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Among the most active oxygen evolution reaction (OER)
catalysts, mixed metal oxides based on Ni, Fe, and Co metals
are recognized as economical yet excellent replacements for
RuO2 and IrOx. However, tuning and searching for optimal
compositions of multi–element–compound electrocatalysts is a
big challenge in catalysis research. Conventional materials
screening experiments and theoretical simulations are labor–
intensive and time–consuming. Machine learning offers a
promising paradigm for accelerating electrocatalyst research
and simultaneously understanding composition–activity corre-
lation. Herein, we introduce an Explainable AI (XAI) framework
for predicting the electrocatalytic performance of OER catalysts.
By integrating the robust Random Forest (RF) model for

machine learning with the Shapley Additive Explanations
(SHAP) method for model explanation, we achieved accurate
predictions of the overpotential for various compositions of
(Ni� Fe� Co� Ce)Ox catalysts (R2 =0.8221). More importantly, we
obtained valuable insights into how each metal and their
interactions influence the overpotential of the catalysts. Our
results highlight the versatility of the RF model with SHAP in
identifying the optimal composition of (Ni� Fe� Co� Ce)Ox cata-
lysts for electrocatalytic oxygen evolution, showing its potential
applicability across various catalyst synthesis methods. Finally,
we anticipate that this work will lead to exciting possibilities in
designing highly active multi–element compound electrocata-
lysts with the aid of explainable AI.

Introduction

Developing energy conversion and storage technologies based
on sustainable power sources has become an increasingly
urgent issue to address the ever-increasing global energy
demand.[1–4] Among others, promising alternative energy sys-
tems include rechargeable metal–air batteries with high energy
densities, and H2O electrolyzers for producing H2.

[5,6] Conversely,
the industrial implementation and efficiencies of these electro-
chemical technologies are hindered by the slow kinetics of the
oxygen evolution reaction (OER). This reaction specifically
involves a four–proton and four–electron pathway, which
requires a large thermodynamic potential (1.23 V vs RHE),
resulting in large energy losses.[7–10] Although noble metals such
as IrOx and RuOx remain the state–of–the–art materials for OER,
their scarcity and high cost hinder their commercial viability.[11]

Hence, extensive efforts have been focused on the exploitation

of earth–abundant non–precious metals having analogous OER
activities with benchmark catalysts.

Most OER electrocatalysts have been traditionally explored
via trial–and–error basis and high–throughput screening, which
mostly rely on intuition and prior experimental knowledge.
Synthesizing one material at a time only slows down the
development of new catalysts and is deemed impractical. It is
also not likely that all possible parameters or factors affecting
the OER activity could be examined. Recent advances in ab
initio methods like density functional theory (DFT) have aided
researchers in designing and discovering new catalysts at an
unprecedented rate.[12,13] However, DFT calculations have been
limited in uncovering advanced materials due to confined
space/time systems, high computational costs, and sensitive
exchange–correlation functionals.[14] Alternatively, the emer-
gence of machine learning (ML) provides a powerful framework
to properly address the multi–dimensional and complex
processes not only in catalysis but also in other fields.[15–17] With
the explosion of data availability in materials science, ML
algorithm models can offer an in–depth fundamental insight
into the previously unknown relationship or pattern between
the materials’ structures and their catalytic properties, thereby
accelerating the rational design of highly active and stable
electrocatalysts.[18] For example, Jiang et al. reported a random
forest algorithm to predict the OER activity of hydroxide
catalysts under extensive doping space. The model demon-
strated a mean relative error of 4.74% in forecasting new
experiments.[19] Another study employed a combined high–
throughput DFT and ML techniques to develop IrO2-based
electrocatalysts with superior OER activity. By exploiting a
neural network language model (NNLM), the relationship
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between neighboring atomic environment and the free ener-
gies of OER intermediates and formation energies of crystals
was established.[20] As a result, a cluster of potential candidates
has been found to possess superior OER performance. However,
current data–driven ML models often focus on achieving high
predictive accuracy at the expense of model
interpretability.[21–23] Recently, explainable artificial intelligence
(XAI) has been considered a powerful tool in data science as the
integration of Shapley values with ML algorithms can help
understand the black box of ML predictions.[24] The interpreta-
tion of a ML analysis must enable the determination of variables
affecting the prediction and provide paths to recognize relevant
framework and offer supplementary information that can be
adopted to aid decision–making.[24] Esterhuizen et al. applied a
principal component analysis in order to yield low–dimensional
and explainable electronic–structure descriptors of near–surface
alloys and their reactivity origin.[25]

On the basis of these concepts, we present an XAI approach
to predicting the overpotential of high–performance OER
electrocatalysts based on earth–abundant non–precious metals
(Ni� Fe� Co� Ce)Ox). XAI allows post–hoc explanations of com-
plex models such as neural networks, support vectors, and
random forests, making it a practical tool for interpreting non–
transparent models.[21,23] Our XAI OER model utilized a random
forest algorithm that surpassed the predictive performance of
previous OER models for (Ni� Fe� Co� Ce)Ox catalysts.[26,27] Shap-
ley additive explanations were generated from the model to
gain insights into the significance of its features and its learning
process.[23,28] As AI technology becomes more advanced, its
inherent complexity poses greater challenges to understanding
it. We hope this study will inspire further AI-oriented research in

materials science, emphasizing the need for AI explainability
and developing unbiased and accessible models.

Experimental Section
Explainable AI in materials science follows four main principles:
explanations, meaningfulness, accuracy, and knowledge limits.[21]

Explanations provide details about the outcomes of a machine
learning (ML) model. These details can be presented graphically or
verbally, given that they are meaningful–i. e., the intended audience
can easily understand them. The meaningfulness of explanations
also depends on their purpose. For instance, when explaining an
ML model for predicting material properties, the goal would be to
understand how its parameters contribute to the resulting
prediction. There is an underlying assumption that the model is
accurate; otherwise, the explanations will also be incorrect.
However, the accuracy of explanations may change depending on
the audience’s level of knowledge. An expert materials scientist
would comprehend a more detailed explanation than a novice in
the field. Thus, balancing between meaningfulness and accuracy
depends on the specific audience and situation. But, regardless of
the audience’s expertise, explanations are still bounded by the
knowledge limits of the model’s application domain. XAI cannot
explain areas where the model was not trained or designed to
provide an answer.[21]

In this study, we propose an XAI framework for OER catalyst
prediction using machine learning. Figure 1 shows the OER XAI
process (right) and applications (left). The process starts with
materials synthesis, which includes preparation, synthesis, and
characterization of material samples. After collecting sufficient
samples, the data goes through preprocessing, visualization, and
exploratory analysis–a technique known as Exploratory Data
Analysis (EDA). The main objective of EDA is to comprehend the
data by checking its quality, summarizing it, and formulating an
appropriate model.[29] EDA also identifies outliers, which are
typically considered anomalies in materials synthesis data, and are

Figure 1. Explainable AI (XAI) framework for oxygen–evolution reaction (OER) modeling.
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thus removed from the data set. EDA is an integral part of XAI since
understanding the data leads to a better understanding of the
model. Following EDA is building and explaining the model, which
involves the machine learning pipeline and the generation of
meaningful explanations for the ML model.[21,23]

The OER XAI process can be applied in various materials science
contexts, such as predictive modeling of OER catalysts, optimizing
synthesis processes, developing advanced materials, and–ulti-
mately–discovering novel materials. Consequently, the outcomes of
these applications will inform succeeding efforts in explaining AI-
driven OER models. It is worth noting that this cyclic process (rather
than a linear approach) is adopted in our proposed framework,
which signifies an iterative approach to materials synthesis, analysis,
modeling, and comprehension, leading to research and industrial
applications.

Materials Synthesis and Data Comprehension

Electrocatalyst Data: (Ni� Fe� Co� Ce)Ox composition space was
collected from previous studies on Ce-rich family of active OER
catalysts.[30,31] The original data set contains 5456 samples of various
Ni� Fe� Co� Ce)Ox catalysts spaced at 3.33 at% composition steps.
Each catalyst composition was synthesized using inkjet printing,
and their electrocatalytic performance was measured using the
overpotential (OVP) value at a current density of 10 mA/cm2.[31]

Exploratory Data Analysis: Our goal in this study is to build an OER
XAI model that can predict the overpotential (target) based on the
electrocatalyst composition (features). This model should both have
high accuracy and a significant degree of explainability. As a
precursor to model building, EDA was performed to understand
better the underlying characteristics, patterns, and relationships of
the data set. EDA involves checking the quality of the data,
summarizing it using descriptive statistics, and detecting outliers. In
the context of machine learning, the main objectives of EDA are
data description followed by model formulation.[29] EDA commonly

begins with data preprocessing. In our gathered data set, some
samples were excluded due to poor data quality, resulting in
difficulty extracting the overpotential.[31] Removing the low-quality
data reduced the data set to 5413 samples, with Ni%, Fe%, Co%,
and Ce% as the feature variables and OVP as the target variable.
Figure 2 shows the 3D quaternary visualization of our data set,
highlighting the sample with the lowest OVP.

The next step in EDA is data analysis using descriptive statistics.
This step involves calculating statistical measures such as the
variables’ mean and standard deviation, their skewness and
frequency distribution, and the correlation between the features
and the target variable.[29] Identifying strong correlations between
variables is important in machine learning. Correlation analysis aids
in selecting important features while eliminating redundant ones,
thereby effectively reducing the dimensionality of the data.[32]

Outlier analysis is the final step in our EDA process. Outliers in the
data set are samples that deviate significantly from the rest of the
data.[29,33] In machine learning, removing outliers is crucial in
preventing potential noises in data from influencing the model,
which could otherwise lead to biased or inaccurate predictions.[34]

However, in materials science studies, it is common for novel
materials to exhibit outstanding characteristics, which may be
considered outliers from a statistical perspective. Thus, it is
important to carefully consider the nature of outliers before
deciding to remove them.

Model Building and Explanation

Artificial intelligence is an emerging data–driven approach to
materials development and discovery.[22,35,36] Its applications are
virtually limitless, and its versatile and agile infrastructure accel-
erates the trajectory of materials science–more specifically, materi-
als informatics–to new heights. Much of recent progress in
materials research employing AI techniques has been centered
around supervised machine learning. The primary goal in this
domain is to use experimental data to predict material composi-

Figure 2. 3D quaternary visualization of (Ni� Fe� Co� Ce)Ox compositions and their overpotential. The catalyst sample with Ni%=0.30, Fe%=0.17, Co%=0.07,
and Ce%=0.47 yielded the lowest overpotential of 206 mV at 10 mA/cm2.
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tions, structures, and properties.[13,16,18,35,36] However, the black–box
nature of ML models remains a challenge when it comes to
understanding, interpreting, and explaining the underlying mecha-
nisms of such models.[23] In most cases, achieving accurate
predictions is just as crucial as comprehending the model’s decision
process to generate these predictions. In fact, a high level of
accuracy does not necessarily indicate that the model is free from
bias. Explainable AI/ML addresses this issue by employing AI
techniques specially designed to explain the internal mechanisms
of ML models. Adopting an XAI framework in AI-supported
materials studies is the next step toward building unbiased
predictive models.[23] Supervised machine learning has been applied
in several renewable energy materials studies,[18] particularly in
investigating the oxygen evolution reaction of electrocatalysts.[26,27]

Similar to this study, other studies utilized machine learning in
predicting the overpotential of (Ni� Fe� Co� Ce)Ox catalysts. Several
machine learning models were tested, and support vector
regression (SVR) and random forest regression (RFR) emerged as
the most notable.[26,27] However, these studies focused on the
predictive performance of the ML models. To expand on this
research, we incorporate XAI into the OER prediction model to
enhance its interpretability by explaining the key features that
shape its predictions.

Random Forest Regression: Random forest is an ensemble learning
technique that constructs multiple decision trees and makes
predictions via a simple majority vote. While traditional decision
trees evaluate all features when splitting nodes, random forests
restrict their evaluation to a random subset of features. This
additional layer of randomness prevents the model from relying
too heavily on the training data, making it robust against
overfitting.[37] Random Forest regression is a variant of random
forest that deals with continuous target variables. RFR models are
trained on several hyperparameters, including the number of trees
(n_estimators), the number of features to evaluate when splitting
(max_features), the maximum depth of trees (max_depth), the
minimum number of samples to split (min_samples_split) and to be
at a leaf node (min_samples_leaf), and the bootstrapping method
(bootstrap).[37,38]

To implement RFR, we used the Scikit–learn package in Python,
which has a RandomForestRegressor class designed for training RFR
models.[38] First, the data set is split into a 70 :30 training and
testing ratio. This strategy ensures that the model is evaluated on
unseen data; otherwise, its performance measure may be biased. A
cross–validation technique is performed using the training set to
tune the model’s hyperparameters. Cross–validation allows for
model evaluation during the training stage by creating a validation
set from the training set, essentially simulating a test set within
training. It can reveal whether the trained model is underfitted
(high bias) or overfitted (high variance).[39] We used the Scikit–learn
RandomizedSearchCV class to find the best hyperparameters
through randomized cross-validation.[38,39] Table 1 shows the hyper-
parameter search space for the RFR model. With 5,632 potential
hyperparameter combinations, tuning the hyperparameter can be
time–consuming and resource–demanding. However, we stream-

lined the search space through the randomized search, narrowing it
down to 3,000 possibilities. Note that this involves a trade-off
between optimizing the model and expediting the training process.

Finally, the tuned model is evaluated through the following
performance metrics: mean absolute error (MAE), root mean
squared error (RMSE), mean relative error (MRE), and R2 statistic.
The MAE, RMSE, and MRE are derived from the residual error,
representing the difference between the predicted and actual
observed values. MAE uses the absolute value of errors, making it
less sensitive to outliers. On the other hand, RMSE penalizes the
model for large residuals, which ensures a more accurate prediction
even in the presence of outliers.[40] MRE approximates the error as a
proportion of the actual values. It is often more useful than
absolute error when comparing multiple models.[41] The R2 statistic
evaluates the model’s goodness–of–fit but focuses on the propor-
tion of variability in the target variable that can be explained by the
features. An R2 value of 1 suggests that the model has perfectly fit
the unseen data set, indicating strong generalization capabilities for
the model.[39]

Shapley Additive Explanation (SHAP): SHapley Additive exPlanations
(SHAP) is a unified framework for interpreting ML predictive
models. It provides local explanations, revealing how individual
features contribute to the model’s predictions. SHAP is useful for
understanding the features’ importance, effects (positive or
negative), and additive impact.[21,28] To determine the contribution
of each feature, the weighted average of all possible differences in
including a feature is calculated as:

ϕi ¼
X

S�Fn if g

Sj j!ðjFj � jSj � 1Þ!
Fj j!

f S[ if g xS[ if g
� �

� f S xSð Þ
� �

(1)

where ϕi is the Shapley value for feature i; S is a subset of all the
features F; xS is the feature values in S; and the predictions between
models including and excluding the feature i are compared. Note
that calculating the Shapley values requires evaluating the model
on all feature subsets S.[23] This study used the open-source Python
SHAP package to generate the feature summary and force plots.[42]

Results and Discussion

Data Characteristics

(Ni� Fe� Co� Ce)Ox compounds were synthesized using high-
resolution inkjet printing, and their OER performance was
measured in terms of overpotential values. The OVP is an
informative measure of the relative electrocatalytic activity,
representing the additional energy needed to drive a reaction
at a practically achievable rate.[31,43] A low OVP indicates greater
energy efficiency in the catalytic compound. Figure 2 illustrates
the interaction between Ni, Fe, Co, and Ce metals, and their
impact on the resulting OVP. The composition of Ni%=0.30,
Fe%=0.17, Co%=0.07 and Ce%=0.47 yielded the lowest
overpotential (OVP=206 mV). Additional details regarding the
compositions with the lowest and highest OVP are available in
Figures S1 and S2. These figures suggest that attaining a low
OVP involves finding a balance between the metal composi-
tions. On the other hand, exceptionally high levels of Ce are
likely to increase the OVP.[31] Table 2 summarizes the OVP
statistics. The data set displays a mean OVP of 421.1134 mV

Table 1. Hyperparameter search space for random forest optimization
through randomized search cross–validation.

N_estimators:
{100, 250, 500, 1000}

min_samples_leaf:
{1, 2, 4, 6}

max_features:
{1, 2, 3, 4}

min_samples_split:
{2, 5, 10, 15}

max_depth:
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None}

bootstrap:
{True, False}
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with a standard deviation of 14.9694. It is slightly skewed to the
right, with values ranging from 206 to 498 mV OVP (Figure 3).
Among the four metals, Ni% had the highest (albeit negative)
correlation with OVP at � 0.5151, followed by Ce%. In contrast,
Fe% and Co% showed the weakest correlation.

There are six outliers on the lower end of the data set, as
indicated in Figure 3. These outliers fall outside 3 standard
deviations from the mean (OVP<376.2051 mV). Figure S3
shows the relative compositions of each outlier. Since lower
OVP values are particularly interesting to us as they indicate
higher energy efficiency, these outliers were retained during
the data preprocessing phase.

Model Optimization

The data set was randomly split into 70% training (n=3789)
and 30% test (n=1624) data. Additionally, the six low OVP
outliers were randomly allocated, with four included in the
training set and two in the test set. Figure S4 shows a consistent
distribution pattern between the training and test sets concern-
ing both feature and target variables. Our data set source
employed a combinatorial program to generate the metal
compositions. We verified the uniform distribution of composi-
tions for each metal by tallying the number of samples for each
composition value, as shown in Figure S5.

A significant advantage of a large training data set is that it
improves the model‘s capacity to learn more accurately. To
verify this, we analyzed the learning curve of the model during
cross–validation. Figure S6 shows the model’s accuracy pro-
gression as the training set size increases. While the training
accuracy remains relatively consistent, there is a visible
improvement in the validation accuracy, reaching its peak at
the maximum number of training samples.

During the hyperparameter tuning, 3000 models were
generated using random combinations of hyperparameters (as
listed in Table 1) and evaluated using 5-fold cross-validation.
Figure 4 shows the randomized search cross–validation results.
On average, the hyperparameters with the highest cross–
validation mean R2 scores were: n_estimators=250, max_
features=2, max_depth=None, min_samples_split=2, min_
samples_leaf=2, and bootstrap=True. However, the best-
performing model among all hyperparameter values were: n_
estimators=100, max_features=2, max_depth=None, min_
samples_split=15, min_samples_leaf=4, and bootstrap=True.
This discrepancy can be attributed to the random nature of the
search process, as randomized search does not explore the
entire hyperparameter space. Different results might be
obtained when employing a different search algorithm, such as
grid search.[38]

Model Performance

Following hyperparameter tuning results, a random forest
model consisting of 100 decision tree estimators was trained.
While random forests are not strictly black box models, it
becomes more challenging to understand them as the forests
grow. Figure 5 displays one of the decision trees. Visualizing all
100 of them would be daunting, but analyzing each tree would
be even more challenging. Thus, there is a need for an XAI
approach.

The model’s performance was evaluated on the unseen test
data set using multiple accuracy and goodness–of–fit metrics.
Table 3 presents the performance scores of the base RFR model
(i. e., trained using the default hyperparameters in Scikit–learn)
and the hyperparameter–tuned RFR model. Hyperparameter
tuning notably enhances the model‘s performance, as evi-

Table 2. Overpotential statistics.

mean=421.1134 std=14.9694 skew= � 0.4152 min=206 max=498

correlation to OVP Ni%: � 0.5151 Fe%: 0.1134 Co%: 0.0113 Ce%: 0.3904

Figure 3. Outliers in the data set.
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Figure 4. Randomized search cross–validation hyperparameter scores (mean and standard deviation).

Figure 5. A decision tree in the random forest model.
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denced by reduced residual errors (MAE, MSE, RMSE, MRE) and
increased variance explained (R2). On average, our model’s OVP
prediction deviates from the actual values by approximately�
4 mV (MAE) and �6 mV when accounting for outliers (RMSE).
These errors are considerably small, suggesting that the model
is fairly accurate. Our model also effectively captures the
underlying patterns and variations in the data set, as indicated
by an R-squared value of 82.21%. The remaining 17.79%
variance may be attributed to the outliers and other unknown
factors influencing the OVP. Figure 6 illustrates the residual
errors in the model‘s predictions and demonstrates how outliers
impact its performance.

Compared to prior OVP prediction models, our model
exhibits notably improved performance. Although our model
has a higher residual error than the SVR model, it achieves a
higher R2 score, indicating that it provides a better overall fit to
the data. Additionally, despite utilizing the same random forest
model with RFR+ , we improved the relative errors using a
smaller feature set. This result aligns with Occam’s razor

principle, which favors the simplest model when multiple
models produce equally effective results.[39]

Model Explanation

SHAP algorithm was performed to produce explanations for our
RFR model. To ensure unbiased explanations of the model,
SHAP values were computed separately for the training and test
sets. SHAP values represent the feature importance for
regression models. They explain how removing a feature
impacts the model‘s prediction.[42] Figure 7 illustrates the
individual interactions between metal composition and OVP.
Among the metal composition features, Ni exhibited the most
substantial influence (i. e., the widest range of SHAP values),
with Ce and Co following behind. On the other hand, Fe
appeared to have a relatively minimal impact on the OVP
(Figure S7).

A feature’s SHAP value indicates both its magnitude and
direction of impact on the target variable. For instance, a
positive SHAP value of 20 indicates that the inclusion of the
feature contributes a net increase of 20 to the predicted
outcome. Likewise, a negative SHAP value of � 10 would reduce
the predicted outcome by 10, although its influence is relatively
weaker.

Examining the SHAP values of nickel, we observe a
consistent trend: as the percentage of Ni increases, the OVP
decreases. This is expected since Ni-based compounds possess
moderate binding energies (second only to noble metal-based
electrocatalysts) based on volcano plots. In turn, a smaller
theoretical overpotential could be anticipated towards the OER.
11Conversely, cerium has the inverse effect: a lower percentage

Table 3. Performance comparison of our base RFR model, our hyper-
parameter-tuned RFR model, and existing machine learning models for
overpotential prediction of (Ni� Fe� Co� Ce)Ox catalysts. The best–perform-
ing model for each metric is highlighted.

MAE MSE RMSE MRE R2

Base model 3.9651 40.5839 6.3705 0.9466% 0.8056

Tuned model 3.9443 37.1339 6.0938 0.9421% 0.8221

SVR model[21] – 9.46e–05 0.0097 – 0.7256

RFR+model[22] – 49.79 7.0562 1.20% –

Figure 6. Random forest model prediction, residuals, and outliers.
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of Ce yields lower OVP. Taking into account the inactivity of
pure CeOx, a minimal amount of Ce is logical to achieve
considerable OER activity.[44] Even more intriguing is the effect
of cobalt on the OVP. Reduced Co levels may either increase or
decrease the OVP. However, higher Co levels have a compara-
tively negligible effect. Iron exhibits varied–yet rather minimal–
effects on the OVP. However, these effects do not imply that Fe
lacks catalytic potential. The SHAP values presented in Figure 7
only reflect the individual contributions of each feature. Hence,
it is crucial to comprehend the interactions among features as
well. Figure 8 summarizes the strongest interactions between
feature pairs. Notably, there is a mutual interaction between Fe
and Ni. This finding agrees with previous reports, which
established that the interaction of Fe with Ni can dramatically
enhance the conductivity of their resulting binary oxide owing
to the synergistic effect between the two metal centers.[45]

Indeed, mixed Ni� Fe compounds have been regarded as the
most promising OER catalysts based on earth-abundant
elements for over three decades,[46,47] and their reported
activities show little variation regardless of synthesis route.[48–51]

Corrigan et al. found that Ni gains a higher oxidation state (Ni3+

to Ni4+) via partial electron transfer from Fe3+, which renders Ni
species a stronger oxidizing power to oxidize H2O, thus

boosting the OER performance.[52,53] A relatively small amount of
Fe (~30%) combined with a substantial proportion of Ni
(~30%–60%) results in low OVP, suggesting that this specific
combination of Ni and Fe could be a promising area for
optimizing electrocatalysts (Figure 8a). There is a tipping point
where adding more Ni to Fe decreases the OVP (Figure 8b). In
fact, a study by Friebel et al. utilized an operando X-ray
absorption spectroscopy to study the influence of increasing Fe
content on Ni1–xFexOOH catalysts.[54] They found that above
25% Fe, Fe nucleates as a separate phase based on diverging
Fe� O and Ni� O distances, elucidating the absence of activity
improvement in excess of this Fe content.

This trend reverses when adding Ni with Ce (Figure 8d).
Lastly, reduced Co% and increased Ce% appear to reduce the
OVP (Figure 8c). Based on these findings, an appropriate
amount of dopant ensures an effective electronic and geo-
metric effect, leading to favorable intermediate binding ener-
gies and enhanced OER activities.

The cumulative impact of each feature on the model‘s
prediction is illustrated in Figure 9. In the figure, we observe the
baseline prediction, denoted as the SHAP expected value with
OVP=421.33 mV. The figure also reveals the direction and
magnitude of each feature‘s influence. For instance, a composi-

Figure 7. Feature effects on target variable (overpotential). Features are sorted from highest to lowest impact (SHAP value). Note that the SHAP values for
both the training and test data sets exhibit similar patterns, indicating that the random–split algorithm produced an even distribution of samples.
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tion featuring Ni=27.1%, Fe=7.1%, Co=49.8%, and Ce=

16.9% results in a predicted OVP of 416.12 mV. This prediction
is primarily driven by Ni (with a negative impact), followed by
Co (positive), Ce (negative), and Fe (negative) (Figure 9a).
However, these effects vary across compositions, as shown in
another example featuring Ni=13.9%, Fe=23.1%, Co=3.1%,
and Ce=60%. In this case, the influence of each feature is
relatively balanced, with Ni remaining the most influential (in a
negative direction). Interestingly, despite having the largest
proportion, Ce exerts the least influence in this composition
(Figure 9b).

There are several alternative methods for generating
explanations at both the local level (e.g., feature importance,
learning process) and global level (e.g., feature interaction and
impact). Our XAI framework for OER primarily focuses on
providing post–hoc explanations using the SHAP algorithm.
Alternative approaches include self–interpretable models (such
as decision trees or logistic regression), single–decision explan-
ations (such as Local Interpretable Model–Agnostic Explainer or
LIME), and whole-model explanations (such as Concept Activa-
tion Vectors or CAVs).[21,23] Utilizing these methodologies would
offer a wider and deeper perspective of the materials science

Figure 8. Feature dependencies of Ni, Fe, Co, and Ce. SHAP values are represented on the y-axis, while colors indicate the values of the corresponding
interacting feature. For each feature, only the strongest interacting feature is shown: (a) Ni with Fe, (b) Fe with Ni, (c) Co with Ce, and (d) Ce with Ni. Regions
with low OVP values are delineated and color–coded according to the values of interacting features. A dashed black line marks where SHAP value=0.
Dependency plots for all the other interactions are shown in Figure S8 to S11.

Figure 9. Additive force for random forest overpotential predictions on (a) normal data and (b) outlier.
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problem and its AI-driven solution. Nevertheless, our results
present a compelling case for further using XAI in materials
science, particularly considering that AI and ML research in this
domain is yet to reach its full potential.

Conclusions

Explainable artificial intelligence is the next significant step in
catalyst design for oxygen evolution reactions. In summary, we
introduce an OER XAI framework for predicting the over-
potential of (Ni� Fe� Co� Ce)Ox catalysts. Our approach integrates
a random forest model with Shapley additive explanation to
build an accurate yet interpretable predictive model. The results
indicate improvements in the predictive performance of
existing machine learning models for (Ni� Fe� Co� Ce)Ox compo-
sitions, achieving an R2 value of 0.8221. Moreover, the
generated explanations regarding feature importance, interac-
tions, and cumulative impact contribute to a more comprehen-
sive understanding of how Ni, Fe, Co, and Ce influence the
prediction of OVP. These insights will be valuable in optimizing
catalyst synthesis processes, ultimately driving novel materials
development and discovery. The link for our codes and data
can be accessed in this link: www.bit.ly/xai-oer-2023.
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