the 2AFC 
target words only (since there was no familiarisation phase). The 
random intercept of participants was added as the only random effect. 
The main effect of naturalness was significant, with participants’ 
preference for words over part words being stronger in the naturalistic 
condition than in the non-naturalistic condition (see Table 5.7 for the 
model results). This is in line with our hypothesis that naturalistic 
words would be perceived as more word-like based on their creation 
from high German syllable transitions, therefore bearing a close 
resemblance to German words.

Discussion

Participants chose naturalistic words more often as being “word-
like” than part words, indicating that the naturalistic words contained 
word-like properties to native German speakers. This provides 
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Figure 5.3. Pirate plot illustrating the proportion of correct responses 
in the naturalistic (left in green) and the non-naturalistic condition 
(right in orange). Columns indicate overall means in the wordiness 
task, while dots represent individual participant means, with the outline 
indicating the distribution.
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evidence for sound stimulus creation of the naturalistic words, which 
are based upon high German syllable transitions (i.e., syllable 
combinations which frequently occur in natural German). Participants 
in the non-naturalistic condition did not show a preference for either 
non-naturalistic words or part words, indicating that both sounded 
equally word-like to native German speakers. This provides evidence 
that the non-naturalistic words and part words fulfilled their function 
well, with participants not being biased to select either one as more 
word-like – since both should be equally likely experimental words 
(with non-naturalistic words serving as condition of SL without prior 
knowledge in Experiments 1 and 2). While this strengthens the validity 
of our experimental words, it does not explain the results found in 
Experiments 1 and 2. We discuss this point further in the General 
Discussion.

General Discussion

Speech segmentation via auditory SL has previously been shown to 
be facilitated by learners’ prior knowledge of the syllable co-
occurrences of the to-be-learnt stimuli (Elazar et al., 2022) as well as by 
the presentation of these stimuli in a Zipfian frequency distribution 
(Kurumada et al., 2013). In the current chapter, we set out to study the 
interaction of these two cues in three experiments. In Experiment 1, 
German adults were randomly assigned to one of four conditions of a 
2x2 design (Naturalistic + Zipfian, Naturalistic + Uniform, Non-
naturalistic + Zipfian, Non-naturalistic + Uniform). As in a traditional 
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Parameter b 95% CI SE t p
(Intercept) 0.43 [0.28, 0.58] 0.08 5.50 < .001
Naturalness 0.34 [0.19, 0.50] 0.08 4.32 < .001

Table 5.7. Summary of the generalised linear mixed-effects model 
investigating the influence of naturalness of the target words on 
participants’ wordiness scores.

Notes: Model fit: AIC = 1335; BIC = 1349; R²marginal = 0.033; R²conditional = 0.056; ICC 
= 0.024; RMSE = 0.476; σ = 1.



SL study, participants were familiarised with an experimental language 
and subsequently tested on a 2AFC segmentation task using word/part 
word comparisons. We hypothesised that participants in the Naturalistic 
+ Zipfian condition would show the highest 2AFC scores since they 
could benefit from both cues, while participants of the Non-naturalistic 
+ Uniform condition would show the lowest scores because neither cue 
was present.

However, we found the opposite result: both non-naturalistic words 
and words presented in a uniform distribution yielded higher 2AFC 
scores than naturalistic words and words presented in a Zipfian 
distribution. These results contradict previous findings reporting a 
facilitatory effect of both linguistic entrenchment (Elazar et al., 2022; 
Siegelman et al., 2018; Stärk et al., 2023) and a Zipfian frequency 
distribution (Kurumada et al., 2013; Lavi-Rotbain & Arnon, 2022). To 
find an explanation for these unexpected results, we ran two follow-up 
experiments. In Experiment 2, we shortened the familiarisation phase 
to see whether the long exposure facilitated learning of the non-
naturalistic words, masking an initial advantage of the naturalistic 
words, which was not the case. In Experiment 3, we administered the 
2AFC task without an initial familiarisation phase to see whether there 
was a bias for the non-naturalistic words in the design of the 
experimental words, which was also not the case.

Before speculating on the surprising aspects of our findings, we will 
first draw conclusions from the expected findings. Experiments 1 and 2 
showed clear SL effects, with participants picking the target words over 
the part words more often than chance in the 2AFC tasks of all four 
conditions. The Non-naturalistic + Uniform condition, in which 
participants showed the strongest performance, is comparable to SL 
experiments without any additional cues aiding the learning (e.g., 
Batterink & Paller, 2017; Perruchet & Desaulty, 2008; Saffran, 
Newport, et al., 1996). This condition can therefore be regarded as a 
baseline, against which to compare the other conditions. Furthermore, 
Experiment 3 showed that the stimuli were well designed, with 
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participants picking target words over foils more often only in the 
naturalistic condition, where target words reminded them of German, 
but not in the non-naturalistic condition, where target words and foils 
were equally artificial.

Prior knowledge of syllable co-occurrences

Why was performance in the naturalistic conditions worse than in 
the non-naturalistic conditions? Previous studies clearly showed an 
advantage of prior knowledge for SL, whether the prior knowledge was 
defined as the legal or frequent phonotactics of the native language (Dal 
Ben et al., 2021; Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; 
Toro et al., 2011), the reliability of forwards compared to backwards 
TPs (Onnis & Thiessen, 2013), the participant-rated familiarity with the 
experimental material (Siegelman et al., 2018), or the familiarity with 
the specific syllable co-occurrences directly (Elazar et al., 2022; Stärk 
et al., 2023). Even though we used the experimental words from 
Chapter 3 (Stärk et al., 2023), we did not find the same effect of 
naturalistic stimuli boosting SL compared to non-naturalistic stimuli, 
which poses the question of what differed between the two studies. Two 
points seem to stand out. Firstly, the current study was conducted online 
while the study reported in Chapter 3 (Stärk et al., 2023) was conducted 
in the lab, potentially suggesting that the unsupervised nature of the 
current experiments affected the current results. However, since 
participants showed clear evidence of speech segmentation in all 
conditions (i.e., were following the instructions, leading to puzzling but 
clear results), this seems an unlikely explanation.

Secondly, the current study used a between-participants design 
while the study reported in Chapter 3 (Stärk et al., 2023) familiarised 
participants with both naturalistic and non-naturalistic stimuli in 
interleaved sequences, with participants’ performance measured 
throughout the familiarisation instead of in a subsequent 2AFC test as 
in the current study. One could argue that the interleaved presentation 
(especially with words of both conditions being created from the same 
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set of syllables) enhanced the advantage of the naturalistic sequences in 
Chapter 3’s study because participants implicitly focused more on the 
familiar naturalistic items, neglecting other learnable patterns in the 
familiarisation. However, while this could explain an advantage of the 
naturalistic items, which might cancel out when applying a between-
participants design exposing participants to only one condition, this 
cannot explain an advantage of the non-naturalistic items in the current 
study.

Moreover, Elazar et al. (2022) also employed a between-
participants design testing whether Spanish adults would show better 
segmentation of Spanish-like experimental words (i.e., words 
comprising syllables frequently co-occurring in natural Spanish) 
compared to frequency-matched (i.e., Spanish-like) foils, on the one 
hand, and Spanish-unlike experimental words (i.e., words comprising 
syllables rarely co-occurring in natural Spanish) compared to 
frequency-matched (i.e., Spanish-unlike) foils, on the other. As 
measure served an old/new word decision task (i.e., a lexical decision 
task for experimental words) following a familiarisation phase. 
Participants in the Spanish-like condition were better at accepting target 
words compared to rejecting foils than participants in the Spanish-
unlike condition, suggesting that participants’ prior knowledge of 
syllable co-occurrences in Spanish boosted their segmentation in the 
Spanish-like condition. While Elazar et al. (2022) used a lexical 
decision task, we used a 2AFC task to measure segmentation 
performance. The former requires a decision on a single item while the 
latter requires a decision between two items. However, both measures 
are reflection-based (Christiansen, 2019), and there is no reason to 
suspect that this difference led to the opposite pattern of results.

One clue as to the explanation for the unexpected result comes from 
a comparison in 2AFC scores across the three experiments. It is 
noteworthy that, in the naturalistic conditions, participants in 
Experiment 3 reached higher 2AFC scores (without familiarisation) 
than participants in Experiments 1 and 2, while in the non-naturalistic 
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conditions, participants’ performance in Experiment 3 did not differ 
from chance, unlike in Experiments 1 and 2. Consequently, the 
familiarisation phase seems to play a negative role in the naturalistic 
conditions, influencing participants’ segmentation in Experiments 1 
and 2 in the opposite way than we expected. We can only speculate on 
the driving force behind this influence. One potential reason might be 
that the presence of attested bigrams in the naturalistic conditions 
meant that participants started to look for bigger units (i.e., words 
containing more than two syllables), which could have led to them 
benefitting less from the attested statistics. In comparison, the 
unattested syllable co-occurrences in the non-naturalistic conditions 
were discoverable from the local statistics, which did not provide any 
misleading cues as to word length.

This may also be an explanation as to the difference between the 
serial recall task (cf. Chapter 3, Stärk et al., 2023) and the 2AFC 
segmentation task (current study). That is, the method might have 
influenced the results. In the serial recall task the rationale strategy is to 
chunk neighbouring syllables to reduce the working memory load 
(McCauley & Christiansen, 2019). Accordingly, the familiar syllable 
co-occurrences would have boosted the chunking and led to the 
observed facilitatory effect of prior knowledge. Participants in the 
2AFC segmentation task, on the other hand, first received an exposure 
phase, which provided more linguistic context than the eight-syllable 
sequences in the serial recall task. Listening to the speech stream might 
have led participants to look for larger units because the attested 
transitions in the naturalistic conditions were derived from longer 
German words (five three-syllable words and one four-syllable word).

If this were true it would raise the question why Elazar et al.’s 
(2022) segmentation task did not lead to similar effects. One 
explanation might lie within the differences of Elazar et al.’s stimuli and 
the stimuli used in the current study. For the current study, we extracted 
syllable pairs with high TPs from multisyllabic German words to form 
the naturalistic words within the experiment. Even though these 

C������ 5



syllable pairs might occur in several German words (e.g., gefa in 
gefallen or gefangen), they were always missing part of the original 
word, potentially leading participants to look for longer words in the 
experimental speech stream. On the other hand, Elazar et al.’s Spanish-
like words were trisyllabic words of the form ABC (where each letter 
stands for a syllable), with AB and BC occurring with high TPs in 
natural Spanish. Importantly, the two syllable pairs were extracted from 
different words, such that their concatenation potentially pre-empted 
any misguidance. Note, however, that this remains highly speculative 
and that our unexpected findings require further investigation.

Zipfian frequency distribution

In previous studies, the presentation of stimuli in a Zipfian 
frequency distribution facilitated SL in comparison to the presentation 
of stimuli in a uniform frequency distribution, which has been found 
across modalities (auditory SL: Kurumada et al., 2013; visual SL: Lavi-
Rotbain & Arnon, 2021). For instance, Kurumada et al. (2013) 
investigated the influence of a Zipfian frequency distribution on adults’ 
auditory SL in an online study, comparable to the non-naturalistic 
conditions in the current study. However, even though they found 
evidence for facilitated word segmentation from Zipfian distributions 
compared to uniform distributions, they found it rather indirectly in the 
form of contextual facilitation. That is, the more often participants had 
encountered the word preceding the target word, the better they were at 
correctly segmenting the target word itself. There was indeed no main 
effect of distribution type, neither using a 2AFC segmentation task (as 
in the current study) nor using an orthographic segmentation task, 
adjusted from Frank et al. (2010, 2013).

Importantly, Kurumada et al.’s (2013) orthographic segmentation 
task allowed for the incremental tracking of participants’ learning over 
the course of the familiarisation, and even though the main effect of 
distribution type was not significant, the numerical findings draw an 
interesting picture with regard to our present results. In the 
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orthographic segmentation task, participants listened to one sentence at 
a time. After each audio sequence, the sentence was presented on a 
computer screen as a string of syllables (e.g., “go lah bu pa doh ti”), and 
participants were asked to click on the spaces where they believed the 
word boundaries to be. Participants numerically benefitted from a 
Zipfian distribution when the lexicon contained at least nine word types 
or when the familiarisation was shorter than approximately 80 words 
(approximately 20 sequences containing three to five words each; see 
Kurumada et al.’s Figure 5). That is, the more words the lexicon 
contained, the more participants benefitted from a Zipfian frequency 
distribution, with highly frequent words facilitating the entrance into 
the new language and subsequently aiding the segmentation of adjacent 
words.

However, when the lexicon only contained six word types (as in the 
current study), Kurumada et al. (2013) observed the advantage of the 
Zipfian condition only within the first 80 presented words, which was 
then superseded by an advantage of the uniform condition upon longer 
familiarisation. In such a small lexicon, frequent words seem to still 
facilitate the entrance into the language in the early phases of the 
familiarisation but soon hinder it in comparison to the uniform 
distribution because the less frequent words do not appear often enough 
to be acquired as quickly. Even though these results only showed 
numerically and were not significant, the results of our current study 
(Experiment 1) further support these findings. Learning the six words 
in the current study is a less demanding task, in which participants seem 
to benefit from the equal exposure to all word types (i.e., a uniform 
rather than a Zipfian distribution) after the 300-word exposure.

While this suggests that the advantage of the uniform over the 
Zipfian conditions in the current study might be explained by the length 
of the familiarisation and the size of the lexicon, another study 
indirectly found an advantage of the Zipfian over the uniform condition 
in an even smaller lexicon of four words using a 2AFC segmentation 
task following a 128-word exposure. In this study, Lavi-Rotbain and 
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Arnon (2022) investigated whether the predictability of words in a 
distribution rather than the distributions’ precise skew (e.g., Zipfian or 
binary) facilitates word segmentation. Before taking a closer look at the 
study and discussing potential reasons for their findings in contrast to 
Kurumada et al.’s (2013) and our own findings, we need to properly 
understand the concept of predictability as investigated by Lavi-
Rotbain and Arnon (2022).

The predictability of a language quantifies the ease of predicting an 
upcoming word in the given language and is measured using the inverse 
concept of efficiency in information theory. For example, a language in 
which each word occurs equally often (i.e., a uniform language) is 
perfectly efficient (η = 1) but completely unpredictable. Natural 
languages, on the other hand, are less efficient (η = .64 being the 
average efficiency of 16 natural languages calculated by Lavi-Rotbain 
& Arnon, 2022) because certain words such as the article “the” get 
repeated frequently, making the language more predictable. The 
efficiency of a language is calculated using another concept in 
information theory, entropy, which measures the level of uncertainty or 
surprisal of a given event (see Equations (1a) and (1b)). For example, 
in a uniform language consisting of two words, each word occurs with 
a probability of .5. The entropy of that language (i.e., the observed 
entropy) can be calculated using the dividend of Equation (1b): Hobs = 
–∑       0.5 × log₂ 0.5 = 1. In a uniform distribution, the observed entropy 
equals the maximal entropy: Hmax = log₂ 2 = 1. Efficiency is the ratio 
between the two and normalises entropy by set size, such that efficiency 
will only take values between 0 (least efficient/most predictable) and 1 
(most efficient/least predictable). Consequently, the efficiency of a 
uniform distribution is always η = 1 while the efficiency of any skewed 
distribution is η < 1.
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(1a) Efficiency =
observed entropy
maximal entropy

(1b) η(X) = –∑ N p(xi) × log2 p(xi)i=1
log2 N

2
i=1
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Lavi-Rotbain and Arnon (2022) conducted one corpus analysis and 
two experiments. In the corpus analysis, they analysed the 
predictability of 16 natural languages in corpora from the CHILDES 
database (counting British English and American English separately; 
MacWhinney, 2000). The languages’ predictability ranged from .59 
(British English) to .70 (Estonian), with an average of .64 (SD = 0.03). 
In their second and third experiment, they built on this knowledge and 
created experimental languages that differed in their predictability from 
perfect (η = 1) over reduced (range = .83–.85) to language-like (range 
= .54–.65). They tested adults (and nine- to twelve-year-old children) in 
a 2AFC segmentation task following a familiarisation phase. The 
experiments were conducted between participants, with Experiment 2 
comparing two uniform conditions and two binary conditions and 
Experiment 3 comparing two binary conditions and two Zipfian 
conditions. The results showed that adults (and children) were better at 
segmenting words from the conditions with language-like efficiency, 
regardless of the skew of the distribution (i.e., whether it was binary or 
Zipfian). Participants’ performance in the conditions with reduced 
efficiency did not differ from (other) participants’ performance in the 
uniform conditions.

Even though this seems to suggest that Lavi-Rotbain and Arnon 
(2022) found an advantage of a Zipfian over a uniform condition, the 
picture is more complex than that because they additionally included 
predictability as a variable, which was not part of the research question 
in Kurumada et al.’s (2013) or the current study. To be able to better 
compare the experimental languages within the three studies, we 
calculated the efficiency of Kurumada et al.’s and our own experimental 
conditions (see Table 5.8). Following these calculations, we must 
conclude that all of Kurumada et al.’s and our own Zipfian languages 
have a predictability comparable to Lavi-Rotbain and Arnon’s 
languages with reduced efficiency. Based on this comparison and Lavi-
Rotbain and Arnon’s findings, we would expect to see no difference 
between Kurumada et al.’s uniform and Zipfian conditions, which is 
indeed in line with their findings. On the other hand, we would also 
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expect to see no difference between our uniform conditions and our 
Zipfian conditions in Experiment 1, although we found the uniform 
distributions to facilitate segmentation in comparison to the Zipfian 
distributions. This unexpected finding is inconsistent with Lavi-
Rotbain and Arnon’s findings.

Leaving aside the issue of predictability and returning to our current 
research question, two questions remain regarding Lavi-Rotbain and 
Arnon’s (2022) results. Firstly, they claimed that the skew of the 
distribution (i.e., whether the distribution was Zipfian or binary 
compared to a uniform distribution) did not affect segmentation 
performance on top of the language’s predictability. However, since 
Lavi-Rotbain and Arnon only used four word types, one could argue 
that their binary distribution (with one word being highly frequent and 
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Table 5.8. Efficiency measures of experimental languages given by 
condition within studies.
Experimental languages by condition within studies η
Uniform 1.00

Binary
Lavi-Rotbain & Arnon (2022)

Reduced efficiency 0.85
Language-like efficiency Experiment 2 0.54

Experiment 3 0.65

Zipfian
Kurumada et al. (2013)

6 word types Experiment 1 0.84
Experiment 2 0.86

...
36 word types Experiment 1 0.79

Lavi-Rotbain & Arnon (2022)
Reduced efficiency 0.83
Language-like efficiency 0.61

Current study 0.85

Note: Kurumada et al. (2013) do not provide the exact number of times with which 
words are repeated in their conditions. The information in this table is based on 
estimates from their Figure 2.
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three words having the same, lower frequency) hardly differed from 
their Zipfian distribution (with one word being more than twice as 
frequent as the next most frequent word, which differs less in frequency 
to the remaining two words), which might explain why they did not find 
an effect of distribution type. We therefore suggest that further research 
is necessary to draw conclusions about how the skew of a distribution 
affects learning.

Secondly, following our discussion above, the question remains 
why Lavi-Rotbain and Arnon (2022) found an advantage of a Zipfian 
over a uniform distribution in a lexicon of only four word types using a 
2AFC task following a relatively long familiarisation (i.e., conditions 
comparable to the ones under which Kurumada et al. (2013) found no 
effect while we found the opposite effect). The only possible 
explanation why they might have found this effect is because they 
compared words to non-words rather than part words in the 2AFC task, 
simplifying the task and bringing effects to light which were hidden in 
the more difficult design (using part words as foils) employed by 
Kurumada et al. (2013) and ourselves.

In conclusion, our results are in line with numerical findings by 
Kurumada et al. (2013) suggesting that in a lexicon of six word types, 
a uniform distribution might facilitate segmentation in comparison to a 
Zipfian distribution after sufficient exposure (approximately 80 word 
tokens). Lavi-Rotbain and Arnon (2022) claim that the picture is more 
complex than that, with the predictability of a distribution rather than 
its skew influencing segmentation. However, further research is 
necessary to uncover when a Zipfian distribution aids (or hinders) 
segmentation and how predictability interacts with the precise skew of 
a distribution in influencing segmentation.

Conclusion

We investigated the interaction of two types of influences, 
previously found to facilitate SL, namely participants’ prior knowledge 
of syllable co-occurrences (Elazar et al., 2022; Stärk et al., 2023, cf. 
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Chapter 3) and the presentation of the stimuli in a Zipfian rather than a 
uniform frequency distribution (Kurumada et al., 2013). Unexpectedly, 
we found both prior knowledge and a Zipfian distribution to hinder 
rather than facilitate SL. We speculated that the attested bigrams in the 
naturalistic exposure streams (mis)led participants to look for bigger 
units, hindering their segmentation in these conditions. However, 
further research is necessary to investigate this unexpected finding. 
Furthermore, we suggested that the post-familiarisation segmentation 
test in combination with the length of the familiarisation and the size of 
the lexicon might have prevented us from observing the Zipfian 
advantage, with participants displaying the advantage only in the early 
phases of familiarisation (Kurumada et al., 2013; but see Lavi-Rotbain 
& Arnon, 2022, for findings suggesting otherwise). Future research in 
this area might test several Zipfian languages of different efficiencies 
while shortening the familiarisation phase as in Experiment 2 of the 
current study or adopting a different test. Kurumada et al. (2013) used 
the orthographic segmentation task but we would like to suggest the use 
of an auditory task for the investigation of auditory SL (see e.g., Isbilen 
et al., 2020, for a post-familiarisation test; and Stärk et al., 2023, for a 
serial recall or incidental learning test).
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In this thesis, I investigated two research questions. Firstly, I 
examined the availability and reliability of five word segmentation cues 
in German child-directed speech (CDS), in order to shed light on the 
input German-acquiring infants receive and to deepen our 
understanding of the possible utility of these cues during language 
acquisition (Chapter 2). Secondly, I studied how children and adults 
build on their prior knowledge of syllable co-occurrences in their native 
language, knowledge acquired via statistical learning (SL) in the 
natural world, when processing new language input based on these 
syllable distributions (Chapters 3 to 5). In this final chapter, I will 
summarise my main findings before discussing their implications for 
the two main research questions asked in this thesis. I also identify 
potential directions for future research.

Summary of findings

In Chapter 2, I addressed the first research question regarding the 
availability and reliability of word segmentation cues in German CDS. 
To answer this question, I conducted a corpus analysis investigating 
approximately 4000 utterances or 15,000 words of CDS from 20 
German datasets on the CHILDES database (MacWhinney, 2000), 
which equals approximately one day worth of input to a child 
(Donnelly & Kidd, 2021). I coded the corpus at the word and syllable 
level to cover a range of five different segmentation cues: word stress, 
transitional probabilities (TPs), lexical and sublexical frequencies, 
word length, and single-word utterances. The aim of this analysis was 
to gain both an overview of a broad range of segmentation cues 
available in German CDS (whereas previous studies usually focussed 
on a single cue) and precise knowledge about German TPs, which laid 
the foundations for the remainder of this thesis.

The results of Chapter 2 showed that all five of these cues could be 
useful for word segmentation in German but had different degrees of 
availability and reliability. The most reliable segmentation cue was 
word stress, with 97% of words carrying word-initial stress. TPs proved 
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to be higher within than between words, making them suitable as 
segmentation cue. Backwards TPs were higher than forwards TPs, 
showing that backwards TPs are more informative in German. 
Furthermore, words followed a Zipfian-like frequency distribution, 
which has previously been suggested to facilitate word segmentation 
(Kurumada et al., 2013), suggesting that the frequency landscape of 
words could also serve as a cue. Regarding word length, 78% of word 
tokens were monosyllabic and the majority of the most frequent words 
were monosyllabic function words, which might point to their 
importance in flagging neighbouring words after being picked up early 
due to their salience (Frost et al., 2019; Shi & Lepage, 2008). Similarly, 
isolated words (i.e., words in single-word-utterances) could be learnt 
more easily and subsequently aid segmentation of adjacent words 
(Brent & Siskind, 2001; Peters, 1983). These accounted for 15% of all 
utterances.

In Chapters 3 to 5, I addressed the second research question, 
regarding the effect of prior distributional knowledge on SL. In 
Chapter 3, I investigated whether German adults would draw on their 
prior knowledge of syllable co-occurrences when processing new 
language input. Participants performed a serial recall task which 
required them to repeat sequences of eight syllables. Those sequences 
belonged to one of three types: naturalistic sequences, non-naturalistic 
sequences, or unstructured foil sequences. Naturalistic and non-
naturalistic sequences were structured, such that they contained 
experimental words that were statistically defined via TPs, which 
participants could acquire over the course of the experiment. Crucially, 
the experimental words in the naturalistic condition comprised highly 
frequent syllable pairs from the participants’ native language (German). 
That is, participants had prior knowledge in this condition, gained via 
exposure to their native language. The experimental words in the non-
naturalistic condition comprised syllable pairs not found in a corpus 
analysis of German, meaning that participants started learning from a 
lower base (i.e., as in traditional SL experiments). Unstructured foil 
sequences did not contain any learnable patterns.
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The results of Chapter 3 showed that participants learnt in both 
naturalistic and non-naturalistic sequences compared to unstructured 
foil sequences. Crucially, participants were better at repeating 
naturalistic sequences than non-naturalistic sequences. They even built 
further on this naturalistic advantage and improved at repeating 
naturalistic sequences during the early phases of the experiment in 
comparison to the non-naturalistic sequences.

After investigating the effect of prior knowledge on adults’ SL in 
Chapter 3, I asked whether and how prior knowledge of syllable co-
occurrences affected the SL of seven- to nine-year-old German children 
in Chapter 4. Additionally, I explored in this chapter how the children’s 
language abilities affected their SL. The children performed an adapted 
version of the serial recall task used in Chapter 3, shortening the 
sequences to six syllables. On a second day, their language proficiency 
was tested with the German PPVT and a German sentence repetition 
task. Like the adults, the children learnt in both naturalistic and non-
naturalistic sequences compared to unstructured foil sequences. 
Importantly, they were also better at repeating naturalistic than non-
naturalistic sequences but, unlike the adults, the children did not 
improve further over the course of the experiment. There was some 
evidence in that children with higher language proficiency also showed 
a better SL performance. Overall, children with higher language 
proficiency improved more during the early phases of the experiment 
compared to children with lower language proficiency. Additionally, 
the difference between children’s repetition of naturalistic and non-
naturalistic sequences was smaller in children with higher language 
proficiency, suggesting that these more proficient children may have 
experienced more competition between the two trained sequences, 
raising the possibility that they were better at learning the two 
sequences in parallel.

In Chapters 3 and 4, I showed that prior knowledge of syllable co-
occurrences facilitates SL of new linguistic input based on these 
familiar patterns. In Chapter 5, I went a step further and investigated 
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how the factor of prior knowledge interacted with another factor 
previously shown to facilitate word segmentation, namely the 
presentation of words in a Zipfian rather than a uniform frequency 
distribution (Kurumada et al., 2013). This study had a between-
participants design in which participants were assigned to one of four 
conditions (Experiment 1): Naturalistic + Zipfian, Naturalistic + 
Uniform, Non-naturalistic + Zipfian, or Non-naturalistic + Uniform. 
The study was conducted online, where participants were exposed to an 
unfamiliar language for three minutes, after which they completed a 
two-alternative forced-choice (2AFC) segmentation task. The words in 
the language either comprised syllable pairs found in natural German 
(naturalistic words) or syllable pairs unattested in a corpus of German 
(non-naturalistic words). The words were either presented in a Zipfian 
distribution (with one word being highly frequent and the other words 
being less and less frequent) or in a uniform distribution (with each 
word occurring equally often).

Participants in all four conditions performed above chance, 
indicating segmentation across the board. However, unexpectedly, 
participants in the non-naturalistic conditions outperformed 
participants in the naturalistic conditions, and participants in the 
uniform conditions outperformed participants in the Zipfian conditions. 
To explain these findings, I conducted two follow-up experiments. 
Experiment 2 shortened the exposure phase from three minutes to one 
minute and only compared the naturalistic to the non-naturalistic 
condition, keeping the word frequency uniform. Participants in both 
conditions performed above chance. However, as in Experiment 1, 
participants in the non-naturalistic condition outperformed participants 
in the naturalistic condition. Experiment 3 tested the validity of the 
experimental words by asking participants in a 2AFC task without prior 
exposure to pick the option which sounded more word-like. 
Participants in the naturalistic condition picked the naturalistic words 
over the foils above chance while participants in the non-naturalistic 
condition did not pick the non-naturalistic words more often than the 
foils.

175

G������ D���������



176

Interacting word segmentation cues: Bringing the five studied 
cues back together

In the following sections, I further interpret the findings of my 
dissertation, starting with the first main research question regarding the 
availability and reliability of word segmentation cues in German CDS. 
Overall, my results are in line with suggestions that children use 
multiple cues to break into the speech stream (see e.g., Brent & 
Cartwright, 1996; Cairns et al., 1997; Christiansen et al., 1998; Lalonde 
& Werker, 1995; Mattys et al., 1999; Monaghan, 2017; Morgan & 
Saffran, 1995), providing evidence for the reliability of five potential 
cues.

The most reliable cue meets the most available cue: Word stress 
and transitional probabilities

I found word stress to be the most reliable word segmentation cue 
in the corpus, having almost perfect reliability. The result is similar to 
findings in English, where 90% of content words have been found to 
carry word-initial stress (Cutler & Carter, 1987; compared to 93% in 
the current study). Infants acquiring these languages might only need to 
segment a few content words to hypothesise that their language follows 
a word-initial stress pattern. Once they have established that the stress 
pattern is highly reliable, they can rely mostly on this cue, potentially 
supported by other cues to avoid missegmenting words which are not 
following the dominant stress pattern. TPs (or syllable co-occurrence 
frequencies), on the other hand, are always available and do not require 
any prior knowledge, but they were less reliable than stress in German 
CDS. That is, TPs are a promising first cue into a language in which an 
infant needs to find out which other cues to rely upon and which 
patterns those other cues follow (see e.g., Aslin et al., 1998; Saffran, 
Aslin, et al., 1996; Saksida et al., 2017), but TPs are likely used in 
combination with other cues (see e.g., Yang, 2004).

There is evidence that word stress and TPs might interact in German 
and English such that TPs help extracting first word candidates from 
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speech, over which the infant can generalise that the languages follow 
a word-initial stress pattern. English seven-month-old infants have been 
shown to rely more on TPs than word stress when the two cues 
contradict one another but to change their preference in favour of word 
stress at approximately eight or nine months of age, suggesting that 
they first used TPs but later acquired the language’s stress pattern 
(Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003; see also Jusczyk 
et al., 1993, for evidence that English-acquiring infants develop a 
preference for a strong/weak stress pattern between six and nine months 
of age). In German, there is evidence that six- to seven-month-old 
infants rely more on word stress than on TPs when the two cues 
contradict one another (Marimon Tarter, 2019), indicating that infants 
at that age have already learnt that stress is more reliable than TPs. 
Future research is necessary to show whether younger German infants 
prefer TPs over stress.

Importantly, children’s preference for one cue over another has to 
be interpreted in the context of contradicting cues. That is, it suggests 
that the children have, for example, acquired the stress pattern of their 
language and learnt that it is more reliable than TPs. In natural 
language, however, cues will more often go hand-in-hand rather than 
contradict one another, and there is evidence that TPs remain relevant 
even after stress has been established as a more reliable cue. English 
7.5-month-old infants have been shown to correctly segment words 
following the dominant trochaic stress pattern but to treat all strong 
syllables as word onsets, therefore missegmenting words following an 
iambic stress pattern (e.g., segmenting “TAR is” from “guiTAR is”; 
Jusczyk, Houston, et al., 1999). The authors suggested that before 
learning to correctly segment words following the non-dominant 
iambic stress pattern at 10.5 months of age, infants might use TPs 
alongside stress to segment words. That is, once the infants have 
established that a stressed syllable likely indicates a word onset in 
English, they use this cue to identify the beginning of a new word but 
might still rely on TPs to determine when the word ends (e.g., “TAR is”
was segmented because the syllable “TAR” is stressed and often 
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followed by the syllable “is”). Taken together, these findings 
demonstrate how linguistic cues rarely work in isolation in natural 
language across development.

Finally, it seems worth mentioning that not only forwards but also 
backwards TPs can be used to segment speech and that backwards TPs 
are even more reliable than forwards TPs in languages such as German 
or English (cf. Chapter 2; Onnis & Thiessen, 2013; Perruchet & 
Desaulty, 2008; Thiessen et al., 2019). Thiessen et al. (2019) showed 
that English-acquiring infants develop a preference for backwards over 
forwards TPs between seven and 13 months of age. Given the results 
discussed above, this might suggest that German and English infants 
first use forwards and backwards TPs to segment the first word 
candidates of the language and to decide where a word ends following 
a stressed word onset (cf. Jusczyk et al., 1999). They then learn that 
backwards TPs are more reliable, though again, that does not mean that 
the infants stop using forwards TPs at that point but rather that they 
learnt which cue to trust when there is contradicting input.

How do other cues fit into the picture?

In the last section, I pointed out how combining word stress and TPs 
could aid word segmentation, two cues standing out in German due to 
their availability and reliability in the input. In this section, I discuss 
how the remaining three cues studied in Chapter 2 might fit into the 
picture. Highly frequent words and words presented in isolation can 
both be segmented early due to their salience (see e.g., Ambridge et al., 
2015, for a review of the role that frequency plays in first language 
acquisition; and for accounts on the role of single-word-utterances in 
first language acquisition see e.g., Brent, 1999; Brent & Cartwright, 
1996; Brent & Siskind, 2001; Monaghan & Christiansen, 2010; Peters, 
1983; Pinker, 1984). Children might discover these words combining 
information from TPs (i.e., syllable co-occurrence frequencies) with 
information from word frequency and pauses (before and after words 
presented in isolation). That is, words might stand out from speech due 
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to their frequency or their prominent position between pauses, but it 
might be the frequency with which two syllables of a disyllabic word, 
for example, occur in combination that leads to them being chunked 
and stored as a potential word candidate. These high-frequency or 
isolated words might be the first word candidates over which children 
generalise to determine the language’s stress or phonotactic pattern. 
Subsequently, all these cues might interact in guiding future 
segmentation, with the previously segmented high-frequency and 
isolated words acting as anchor points in the speech stream (Bortfeld et 
al., 2005; Kurumada et al., 2013; Mersad & Nazzi, 2012) and word 
stress and TPs interacting as described above.

An interesting question is how word length influences 
segmentation. Most words in the corpus were monosyllabic, which do 
not have any within-word TPs (at the syllabic level). However, 
uniformity in word lengths could potentially circumvent the problem a 
variety of word lengths seems to pose on word segmentation (Johnson 
& Tyler, 2010; Lew-Williams & Saffran, 2012). On the other hand, a 
variety of word lengths might only pose a problem for small lexica 
where word length is controlled artificially (see also Perruchet & 
Vinter, 1998, for computational evidence that variable word length does 
not lead to segmentation difficulties). In natural language, a variety of 
word lengths might instead facilitate word segmentation. For example, 
the most frequent words in the present corpus were almost exclusively 
monosyllabic function words such as the article “the”, which can 
precede all nouns, leading to high backwards TPs between the nouns 
and the article.

Highly frequent, monosyllabic function words play an important 
role in segmentation and simultaneous grammatical categorisation 
(Frost et al., 2019). Infants have been shown to segment pseudo-words 
when they are preceded by the article “the” but not when they are 
preceded by a pseudo-article (Shi et al., 2006; Shi & Lepage, 2008), 
indicating that the infants segmented the article in natural language and 
relied on it for subsequent language processing (see also Shafer et al., 
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1998, for evidence that even 10.5-month-old infants notice when 
function words are missing or mispronounced). In German, for 
instance, learning a highly frequent article can help segmenting and 
categorising the succeeding nouns, not only regarding the word 
category but also the noun’s gender (see Höhle et al., 2004, for evidence 
that German twelve- to 14-month-old infants use articles to categorise 
the following word as a noun; and see also van Heugten & Shi, 2009, 
for evidence that French toddlers know which gender article precedes 
familiar nouns). It has also been suggested that function words may 
help infants to determine the word order of their language (Gervain et 
al., 2008), which might simultaneously help the infant to determine 
which direction of TPs is more informative in their language (such as 
backwards TPs in the example above; Thiessen et al., 2019).

Interim summary on German word segmentation cues

To summarise, my findings provide evidence for the availability of 
multiple potential word segmentation cues in German, which has 
previously been found to be advantageous for learning natural and 
artificial languages (Brent & Cartwright, 1996; Cairns et al., 1997; 
Christiansen et al., 1998; Cunillera et al., 2006; Lalonde & Werker, 
1995; Mattys et al., 1999; Matzinger et al., 2021; Monaghan, 2017; 
Morgan & Saffran, 1995). Word stress is the most reliable cue in 
German but it likely interacts with TPs, isolated words, word 
frequencies, and specifically monosyllabic, highly frequent function 
words, not only in segmenting but simultaneously categorising words. 
In Chapter 5, I investigated how a language’s word frequency 
distribution (Zipfian vs. uniform) interacts with learners’ prior 
knowledge of the language’s syllable distributions in influencing word 
segmentation (see discussion regarding the second research question 
below), but further research will be needed to investigate the interaction 
of different and multiple segmentation cues (e.g., whether learning 
words of two word lengths can simultaneously be facilitated by having 
monosyllabic function words).
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How does prior knowledge influence subsequent language 
learning and processing?

After gaining insights into which word segmentation cues are 
available and reliable in German CDS (cf. Chapter 2), Chapters 3 to 5 
dived deeper into SL, the grouping of elements which often co-occur in 
the environment such as the syllables of a word. The output of SL is 
assumed to be stored as long-term memory representations; however, 
how these representations endure and whether speakers draw on these 
to process new input was largely unknown. Such prior knowledge had 
been shown to affect subsequent learning at the phoneme level (i.e., in 
terms of phonotactics, see e.g., Finn & Hudson Kam, 2008; Mersad & 
Nazzi, 2011). At the syllable level, however, only the most recent 
studies started to investigate whether and how prior knowledge affected 
subsequent SL (Elazar et al., 2022; Siegelman et al., 2018). I 
investigated this in Chapters 3 to 5 of this thesis.

Prior knowledge of syllable co-occurrences facilitates statistical 
learning

In Chapters 3 and 4, prior knowledge facilitated adults’ as well as 
seven- to nine-year-old children’s SL in the naturalistic condition. The 
two experiments (adults vs. children) are not completely comparable 
because the children received a simplified version of the task, with 
sequences containing only six instead of eight syllables, but the 
advantage of the naturalistic condition showed clearly in both 
participant groups. Both adults and children recalled more syllables and 
bigrams (i.e., experimental words) in the naturalistic condition where 
they could rely on prior knowledge than in the non-naturalistic 
condition where they could not rely on prior knowledge. This is in line 
with recent findings in Hebrew and Spanish adults (Elazar et al., 2022; 
Siegelman et al., 2018), as well as comparable findings with SL at the 
phoneme level (i.e., phonotactics; Finn & Hudson Kam, 2008; Mersad 
& Nazzi, 2011), and the broader verbal learning literature where it has 
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long been known that learning builds on prior knowledge (Ebbinghaus, 
1885, 1913).

This result also fits well into descriptions of SL as a form of 
chunking and entrenchment (Jost & Christiansen, 2017; Perruchet & 
Pacton, 2006; Perruchet & Vinter, 1998; Robinet et al., 2011) where 
syllables get chunked into larger units (e.g., ba + by → baby), with 
those becoming more entrenched with each encounter. In terms of the 
findings in Chapters 3 and 4, this can be interpreted as participants 
already starting with well entrenched syllable chunks when entering the 
experiments. During the exposure to new linguistic input, participants 
could then quickly access those chunks, which explains the advantage 
observed for the naturalistic condition. Additionally, the adult 
participants in Chapter 3 were able to further build on this knowledge, 
which resulted in a boost of learning (i.e., further entrenchment leading 
to an improvement in recall scores), especially during the early phases 
of the experiment. The children in Chapter 4 did not show further 
learning during the experiment, probably due to the difficulty of the task 
for their age.

While the results of Chapters 3 and 4 are clearly in favour of this 
interpretation and my hypotheses, the results of Chapter 5 seem to 
contradict those. In Experiments 1 and 2 of Chapter 5, participants in 
the non-naturalistic conditions reached higher segmentation scores than 
participants in the naturalistic conditions. I ruled out several potential 
driving forces behind this result, such as the online nature or the 
between-participants design of the experiments in Chapter 5. Most 
importantly, the experimental words were well designed. Participants in 
Experiment 3 rated naturalistic words as more word-like than foils, 
demonstrating that the syllable pairs sounded familiar to German 
speakers due to the bigrams’ attested co-occurrence in natural German. 
Furthermore, participants did not show a preference for non-naturalistic 
words over foils, demonstrating that both were likely word candidates, 
without any preference driven by potential similarity to German.
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The most likely explanation for the non-naturalistic advantage in 
Chapter 5 is that the exposure phase in the naturalistic conditions had 
an inhibitory effect on participants’ segmentation. Without the exposure 
phase, participants in the naturalistic condition of Experiment 3 rated 
the naturalistic words as more word-like than the foils. However, after 
the exposure phases in Experiments 1 and 2, participants selected 
naturalistic words over foils less often. I speculated that participants 
might have been implicitly looking for longer words in Experiments 1 
and 2 of Chapter 5 because the syllable pairs were derived from longer 
German words and were presented in continuous speech during the 
exposure phase, making it possible that the word continued.

Individual differences in children’s statistical learning

I have described above how prior knowledge acquired via previous 
SL facilitates subsequent SL. Additionally, I investigated in Chapter 4 
how the children’s language proficiency affects their SL performance. 
The theory behind this is based on a slightly more complex feedback 
loop, with superior SL abilities (or its component processes, Arciuli, 
2017) leading to better language proficiency, which could in turn feed 
back into better SL performance. Previous studies had found a 
correlation between language proficiency and SL performance (see e.g., 
Evans et al., 2009; Frost, Jessop, et al., 2020; Kidd & Arciuli, 2016; 
Lany, 2014). Here, I could not only show that children with higher 
language proficiency performed better at the SL task but also that there 
were interesting, different learning trajectories for children with higher 
and children with lower language proficiency. Children with higher 
language proficiency were better at building on their prior knowledge 
and therefore performed better at recalling naturalistic sequences. 
Additionally, they improved more during the early phases of the 
experiment and also picked up more of the non-naturalistic sequences 
than children with lower language proficiency. These findings provide 
interesting insights into potential future research avenues.
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Prior knowledge of syllable co-occurrences in interaction with the 
word frequency distribution

Apart from the effect of participants’ prior knowledge, I also studied 
the effect of a Zipfian frequency distribution on participants’ SL in 
Chapter 5. I did not find an interaction between participants’ prior 
knowledge and the frequency distribution of the experimental 
language. However, I unexpectedly found a uniform distribution to be 
more beneficial than a Zipfian distribution. This seems to be in line with 
previous observations by Kurumada et al. (2013), showing that in a 
small lexicon of only six word types a uniform distribution facilitates 
segmentation in comparison to a Zipfian distribution after a certain 
amount of exposure (after approximately 80 words). Their finding was 
not statistically significant but the current results of Experiment 1 
provide further evidence for it. Adding another level of complexity, 
Lavi-Rotbain and Arnon (2022) found a Zipfian distribution to facilitate 
word segmentation in comparison to a uniform distribution in a small 
lexicon of only four word types but only when the experimental 
language had a language-like efficiency (i.e., was more predictable than 
our experimental language). Future research will therefore be necessary 
to disentangle the precise contributions of the different factors of 
lexicon size, skew, and predictability of a language on participants’ 
word segmentation.

Interim summary on factors influencing statistical learning

To summarise, my findings are in line with descriptions of SL as a 
form of chunking and entrenchment where syllables that often occur 
together form a chunk, which becomes stronger with each activation 
(cf. Perruchet & Pacton, 2006; Perruchet & Vinter, 1998; Robinet et al., 
2011). Participants entered the experiments with well entrenched 
syllable chunks, facilitating their SL performance in Chapters 3 and 4 
as well as influencing their word segmentation in Chapter 5. The adult 
participants in Chapter 3 additionally showed signs of further 
entrenchment during the task. Children’s language abilities influenced 
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their SL performance, and a Zipfian frequency distribution influenced 
participants’ word segmentation, with both of these findings offering 
interesting new research avenues. 

Future directions

Having discussed the findings of my dissertation, I will mention a 
few potential directions for future research in this section. In Chapter 2, 
I analysed data which approximates to one day worth of input. One next 
obvious step would be to generalise over a bigger dataset or investigate 
whether the availability and reliability of cues changes over time when 
caregivers adjust their CDS to the more advanced linguistic needs of 
the child. Investigating such a large dataset requires the automation of 
coding and analysis processes, in which case it would be only logical to 
include even more potential word segmentation cues into the analysis, 
such as cues on the phonemic level (e.g., phonotactics). A more 
interesting question than how the reliability of cues changes over time 
in one language (which might not be that much) is how different 
languages compare to one another (i.e., which cues are comparable 
between which languages in terms of availability and reliability, and 
which cues differ; see e.g., Saksida et al., 2017).

Building on findings from such corpus analyses, experimental 
studies can investigate the cues on which children rely in specific 
languages and at specific time points during language development. For 
instance, I discussed above how TPs could be more relevant in the first 
months of life while word stress might become more dominant in 
English and German once the child has established a reliable stress 
pattern (Johnson & Jusczyk, 2001; Marimon Tarter, 2019; Thiessen & 
Saffran, 2003). However, in syllable-timed languages such as French, 
infants rely more on TPs than on stress (Marimon et al., 2019). Such 
cross-linguistic studies between languages with different patterns of 
cue reliabilities might reveal important language-specific trajectories in 
word segmentation strategies. For instance, which cues do children use 
in combination, and are there individual differences (see also Marimon 
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et al., 2022), or does this change with age? The language environment 
might influence the availability and reliability of a certain cue but 
individual cognitive abilities might then influence whether the cue is 
easy to process for a child (potentially in comparison to other only 
slightly less reliable cues). This line of research would provide valuable 
insights into typical language development within the first year of life.

Building upon the work in Chapters 3 to 5, one next step to take 
here would be to run further follow-up experiments on Chapter 5 to 
investigate whether a shorter exposure phase would yield a Zipfian 
advantage (cf. Kurumada et al., 2013). Repeating Experiment 1 using 
the serial recall task from Chapters 3 and 4 might reveal the underlying 
factors driving the unexpected findings (I had to switch to the 2AFC 
task due to COVID-related testing limitations). As discussed in Chapter 
5, it would be good to also include the languages’ predictability (and, if 
possible, different lexicon sizes) into the study. All these points would 
help moving the field to more naturalistic experimental settings. In line 
with this, future studies should try to implement more naturalistic 
stimuli (e.g., using different syllable structures typically found in 
certain positions within a word) and combine different segmentation 
cues in a variety of languages. Finally, computational models could 
help gain further insights into multiple interacting cues.

Conclusion

As complex systems, languages present a 
seemingly insurmountable problem to the learner. However, languages 
contain many probabilistic cues, and humans excel at spotting and 
learning from these patterns in their linguistic environment. In this 
thesis, I have shown that there are a multiplicity of statistical cues in 
children’s linguistic input, and that children and adults build upon prior 
knowledge when processing and learning new linguistic material. That 
is, establishing long-term representations of statistically regular 
patterns sets the learner onto a path further into their 
language. However, such knowledge could also be detrimental in 
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contexts where prior expectations are misleading. Overall, this thesis 
shows that speakers are exquisitely attuned to their linguistic input, 
showing that SL is a core component of the toolkit humans use to 
acquire and use language.
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Personal data

I collected the following personal data for this thesis:

• names of participants (Chapters 3 and 4) and Prolific IDs (Chapter 
5), respectively

• age (Chapters 3 and 5) and birthdays (Chapter 4), respectively
• gender, language background, as well as information about 

language, speech, or hearing disorders (Chapters 3 to 5), and school 
classes (Chapter 4)

• audio recordings (Chapters 3 and 4) and language assessments 
(Chapter 4), respectively

It was necessary to collect these personal data to achieve the goals 
of my project. Names and Prolific IDs were required to arrange the 
testing sessions and coordinate the payment. The background 
information (language background as well as information about 
disorders) and the language assessments were used to exclude 
participants from analyses if they did not meet the studies’ inclusion 
criteria. The age and birthdays as well as participants’ gender were 
necessary for the descriptive statistics while the design of my 
experiments required participants to repeat speech sequences 
auditorily. I ensured that I did not collect more personal data than 
necessary for achieving the goals of my research project.

Privacy

Personal data were anonymised where possible. The participants’ 
names (Chapters 3 and 4) and Prolific IDs (Chapter 5), respectively, as 
well as their birthdays (Chapter 4) were kept separately from the 
research data. They were matched with anonymous participant numbers 
in a password-protected file, to which only I have access.

As it is not possible to fully anonymise the audio recordings 
(Chapters 3 and 4), these are stored under restricted access in the MPI 
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Archive – not publicly available. Anonymous transcriptions of the 
audio recordings are publicly available on OSF and at the MPI Archive.

The informed consent forms (Chapters 3 and 4) are stored in a 
secured cupboard by the lab manager of the Language Development 
Department at the Max Planck Institute for Psycholinguistics. I have no 
longer access to these forms.

Ethical approval and informed consent

There was a blanket ethical approval for the studies in Chapters 3 to 
5 granted to the Language Development Department by the Ethics 
Committee of the Faculty of Social Sciences at Radboud University 
(ECSW2017-3001-474 Manko-Rowland;Language Development).

The participants in Chapter 3 were either registered at the MPI 
database or recruited at Radboud University and via social media, 
respectively. They registered for the study via the database or contacted 
the experimenter via email. Prior to their participation, the participants 
received an informed consent sheet via email. They could withdraw 
from both the study and the MPI database at any time.

The participants in Chapter 4 were recruited at their school. Parents 
of all second- and third-graders were sent informed consent forms. 
Children whose parents signed the informed consent form were asked 
whether they wanted to participate in the experiment. The experiment 
was explained to them by the experimenter. Both parents and children 
could withdraw their consent at any time.

The participants in Chapter 5 were recruited via the online 
recruitment platform Prolific. They registered for the study online and 
received an informed consent as part of the online procedure prior to 
their participation in the experiment. They could withdraw their 
consent at any time.
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Data storage

The research data and analysis scripts of Chapters 3 to 5 are stored 
in the MPI Archive with varying access levels, depending on the 
sensitivity of the data. Anonymised data and analysis scripts are 
additionally shared on the Open Science Framework (OSF). All 
relevant links can be found below.

• The whole project available at the MPI Archive: https://hdl.handle.
net/1839/40ba3498-63c7-48ec-b909-2aed2f28355a 

• Chapter 2: https://osf.io/vpdu6/
• Chapter 3: https://osf.io/4dsmy/
• Chapter 4: https://osf.io/t5qf4/
• Chapter 5: https://osf.io/eq7xk/
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How do infants learn language? It may look easy because they seem 
to learn their mother tongue without difficulties, but there are 
challenges. For instance, the language input infants receive does not 
contain any obvious cues to indicate word boundaries, but children still 
manage to build a broad vocabulary before they start school. In this 
thesis, I investigated three important questions about human language 
development: (1) Which linguistic cues can infants use to learn their 
first words? (2) Do we use patterns from our mother tongue, which we 
acquired as infants, to learn another language as we get older? and (3) 
Do we exploit various linguistic cues to help us learn and understand 
new languages?

In the first part of my thesis, I investigated linguistic cues that 
infants could potentially use to find words in their speech input. When 
you listen to an unfamiliar language it sounds like a constant stream and 
it is difficult to tell where a word starts and where it ends. Infants, 
however, seem to identify words in this constant speech stream without 
difficulties. There are a variety of linguistic cues that could help the 
infants find the words, such as words always being stressed on the first 
syllable, therefore marking the beginning of words in a language. I 
analysed transcripts of the natural speech that infants acquiring German 
would typically hear from their parents and found that the cues I 
examined were all available in the speech, such that German-acquiring 
infants could exploit them to segment their input. Word stress was the 
most reliable indicator of word boundaries in German, with almost all 
words being stressed on the first syllable. This means that German-
acquiring infants could identify the beginning of a word by paying 
attention to the stressed syllables. This cue most likely interacts with 
the other cues in the input to aid the acquisition of the language, such 
as how often two syllables occur in combination. If, for example, the 
syllables “ba” and “by” frequently occur together our brain implicitly 
notices this and memorises them as the unit “baby”. Other cues were, 
for example, word frequency and words occurring in isolation. That is, 
if a word occurs very frequently (such as “the”) or in isolation (such as 
“yes”) it stands out and our brain memorises it more easily.
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Next, I conducted experiments with German adults and seven- to 
nine-year-old children to test whether their ability to detect patterns in 
an artificial “alien” language was enhanced when these sequences were 
statistically similar to German. This way, I could explore whether 
people transfer the linguistic patterns in their mother tongue when 
learning a new (in this case, made-up) language. For example, in 
German some syllable combinations are very frequent, such as “ge fa”. 
Other combinations are not very frequent, such as “fa zu”. If we use 
patterns from our mother tongue when learning new languages, 
languages with syllable combinations similar to those in our mother 
tongue would be easier to learn than languages with different syllable 
combinations. In these studies, the participants would listen to 
sequences from the alien language and then repeat them out loud as 
accurately as possible. I tested the participants on three different types 
of sequences. The first were naturalistic sequences, which were 
designed to include frequent German syllable combinations, like “ge-fa 
mi-nu mo-ti”. These were compared against non-naturalistic
sequences, which were built from syllable combinations that are not 
very common in German, like “fa-zu nu-ver ti-pa”. Finally, there were 
some foil sequences with randomly scrambled syllables, like “fa ge mo 
mi ver nu”. Because of their randomness, these were supposed to be 
very difficult for the participants to learn compared to the naturalistic 
and non-naturalistic sequences. Apart from the difficulty of the foil 
sequences, the studies showed that both adults and children were better 
at repeating naturalistic sequences than non-naturalistic sequences. 
This suggests that adults and children store linguistic information of 
their mother tongue, such as syllable combinations, in their memory 
and use this knowledge when processing new language input.

I showed that participants will intuitively draw on their knowledge 
of linguistic patterns to process new language input; but when learning 
a new language, adults – like infants – can also use other cues to 
identify words in the speech stream. For example, if some words occur 
very frequently in the input, you may notice and learn them more easily. 
Evidence from previous studies indeed suggests that it may be easier to 
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identify the words of an artificial language when some of these words 
are repeated very frequently. I conducted three more experiments to 
explore whether additionally increasing the frequency of certain words 
in the alien language helps participants learn the language. I expected 
that participants would benefit from both their prior knowledge of 
linguistic patterns (i.e., syllable combinations found in German, such as 
in the naturalistic word “ge fa”) and the frequent repetition of some 
words in the alien language. Unexpectedly, I observed the opposite
pattern; prior knowledge of linguistic patterns in the mother tongue as 
well as variations in word frequency hindered participants’ learning of 
the alien language. I ran two follow-up experiments which provided 
evidence that this unexpected effect was not driven by the 
characteristics of the alien language, but they could not explain these 
surprising effects. Collectively, this suggests that language knowledge 
and word frequency can affect language learning, but the direction of 
the results are difficult to reconcile with past research.

In this thesis, I found that (1) language contains several cues that 
infants could use to learn their first words. In German, this includes 
word stress, frequent syllable combinations, frequent words, and words 
occurring in isolation. (2) I also found that we appear to memorise 
syllable co-occurrences in our mother tongue and use this information 
to process subsequent language input. (3) However, more research is 
needed to disentangle how different sources of linguistic information 
may work together to help us learn new languages.
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Hoe leren kinderen taal? Het lĳkt alsof dit heel gemakkelĳk gaat en 
dat kinderen ogenschĳnlĳk zonder veel problemen hun moedertaal 
lĳken te leren, maar dat betekent niet het niet moeilĳk is! Bedenk 
bĳvoorbeeld dat de taal die kinderen horen een constante stroom van 
spraak is, en dat de afzonderlĳke woorden in die spraakstroom 
nauwelĳks te onderscheiden zĳn. Toch slagen kinderen erin om een 
brede woordenschat op te bouwen voordat ze naar de basisschool gaan. 
Hoe kan dat? In dit proefschrift heb ik drie belangrĳke vragen over de 
menselĳke taalverwerving onderzocht: (1) Welke taalkundige 
informatie kunnen kinderen uit de spraakstroom van hun ouders 
benutten om hun eerste woorden te leren? (2) Gebruiken we patronen 
uit onze moedertaal, die we als kind hebben verworven, om een andere 
taal te leren als we ouder zĳn? en (3) Welke aspecten van onze 
taalkennis gebruiken we om nieuwe talen te verwerken en te leren?

In het eerste deel van mĳn proefschrift onderzocht ik verschillende 
taalaspecten die kinderen mogelĳk benutten om afzonderlĳke woorden 
te onderscheiden in de spraakstroom van hun ouders. Het is je vast 
bekend dat als je een onbekende taal hoort, het als een constante 
klankenstroom klinkt. Als je de taal niet spreekt, is het moeilĳk te 
zeggen waar het woord begint en waar het eindigt. Kinderen leren 
echter losse woorden te herkennen in deze spraakstroom zonder enige 
instructie. Er zĳn verschillende aspecten die hen kunnen helpen om de 
losse woorden te vinden. Zo is het bĳvoorbeeld zo dat in sommige 
talen, zoals het Duits en Nederlands, de klemtoon vaak op de eerste 
lettergreep van het woord valt. Een beklemtoonde lettergreep geeft dus 
vaak het begin van een woord aan. In mĳn onderzoek analyseerde ik 
transcripties van opnames van pratende Duitsers. Zo kreeg ik een goed 
beeld van de spraak die kinderen van Duitssprekende ouders normaal 
om zich heen horen. Vervolgens kon ik onderzoeken welk taalaspecten 
voorkwamen in het Duits en door Duitse kinderen gebruikt konden 
worden om losse woorden in het Duits te herkennen en te leren. Het 
bleek dat er in het Duits verschillende taalaspecten aanwezig waren die 
kinderen kunnen benutten om losse woorden in de spraakstroom te 
identificeren. Beklemtoning gaf de meeste informatie over of iets in de 
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spraakstroom een los woord was of niet. Kinderen die Duits leren 
kunnen dus het begin van een woord het beste herkennen door te letten 
op de beklemtoonde lettergrepen, want die geven vaak het begin van 
een woord aan. Dit taalaspect speelt waarschĳnlĳk samen met andere 
taalaspecten een rol in de taalverwerving van kinderen. Een ander 
taalaspect dat bĳvoorbeeld een rol kan spelen bĳ taalverwerving is hoe 
vaak bepaalde combinaties van lettergrepen in een taal voorkomen. Als 
lettergrepen samen vaak voorkomen, is het waarschĳnlĳk dat die 
samen één woord vormen. Ook wanneer een klank heel vaak voorkomt 
(bĳvoorbeeld “de”), of als een klank vaak in z’n eentje voorkomt, zĳn 
dat aanwĳzingen dat het hier om een los woord gaat (bĳvoorbeeld 
“ja”). 

Vervolgens voerde ik experimenten uit met Duitse volwassenen en 
zeven- tot negenjarige kinderen. Ik testte of zĳ woorden konden leren 
in een kunstmatige “alientaal” wanneer de taalkundige patronen van de 
alientaal overeenkwamen met het Duits. Zo kon ik onderzoeken of 
mensen de taalkundige patronen in hun moedertaal gebruiken bĳ het 
leren van een nieuwe (in dit geval verzonnen) taal. In het Duits komen 
sommige lettergreepcombinaties heel vaak voor, zoals “ge fa”. Andere 
combinaties komen niet zo vaak voor, zoals “fa zu”. Als we 
taalpatronen uit onze moedertaal gebruiken bĳ het leren van nieuwe 
talen, zouden talen met lettergreepcombinaties die lĳken op die in onze 
moedertaal makkelĳker te leren zĳn dan talen met andere, vreemde 
lettergreepcombinaties. In deze onderzoeken luisterden de deelnemers 
naar opnames van een stroom lettergrepen in de alientaal. Ze moesten 
deze vervolgens zo nauwkeurig mogelĳk hardop herhalen. De 
deelnemers kregen drie verschillende soorten lettergreepreeksen te 
horen. Sommigen waren naturalistische reeksen. Deze bevatten 
lettergreepcombinaties die in het Duits vaak voorkomen, zoals “ge-fa 
mi-nu mo-ti”. Deze werden vergeleken met niet-naturalistische reeksen 
met lettergreepcombinaties die niet vaak voorkomen in het Duits, zoals 
“fa-zu nu-ver ti-pa”. Als laatste waren er reeksen met willekeurig door 
elkaar gehusselde lettergrepen, zoals “fa ge mo mi ver nu”. Vanwege 
hun willekeurigheid zou het voor de deelnemers erg moeilĳk moeten 
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zĳn om deze reeksen na te zeggen vergeleken met de naturalistische en 
niet-naturalistische lettergreepreeksen die in meer of mindere mate de 
regels van het Duits volgen. Ik concludeerde dat zowel volwassenen als 
kinderen beter waren in het herhalen van naturalistische reeksen dan 
niet-naturalistische reeksen. De deelnemers vonden het herhalen van de 
willekeurige lettergreepreeksen het moeilĳkst. Deze experimenten 
suggereren dat volwassenen en kinderen taalkundige patronen van hun 
moedertaal, zoals lettergreepcombinaties, opslaan in hun geheugen en 
deze kennis gebruiken bĳ het verwerken van een andere, nieuwe taal.

In mĳn experimenten toonde ik dus aan dat mensen onbewust 
gebruik maken van hun kennis van taalkundige patronen van hun 
moedertaal, zoals lettergreepcombinaties, om informatie in een andere, 
nieuwe taal te verwerken. Maar bĳ het leren van een nieuwe taal 
kunnen volwassenen – net als kinderen – ook andere taalkennis 
gebruiken om losse woorden in de spraakstroom te identificeren. Als 
bepaalde woorden bĳvoorbeeld heel vaak voorkomen in een 
spraakstroom, valt dat op. Hierdoor kan je ze gemakkelĳker herkennen 
en leren. Eerdere studies suggereren inderdaad dat mensen makkelĳker 
losse woorden in een kunstmatige taal herkennen als deze woorden zeer 
vaak herhaald worden. Ik voerde nog drie experimenten uit om te 
onderzoeken of het verhogen van de frequentie van bepaalde woorden 
in de alientaal deelnemers zou helpen om losse woorden in de 
spraakstroom te leren. Ik verwachtte dat deelnemers zowel zouden 
profiteren van hun kennis van taalkundige patronen die 
overeenkwamen in het Duits en de alientaal (d.w.z. naturalistische 
lettergreepcombinaties zoals “ge fa”) als van de frequente herhaling 
van sommige woorden in de vreemde taal. Onverwacht zag ik het juist 
het tegenovergestelde patroon: kennis van taalkundige patronen in de 
moedertaal en variaties in woordfrequentie belemmerden het leren van 
de vreemde taal. Ik voerde twee vervolgexperimenten uit om te 
controleren of het onverwachte effect niet werd veroorzaakt door de 
kenmerken van de kunstmatige alientaal, maar dat bleek niet het geval. 
Deze experimenten suggereren dat taalkennis van de moedertaal en 
woordfrequentie het leren van talen kunnen beïnvloeden. De richting 

N���������� ������������



van de effecten die ik observeerde is echter nog moeilĳk te rĳmen met 
resultaten uit eerder onderzoek.

In dit proefschrift toonde ik aan dat (1) talen verschillende 
kenmerken hebben die kinderen kunnen benutten om losse woorden in 
de spraakstroom te identificeren en zo hun eerste woorden te leren. In 
het Duits zĳn dit onder andere de beklemtoning, de frequentie van 
woorden, frequentie waarmee bepaalde lettergrepen samen voorkomen 
om één woord te vormen, en of bepaalde woorden voornamelĳk in hun 
eentje voorkomen. (2) Ik heb ook aangetoond dat we kennis over 
taalkundige patronen in onze moedertaal – in dit geval 
lettergreepcombinaties – gebruiken bĳ het verwerken van een andere, 
nieuwe taal. (3) Er is echter meer onderzoek nodig om te ontrafelen hoe 
we verschillende aspecten van onze taalkennis gebruiken om nieuwe 
talen te leren.

Translated from English by Merel Wolf
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Wie erlernen Kinder Sprache? Es sieht vielleicht einfach aus, da sie 
ihre Muttersprache offenbar ohne Schwierigkeiten erwerben, aber es 
gibt durchaus Herausforderungen. Beispielsweise enthält die Sprache, 
die Kinder hören, keine offensichtlichen Hinweise darauf, wo ein Wort 
endet und das nächste beginnt. Dennoch erwerben Kinder bis zum 
Schulanfang ein breites Vokabular. In dieser Doktorarbeit habe ich drei 
wichtige Fragen zum Spracherwerb untersucht: (1) Welche 
sprachlichen Hinweisreize können Kinder benutzen, um ihre ersten 
Wörter zu lernen? (2) Benutzen wir Strukturen aus unserer 
Muttersprache, die wir als Kinder gelernt haben, wenn wir später eine 
weitere Sprache lernen? und (3) Benutzen wir verschiedene sprachliche 
Hinweisreize, um neue Sprachen zu verstehen und zu lernen?

Im ersten Teil meiner Doktorarbeit habe ich verschiedene 
sprachliche Hinweisreize untersucht, die Kinder eventuell benutzen, 
um ihre ersten Wörter im Sprachstrom ihrer Eltern aufzuspüren. Man 
kann es sich so vorstellen, als würde man einer unbekannten Sprache 
zuhören. Eine unbekannte Sprache klingt wie ein konstanter Strom, in 
dem es unmöglich erscheint, zu sagen, wo ein Wort beginnt und wo es 
endet. Kinder scheinen jedoch ohne Schwierigkeiten die Wörter in 
diesem konstanten Sprachstrom ausfindig machen zu können. In der Tat 
gibt es eine Reihe von sprachlichen Hinweisreizen, die Kindern dabei 
helfen, die Wörter aufzuspüren. Wenn in einer Sprache beispielsweise 
alle Wörter auf der ersten Silbe betont werden, würde eine betonte Silbe 
in dieser Sprache eindeutig auf den Anfang eines Wortes hinweisen. Für 
meine Arbeit habe ich Sprachaufnahmen untersucht, die den Alltag von 
Deutsch lernenden Kindern mit ihren Deutsch sprechenden Eltern 
widerspiegeln. Dabei hat sich gezeigt, dass alle untersuchten 
Hinweisreize tatsächlich in der Sprache vorhanden waren, sodass 
Deutsch lernende Kinder sie benutzen könnten, um den Sprachstrom in 
Wörter zu zerlegen. Betonung war dabei im Deutschen der 
zuverlässigste Hinweisreiz. Fast alle Wörter waren auf der ersten Silbe 
betont, was bedeutet, dass Deutsch lernende Kinder den Anfang eines 
Wortes dadurch erkennen können. Vermutlich wird dieser Hinweisreiz 
gemeinsam mit anderen Hinweisreizen beim Hören verwendet, um den 
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Spracherwerb zu erleichtern, beispielsweise wie oft zwei Silben 
zusammen auftreten. Wenn zum Beispiel die Silben „ba“ und „by“ 
häufig zusammen vorkommen, bemerkt unser Gehirn dies implizit und 
merkt sie sich als Einheit „Baby“. Weitere Hinweisreize waren häufige 
Wörter und einzeln auftretende Wörter. Wenn ein Wort sehr häufig (wie 
„der“) oder isoliert (wie „ja“) vorkommt, fällt es uns auf und unser 
Gehirn merkt es sich leichter.

Anschließend habe ich Experimente mit deutschen Erwachsenen 
und sieben- bis neunjährigen Kindern durchgeführt. Dabei habe ich 
getestet, ob das Lernen einer künstlichen „Aliensprache“ einfacher ist, 
wenn ihre Struktur dem Deutschen gleicht. Auf diese Weise konnte ich 
untersuchen, ob Menschen die sprachlichen Strukturen ihrer 
Muttersprache übertragen, wenn sie eine neue, in diesem Fall 
erfundene, Sprache lernen. Beispielsweise kommen im Deutschen 
manche Silbenkombinationen sehr häufig vor (wie „ge fa“). Andere 
Kombinationen sind nicht sehr häufig (wie „fa zu“). Wenn wir beim 
Erlernen einer neuen Sprache Strukturen aus unserer Muttersprache 
verwenden, wären Sprachen mit ähnlichen Silbenkombinationen wie in 
unserer Muttersprache leichter zu lernen als Sprachen mit 
unterschiedlichen Silbenkombinationen. In diesen Studien wurden den 
Teilnehmenden Sequenzen aus der Aliensprache vorgespielt und sie 
mussten diese so genau wie möglich nachsprechen. Dabei gab es drei 
verschiedene Arten von Sequenzen. Die erste Art waren naturalistische
Sequenzen, welche Silbenkombinationen enthielten, wie sie häufig im 
Deutschen vorkommen (wie „ge-fa mi-nu mo-ti“). Diese wurden mit 
nicht-naturalistischen Sequenzen verglichen, die Silbenkombinationen 
enthielten, wie sie im Deutschen nicht sehr häufig vorkommen (wie 
„fa-zu nu-ver ti-pa“). Schließlich gab es noch Sequenzen, die 
willkürlich durcheinander gewürfelte Silben enthielten (wie „fa ge mo 
mi ver nu“). Aufgrund ihrer Willkürlichkeit sollten diese für die 
Teilnehmenden im Vergleich zu den naturalistischen und nicht-
naturalistischen Sequenzen sehr schwer zu erlernen sein. Abgesehen 
von der Schwierigkeit des Erlernens letzterer Sequenzen zeigten die 
Studien, dass sowohl Erwachsene als auch Kinder naturalistische 
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Sequenzen besser wiederholen konnten als nicht-naturalistische 
Sequenzen. Dies deutet darauf hin, dass Erwachsene und Kinder 
sprachliche Informationen ihrer Muttersprache, wie etwa 
Silbenkombinationen, in ihrem Gedächtnis speichern und dieses 
Wissen bei der Verarbeitung neuen sprachlichen Inputs nutzen.

In den beiden Experimenten habe ich gezeigt, dass die 
Teilnehmenden intuitiv auf ihr Wissen über sprachliche Strukturen 
ihrer Muttersprache zurückgreifen, um neuen sprachlichen Input zu 
verarbeiten. Doch beim Erlernen einer neuen Sprache können 
Erwachsene – genau wie Kinder – auch andere Hinweisreize nutzen, 
um Wörter im Sprachstrom einer unbekannten Sprache aufzuspüren. 
Frühere Studien deuten etwa darauf hin, dass es einfacher ist, Wörter 
im Sprachstrom einer unbekannten Sprache zu identifizieren, wenn 
einige dieser Wörter sehr häufig wiederholt werden. Für meine 
Doktorarbeit habe ich drei weitere Experimente durchgeführt, um 
herauszufinden, ob es Teilnehmenden beim Erlernen einer fremden 
Sprache hilft, wenn in der „Aliensprache“ manche Wörter häufiger 
vorkommen als andere. Meine Erwartung war, dass die Teilnehmenden 
sowohl von ihrem Vorwissen über sprachliche Strukturen in ihrer 
Muttersprache (d. h. Silbenkombinationen im Deutschen, wie zum 
Beispiel im naturalistischen Wort „ge fa“) als auch von der häufigen 
Wiederholung einiger Wörter in der fremden Sprache profitieren 
würden. Allerdings zeigten die Ergebnisse das genaue Gegenteil; mit 
der Muttersprache übereinstimmende sprachliche Strukturen sowie 
verschiedene Worthäufigkeiten erschwerten den Teilnehmenden das 
Erlernen der fremden Sprache. Daraufhin habe ich zwei 
Folgeexperimente durchgeführt, die gezeigt haben, dass dieser 
unerwartete Effekt nicht auf die Eigenschaften der fremden Sprache 
zurückzuführen ist. Insgesamt zeigt dies, dass Sprachkenntnisse und 
Worthäufigkeit das Sprachenlernen beeinflussen können, jedoch lässt 
sich die Richtung der Beeinflussung vorerst nur schwer mit früheren 
Forschungsergebnissen in Einklang bringen.
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In dieser Doktorarbeit habe ich gezeigt, dass (1) Sprache 
verschiedene Hinweisreize enthält, die Kinder benutzen können, um 
Wörter im Sprachstrom zu identifizieren und dadurch ihre ersten 
Wörter zu lernen. Dazu gehören im Deutschen beispielsweise die 
Betonung von Wörtern, häufig gemeinsam auftretende 
Silbenkombinationen, häufige Wörter und isoliert vorkommende 
Wörter. (2) Außerdem habe ich gezeigt, dass wir uns merken, welche 
Silben in unserer Muttersprache häufig gemeinsam auftreten und diese 
Information verwenden, um neuen sprachlichen Input zu verarbeiten. 
(3) Es bedarf allerdings weiterer Forschung, um herauszufinden, wie 
verschiedene sprachliche Hinweisreize in Kombination genutzt 
werden, um neue Sprachen zu erlernen.
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