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Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades
ambient air quality. Various models have been developed to address the universal features of traffic
jams. These models range from micro car-following models to macro collective dynamic models.
Here, we study the macrostructure of congested traffic influenced by the complex geometry of the
commute. Our main focus is on the dynamics of traffic patterns in Paris, and Los Angeles each
with distinct urban structures. We analyze the complexity of the giant traffic clusters based on
a percolation framework during rush hours in the mornings, evenings, and holidays. We uncover
that the universality described by several critical exponents of traffic patterns is highly correlated
with the geometry of commute and the underlying urban structure. Our findings might have broad
implications for developing a greener, healthier, and more sustainable future city.
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Introduction.—Studying the behavior of vehicular traf-
fic has attracted the attention of researchers for a long
time. Excessive use of vehicles could bring about various
problems, one of which is elevating the congestion. Peo-
ple are dealing with congestion almost every day, and it
brings negative effects on their lives. A thorough analy-
sis [1] of traffic situations in 471 urban areas across the
United States has revealed that travel delays due to traf-
fic congestion pushed drivers to waste more than 3 bil-
lion gallons of fuel and kept travelers stuck in their cars
for about 7 billion additional hours—42 hours per rush-
hour commuter. These all translate to a total nationwide
price loss of 160 billion during traffic congestion or 960
per commute. In addition, the ”2019 Urban Mobility Re-
port” remarked that traffic delay was equivalent to nearly
7 full working days of motorists in 2017. The negative
cost of this delay could cause a loss of over 1000 dollars
[2].

The other problem that emerges from congestion is
the emission of pollutants into the air. Studies on the
source of fine particulate matter in different areas in the
United States indicated that motor vehicles are one of the
primary contributing factors to air pollution and con-
sequently to global warming [3, 4]. The stop-and-go is
a common phenomenon that occurs during congestion.
Consecutive acceleration and deceleration in stop-and-go
will lead to extensive burning and consumption of fuel
and consequent air pollution. Releasing harmful fine par-
ticulates is highly related to mortality risk. Lung cancer
and cardiovascular mortality are increased as a result of
high amounts of pollutants in the air [5–10]. These effects
have led scientists to find an optimal way to mitigate the
congestion by exploring different aspects of traffic.
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Greenshields et al. were pioneers in measuring the
speed, capacity, traffic flow, and density by taking photos
[11–13]. Researchers started to probe into the behavior of
traffic both from macro and micro points of view. In this
regard, different approaches were proposed to solve the
problems that traffic carries (See [14, 15] and references
therein).

Totally Asymmetric Simple Exclusion Processes
(TASEP), Cellular Automaton (CA), and Car Follow-
ing models are classified in the microscopic approaches
in which monitoring the occupancy of each cell is essen-
tial [15–21]. The impact of roundabouts, crossroads, sud-
den acceleration, and deceleration, overtaking on multi-
ple roads are the most frequent questions in this approach
[15, 22–26]. On the other hand, macroscopic models of-
ten investigate the global impact of traffic throughout the
city. One of the most well-known macroscopic models
was proposed by Ligthill-Whitham and Richards (LWR)
[15, 27, 28] where the authors have utilized a first-order
partial differential equation to explain the dynamic of
traffic.

Propagation of congestion throughout the city and
identifying the traffic zone in the city is one of the fre-
quent questions in macroscopic models. Daganzo [29, 30]
has introduced the cell transmission model which shows
the evolution of traffic flow over complex networks. This
model can investigate and predict the dynamics of traf-
fic including nucleation, spanning, and the emergence of
queues due to congestion.

Percolation theory [31] is a useful tool for studying
the organization of global traffic flow on a lattice model
[32, 33]. Recent studies on macroscopic models have uti-
lized percolation theory to disclose the propagation of
traffic in urban areas [34, 35]. In this geometric ap-
proach, locally congested roads will form traffic clusters
that gradually grow over time and eventually merge into
one giant cluster. The critical point or the percolation
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FIG. 1: Mapping traffic pattern in Paris to percolation. a. The regular Google map. Different colors indicate the intensity of
traffic on roads. b. The map is embedded onto a 112× 112 grid. In the first step, we indicate cells in which at least one of the pixels
belongs to a road. A porous lattice appears in green cells. We will analyze the percolation of traffic on this porous lattice. c. Cells are
colored by the traffic report of Google. If only one pixel within a cell is assigned by either orange, red, or dark red, we then consider the

whole cell as a traffic cell. d. Percolation of traffic congestion in the porous lattice. Traffic clusters are displayed in yellow. The red
cluster indicates the giant cluster.

threshold pc coincides with the emergence of the giant
cluster that is of great practical importance. The perco-
lation problem is one of the most important universality
classes in the critical phenomena characterized by a set
of genuine critical exponents. Scaling relations ensure
that all critical exponents can be obtained from only two
independent ones e.g., the fractal dimension Df of the
giant cluster and the Fisher exponent τ governing the
cluster size distribution at criticality. Determination of
the universality class of traffic clusters can indeed pro-
vide insights into the underlying mechanism and influ-
ential parameters that shape the propagation of traffic
jams over time [32, 36, 37].

Here, we study the structure of traffic clusters in Los
Angeles and Paris by using the concepts of percolation
theory. We compare their properties in the morning and
the afternoon/evening rush hours of weekdays and week-
ends. The critical question is whether the percolation
properties of traffic clusters in these cities with totally
different road network structures are influenced by the
geometry of the commutes.

Results.—We first embed the Paris map into a 112×112
grid in our analysis. Snapshots are taken from Google
Maps for live traffic patterns every 5 minute in 14 days
during June and November 2018. Roads in Google Maps
carry four possible colors: green, orange, red, and dark
red. Colorless regions in the map are related to places

FIG. 2: Giant cluster of traffic jam in Paris. The red cluster
represents the giant cluster at the percolation critical point in
Paris in the morning of a working day. The orange cluster

represents the second largest cluster.

other than roads, which we will not consider in this study
(Fig. 1). The green stands for a road in the traffic-free
mode. In other cases, however, traffic is involved with the
increasing intensity from orange to dark red. This setting
provides a network of roads of Paris and Los Angeles
embedded in a discretized two-dimensional space (Fig.
1).

Materials and Methods.—Google Maps has a feature
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FIG. 3: Mean cluster size in Paris. The mean cluster size χ(p) as a function of the traffic rate p in the working days (a) and
weekends (b) in Paris. The vertical dashed lines show the location of maximums at the critical traffic rate pc.

FIG. 4: Giant cluster of traffic jam in weekends. The red
cluster represents the giant cluster at the percolation critical

point in Paris on a weekend. The orange cluster represents the
second largest cluster.

called “Google Traffic” that provides accurate real-time
traffic information to online users. The information is
graphically coded in four different colors: green for the
traffic-free mode, orange for moderate traffic, red for high
traffic, and dark red for traffic congestion (Fig. 1). We
captured the live traffic patterns of Paris and Los Angeles
in 5 minute intervals for two weeks. There are different
features in the snapshots that we captured (e.g. names of
roads, rivers, Parks, etc.) but we only used the graphical
information for the traffic report.

In the first step, we use image processing to convert the
RGB matrix (which is a 3D matrix ) into a 2D matrix
with values ranging from 1 to 4 each for colors from green
to dark red, respectively (Green=1, orange=2, red=3,
and dark red=4). We have then embedded the matrix
information onto a square lattice of size 1792 × 1792.
Since the cell size on our original lattice was less than a
typical road width, we have used a coarse-grained lattice

by merging each 16 × 16 cell into one larger cell. Thus
our initial lattice of size 1792×1792 shrank into a lattice
of size 112× 112.

Models. we used the site-percolation model to investi-
gate traffic propagation and dynamics throughout Paris
and Los Angeles. We consider a site (or cell) to be con-
gested if its attributed value is higher than 1. This means
that all sites with colors in orange, red, and dark red are
congested. We define q = 2 as a threshold for each cell
in the matrix Aij i.e.,

Aij =

{
1 if Aij ≥ q

0 if Aij < q
(1)

Map onto a percolation problem. Fig. 1a represents a
typical snapshot of the traffic pattern in Paris. Fig. 1b
shows the porous lattice of the road network on which our
percolation analysis is carried out. Fig 1c is an example
of the transformation of the original 3D RGB Google
Maps traffic pattern into the two-dimensional 112× 112
lattice. Each lattice cell may contain several colored pix-
els in the original map. We use the max-pooling method
which assigns the darkest color of pixels to the cell. We
then consider all cells with different colors as occupied
cells in percolation and represent them with orange. The
nearest neighbors of occupied sites on the lattice form a
connected cluster, and the number of occupied sites in
this cluster defines its size s. The giant cluster with the
largest size at the given traffic rate is shown in red in Fig
1d. The traffic rate is related to the occupation proba-
bility p that measures the ratio of the total number of
occupied sites to the total number of green sites i.e., all
sites that belong to the road network. Once p reaches a
critical threshold pc i.e., the large-scale traffic is jammed
and the giant cluster spans across the lattice.

To capture these critical points, we first measure the
mean cluster size (analogous to the susceptibility of the
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FIG. 5: Fractal property of the giant cluster: log-log plots of the average mass M of the giant cluster of a traffic pattern in a
window of size L in the mornings of the working days (a), evenings of the working days (b), weekends (c) in Paris. (d) Implementation of
random percolation model on the city road geometry. The slopes give the fractal dimension of the giant cluster at the critical thresholds.
The solid lines are the best fits to our data with R2 > 0.99. The error bars (based on standard error) are the same size as the symbols.

system), χ(p) defined by

χ(p) = Σ′
ss

2ns(p)/Σ
′
ssns(p), (2)

where ns(p) denotes the average number of clusters of
size s at each traffic rate p, and the prime on the sums
indicates the exclusion of the largest cluster in each mea-
surement.

Fig. 2 illustrates an example of the traffic pattern at
the critical rate in the morning of a working day in Paris.
The red cluster is the largest cluster and the orange one
is the second largest cluster.

Fig. 3a represents the mean cluster size of traffic pat-
tern in both morning (green open circles) and evening
(red solid circles) on a working day in Paris. The diver-
gence in χ(p) signals the critical traffic rate at the onset
of large-scale traffic congestion. Remarkably, the critical
traffic rate in the morning is smaller than the critical rate
in the evening. We find that the average traffic rate in the
morning for the observed period is 0.525 ± 0.05 and for
the evening is 0.67± 0.02. This means that the morning
of working days in Paris carries a lower capacity of traffic
flow which can be caused by the common and localized
destinations of vehicles in the morning and thus com-
mon roads. Fig. 3b shows the percolation of traffic flow
during a weekend in Paris. As it can be seen, the critical
traffic rate pc in the morning (∼ 0.664±0.02) and evening
(∼ 0.68± 0.02) is very close to that of the evening of the

working days (∼ 0.67± 0.02). In the evenings and week-
ends, the destinations are chosen by the people which are
well distributed all over the city which provides more va-
riety of routes for vehicles and as a result the traffic load
of the city increases in this period of time. This differ-
ence is also well represented schematically in the giant
cluster of the traffic pattern for weekday morning in Fig.
2 which is a highly porous and low-density fractal struc-
ture versus a more dense structure of the giant cluster
observed in the weekend shown in Fig. 4.
Such observations prompt us to investigate whether

the difference between weekend and weekday evening
critical thresholds versus weekday morning thresholds is
indicative of fundamental differences in traffic patterns
from the perspective of critical complex systems. The
universality allows to grouping of microscopically quite
different physical models and phenomena with the same
behavior near criticality into universality classes charac-
terized by a set of critical exponents related to the broad
symmetry groups. In percolation theory, the critical ex-
ponents, unlike the critical threshold, do not depend on
the microscopic details of the underlying lattice but only
on the Euclidean dimension d and the dimensionality of
the order parameter.
To evaluate the universality class of the traffic pat-

terns at the critical rates, we first measure the fractal
dimension Df of the giant clusters which also implies the
emergence of self-similarity in the geometric feature of
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FIG. 6: Mean cluster size in LA. The mean cluster size χ(p)
as a function of the traffic rate p in the working days in LA. The

vertical dashed line shows the location of maximums at the
critical traffic rate pc.

the percolation clusters. If the giant cluster is scale in-
variant then it requires that the mean mass M of the
cluster within the window of length L would increase as
a power-law with size, i.e.

M(L) ∝ LDf . (3)

The results of our fractal analysis based on examination
of the scaling relation Eq. 3 are illustrated in Fig. 5
where we have shown log-log plots of the average mass of
the giant cluster within a window of linear size L. The
slope of the linear fit to our data gives the best estimation
for the fractal dimension. We find Df = 1.57 ± 0.05
for the giant cluster of traffic jam in the morning of the
working days (Fig. 5a), while we find higher values 1.76±
0.05 (Fig. 5b) and 1.73± 0.05 (Fig. 5c) for the evening
of the working days and the weekends, respectively, in
agreement with our earlier graphical observations from
Figs. 2 and 4.

In order to further elucidate the nature of the uni-
versality classes observed at different times in Paris, we
examine the implementation of the random percolation
model on the geometry of the road network in Paris. To
this aim, we randomly choose a site on the roads and
occupy it with a vehicle. We find that the model shows
a critical behavior at a critical rate pc = 0.69± 0.04 and
the fractal dimension of the giant cluster is estimated to
be Df = 1.78 ± 0.03 (Fig. 5d). Remarkably, this ran-
dom percolation model agrees well with our observations
of the real traffic situations in Paris during the evenings
of the working days and the weekends. This finding is
in accord with our previous justification of the random
distribution of vehicle destinations during the evening of
working days and weekends.

We have also performed a similar analysis on the sta-
tistical behavior of the traffic pattern in the city of Los
Angeles (LA). The urban structure of LA and the road
network are completely different from the city of Paris,
and this helps to better understand the effect of com-

mute geometry on the universality and the traffic thresh-
old. Figure 6 shows the mean cluster size as a function of
traffic rate in the morning of LA. The global maximum
in χ happens at pc = 0.735± 0.05 which is close to that
of the random percolation model on Paris as well as our
observations on the evenings and the weekends in Paris.
To examine its universal properties at the criticality, we
have measured an independent critical exponent i.e., the
Fisher exponent τ shown in Fig. ?? using the following
scaling relation at the critical threshold

n(s) ∝ s−τ . (4)

We use the algorithm described in [38] to evaluate the
Fisher exponents. To this aim, we first estimate the
lower bound of the traffic cluster size distribution where
it begins following a power-law behavior. Thereafter, we
used maximum likelihood estimation (MLE) to find the
best scaling parameter that fits our observed data. To
check the validity of our measured scaling parameter,
we used the goodness of fit test which would generate
a p-value. We measure the p-value by using the Kol-
mogorov–Smirnov (KS) test to calculate the distance be-
tween the empirical data and the hypothesized power-law
model. Afterward, we create a large number of synthetic
data with the given scaling parameter and lower bound
and then calculate the distance between the model and
each synthetic data set by using KS statistics. We can
define the p-value once we calculate the fraction of times
that the KS result is larger than that of real data. It
is reasonable to say that a distribution follows a power-
law behavior if the p-value is greater than ∼ 0.1 (for a
detailed explanation of the method see [38]).
By employing the aforementioned method, we find the

Fisher exponent τ ∼ 2.33 for the mornings of the work-
ing days in Paris and almost the same exponents around
τ ∼ 2.16 for the evenings and the weekends of Paris and
LA (Table I). This shows the crucial role that is played by
the geometry of commutes in shaping the universal and
characteristic properties of traffic patterns in megacities.
We have also carried out random percolation analysis on
the LA road network and found results close to those ob-
tained in Paris. All measured thresholds and exponents
are summarized in Table I. These all support our conclu-
sion that the commute geometry leaves its footprints on
the traffic patterns.
Conclusion.—In classical critical phenomena, the uni-

versal features are independent of microscopic details and
only dependent on the dimensionality and the underly-
ing symmetries. In a given support dimension, changing
the universality class requires manipulating interactions
in a relevant manner. In the percolation model that we
used in the analysis of the traffic patterns of Paris, the
universality class in the mornings of working days is dis-
tinctly different from the weekends and evenings of work-
ing days. The only important difference in these two sit-
uations is the change in the distribution of supply and
demand at the city level, which seems to have a much
more significant effect than what was thought. Because
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TABLE I: Percolation threshold pc, fractal dimension Df , and the Fisher exponent τ for the considered cities and models.

City/Model pc Df
τ

exponent p-value
working day mornings in Paris 0.525± 0.05 1.57± 0.05 2.33± 0.04 0.25
working day evenings in Paris 0.67± 0.02 1.76± 0.05 2.17± 0.04 0.70

weekends in Paris 0.68± 0.02 1.73± 0.05 2.16± 0.05 0.21
random percolation on Paris 0.69± 0.04 1.78± 0.03 − −
working day mornings in LA 0.735± 0.05 1.77± 0.05 2.16± 0.04 0.63
random percolation on LA 0.70± 0.04 1.70± 0.04 − −

2D site percolation on square lattice 0.592± 0.003 91/48 187/91 −

1 2 3 4 5 6
S

8

7

6

5

4

3

2

1

0

n(
S)

Paris
morning, Workingdays

~ S 2.33

a
1 2 3 4 5

S

5

4

3

2

1

n(
S)

Paris
evening, Workingdays

~ S 2.17

b

1 2 3 4
S

5

4

3

2

1

n(
S)

Paris
Weekends

~ S 2.16

c
1 2 3 4

S

5

4

3

2

1

n(
S)

LA

~ S 2.16

d

FIG. 7: The Fisher critical exponent τ at the percolation
threshold. (a) Working days in the morning in Paris, (b)

Working days in the evening in Paris, (c) Weekends in Paris, and
(d) LA.

even when we look at the dynamics of the traffic pattern
in the city of Los Angeles, with a different city struc-
ture and geometry from Paris, the universality class is
like the weekends in Paris, which is also indistinguishable
from a case where vehicles are randomly distributed in
the city. These observations are very promising because
our results suggest that without manipulating the road
network and urban structure (urban geometry) which is
very costly if not impossible, the critical traffic rate of
the city can be significantly increased by changing the
distribution of supply and demand sources in the city.
This means that the universality class of the traffic model
is manageable based on the random percolation model,
which seems to provide an optimal condition for city traf-
fic.
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