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Symmetry and symmetry breaking of light states play an important role in photonic integrated circuits
and have recently attracted lots of research interest that is relevant to the manipulation of light polarization,
telecommunications, all optical computing, and more. We consider four-field symmetry breaking within two
different configurations of photonic dimer systems, both comprised of two identical Kerr ring resonators.
In each configuration we observe multiple degrees and levels of spontaneous symmetry breaking between
circulating photon numbers and further, a wide range of oscillatory dynamics, such as chaos and multiple
variations of periodic switching. These dynamics are of interest for optical data processing, optical memories,
telecommunication systems, and integrated photonic sensors.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) occurs when two
or more properties of a system suddenly change from being
equal (symmetric) to being unequal (asymmetric) follow-
ing an infinitely small change to some system parameter.
SSB phenomena have been found at the center of some of
the most intriguing behaviors of physics [1], such as spon-
taneous breaking of gauge symmetry describing the Higgs
mechanism [2] and Einstein-Hilbert gravity in quantum field
theory [3]. Symmetry breaking (SB) has also been observed
in two-dimensional (2D) materials above Curie temperature
[4] and leads to a large number of interesting applications in
plasmonics [5].

Over the last few decades, there have been many works
looking to understand the behavior of high-intensity light
circulating in ring resonators made of nonlinear optical ma-
terials. This interest is based on their potential applications
in telecommunications [6], optical computing [7], metrology
[8], and wider, and their ease of use for studying fundamental
physical concepts, with the SSB of light being one of the most
fruitful examples.

In particular, the SSB of counterpropagating fields [9-16]
and the SSB of copropagating orthogonally polarized fields
[17-19] in Kerr ring resonators have led to many new appli-
cations. On the one hand, systems with counterpropagating
light, initially proposed for enhancing the Sagnac effect
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[10-12,14-16,20], can be used for isolators and circulators
[21], logic gates [7], gyroscopes with enhanced sensitivity
[22], and near-field sensors, while on the other hand, the
symmetry breaking between different polarizations has seen
application in the production of vector solitons and breathers
[23], polarization controllers [24], and even random number
generators [25]. SSB of solitons in Fabry-Perot resonators has
been recently reported [26].

A comparatively novel method of achieving SSB in Kerr
ring resonators, which also serves as inspiration for this
current work, is through the exploitation of identical, or
“twin” ring resonators [27]. SSB was recently observed in
an evanescently coupled Bose-Hubbard dimer where the in-
tracavity photons experience a Kerr-like optical nonlinearity
[28]. By observing not one, but two, twin resonator systems,
and considering polarization effects, we describe methods of
achieving highly controllable multistaged SSB with a wide
range of different field dynamics, such as oscillatory, chaotic,
and self-switching.

An enormous benefit of twin-resonator systems studied
here over a recently reported alternative multistaged SSB
system [29] lies in its degree of controllability, thus giving
increased freedom and flexibility for fundamental science ex-
periments and applications.

We present in Fig. 1 the schematics of our two systems
of study. We shall refer to these configurations by the names
“0l0” (pronounced “olo”) and “|oo|” (pronounced “lool”),
respectively. Even visually, one can see that while there are
many similarities between the two systems, there are also
some key differences between them. In both systems, the Kerr
ring resonators are modeled as perfect copies of each other,
or “twins,” where linearly polarized light is coupled into the
resonators by inputs, and where both fields within the res-
onators are projected onto left- and right-circular polarization
components. The mechanism of field cross talk between the
resonators in the two systems differ. In system o|o, Fig. 1(a),
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FIG. 1. Photonic dimer configurations. Two identical Kerr ring
resonators receive identical, linearly polarized, input beams inducing
circulating fields within the two resonators. By considering field
polarization we model a total of four circulating fields, represented
by modal amplitudes of the field components a4 .. The circulat-
ing fields of the two twin resonators can exchange power through
appropriate means, such as a fiber coupler or evanescent field cou-
pling. In system o|o (a), the fields within the two resonators are
connected through the waveguide between said resonators, and in
system |0o| (b), the fields within the two resonators are geometrically
overlapping.

the two resonators are not geometrically coupled to each other,
but are instead symmetrically coupled to and by a single com-
mon input channel positioned between them, which further
provides linearly polarized light to both resonators symmet-
rically. In system |oo|, Fig. 1(b), the resonators are instead
directly coupled to each other forming a photonic dimer, and
are further uniformly coupled to two separate input channels,
each providing linearly polarized light of matching intensity,
frequency, and polarization direction to the resonators. For
understanding the implications of these differences between
the systems, it is important to note that in system |oo| there is
direct geometrical overlap between the fields circulating the
two resonators, whereas in system oo the distance between
the resonators is such that this overlap does not exist. In
system o|o, however, the fields that come out of one resonator
can still enter the other, only this time via the intermediary
channel.

II. MODEL

For modeling the resonator systems we start with base
equations from Refs. [27,30] and add additional terms that
describe the Kerr nonlinearity. A detailed derivation can be
found in the Appendix. We consider

K
. . . 2
A1+ = (lA - E)ali,Zi + Cart 1+ +iUlajx o] ar+ o+

+ 2U |a1525 > @14 2+ + /KoSin, (1)

where A = wy — w; is the cavity detuning (the difference
between the input frequency and the closest cavity resonance
frequency) and x = k; + k. is the total loss, with internal
losses k; and external losses k.. The term ¢ describes the
coupling mechanism between the two resonators and is given
by

¢ =+iJ  forsystem |00 (2a)
= —% for system o|o, (2b)

where J is the coupling rate between the two resonators in sys-
tem o|o [30]. The fourth and fifth terms of Eq. (1) are self- and
cross-phase modulation terms, respectively, which account for
the nonlinear effects of a field on itself and of other figlds
on the equations primary field, respectively, with U = 22

2Vt
being the Kerr coefficient, where c is the speed of light, “and
n, and ny are, respectively, the nonlinear and linear refractive
indices of the medium. The final term of Eq. (1) represents
input from outside the system, where |S;, | is the input photon
flux. Since the two ring resonators in both cases are identical,
parameters such as the cavity detuning and the Kerr-nonlinear
coefficients, U, are the same for both resonators. We consider
group-velocity dispersion to be negligible in this work.

III. SEQUENTIAL AND NESTED SSB

We begin by seeking the set of stationary states of Eq. (1),
where the fields a4 >+ do not change over time, i.e., dj+ 24 =
0. We can find analytically a partial set of these stationary
states by forcing degeneracies, or symmetries, on the system
(such as forcing a4+ = aj—,—; detailed calculations are
provided in the Appendix). For the system with no such forced
symmetries, however, we numerically evaluate Eq. (1) for a
variety of system parameters, and over sufficient evolution
times to find additional stationary states. The initial condition
for the zero-input power is defined as all four-field compo-
nents having zero amplitudes and zero phases. Thereafter, to
replicate the experimental conditions, where the input power
is increased continuously at a rate much slower than the cavity
build-up time, the system is allowed to evolve for a time
much longer than the cavity build-up time, and after it reaches
steady state, the steady state values of the field components
are used as the initial condition for the evolution of the system
with the next input power. The time step for integration is
considered to be 5 ns, the total integration time for achieving
steady state is considered to be greater than 60 us, and the step
size of increments of S, is from (1.2-2.68) x 10*. The step
size is chosen to be big (small) in regions where the changes in
the steady-state amplitudes of the circulating fields are small
(big). Figure 2 shows the results of this analysis in the form of
input intensity scans.

From Fig. 2, it can be seen that for small input
powers all four fields are symmetric in their intensities,
defined in the first line of Table I. When we define
the system as holding full symmetry between the circu-
lating photon numbers, the system holds all the follow-
ing symmetries and corresponding invariances. Polarization
symmetry: lai4+|> <> |ai—|? and |as4|* <> |as—|>. Resonator
symmetry: |ai4|> <> |ars|? and |ai_|*> <> |as—|?. Cross sym-
metry: |ay4|* < |ay—|* and |a;_|* < |ap(|*.

After a certain threshold, which is highly dependent on
system parameters, this full symmetry is partially lost, and
the fields separate into two stable asymmetric pairs of sym-
metric fields [blue solid lines in Figs. 2(a) and 2(c)]. In
keeping with convention, we refer to this point of partial
symmetry loss as a SSB bifurcation. At this SSB bifurcation,
the fields are forced to pair up with symmetric polarization
components within each resonator (Table I, row 2), which
amounts to the effect of both the resonator and the cross
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FIG. 2. Input intensity scans. (a) and (b) show the variations
of the circulating intracavity photon numbers |a1i,2i|2 for the olo
and |oo| systems, respectively; obtained using Eq. (1) for a cavity
detuning of A = —2.52«; for (a) and A = —2.45«; for (b). The bold
lines show the results of simulation. The pale solid and pale dashed
lines show the stable and unstable regions of the analytical solution,
respectively. The black lines represent the fully symmetric solution,
the sky-blue lines represent the polarization symmetry bubble, the
green lines show the fully asymmetric bubble, the brown lines depict
the cross symmetry bubble, and the yellow lines show the resonator
symmetry bubble, with these symmetries defined in Table I. The
scan directions for both cases are shown above the plots. The long
monotonous region in the cross symmetry bubble has been squeezed
in the gray region. Used parameters: x, = k;, = w MHz, U = 4. For
all the simulations in this work we have considered J = «,/2.

symmetries breaking. Resonator SB refers to the situation
when one resonator’s total intensity is suppressed and the
other’s is enhanced, while cross SB means that the sym-
metry that used to exist between the intensities of the
right-circularly polarized component of one resonator and
the left-circularly polarized component of the other has
broken.

Above a second input power threshold, it can be seen that
each of the two pairs of symmetric fields experiences a second
SSB bifurcation, where the final symmetry, the polarization
symmetry, also breaks, resulting in the system having full
asymmetry between the circulating photon numbers (Table I,
row 5).

TABLE I. The circulating photon number relations that corre-
spond to various stages and types of SB in our systems.

Degree of symmetry Fields’ intensity relation

lars? = lai—* = |azs |* = |ao—|?
lare > = lar-* # lax|* = |as|?
lars? = lax|* # lai-|* = |ax—|?
lars? = lao—* # lai-* = |ax:|?
lare > # lar- > # lar|* # las|?

Full symmetry
Polarization symmetry
Resonator symmetry
Cross symmetry

Full asymmetry

The inverse bifurcations of the fully asymmetric re-
gions can then be observed in both systems, where various
symmetries are restored until again the four fields behave
symmetrically for a small range of input intensities.

Continuing to observe Fig. 2 for even higher input pow-
ers, alternative SSB bifurcations occur for both systems. The
respective symmetries that break at each SSB bifurcation are
different for the two systems. In system o|o, the SSB leads to
the field pairing with our previously defined cross symmetry
(Table I, row 4). However, in system |oo|, two distinct SSB
bubbles occur, each with their own unique SSB bifurcations.
The first bifurcation breaks both polarization symmetry and
cross symmetry and leads to the field pairing with resonator
symmetry alone as shown in the third row of Table I. This
resonator symmetric pairing has not been observed in system
olo.

The steady-state solutions later jump to other steady-state
solutions mid-resonator symmetry bubble. These solutions
correspond to the field pairings with cross symmetry. This
jump of the system state from one stable condition to another
stable condition is a particularly interesting feature of the
system |oo|. By close inspection of the crossing point, it has
been observed that the polarization SB bubble breaks into a
set of fully asymmetric solutions where the four fields start
to oscillate. The oscillations trigger the system to change the
state. If the two resonators in system |0o| or o|o are assumed to
be different, since the symmetry between the resonators is not
present, one expects, for example, the pitchfork bifurcations
of Fig. 2 to transform into saddle-node bifurcations, which is
typical of imperfect bifurcations of this kind [31,32].

IV. PARAMETER SCANS

To deepen our understanding of the SSB behaviors within
the system described by Eq. (1), we show in Fig. 3 parame-
ter space scans for the two systems over the input intensity
and cavity detuning parameters, where we further scan from
various directions to capture different possibilities of bistable
system states. Within these scans, we not only show the
varying degrees of symmetry between the circulating photon
numbers, but also where the photon numbers show oscillatory
behavior.

From Fig. 3, it is evident that both systems can exhibit os-
cillatory behavior for certain ranges of values for input power
and detuning. Different distinct regions in the parameter scan
regions correlate to different types of oscillations, often with
different pairings of the fields and their relative phases. One
method to visualize the oscillations and the presence of chaos
in a system is to generate Poincaré section plots. In Fig. 4,
Poincaré sections at the maxima and minima of the field in-
tensities for the two systems are presented. For the first system
[Fig. 4(a)], the maxima and minima of the two dominant fields
have been plotted for a detuning A = —6.7«;. With increasing
power, at first the symmetry between the two fields breaks and
thereafter the fields start to oscillate. The maxima and minima
of the fields diverge with increasing power, and after a small
region of cascading period doubling bifurcations, the maxima
of the lower field cross the minima of the upper field causing a
region of overlap. This begins a region of chaotic oscillations.
After the chaotic region, the oscillations of the two fields
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FIG. 3. Input power—detuning parameter scan. (a)—(d) Scans for system o|o. (e)—(h) Scans for system |oo|. Purple corresponds to regions
with symmetric field intensities. Green corresponds to regions with a single symmetry-breaking bubble (resonator-, polarization-, or cross
SB), i.e., two pairs of symmetric fields are different from each other in this area. Yellow shows where all the four fields are different (fully
asymmetric). Oscillations in the field intensities can be observed in the pale-red zones. The dark-red lines in (e)—(h) denote the small four-
dimensional oscillatory segments during transitions from polarization SB to cross SB regions. The white arrows show the directions of the
scans (e.g., arrow up = increasing detuning; arrow left = decreasing input power). For these simulations we use U = 4.
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FIG. 4. Poincaré sections of oscillations in the system. Maxima
and minima of the four-field components for system o|o (a) and
system |oo| (b). The maxima and minima of |a;,|> are shown by
blue dots, of |a;_|? by red dots, of |a,|* by black dots, and of |a,_|?
by green dots. A single point of a particular color for a certain input
power indicates the absence of oscillation for that field, whereas two
points at a given input power correspond to oscillations and a lot of
such points refer to chaos. In (a), for lower input power, the system
exhibits no oscillations and |a;,|*> = |a;_|*. The first bifurcation of
red and blue lines shows a SSB between the two fields, whereas the
bifurcation of the single red/blue line to two red/blue lines depicts
oscillations in the system, the amplitude of which is bounded by the
two red/blue lines. The oscillations then overlap and lead to chaos.
In (b) uncoupled oscillations in all the fields appear for lower input
power followed by regions of four-dimensional (4D) and 2D SSB.
Chaos in (b) is indicated by complete overlap of oscillations of the
four fields. The chaos ends with uncoupled oscillations of the four
fields towards higher input power, which further lead to a 4D SSB
region without any oscillations.

decouple and the system returns to a more regular form of
oscillatory behavior. In the Poincaré section of the second
system [Fig. 4(b)] for a detuning A = —5.82«;, decoupled
symmetry-broken oscillations of the four fields emerge from
the fully symmetry-broken condition at the beginning of the
plot. From an input flux of |Si,|> = 1.5 x 10'3 a short region
of chaos is observed.

V. OSCILLATIONS

In Fig. 5 we display different types of the self-switching
oscillations [15,28] observed in the two systems. In sys-
tem o|o, sinusoidal field behavior is always accompanied by
in-phase oscillation of the pairing component as shown in
Fig. 5(a). However, Fig. 5(b) shows the self-switching oscilla-
tions between fields of two different resonators with mutually
perpendicular polarizations in system|oo|. This switching is
observed for A = —3.1«y, |Sin|2 =5.95 x 10'? and can be
seen in a wide range of parameter values around this point. In
Figs. 5(c) and 5(d), switching between the fields of different
polarizations within the same resonators are plotted for system
olo and |oo|, respectively. The insets in cases (a)—(d) show
perfect overlapping of the switching fields in phase space
implying some global symmetry has been restored. One inter-
esting phenomenon observed in the figures in the lower panels
of Fig. 5 is that although switching of the different polariza-
tion components within both the resonators are observed in
both systems, fields in one resonator get highly enhanced and
in the other greatly suppressed.
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FIG. 5. Types of switching in the system. Evolutions of field
intensities over time in system oo, (a) and (c), and system |oo]|,
(b) and (d). In sinusoidal oscillatory regions where oscillations of
any two pairs of fields overlap in system o|o, the phases of the
overlapping fields are the same, as in (a) where A = —3.2¢; and
|Sin|> = 5.35 x 10'2. (b) Perfect sinusoidal switching of the cross
fields (|aj4|*> with |a;_|* and |a;_|*> with |a,4|?) in system |oo]
for A = —3.1k; and |Sin|> = 5.95 x 10"2. (c) and (d) show switch-
ing of fields within each resonator (|a;;|* with |a;_|* and |a,|?
with |a,_|?) in system o|o and system |oo|, respectively. For (c),
A = —6.66k; and |S;,|?> = 1.29 x 10'3 and for (d), A = —7.17«; and
[Sin]? = 1.31 x 10'3.

In summary, we developed a theoretical framework to an-
alyze the SSB of light in coupled twin resonators also known
as photonic dimers. In the o|o photonic dimer system, two
different kinds of two-staged SSB have been observed: the
symmetry breaking between the resonators and, for higher
input intensities, the symmetry breaking between the cross
pairs (one polarization of one resonator pairing with the or-
thogonal polarization of the other resonator). On the other
hand, in the coupled photonic dimer, one extra type of 2D

J

symmetry breaking has been observed, which breaks the
symmetry between the field polarizations. Full asymmetry
between circulating photon numbers is accessible in both
systems for relatively higher values of detuning. We found
distinct regions of oscillations present in both the systems,
each of which contains oscillations of fields with different
orders of magnitude. The most interesting oscillations present
in the systems were chaos and multiple variations of perfect
periodic switching. In the geometrically uncoupled photonic
dimer, we observe perfect periodic switching between the
fields in the same resonators. In the |oo| photonic dimer,
however, we observed sinusoidal switching between the fields
with same polarizations. Future works will address the effect
of the loss terms and the interresonator coupling parameter
on the stationary response of the system. This work will find
applications in designing efficient Kerr-effect based polariza-
tion controllers, all optical computing, and designing compact
optical isolators for quantum computers. This model further
has the possibility of observing symmetry-broken vector soli-
tons with four different levels [33], which would be useful
for generating four distinct frequency combs and would be
very useful in telecommunications and especially in space
technologies due to compactness.
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APPENDIX: STEADY-STATE RESPONSES

—(h/2)Ud}da;a; where Ti is the
Planck constant and &T (aj) is the creation (annihilation) operator in the jth resonator (j € {1, 2}), such that [a;, &z] =k

The Kerr effect in each of the resonators can be described by the Hamiltonian 1-7}“’" =

and [a;, ax] = 0. The term U = hw‘{,mz [30,34,35] is the Kerr coefficient, where w, is the excited pump frequency in the
microresonator, c is the speed of light, n, is the nonlinear refractive index, n is the linear refractive index, and V. is the effective
mode volume. If we consider right- and left-handed circularly polarized fields inside the resonators, with creation (annihilation)

operators &:f | (G;+), the Hamiltonian can be written as [36]

yKerr AT V2 AT AT A
A = ——U((aH) L+ @) )a; +4dal a0 a;0), (A1)

where 2d =1 4+ (Xxxyy/ Xxyxy) and Xxxyy and Xy are the nonlinear susceptibility tensor terms of the medium. Therefore, one
can write the self- and cross-phase modulation terms in the evolution equations of the operators as

aje = iU @} 2z +2da}_a3)a;.. (A2)
Therefore the evolution equations of the four fields in the two resonators can be written as
. . K . .
ary = <1A - §>al+ + Cary +iUlary Pary + i2Uai—1*ars + /KeSin, (A3a)
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a- = (iA — g)al + tay +iUlay-Par- +i2U a4 1*a1- 4 /keSin, (A3b)
. . K . .

iy = <1A — 5>a2+ +cary + iU\ayy Pary + i2Uar_|*azy + /KoSin, (A3c)
ar- = (iA — g)az + ¢ai- +iUlay_PPay- + i2U|ays *ar- + /keSin, (A3d)

where a4 >4+ stands for the real-valued classical amplitudes of the optical modes. The term ¢ depends upon the mechanism
of coupling as mentioned in the main text. In both the cases we consider that fields in the two resonators with the same
polarization orientation are coupled and there is no cross coupling between fields with orthogonal polarization orientation
in the two resonators. In system o|o, where there is no geometric coupling between the two resonators, the fields within
the two resonators are related through the input-output relations. The field in one resonator is coupled to the modes in the
tapered fiber and those modes are coupled to the resonant mode in the other resonator. After a detailed calculation, it can be
derived that { = —(k,./2). In system |oo|, where the fields within the two resonators geometrically overlap, the interaction
between the optical modes is modeled by the interaction Hamiltonian A = —pkJ (&}L yhor + &; La + &T_&z_ + &;_&1_). The
term J defines the coupling strength between the two resonators. This Hamiltonian leads to ¢ = iJ in Egs. (A3) for system
|oo].

In steady state, a;+ = a— = ar+ = a,— =0, i.e,,

K

(lA - §>al+ + ¢ar +iUlary Pary + i2Uar- a1y + /k.Sin = 0, (Ada)
K

( A— E)al_ + ¢ar- + iUlai_Pai— + i2U)ai1[*ai— + /&.Sin = 0, (Adb)

(lA - —>a2+ + ¢ary + iUlazs Pary + i2U |ar—*ars + /k.Sin = 0, (Adc)
K

<iA — §>a2_ +¢a_ +iUlay_|Par- + i2Uary |*ar— + /keSin = 0. (A4d)

Solving this system of equations is quite difficult when all the fields are asymmetric. Therefore, to study multistaged symmetry
breakings, leading to full asymmetry in the system, we let Egs. (A3) evolve for a long time for increasing input power and record
the final states. However, it is possible to study fully symmetric solution and different two-staged symmetry-breaking conditions
in the system analytically. To do this, we impose the corresponding conditions of forced symmetry among different pairs of
fields in the equations.

1. Fully symmetric solution

Here we consider a1+ = a;— = a»+ = a>— = a. Therefore, Egs. (A3) take the form
a= <iA _ §>a+§a+iU|a|2a+i2U|a|2a+¢K—esin. (A5)
The steady state in this case can be described as
30772 2 2 9K 2
A°QU*) + A (6AU) + Al A" + 1) KelSin|* =0 for system o|o, (A6a)
2
A3OU?) + A%6U(A + ) +A<A2 +J? 4+ 2AT + ?) — KelSin|> =0 for system |oo], (A6b)

where A = |a|*.

2. Polarization symmetric solution

Here we consider a1 = a;— = b and ay = a,_ = c. Therefore, Eqs. (A3) take the form
b= {i(A+3U|b|2>— g}b+cc+¢x—esin, (AT7a)
¢ = {i(A+3U|c|2)— g}c—i-;b—i-\/lc_eSin. (A7b)
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The steady state in this case can be described as
K2 K2
B*(9U?) + B*(6AU) + B<A2 + Z) — (AZC +9UC? + 6AUC? + fc) =0 for system oo,
2
B}(9U?) + B*6U (A —J) + B(A2 +J2—2AJ + T)

2
—<A2c +9U%C3 + J?C + 6AUC? —2AJC — 6UJC* + %C) =0  forsystem |ool,

where B = |b|? and C = |c|*.

Here we consider a1 = a4+ = d and a;— = a;_ = e. Therefore, Eqgs. (A3) take the form

(A8a)
(A8b)
3. Resonator symmetric solution
d= {i(A+U|d|2+2U|e|2)— g}d+cd+¢zsin, (A9a)
6 = {i(A+U|e|2+2U|d|2)— g}e+;e+¢/zsin. (A9b)

The resonator symmetric solution is only observed in the case of system |oo|. In that case, the steady state can be described as

2 2
D (U?) + D*QAU +2UJ) + D(A2 + KT T2+ 2AJ> _ {E3U2 +E2QAU +2UJ) + E<A2 LT 42AT + KZ)} =0,

where D = |d|?* and E = |e|*.

Here we consider, a1+ = a,— = f and a;— = a4+ = g. Therefore, Egs. (A3) take the form

The steady state in this case can be described as

2
e

2
F3(U?) + 2AUF? + F(Az + ) - <A2G L UGP +2AUG + %G) —0

F3U?) + F2QAU — 2U7) + F<A2 n KZ Ty 2AJ>

4

(A10)
4. Cross symmetric solution

. K
f= {i(A +UISP +2U1g%) — E}f + g+ VKeSin, (Alla)

K
g= {i(A+U|g|2+2U|f|2)— §}g+ Cf + KeSin. (Al1b)
for system o|o, (Al2a)

2
2

—2AJ + —)} =0 for system |oo]|, (A12b)

—{(;3U2 + G*2AU —2UJ) + G<A2 + J?

where F = |f|*> and G = |g|*.
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