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 20 

Summary 21 

Historically, researchers have considered the cerebellum a coordinator of motor programs that 22 

ensures precise timing of movements and their adaptation to external events1. However, it has 23 

become increasingly clear that this role is not restricted to the motor system2. Rather, the 24 

cerebellum seems to play an important role in temporal prediction in general, as shown in its 25 

involvement in multiple functions that rely on precise event timing3. Although previous work 26 

suggested that the cerebellum exclusively predicts the interval between two events4, rather than 27 

tracking a global rhythm, it is also active when a rhythmic stimulus changes in rate5. The latter 28 

finding is in line with a cerebellar role in speech processing6 that entails frequent rate changes7. 29 

Neural mechanisms underlying the cerebellum’s involvement in speech processing, however, 30 

remain poorly understood. Moreover, there is a lack of studies contrasting speech and non-speech 31 

stimuli to establish speech-specificity of the observed effects8. In a re-analysis of 32 

magnetoencephalography (MEG) data9, we found that activity in the cerebellum aligned to rhythmic 33 

sequences of noise-vocoded speech, irrespective of its intelligibility. We then tested whether these 34 

“entrained” responses persist, and how they interact with other brain regions, when the rhythmic 35 

stimulus stopped and temporal predictions had to be updated. We found that only intelligible 36 

speech produced rhythmic responses in the cerebellum that outlasted the stimulus. During this 37 

“entrainment echo”, but not during rhythmic speech itself, cerebellar activity was coupled with 38 

that in the left inferior frontal gyrus (IFG), and specifically at rates corresponding to the preceding 39 

stimulus rhythm. This finding represents unprecedented evidence for specific cerebellum-driven 40 

temporal predictions in speech processing and their relay to cortical regions. 41 
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Results 42 

Overview 43 

Participants listened to rhythmic sequences of noise-vocoded, monosyllabic words (Fig. 1A) that 44 

were presented at 2 Hz or 3 Hz and either intelligible (16-channel speech) or unintelligible and 45 

noise-like (1-channel speech). The main aim of the original work9 was to test for the existence of 46 

“entrainment echoes”, rhythmic brain responses that are produced by a rhythmic stimulus and 47 

persist for some cycles after its offset9–11. Endogenous neural oscillations play a critical role in the 48 

field of “neural entrainment”12, but are difficult to demonstrate during a rhythmic stimulus, as 49 

multiple alternatives can explain a rhythmic neural response13. Entrainment echoes are measured 50 

immediately after the rhythmic stimulus and therefore support the involvement of endogenous 51 

oscillations, which should, once entrained, outlast the stimulus before going back to their natural 52 

state14,15. As the offset of the rhythmic stimulus violates temporal expectation (induced by the 53 

stimulus rhythm), entrainment echoes might also give insight into neural mechanisms underlying 54 

participants’ prediction of upcoming events10. 55 

The original study9 did reveal rhythmic entrainment echoes in the MEG that were strongest at 56 

posterior sensors (Fig. 1B). Source-level analyses, however, were restricted to the cortical surface 57 

and did not produce clear results. Here, we hypothesized that the cerebellum is a driving force 58 

behind the observed sensor-level echoes and involved in the update of temporal prediction that 59 

is required when a stimulus stops3. 60 

Neural entrainment in the cerebellum and its echo 61 

Based on the original study9, we computed an index that quantified rhythmic brain responses 62 

specific to the stimulus rate. This measure was labelled rate-specific response (RSR) and was 63 

obtained by contrasting rhythmic responses (quantified using inter-trial coherence, ITC) at a 64 

frequency that corresponds to the stimulus rate, with those at the same frequency but during 65 

stimulation at a different rate (see Methods). An RSR that is reliably larger than 0 during or after 66 

the rhythmic sounds reflects an entrained response or its echo, respectively (see Methods and 67 

ref9). We computed the RSR on the source level with a focus on the cerebellum.  68 

We first tested whether activity in the cerebellum entrains to the stimulus rhythm. The original 69 

study, along with previous work9,16–18, already demonstrated entrained activity in auditory, motor, 70 

and inferior frontal cortical areas. Here, we found that this network includes the cerebellum. 71 

During presentation of rhythmic sounds, RSR was reliably larger than 0 in a cluster that comprised 72 

the whole cerebellum (Fig. S1). This was the case for intelligible (p = 0.0003, summed t = 136410, 73 

22375 voxels in cluster) and unintelligible speech (p = 0.0003, summed t = 141530, 22375 voxels in 74 

cluster). Entrainment (i.e., RSR > 0) remained significant and constant in the cerebellum for all 75 

time points preceding the first omitted word (time 0 in Fig. 1C; horizontal lines correspond to FDR-76 

corrected p < 0.05). However, it did not differ between intelligible and unintelligible speech (no 77 

significant cluster). This is in contrast to entrainment in auditory and inferior frontal areas, where 78 

an advantage for intelligible speech was described before, including in the original study9,16,19. 79 

Together, the cerebellum entrains to rhythmic speech sounds irrespective of their intelligibility.  80 
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 81 
Figure 1. Paradigm, previous results, and source-localised entrainment echo. A. Experimental paradigm. 82 
Participants listened to rhythmic sequences of intelligible or unintelligible speech and were asked to detect 83 
rhythmic irregularities (red). B. The original study9 revealed sustained rhythmic brain responses after 84 
sequence offset, produced only by intelligible speech, in the sensor cluster marked with plus signs. The 85 
“entrainment echo” was quantified as rate-specific responses (RSR; see Methods). T-statistics were 86 
obtained from a t-test against 0 (reflecting the null hypothesis). C. RSR in the cerebellum as a function of 87 
time, for the cluster shown in D. Time 0 corresponds to the first omitted word in the sequence. The 88 
horizontal lines show time points with significant RSR (FDR-corrected). The shaded areas correspond to 89 
time-windows of interest to test for entrained (brown) and sustained (blue) rhythmic brain responses, 90 
defined in the original study9. D. Source-localised t-statistics (RSR against 0) for sustained rhythmic 91 
responses in the intelligible condition (the equivalent on the sensor level is shown in B). Voxels included in 92 
the statistically significant cluster in the cerebellum are shown in brighter colours, the other voxels are 93 
faded out. E. As in D, but for the contrast between intelligible and unintelligible speech. Panels A and B are 94 
reproduced from the original publication9. 95 
 96 

We next tested whether entrained activity in the cerebellum persists after a sequence offset – the 97 

hypothesized “entrainment echo”. Fig. 1D shows the source-localized RSR (as t-statistic; see 98 

Methods), averaged within the silent period after intelligible speech. We found a cluster of voxels 99 

in the cerebellum with a reliable RSR after intelligible (p = 0.048, summed t = 9417.4, 3989 voxels 100 

in cluster) but not unintelligible speech (no significant cluster). This cluster comprised areas Crus 101 

II and Crus I and showed a reliably stronger RSR after intelligible than after unintelligible speech 102 

(Fig. 1E; p = 0.039, summed t = 11446, 4579 voxels). Numerically, the entrainment echo in the Crus 103 

II/I cluster was strongest throughout the brain (Figs. 1D,E show RSR values for all voxels, including 104 

those not included in the statistical analysis and therefore faded out). The time-resolved RSR (Fig. 105 
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C) further demonstrates that this echo was not driven by the omission of an expected stimulus 106 

(time 0 in Fig. 1C) but concerned the whole silent period between stimulus sequences. Note again 107 

that the speech-specific entrainment echo, visible in Fig. 1C, is not preceded by speech-specific 108 

entrainment in the cerebellum. Together, these results suggest that the sensor-level echo (Figs. 109 

1B) found previously9 is driven by the cerebellum and only present after intelligible speech.   110 

Sustained rhythmic responses in the cerebellum drive left inferior frontal gyrus (IFG) 111 

We then investigated whether rhythmic responses in the cerebellum interacted with activity in 112 

other brain regions. We focused on the cerebellar region with the strongest sustained response 113 

(bilateral Crus II), and tested its directed connectivity (see Methods) with two other regions of 114 

interests (ROI), selected based on their strong entrained response in the same dataset (Fig. 2C in 115 

ref9). These ROI were bilateral superior temporal gyrus (STG) and inferior frontal gyrus (IFG, pars 116 

opercularis), both known to contribute to speech perception20–22. Responses were averaged across 117 

left and right Crus II due to their proximity and highly correlated activity (e.g., r = 0.76, p = 0.0001 118 

for RSR in intelligible speech). As an equivalent to RSR, we computed a measure of connectivity 119 

that is only different from 0 if the underlying connectivity is specific to the stimulus rate (rate-120 

specific connectivity, RSC; see Methods). In this case, the sign of RSC reflects the directionality 121 

(ROI A driving ROI B or vice versa).   122 

Fig. 2A shows average RSC values and their distribution in the silent period, for connections 123 

between Crus II and each hemisphere of the other two ROIs. We found that Crus II reliably drives 124 

left IFG after both intelligible and unintelligible speech (intelligible: t(19) = 3.20, p = 0.005; 125 

unintelligible: t(19) = 2.94, p = 0.009; both FDR-corrected p < 0.05). In addition, we found that right 126 

STG drives Crus II, but only after unintelligible speech (intelligible: t(19) = -1.75, p = 0.10; 127 

unintelligible: t(19) = -2.65, p = 0.016; unintelligible FDR-corrected p < 0.05). In contrast, we did not 128 

find any reliable rate-specific connectivity during rhythmic sound presentation (all FDR-corrected 129 

p’s > 0.40). When contrasting RSC values across ROIs, conditions (intelligible vs unintelligible), and 130 

time periods (sound vs silence), we found a significant interaction between ROI and time period 131 

(repeated-measures ANOVA: F(3,57) = 7.5, p = 0.0004; significant main effect of ROI was not 132 

interpreted due to the significant interaction). This was driven by an RSC between Crus II and left 133 

IFG that was higher during silence than during sound, and an RSC between Crus II and right IFG as 134 

well as between Crus II and right STG that was higher during sound than during silence.  135 

Our principal hypothesis focused on the cerebellum and its connectivity with two cortical ROIs 136 

involved in speech processing. In less constraint analyses, Figs. 2B,C explore and illustrate the 137 

reported effects further. Fig. 2B shows RSC between Crus II and other cortical regions during (top 138 

row) and after (bottom row) intelligible (left column) and unintelligible speech (right column). 139 

During the entrainment echo, the left IFG was indeed the cortical region that was driven most 140 

strongly by Crus II. A cluster-based permutation test revealed a cluster for intelligible speech that 141 

comprised left IFG. However, it did not reach conventional statistical significance due to the larger 142 

number of areas included (p = 0.10, summed t = 8.38, 3 connections in cluster; no positive cluster 143 

for unintelligible speech). The right hemisphere was dominated by negative RSC values (reflecting 144 

connectivity with Crus II), in particular after unintelligible speech and in a superior temporal 145 

cluster (p = 0.13, summed t = -7.00, 3 connections in cluster).  146 

 147 
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 148 

Figure 2. Rate-specific connectivity (RSC) results, for intelligible (left column) and unintelligible speech 149 

(right column). A. RSC during the silent period (i.e., during the entrainment echo) for connections between 150 

Crus II and two bilateral cortical ROIs. Points represent data from individual participants. Red lines and 151 

areas show mean and standard deviation, respectively. The asterisks indicate an RSC reliably different 152 

from 0 (dashed line). B. RSC between Crus II and other cortical areas during rhythmic sounds (top row) and 153 

silent period (bottom row). The average RSC across participants is colour-coded. C. RSC between ROIs in 154 

the silent period. The line thickness indicates the strength of connectivity, the colour shows the dominant 155 

direction (one colour originates from each ROI).  156 

Fig. 2C gives a more complete picture of the connectivity patterns between ROIs during the 157 

entrainment echo. After intelligible speech (left panel), apart from connectivity between Crus II 158 

and left IFG described above, the right IFG drove the left IFG (t(19) = 3.35, p = 0.003; FDR-corrected 159 

p < 0.05). In contrast, this bilateral connection was not present after unintelligible speech (right 160 
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panel). Instead, the left IFG was driven by the right STG (t(19) = 3.57, p = 0.002; FDR-corrected p < 161 

0.05). 162 

In sum, we found rate-specific connectivity patterns during the entrainment echo, dominated by 163 

Crus II driving activity in left IFG. This result was common to both intelligible and unintelligible 164 

speech whereas the latter involved additional recruitment of the right STG. 165 

Discussion 166 

When a rhythmic stimulus stops, entrained neural activity persists for some time. This effect, 167 

termed “entrainment echo” or “forward entrainment”9,11,23–26, is a hallmark of endogenous 168 

oscillations that have been entrained by a stimulus rhythm15,27. Entrainment echoes also provide 169 

interesting insights into neural processes that are activated when temporal predictions (induced 170 

by a rhythmic stimulus) are violated and need to be updated. Indeed, initial theories considered 171 

temporal prediction as one of the primary functions of neural entrainment28,29. 172 

The current results revealed that rhythmic intelligible speech produces the strongest entrainment 173 

echoes in the cerebellum (Fig. 1D). During rhythmic speech, cerebellar activity entrained to the 174 

stimulus rhythm, but the entrainment was reduced compared to that in auditory or frontal cortical 175 

regions. This observation is in line with findings that the cerebellum is active when a stimulus 176 

rhythm changes, rather than during the rhythm itself3,5. Further evidence shows also that patients 177 

with cerebellar lesions struggle to adapt their tapping to a beat when the latter changes its rate3,5. 178 

Here, we did not specifically measure temporal prediction. However, the presence of entrainment 179 

echoes in the cerebellum, together with the cerebellum’s role in time perception and temporal 180 

prediction3,30–33, suggests that entrainment echoes might be a neural signature of temporal 181 

prediction (or its error). In future studies, these echoes might therefore become an important 182 

variable for both the diagnosis and treatment of corresponding deficits, as evident in 183 

schizophrenia34, dyslexia35, autism36 or attention-related disorders37. Entrainment echoes in 184 

auditory perception only seem to occur after stimulation between 2 and 8 Hz11,26. Another open 185 

question is whether similar rate-specificity can be found for cerebellar entrainment echoes, and 186 

whether these go along with rate-dependent changes in temporal predictions.   187 

We also found that the cerebellar entrainment echo is not a local phenomenon but entails 188 

information exchange with cortical regions. This conclusion is based on rate-specific connectivity 189 

patterns (Fig. 2) that provided additional clues into the echo’s potential role in temporal prediction. 190 

Notably, we found that the cerebellum drives rhythmic activity in left IFG, rather than being driven. 191 

This finding suggests that the cerebellum provides the cortex with updates about expected event 192 

timing; in particular, it might signal errors between predicted and actual timing (prediction error38). 193 

This notion is in line with a recent study suggesting that the adaptation to dynamic environmental 194 

changes rely on “internal models” in the cerebellum and its connectivity with cortical areas39. It is 195 

also supported by a reported association between cerebellum and auditory hallucination40 (often 196 

considered to reflect false relay of prediction error41). Another possibility is that the echo in the 197 

cerebellum reflects a memory trace of the preceding rhythm that is necessary when it has to be 198 

compared with a new one. Such a process could be important to detect changes in the temporal 199 

structure of a stimulus. Speech perception is highly context-dependent, including the temporal 200 

domain: For instance, the perception of a word can depend on the rate of preceding speech42. 201 

Accordingly, a memory of preceding speech rates, in form of the entrainment echo, might also be 202 
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necessary for successful speech perception. These hypothetical functional roles of entrainment 203 

echoes (relay of prediction error or memory trace) can also explain why rate-specific connectivity 204 

was only found after, but not during the presentation of rhythmic sounds: When prediction errors 205 

are low, or memory traces might not be needed when a stimulus does not change. Only when the 206 

stimulus rhythm stops or changes, the corresponding mechanisms might be activated and lead to 207 

the upregulation of connectivity that we observed.  208 

A previous review8 has highlighted the lack of studies that examine the cerebellum’s role in speech 209 

processing by directly contrasting speech and non-speech stimuli. This was possible in the current 210 

work that compared responses to highly intelligible (16-channel) and unintelligible, noise-like (1-211 

channel) vocoded speech. The use of noise-vocoding ensured very similar broadband amplitude 212 

envelopes43 for both stimulus types that might otherwise have biased results. In addition, 213 

entrainment echoes were not “contaminated” by motor activity, a common issue in studies 214 

targeting the cerebellum8.  215 

By contrasting responses to intelligible and unintelligible speech, we revealed several interesting 216 

effects in the entrainment echo and corresponding cerebellar-cortical interactions. Firstly, 217 

entrainment echoes were stronger after intelligible speech and occurred in cerebellar subregions 218 

(Crus I/II) that have been associated with speech processing8,44. In contrast, echoes were not 219 

detectable after unintelligible stimuli (Fig. 1C). Although intelligible speech produces stronger 220 

neural entrainment in several cortical regions9,16,17,19, this was not the case in the cerebellum (Fig. 221 

1C). It is therefore unlikely that the speech-specificity in entrainment echoes is merely due to a 222 

stronger sound-evoked response that persists after a stimulus offset, rather than a “true” 223 

advantage for intelligible speech that is specific to the echo. It also implies that entrainment 224 

echoes are not a simple continuation of a neural process that was already active during the 225 

rhythmic stimulus presentation. Secondly, the connectivity between Crus II and left IFG was 226 

stronger after intelligible speech, whereas the additional connection from right STG to left IFG, 227 

visible for unintelligible speech, was absent in this case (Fig. 2C). There are several possible 228 

explanations for this finding. Based on its acoustics, 1-channel vocoded-speech can be considered 229 

more rhythmic than 16-channel speech as all spectral frequencies are co-modulated (i.e., 230 

modulated by the same amplitude envelope). It is possible that auditory regions (such as STG) are 231 

recruited more readily by such acoustic rhythms. Rhythmic irregularities in speech are easier to 232 

detect when it is intelligible45, possibly due to the presence of linguistic features that help 233 

predicting upcoming information. When speech becomes unintelligible, temporal predictions 234 

cannot capitalise on intelligibility anymore and might instead rely on acoustically driven 235 

information. This might explain why the primary “driver” of left IFG changed from Crus II to right 236 

STG for unintelligible speech (see ref8 for a similar idea). Finally, it has been hypothesized that the 237 

cerebellum is involved in predictions that are based on learnt associations, rather than new ones 238 

that involve the cortex8. As participants know and understand intelligible but not unintelligible 239 

speech, this notion can also explain the current results. Together, these findings support an 240 

important role of the cerebellum, in particular Crus II, in speech processing, and the existence of 241 

a mechanism that is tailored to intelligible speech, rather than acoustic information in general. 242 

Despite these differences in entrainment echoes and their connectivity, these results also 243 

revealed commonalities between intelligible and unintelligible speech. In particular, rate-specific 244 

connectivity analyses revealed left IFG as an information “receiver” in both cases. The IFG, in 245 
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particular the left IFG, is an important hub for speech processing and strongly connected with 246 

auditory and motor regions17,46. It is also implicated in predicting upcoming speech47 and non-247 

speech sounds48. A recent study49 concluded that the left IFG “supports prediction reconciliation in 248 

echoic memory” during speech perception. This conclusion is well in line with the current results 249 

and might explain why it received information from Crus II and STG when expectations were 250 

violated and such reconciliation is necessary. The echo from the cerebellum might then represent 251 

some kind of echoic memory, as already detailed above. 252 

 253 

Conclusion 254 

Here we show that rhythmic intelligible speech produces rhythmic entrainment echoes in the 255 

cerebellum. These echoes might reflect updated temporal predictions that are relayed to left IFG 256 

and supported by right STG if the stimulus is not intelligible. These results support the idea that 257 

the cerebellum is involved in speech processing and temporal prediction in general. 258 

  259 

Methods 260 

This study relies on a re-analysis of data acquired by van Bree et al.9. In the following, we 261 

summarise the experimental design and initial signal processing steps and refer to the original 262 

publication for further detail (Experiment 1 in that paper). We then provide a detailed description 263 

of analyses that are specific to the current study (source-level and connectivity analyses). 264 

Participants 265 

We included data from 20 participants (10 females; mean ± SD, 37 ± 16 years) in the current 266 

analysis. The original study9 was approved by the Cambridge Psychology Research Ethics 267 

Committee (application number PRE.2015.132) and carried out in accordance with the Declaration 268 

of Helsinki. 269 

Stimuli and Experimental Design 270 

Participants listened to (linguistically unrelated) monosyllabic words that were initially spoken to 271 

a metronome beat (inaudible to participants) and then combined into rhythmic sequences (Fig. 1A). 272 

These sequences were 2 or 3 seconds long and presented at one of two different rates (2 or 3 Hz). 273 

Speech sequences were noise-vocoded43 to manipulate their intelligibility, yielding intelligible 16-274 

channel vocoded speech or unintelligible, noise-like 1-channel vocoded speech. Stimuli were 275 

presented through insert earphones that were connected to a pair of magnetically-shielded 276 

drivers. 277 

Participants were asked to listen to the rhythmic sequences, and to press a button when they 278 

detected an irregularity in the rhythm of the sequence (red in Fig. 1A) that was present in 12.5 % of 279 

sequences. While they performed the task, participants’ MEG was recorded, combined with 280 

electroencephalography (EEG) that was not included in the present re-analysis. They completed a 281 

total of 640 trials. In each trial, intelligibility (16- or 1-channel speech) and duration (2 or 3 s) of 282 

the sequence was selected pseudo-randomly. Rate (2 Hz or 3 Hz) was kept constant within a block 283 

and selected pseudo-randomly for each of ten blocks. Each sequence was followed by an interval 284 
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that was silent and used to measure sustained oscillatory responses (“entrainment echoes”). This 285 

interval was 2+x s long, where x corresponds to 1.5, 2, or 2.5 times the period of the sequence rate 286 

(i.e. 0.75, 1, or 1.25 s in 2-Hz blocks, and 0.5, 0.666, or 0.833 s in 3-Hz blocks). x was set to 2 in 50 287 

% of the trials. 288 

MEG Data Acquisition and Pre-processing  289 

A VectorView system (Elekta Neuromag) was used to collect MEG data in a magnetically and 290 

acoustically shielded room. This system has one magnetometer and two orthogonal planar 291 

gradiometers at each of 102 positions within a hemispheric array. Data were acquired at a 292 

sampling rate of 1 kHz and band-pass filtered between 0.03 and 333 Hz. Five head-position 293 

indicator (HPI) coils and two bipolar electrodes were used to monitor head position and 294 

electrooculography activity, respectively. A 3D digitizer (FASTRAK; Polhemus, Inc.) was used to 295 

record the positions of the HPI coils, and ∼70 additional points evenly distributed over the scalp 296 

relative to three anatomical fiducial points (the nasion and left and right preauricular points). The 297 

temporal extension of Signal Source Separation50 in the MaxFilter software (Elekta Neuromag) 298 

was applied to suppress sources of noise, compensate for motion, and reconstruct any bad 299 

sensors. MEG data were further processed using the FieldTrip software51 as well as custom-built 300 

scripts, both implemented in MATLAB (The MathWorks, Inc.).  301 

MEG Signal Processing and Statistical Analyses 302 

Rhythmic MEG responses during and after the rhythmic sequences were quantified using inter-303 

trial phase coherence (ITC). ITC of a signal (at a given frequency and time) is high if its phase is 304 

consistent across trials52,53, and ranges between 0 (no phase consistency) and 1 (perfect phase 305 

consistency). Here, this phase was estimated in sliding time windows of 1 s (step size 20 ms), using 306 

Fast Fourier Transform (FFT). Example ITC values are visualised in Fig. 1E of the original 307 

publication9. From these time-resolved ITC values, we selected two time-windows of interest: One 308 

that captures the neural response during the rhythmic sounds, but avoids sequence on- and 309 

offsets (-1 s to -0.5 s relative to the first omitted word; shaded brown in Fig. 1C); the other 310 

immediately after the rhythmic sounds, but avoiding their offset (+0.5 s to +2 s relative to the first 311 

omitted word; shaded blue in Fig. 1C). In the original study9, entrainment echoes at the sensor level 312 

were found in this latter window and are reproduced in Fig. 1B. 313 

ITC values were source-localised according to the following steps. Data from gradiometers and 314 

magnetometers were combined. (1) Co-registration of MEG data with individual T1-weighted 315 

structural MRI scans, based on realignment of the fiducial points. (2) Construction of individual 316 

lead fields using a single shell head model. (3) Spatial normalisation of brain volumes to a 317 

template MNI brain, and division into grid points of 5 mm resolution. (4) Estimation of spatial filter 318 

for each participant using a linear constrained minimum variance beamformer algorithm (LCMV54). 319 

This filter is designed to isolate distinct anatomical generators of the acquired MEG signals and 320 

might therefore work best when all regions are most and simultaneously active. Accordingly, we 321 

only used data acquired during acoustic stimulation to estimate the filter (+0.5 s to + 2 s relative 322 

to sequence onset). Note that this time window is difficult to compare with those used to quantify 323 

rhythmic MEG responses (described above), as these include a spectral analysis step (FFT) that 324 

“smears” responses in time. (5) Application of individual spatial filters to Fourier-transformed 325 

single-trial data, separately for each of the two time-windows of interest (during and after 326 
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rhythmic speech; -1 s to -0.5 s and +0.5 s to +2 s relative to the first omitted word, respectively). 327 

(6) Computation of ITC, using the spatially filtered, Fourier-transformed single-trials. For each of 328 

the two stimulus rates (2 Hz and 3 Hz), this step yielded one ITC value per neural frequency of 329 

interest (2 Hz and 3 Hz) and time window, and for each of 2982 voxels inside the brain.  330 

Source-level ITC values were combined to a rate-specific response (RSR) index. This index was 331 

obtained by contrasting ITC at a neural frequency that corresponds to the stimulation rate with ITC 332 

at the same neural frequency, but during another stimulation rate:  333 

𝑅𝑆𝑅 (𝑡, 𝑣) = (𝐼𝑇𝐶(𝑓 = 2, 𝑟 = 2, 𝑡, 𝑣) − 𝐼𝑇𝐶(𝑓 = 2, 𝑟 = 3, 𝑡, 𝑣)) + 334 

(𝐼𝑇𝐶(𝑓 = 3, 𝑟 = 3, 𝑡, 𝑣) − 𝐼𝑇𝐶(𝑓 = 3, 𝑟 = 2, 𝑡, 𝑣))  335 

where f is the neural frequency for ITC, r is the sequence rate, and t and v are the time and voxel 336 

for which RSR is calculated, respectively. Note that an RSR larger than 0 reflects a rhythmic 337 

response that follows the stimulation rate at that time t and in voxel v. To test for reliable rhythmic 338 

neural responses, we therefore compared the RSR against 0, using Student’s t-test (one-tailed, 339 

reflecting the one-directional hypothesis). Given our study aim, we restricted this analysis to 340 

voxels in the cerebellum. We used an atlas-based parcellation for this purpose (AAL-Atlas55 in 341 

FieldTrip). We tested for rate-specific rhythmic responses separately for the two time-windows of 342 

interest and averaged RSR within each window. An RSR that reliably exceeds 0 in the first time 343 

window (during rhythmic sounds) demonstrates cerebellar activity aligned to the stimulus rhythm. 344 

An RSR that reliably exceeds 0 in the second time window (after rhythmic sounds) demonstrates 345 

that this rhythmic activity outlasts the stimulus at a frequency that corresponds to the stimulus 346 

rate, an effect that was termed “entrainment echo” and a hallmark of entrained endogenous 347 

oscillations15,27.  348 

Statistically reliable effects were then determined by means of cluster-based permutation tests56 349 

(5,000 permutations). Clusters (Fig. 1D,E) were considered significant if the probability of obtaining 350 

their cluster statistic (sum of t-values) in the permuted dataset was < = 5%. Corresponding effects 351 

in time (Fig. 1C) were corrected for multiple comparisons using False Discovery Rate (FDR).  352 

To test for connectivity between the cerebellum and other brain regions, we first selected the part 353 

of the cerebellum with the strongest entrainment echoes in the analysis (bilateral Crus II; see 354 

Results). We then selected two bilateral regions of interest (ROI) that responded strongly to the 355 

rhythmic sounds in the initial study (Fig. 2C in ref9) and are known to be involved in speech 356 

processing20–22: the Superior Temporal Gyrus and Inferior Frontal Gyrus (pars opercularis).    357 

We used spatial filters to construct time series for each dipole orientation in source space, 358 

resulting in three time series per voxel. Atlas-based parcellation was then applied to reduce the 359 

data to the 6 (3 bilateral) ROIs. Using singular value decomposition (SVD), the three strongest 360 

components (explaining most of the variance) from all dipoles in each ROI were extracted. From 361 

the resulting time series, we again selected two time-windows of interest, one centred on the 362 

rhythmic speech sequences (-1 to 0 s relative to the first omitted word), the other on the 363 

subsequent silent period (+0.5 to +1.5 s relative to the first omitted word). Note that these time- 364 

windows were selected to be one second long so that the output from the subsequent FFT includes 365 

estimates at 2 and 3 Hz, the two frequencies that were contrasted to quantify rate-specific 366 

responses and connectivity. The selected data were then subjected to a directional FFT-based 367 
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connectivity analysis, to obtain the cross-spectral density (CSD) matrix and subsequent 368 

computation of multivariate nonparametric Granger causality57. We used multivariate Granger 369 

causality (mGC) measures to compute the directed influence asymmetry index (DAI) between two 370 

ROI: 371 

𝐷𝐴𝐼𝑅𝑂𝐼1,2 (𝑡, 𝑓) =  
𝑚𝐺𝐶(𝑡, 𝑓, 𝑅𝑂𝐼1 → 2) − 𝑚𝐺𝐶(𝑡, 𝑓, 𝑅𝑂𝐼2 → 1)

𝑚𝐺𝐶(𝑡, 𝑓, 𝑅𝑂𝐼1 → 2) + 𝑚𝐺𝐶(𝑡, 𝑓, 𝑅𝑂𝐼2 → 1)
 372 

where t corresponds to one of two time-windows of interest (during or after rhythmic sounds; -1 373 

s to 0 s and +0.5 s to +1.5 s relative to the first omitted word, respectively), f is the neural frequency 374 

(from the spectral transformation), and the arrows refer to the direction of mGC between the two 375 

ROI. The sign of DAI reflects the dominant direction of information flow between the two ROIs. 376 

Finally, we computed rate-specific connectivity (RSC) measures by following the rationale 377 

desribed for RSR above: 378 

𝑅𝑆𝐶𝑅𝑂𝐼1,2(𝑡) = (𝐷𝐴𝐼𝑅𝑂𝐼1,2 (𝑓 = 2, 𝑟 = 2, 𝑡) − 𝐷𝐴𝐼𝑅𝑂𝐼1,2 (𝑓 = 2, 𝑟 = 3, 𝑡)) + 379 

(𝐷𝐴𝐼𝑅𝑂𝐼1,2 (𝑓 = 3, 𝑟 = 3, 𝑡) − 𝐷𝐴𝐼𝑅𝑂𝐼1,2 (𝑓 = 3, 𝑟 = 2, 𝑡))  380 

r is the sequence rate during (or after) which the DAI was observed. An RSC that is reliably 381 

different from 0 indicates connectivity between regions that occurs specifically at a frequency 382 

that corresponds to the stimulation rate. As for DAI, its sign reflects the dominant direction of 383 

information flow. For statistical analyses, we compared the RSC against 0, using Student’s t-test 384 

(two-tailed, reflecting the two-directional hypothesis). Prior to this test, RSC was averaged across 385 

left and right Crus II. This was done as they are difficult to distinguish in the MEG, due to their close 386 

proximity and evidenced by a high correlation between their values (e.g., r = 0.76, p = 0.0001 for 387 

RSR during intelligible speech). FDR was used to correct for multiple comparisons.  388 

 389 
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 533 

 534 

Supplementary Figures 535 

 536 

Figure S1. Source-localised RSR (t-statistics) during intelligible (A) and unintelligible (B) speech. An RSR > 537 

0 reflects an entrained brain response. Voxels in the cerebellum are shown in brighter colours. Given our 538 

hypothesis, only the cerebellum was included in the statistical analysis (t-values are shown for other 539 

voxels only for completeness), revealing a significant cluster in the whole cerebellum.  540 
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