日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Guiding the choice of informatics software and tools for lipidomics research applications.

MPS-Authors
/persons/resource/persons218972

Shevchenko,  Andrej
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ni, Z., Wölk, M., Jukes, G., Espinosa, K. M., Ahrends, R., Aimo, L., Alvarez-Jarreta, J., Andrews, S., Andrews, R., Bridge, A., Clair, G. C., Conroy, M. J., Fahy, E., Gaud, C., Goracci, L., Hartler, J., Hoffmann, N., Kopczyinki, D., Korf, A., Lopez-Clavijo, A. F., Malik, A., Ackerman, J. M., Molenaar, M. R., O'Donovan, C., Pluskal, T., Shevchenko, A., Slenter, D., Siuzdak, G., Kutmon, M., Tsugawa, H., Willighagen, E. L., Xia, J., O'Donnell, V. B., & Fedorova, M. (2023). Guiding the choice of informatics software and tools for lipidomics research applications. Nature methods, 20(2), 193-204. doi:10.1038/s41592-022-01710-0.


引用: https://hdl.handle.net/21.11116/0000-000E-AAF0-3
要旨
Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.